
The OSGi Alliance
OSGi Residential

Release 6
July 2015

Copyright © OSGi Alliance (2000, 2015).
All Rights Reserved.

OSGi Specification License, Version 2.0

License Grant
OSGi Alliance ("OSGi") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited li-
cense (without the right to sublicense), under OSGi's applicable intellectual property rights to view, download,
and reproduce this OSGi Specification ("Specification") which follows this License Agreement ("Agreement"). You
are not authorized to create any derivative work of the Specification. However, to the extent that an implemen-
tation of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a
perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) ful-
ly implements the Specification including all its required interfaces and functionality; (ii) does not modify, sub-
set, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Ja-
va interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the
Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementa-
tion of the Specification. An implementation of the Specification must not claim to be a compliant implementa-
tion of the Specification unless it passes the OSGi Compliance Tests for the Specification in accordance with OS-
Gi processes. "OSGi Name Space" shall mean the public class or interface declarations whose names begin with
"org.osgi" or any recognized successors or replacements thereof.

OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-as-
sert and licensing commitments regarding patent claims necessary to implement the Specification, if any, un-
der the OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(www.osgi.org).

No Warranties and Limitation of Liability
THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION
OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

Covenant Not to Assert
As a material condition to this license you hereby agree, to the extent that you have any patent claims which are
necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.

General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertis-
ing or publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their re-
spective owners and are hereby recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

http://www.osgi.org

Comments about this specification can be raised at:

https://osgi.org/bugzilla/

OSGi Residential Release 6 Page 3

Table of Contents

1 Introduction 11
1.1 Overview of the Residential Specifications. 11

1.2 Version Information. 14

1.3 References. 15

1.4 Changes. 16

2 Residential Device Management Tree Specification 17
2.1 Introduction. 17

2.2 The Residential Management Tree. 18

2.3 Managing Bundles. 18

2.4 Filtering. 22

2.5 Log Access. 23

2.6 osgi.wiring.rmt.service Namespace. 24

2.7 Tree Summary. 24

2.8 org.osgi.dmt.residential. 26

2.9 org.osgi.dmt.service.log. 37

2.10 References. 38

3 TR-157 Amendment 3 Software Module Guidelines 39
3.1 Management Agent. 39

3.2 Parameter Mapping. 40

3.3 References. 46

101 Log Service Specification 47
101.1 Introduction. 47

101.2 The Log Service Interface. 48

101.3 Log Level and Error Severity. 49

101.4 Log Reader Service. 49

101.5 Log Entry Interface. 50

101.6 Mapping of Events. 50

101.7 Security. 53

101.8 org.osgi.service.log. 53

102 Http Service Specification 59
102.1 Introduction. 59

102.2 Registering Servlets. 60

102.3 Registering Resources. 62

102.4 Mapping HTTP Requests to Servlet and Resource Registrations. 63

102.5 The Default Http Context Object. 64

102.6 Multipurpose Internet Mail Extension (MIME) Types. 65

102.7 Authentication. 66

Page 4 OSGi Residential Release 6

102.8 Security. 67

102.9 Configuration Properties. 68

102.10 org.osgi.service.http. 68

102.11 References. 73

103 Device Access Specification 75
103.1 Introduction. 75

103.2 Device Services. 77

103.3 Device Category Specifications. 79

103.4 Driver Services. 81

103.5 Driver Locator Service. 87

103.6 The Driver Selector Service. 90

103.7 Device Manager. 90

103.8 Security. 95

103.9 org.osgi.service.device. 96

103.10 References. 100

104 Configuration Admin Service Specification 101
104.1 Introduction. 101

104.2 Configuration Targets. 103

104.3 The Persistent Identity. 104

104.4 The Configuration Object. 107

104.5 Managed Service. 110

104.6 Managed Service Factory. 113

104.7 Configuration Admin Service. 117

104.8 Configuration Events. 121

104.9 Configuration Plugin. 122

104.10 Meta Typing. 124

104.11 Security. 125

104.12 org.osgi.service.cm. 126

104.13 Changes. 143

105 Metatype Service Specification 145
105.1 Introduction. 145

105.2 Attributes Model. 146

105.3 Object Class Definition. 147

105.4 Attribute Definition. 147

105.5 Meta Type Service. 148

105.6 Meta Type Provider Service. 150

105.7 Using the Meta Type Resources. 150

105.8 Meta Type Resource XML Schema. 156

105.9 Meta Type Annotations. 159

105.10 Limitations. 161

105.11 Related Standards. 161

OSGi Residential Release 6 Page 5

105.12 Capabilities. 161

105.13 Security Considerations. 162

105.14 org.osgi.service.metatype. 162

105.15 org.osgi.service.metatype.annotations. 168

105.16 References. 175

105.17 Changes. 175

107 User Admin Service Specification 177
107.1 Introduction. 177

107.2 Authentication. 179

107.3 Authorization. 181

107.4 Repository Maintenance. 183

107.5 User Admin Events. 183

107.6 Security. 184

107.7 Relation to JAAS. 185

107.8 org.osgi.service.useradmin. 185

107.9 References. 196

110 Initial Provisioning Specification 197
110.1 Introduction. 197

110.2 Procedure. 198

110.3 Special Configurations. 201

110.4 The Provisioning Service. 202

110.5 Management Agent Environment. 202

110.6 Mapping To File Scheme. 203

110.7 Mapping To HTTP(S) Scheme. 203

110.8 Mapping To RSH Scheme. 205

110.9 Exception Handling. 209

110.10 Security. 209

110.11 org.osgi.service.provisioning. 210

110.12 References. 213

111 UPnP™ Device Service Specification 215
111.1 Introduction. 215

111.2 UPnP Specifications. 217

111.3 UPnP Device. 218

111.4 Device Category. 219

111.5 UPnPService. 220

111.6 Working With a UPnP Device. 220

111.7 Implementing a UPnP Device. 221

111.8 Event API. 221

111.9 UPnP Events and Event Admin service. 222

111.10 Localization. 223

111.11 Dates and Times. 223

Page 6 OSGi Residential Release 6

111.12 UPnP Exception. 223

111.13 Configuration. 224

111.14 Networking considerations. 224

111.15 Security. 224

111.16 org.osgi.service.upnp. 224

111.17 References. 239

112 Declarative Services Specification 241
112.1 Introduction. 241

112.2 Components. 244

112.3 References to Services. 247

112.4 Component Description. 257

112.5 Component Life Cycle. 266

112.6 Component Properties. 276

112.7 Deployment. 277

112.8 Annotations. 280

112.9 Service Component Runtime. 285

112.10 Security. 289

112.11 Component Description Schema. 290

112.12 org.osgi.service.component. 293

112.13 org.osgi.service.component.annotations. 300

112.14 org.osgi.service.component.runtime. 309

112.15 org.osgi.service.component.runtime.dto. 311

112.16 References. 317

112.17 Changes. 317

113 Event Admin Service Specification 319
113.1 Introduction. 319

113.2 Event Admin Architecture. 320

113.3 The Event. 321

113.4 Event Handler. 322

113.5 Event Publisher. 323

113.6 Specific Events. 325

113.7 Event Admin Service. 327

113.8 Reliability. 329

113.9 Inter-operability with Native Applications. 329

113.10 Security. 329

113.11 org.osgi.service.event. 330

117 Dmt Admin Service Specification 341
117.1 Introduction. 341

117.2 The Device Management Model. 344

117.3 The DMT Admin Service. 347

117.4 Manipulating the DMT. 347

OSGi Residential Release 6 Page 7

117.5 Meta Data. 355

117.6 Plugins. 358

117.7 Sharing the DMT. 364

117.8 Access Control Lists. 371

117.9 Notifications. 375

117.10 Exceptions. 377

117.11 Events. 377

117.12 OSGi Object Modeling. 383

117.13 Security. 391

117.14 org.osgi.service.dmt. 395

117.15 org.osgi.service.dmt.spi. 443

117.16 org.osgi.service.dmt.notification. 457

117.17 org.osgi.service.dmt.notification.spi. 460

117.18 org.osgi.service.dmt.security. 461

117.19 References. 466

131 TR069 Connector Service Specification 467
131.1 Introduction. 467

131.2 TR-069 Protocol Primer. 468

131.3 TR069 Connector. 473

131.4 RPCs. 483

131.5 Error and Fault Codes. 486

131.6 Managing the RMT. 487

131.7 Native TR-069 Object Models. 488

131.8 org.osgi.service.tr069todmt. 489

131.9 References. 496

135 Common Namespaces Specification 497
135.1 Introduction. 497

135.2 osgi.extender Namespace. 497

135.3 osgi.contract Namespace. 499

135.4 osgi.service Namespace. 501

135.5 osgi.implementation Namespace. 501

135.6 org.osgi.namespace.contract. 502

135.7 org.osgi.namespace.extender. 503

135.8 org.osgi.namespace.service. 503

135.9 org.osgi.namespace.implementation. 504

135.10 References. 505

135.11 Changes. 505

139 EnOcean Device Service Specification 507
139.1 Introduction. 507

139.2 Essentials. 507

139.3 Entities. 508

Page 8 OSGi Residential Release 6

139.4 Operation Summary. 509

139.5 EnOcean Base Driver. 511

139.6 EnOcean Host. 511

139.7 EnOcean Device. 512

139.8 EnOcean Messages. 513

139.9 EnOcean Message Description. 514

139.10 EnOcean Channel. 514

139.11 EnOcean Channel Description. 515

139.12 EnOcean Remote Management. 516

139.13 Working With an EnOcean Device. 517

139.14 Event API. 517

139.15 EnOcean Exceptions. 518

139.16 Security. 518

139.17 org.osgi.service.enocean. 518

139.18 org.osgi.service.enocean.descriptions. 526

139.19 References. 529

141 Device Abstraction Layer Specification 531
141.1 Introduction. 531

141.2 Device Category. 532

141.3 Device Service. 532

141.4 Function Service. 542

141.5 Security. 546

141.6 org.osgi.service.dal. 547

141.7 References. 572

142 Device Abstraction Layer Functions Specification 573
142.1 Introduction. 573

142.2 Functions. 573

142.3 Functions Data. 578

142.4 org.osgi.service.dal.functions. 580

142.5 org.osgi.service.dal.functions.data. 591

143 Network Interface Information Service Specification 601
143.1 Introduction. 601

143.2 NetworkAdapter Service. 602

143.3 NetworkAddress Service. 604

143.4 A Controller Example. 605

143.5 Security. 606

143.6 org.osgi.service.networkadapter. 606

143.7 References. 612

144 Resource Monitoring Specification 613
144.1 Introduction. 613

OSGi Residential Release 6 Page 9

144.2 Essentials. 613

144.3 Entities. 613

144.4 Operation Summary. 614

144.5 Resource Context. 615

144.6 System Resource Context. 615

144.7 Framework Resource Context. 615

144.8 Resource Monitor. 616

144.9 Resource Monitor Factory. 616

144.10 CPU Monitor. 617

144.11 Memory Monitor. 617

144.12 Socket Monitor. 617

144.13 Disk Storage Monitor. 618

144.14 Thread Monitor. 618

144.15 Resource Listener. 618

144.16 Resource Event. 621

144.17 Resource Context Listener. 622

144.18 Resource Context Event. 622

144.19 Resource Monitoring Service. 623

144.20 Resource Monitoring Client. 623

144.21 Security. 623

144.22 org.osgi.service.resourcemonitoring. 623

144.23 org.osgi.service.resourcemonitoring.monitor. 635

144.24 References. 637

145 USB Information Device Category Specification 639
145.1 Introduction. 639

145.2 USBInfoDevice Service. 640

145.3 Security. 642

145.4 org.osgi.service.usbinfo. 643

145.5 References. 646

146 Serial Device Service Specification 647
146.1 Introduction. 647

146.2 SerialDevice Service. 648

146.3 SerialEventListener Service. 649

146.4 USB Serial Example. 649

146.5 Security. 649

146.6 org.osgi.service.serial. 649

702 XML Parser Service Specification 655
702.1 Introduction. 655

702.2 JAXP. 656

702.3 XML Parser service. 657

702.4 Properties. 657

Page 10 OSGi Residential Release 6

702.5 Getting a Parser Factory. 657

702.6 Adapting a JAXP Parser to OSGi. 658

702.7 Usage of JAXP. 659

702.8 Security. 660

702.9 org.osgi.util.xml. 660

702.10 References. 663

705 Promises Specification 665
705.1 Introduction. 665

705.2 Promise. 666

705.3 Deferred. 666

705.4 Callbacks. 667

705.5 Chaining Promises. 668

705.6 Monad. 668

705.7 Functional Interfaces. 670

705.8 Promises Class. 670

705.9 Security. 670

705.10 org.osgi.util.promise. 670

705.11 org.osgi.util.function. 679

705.12 References. 680

Introduction Overview of the Residential Specifications

OSGi Residential Release 6 Page 11

1 Introduction
When the OSGi Alliance started in 1998, the focus was in residential gateways the organization's
name contained the word gateway before it was changed to the OSGi Alliance. Since that time, OS-
Gi flourished in several different markets. With the release of the OSGi Residential Specification in
January 2012, it made it also to widespread adoption for residential gateways/home gateways. This
is due to the fact that:

• Hardware cost of service gateways have been reduced.
• Capabilities of those small devices increased many fold.
• The number of devices in a household has increased.
• Smart Home has become mainstream due to the growing interest in the Internet-of-Things (IoT).
• The need for interoperability due to the increasing amount of communication protocols.
• Always-on and broadband access to the Internet has become pervasive.

This specification, produced by the OSGi Residential Expert Group (REG), defines a set of new and
refined service specifications that focus on the residential market. The REG is chartered to define
the requirements and specifications to tailor the OSGi framework for fixed network connected
devices. Examples of such devices include residential gateways, building automation controllers,
white goods, consumer electronics and many others.

Technical areas addressed by the REG include the requirements, functional specifications, and APIs
for gateway devices. The first release of the OSGi Residential Specification resolved the require-
ments of inter-operation with existing management systems and protocols, the need to remotely
manage user applications life cycle as well as the need for large-scale deployments and adequate se-
curity.

With this second release of the OSGi Residential Specification we introduce new specifications for
abstracting devices, sensors, actuators, etc. from their corresponding communication protocols and
facilitate the development of new innovative application and services. This release also contains
specifications that address device connectivity via the EnOcean wireless protocol, USB and serial
port. With the Resource Monitoring Specification, resources consumed by bundles can be moni-
tored in order to fairly share resources and preserve the overall quality of service. The Network In-
terface Information Service Specification enables dynamic discovery of changes in the network in-
terface.

It is not suggested, or expected, that a solution will support all listed specifications. More likely, plat-
form providers define their specific runtime environment. It is highly recommended to choose the
mandatory and optional services defined by the [3] HG Requirements for HGI Open Platform 2.0 as a
basis. A solution can further include other core and compendium services that are not listed as part
the Residential Specification.

1.1 Overview of the Residential Specifications

1.1.1 Remote Management
Support for remotely managing the service and their applications is essential to all systems that are
installed on customer's premises. The specification therefore has special focus on large scale remote
management of the OSGi Framework. The architecture provides a solution to allow management
over different protocols although the primary focus is to allow the use Broadband Forum's suite of
specifications on an OSGi residential gateway. This section introduces the related specifications.

Overview of the Residential Specifications Introduction

Page 12 OSGi Residential Release 6

• Dmt Admin Service Specification - The Dmt Admin Service specification provides an API for a re-
mote manager to manage the device and its diverse services running on it. The Dmt Admin pro-
vides a generic tree structure, the Device Management Tree (DMT), to a Protocol Adapter. The
nodes of those trees are implemented by the devices and services. Different Protocol Adapters
can leverage the same DMT for different protocols. The Dmt Admin service also provides guide-
lines for object models that can be made available over different protocols. For more details see
the Dmt Admin Service Specification on page 341.

• Residential Device Management - This specification defines a Residential Management Tree, the
RMT. This tree provides a general Dmt Admin object model that allows browsing and managing
the OSGi Framework remotely over different Protocol Adapters. The RMT provides access to the
Framework and the Log service. It also provides a filter function on top of Dmt Admin. See the
Residential Device Management Tree Specification on page 17 for details.

• TR-157a3 Software Module - [5] Broadband Forum has defined a generic model for mapping soft-
ware modules in [7] TR-157 Amendment 3 Component Objects for CWMP. This specification pro-
vides a recommended mapping for the generic concepts to the OSGi Framework concepts. See
TR-157 Amendment 3 Software Module Guidelines on page 39.

• TR-069 Connector Service Specification - The Dmt Admin service and the TR-069 protocol have dif-
ferent semantics and primitives. This specification contains the TR069 Connector Service Specifi-
cation on page 467. This specification provides an API based on the TR-069 Remote Procedure
Calls concept that is implemented on top of Dmt Admin. This connector supports data conver-
sion and the object modeling constructs defined in the Dmt Admin service, OSGi Object Modeling
on page 383.

1.1.2 Configuration, Monitoring and Management Services
The OSGi Framework is unique in that it does not hide anything, all aspects are manageable from
the system itself. To locally manage the system, the following services are available:

• Conditional Permission Admin Service Specification - The Conditional Permission Admin service al-
lows an operator to control the Java Permissions to be granted to the bundles running on the OS-
Gi Framework using a condition based model. See OSGi Core Release 6.

• Permission Admin Service Specification - The Permission Admin service allows an operator to con-
trol the Java Permissions to be granted to the bundles running on the OSGi Framework based on
the bundle location. Permission Admin has been superseded by Conditional Permission Admin,
but is included for backwards compatibility. See OSGi Core Release 6.

• URL Handlers Service Specification - This specification standardizes the mechanism to extend the
Java run-time with new URL schemes and content handlers. Dynamically extending the URL
schemes that are supported in an OSGi Framework is a very powerful concept to provide more
functionality to existing applications. See OSGi Core Release 6.

• User Admin Service Specification - The User Admin Service specification provides authorization for
OSGi Framework actions based on authenticated users instead of using the Java code-based per-
mission model. See the User Admin Service Specification on page 177.

• Initial Provisioning Specification - The Initial Provisioning specification defines how a Management
Agent and other initial bundles can be deployed on an uninitialized OSGi Framework. It gives
a structured view of the problems and their corresponding resolution methods. The purpose of
this specification is to enable the management of a Framework by an operator, and (optionally)
to hand over the management of the Framework later to another operator. See the Initial Provi-
sioning Specification on page 197 for more details.

• Configuration Admin Service Specification - The Configuration Admin service allows an operator or
an application bundle developer to set the configuration information of bundles. See Configura-
tion Admin Service Specification on page 101.

• Metatype Service Specification - The Metatype specification defines interfaces that allow bundle
developers to describe attribute types in a computer readable form using metadata. It is mostly

Introduction Overview of the Residential Specifications

OSGi Residential Release 6 Page 13

used in conjunction with the Configuration Admin Service. See Metatype Service Specification on
page 145 for details.

• Network Interface Information Service Specification - The Network Interface Information Service
specification defines services that provides a standard way for bundles to receive notifications
about changes in the network interfaces and IP addresses. See Network Interface Information Service
Specification on page 601.

• Resource Monitoring Specification - The Resource Monitoring specification defines an API for ap-
plications to monitor hardware resources consumed by any set of bundles. Monitored data may
enable applications to take decisions on management actions to apply. Resource management
actions are mentioned as examples in this chapter including actions on the lifecycle of compo-
nents, bundles, the framework and the JVM, Java threads, and the raising of exceptions. See Re-
source Monitoring Specification on page 613.

1.1.3 Component Models
Component models allow the code in bundles to remain unaware of OSGi API by using Dependency
Injection (DI) while still providing full support for the OSGi service model.

• Declarative Services Specification - The Declarative Services specification provides dependency
injection for services. It handles the service life cycle dynamics by notifying the component or
managing the components life cycle. See Declarative Services Specification on page 241.

1.1.4 HTTP and Servlets
HTTP Server and Servlets functions are often needed for the residential gateway. The Specification
contains this specification:

• Http Service Specification - Developers typically need to develop communication and user interface
solutions for standard technologies such as HTTP, HTML, XML, and servlets. See the Http Service
Specification on page 59.

1.1.5 Event models
The OSGi service model is based on synchronous APIs. Support for asynchronous invocations and
event driven interactions usually involves the definition of listeners. However, this model does not
scale well for fine grained events that must be dispatched to many different handlers. The Specifica-
tion therefore contains the Event Admin Service Specification:

• Event Admin Service Specification - The Event Admin service provides an inter-bundle communica-
tion mechanism. It is based on a event publish and subscribe model, popular in many message
based systems. See Event Admin Service Specification on page 319.

1.1.6 Device Interoperability
A residential gateway can directly attach devices, for example via a USB adapter, through a home
network. There is therefore a need to have a unified device abstraction, discovery and control model.
For this purpose, this Specification contains the following services:

• Device Access Specification - The Device Access specification supports the coordination of automat-
ic detection and attachment of existing devices on an OSGi Framework, facilitates hot-plugging
and -unplugging of new devices, and downloads and installs device drivers on demand. See De-
vice Access Specification on page 75.

• UPnP™ Device Service Specification - The UPnP specification specifies how OSGi bundles can be de-
veloped that inter-operate with UPnP (Universal Plug and Play) devices and UPnP control points.
The specification is based on [6] UPnP Device Architecture 1.0. See UPnP™ Device Service Specifica-
tion on page 215.

• Device Abstraction Layer Specification - The Device Abstraction Layer specification provides a uni-
fied interface for application developers to interact with sensor, devices, etc. connected to a gate-

Version Information Introduction

Page 14 OSGi Residential Release 6

way. Application developers don't have to deal with protocol specific details which simplifies the
development of their applications. See Device Abstraction Layer Specification on page 531.

• Device Abstraction Layer Functions Specification - The Device Abstraction Layer Functions specifica-
tion defines a minimal set of basic device operations and the related properties. They can be ex-
tended or replaced to cover domain specific scenarios. The set is not closed and can be incorpo-
rated with vendor specific functions. There is support for control, monitoring and metering in-
formation. See Device Abstraction Layer Functions Specification on page 573.

• EnOcean Device Service Specification - This specification defines how OSGi bundles can be devel-
oped to discover and control EnOcean devices on the one hand, and act as EnOcean devices and
interoperate with EnOcean clients on the other hand. In particular, a Java mapping is provided
for the standard representation of EnOcean devices called EnOcean Equipment Profile (EEP). See
EnOcean Device Service Specification on page 507.

• USB Information Device Category Specification - The USB Information Device Category specification
defines a new device category for USB devices in order to handle the integration of communica-
tion protocols, for example, ZigBee and Z-Wave via USB dongles. See USB Information Device Cate-
gory Specification on page 639.

• Serial Device Service Specification - The Serial Device Service specification defines an API to com-
municate with controllers connected to a serial port. See Serial Device Service Specification on page
647.

1.1.7 Miscellaneous Supporting Services
Services providing solutions to common infrastructure requirements include:

• Log Service Specification - Provides a general purpose message logger for the OSGi Framework. See
the Log Service Specification on page 47.

• XML Parser Service Specification - Addresses how the classes defined in JAXP can be used in an OS-
Gi Framework. See XML Parser Service Specification on page 655.

• Promises Specification - An asynchronous programming model by which clients retrieve the result
of the asynchronous task. See Promises Specification on page 665.

1.2 Version Information
This document is the Residential Specification for the OSGi Residential Release 6.

1.2.1 OSGi Core Release 6
This specification is based on the OSGi Core Release 6. This specification can be downloaded from:

http://www.osgi.org/Specifications/HomePage

1.2.2 Component Versions
Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Table 1.1 Packages and versions

Item Package(s) Version
2 Residential Device Management Tree Specification org.osgi .dmt.residential* Version 1.0
101 Log Service Specification org.osgi .service. log Version 1.3
102 Http Service Specification org.osgi .service.http Version 1.2
103 Device Access Specification org.osgi .service.device Version 1.1

Introduction References

OSGi Residential Release 6 Page 15

Item Package(s) Version
104 Configuration Admin Service Specification org.osgi .service.cm Version 1.5
105 Metatype Service Specification org.osgi .service.metatype

org.osgi .service.metatype.annotations

Version 1.3

107 User Admin Service Specification org.osgi .service.useradmin Version 1.1
110 Initial Provisioning Specification org.osgi .service.provis ioning Version 1.2
111 UPnP™ Device Service Specification org.osgi .service.upnp Version 1.2
112 Declarative Services Specification org.osgi .service.component

org.osgi .service.component.annotations

org.osgi .service.component.runtime

org.osgi .service.component.runtime.dto

Version 1.3

113 Event Admin Service Specification org.osgi .service.event Version 1.3
117 Dmt Admin Service Specification org.osgi .service.dmt

org.osgi .service.dmt.noti f icat ion

org.osgi .service.dmt.noti f icat ion.spi

org.osgi .service.dmt.security

org.osgi .service.dmt.spi

Version 2.0

131 TR069 Connector Service Specification org.osgi .service.tr069todmt Version 1.0
135 Common Namespaces Specification org.osgi .namespace.contract

org.osgi .namespace.extender

org.osgi .namespace. implementation

org.osgi .namespace.service

Version 1.1

139 EnOcean Device Service Specification org.osgi .service.enocean

org.osgi .service.enocean.descr ipt ions

Version 1.0

141 Device Abstraction Layer Specification org.osgi .service.dal Version 1.0
142 Device Abstraction Layer Functions Specification org.osgi .service.dal .functions

org.osgi .service.dal .functions.data

Version 1.0

143 Network Interface Information Service Specification org.osgi .service.networkadapter Version 1.0
144 Resource Monitoring Specification org.osgi .service.resourcemonitor ing

org.osgi .service.resourcemonitor ing.monitor

Version 1.0

145 USB Information Device Category Specification org.osgi .service.usbinfo Version 1.0
146 Serial Device Service Specification org.osgi .service.ser ia l Version 1.0
702 XML Parser Service Specification org.osgi .ut i l .xml Version 1.0
705 Promises Specification org.osgi .ut i l .promise

org.osgi .ut i l .function

Version 1.0

* - This is not a Java package but contains DMT Types.

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.3 References
[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

Changes Introduction

Page 16 OSGi Residential Release 6

http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] Home Gateway Initiative
http://www.homegatewayinitiative.org

[3] HG Requirements for HGI Open Platform 2.0
http://www.homegatewayinitiative.org/publis/HGI-RD048-
HG_Requirements_for_HGI_Open_Platform_2_0_published_text.pdf

[4] UPnP™ Forum
http://upnp.org

[5] Broadband Forum
http://www.broadband-forum.org

[6] UPnP Device Architecture 1.0
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

[7] TR-157 Amendment 3 Component Objects for CWMP
http://www.broadband-forum.org/technical/download/TR-157_Amendment-3.pdf

1.4 Changes
• Updated Metatype Service Specification on page 145.
• Updated Declarative Services Specification on page 241.
• Added Common Namespaces Specification on page 497.
• Added EnOcean Device Service Specification on page 507.
• Added Device Abstraction Layer Specification on page 531.
• Added Device Abstraction Layer Functions Specification on page 573.
• Added Network Interface Information Service Specification on page 601.
• Added Resource Monitoring Specification on page 613.
• Added USB Information Device Category Specification on page 639.
• Added Serial Device Service Specification on page 647.
• Added Promises Specification on page 665.

Residential Device Management Tree Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 17

2 Residential Device Management
Tree Specification

Version 1.0

2.1 Introduction
The chapter defines the Device Management Tree (DMT) for residential applications called the Res-
idential Management Tree (RMT). This RMT is based on the Dmt Admin Service Specification on page
341. The RMT allows remote managers to manage the residential device through an abstract tree.
As this tree is an abstract representation, different management protocols can use the same underly-
ing management components, the Dmt Admin Plugins, in the OSGi framework.

This chapter requires full understanding of the concepts in the Dmt Admin Service Specification on
page 341 and uses its terminology.

2.1.1 Essentials
The following essentials are associated with the Residential Management Tree specification:

• Complete - The RMT must cover all functionality to completely manage an OSGi Framework as
defined by OSGi Core Release 6.

• Performance - The RMT runs on devices with limited resources.
• Searchable - Provide an efficient way to search the RMT remotely.
• Services - Provide efficient access to standardized services like the Log Service.

2.1.2 Entities

• Remote Manager - The entity that remotely controls an OSGi Framework.
• Management Agent - An entity running on the device that is responsible for the management of

the local OSGi Framework. It usually acts as a proxy for a Remote Manager.
• Protocol Adapter - Communicates with a Remote Manager and translates the protocol instructions

to instructions to a local Management Agent.
• DMT - The Device Management Tree. This is the general structure available through the Dmt Ad-

min service.
• RMT - The Residential Management Tree. This is the part of the DMT that is involved with resi-

dential management.

The Residential Management Tree Residential Device Management Tree Specification Version 1.0

Page 18 OSGi Residential Release 6

Figure 2.1 Device Management Architecture

Remote
Manager

Protocol
Adapter

Dmt Admin

Management
Admin Plugin

protocol
object models

DMT

RMT

OSGi
Framework

2.2 The Residential Management Tree
The OSGi node is the root node for OSGi specific information. This OSGi node can be placed any-
where in the Device Management Tree and acts as parent to all the top level nodes in this specifica-
tion. Therefore, in this specification the parent node of, for example, the Framework node is referred
to as $, which effectively represents the OSGi node. The description of the nodes are using the types
defined in OSGi Object Modeling on page 383.

The value of $ for a specific system can be defined with the following Framework property:

org.osgi.dmt.residential

For this specifications, the RMT Consists of the following top level nodes:

• Framework - Managing the local Framework
• Fi l ter - Searching nodes in the DMT
• Log - Access to the log

2.3 Managing Bundles
The Framework node provides a remote management model for managing the life cycle of bundles
and inspecting the Framework's state.

To change the state, for example install a new bundle, requires an atomic session on at least the
Framework node. The model is constructed to reflect the requested state. When the session is com-
mitted, the underlying Plugin must effectuate these requested states into the real state.

For example, to install a bundle it is first necessary to create a new Bundle child node. The Bun-
dle node is a MAP node, the name of the child node is the locat ion of the bundle as given in the
instal lBundle(location, input stream) method and returned from the getLocation() method.

This location should not be treated as the actual URL of the bundle, the location is better intended
to be used a management name for the bundle as the remote manager can choose it. It is normally

Residential Device Management Tree Specification Version 1.0 Managing Bundles

OSGi Residential Release 6 Page 19

best to make this name a reverse domain name, for example com.acme.admin . The name " System
Bundle" is a reserved name for the system bundle. The Framework management plugin must there-
fore not treat the location as a URL.

Creating the child node has no effect as long as the session is not committed. This new Bundle node
automatically gets the members defined in the Bundle type.

The URL node should be set to the download URL, the URL used to download the JAR file from. The
URL node is used as the download URL for an install operation (after the node is created newly) or
the update location when the node is changed after the bundle had been installed in a previous ses-
sion. Creating a new Bundle node without setting the URL must generate an error when the session
is committed.

To start this newly installed bundle, the manager can set the RequestedState to ACTIVE . If this bun-
dle needs to be started when the framework is restarted, then the AutoStart node can be set to true .
If there bundles to be uninstalled then their RequestedState node must be set to UNINSTALLED as
it is not possible to delete a Bundle node. The RequestedState must be applied after the bundle has
been installed or updated. An uninstalled bundle will be automatically removed from the RMT.

The RequestedState node is really the requested state, depending on start levels and other existing
conditions the bundle can either follow the requested state or have another state if, for example, its
start level is not met. The RequestedState must be stored persistently between invocations, its ini-
tial value is INSTALLED .

The manager can create any number of new Bundle nodes to install a number of bundles at the same
time during commit. It can also change the life cycle of existing bundles. None of these changes
must have any effect until the session is committed.

If the session is finally committed, the Plugin must compare the state in the Dmt Admin tree with
the actual state and update the framework accordingly. The order in which the operations occur is
up to the implementation except for framework operations, they must always occur last. After bun-
dles have been installed, uninstalled, or updated, the Plugin must refresh all the packages to ensure
that the remote management system sees a consistent state.

Downloading the bundles from a remote system can take substantial time. As the commit is used
synchronously, it is sometimes advisable to download the bundles to the device before they are in-
stalled.

If any error occurs, any changes that were made since the beginning of the last transaction point
must be rolled back. An error should be reported. The remote manager therefore gets an atomic be-
havior, either all changes succeed or all fail. A manager should also be aware that if its own bundle,
or any of its dependencies, is updated it will be stopped and will not be able to properly report the
outcome to the management system, either a failure or success.

2.3.1 Bundle Life Cycle Example
For example, the following code installs my_bundle , updates up_bundle , and uninstalls old_bundle :

String $ = ... // get the OSGi node
DmtSession session = admin.getSession($ + "/Framework",
 DmtSession.LOCK_TYPE_ATOMIC);
try {
 session.createInteriorNode("Bundle/my_bundle");
 session.setNodeValue("Bundle/my_bundle/URL", new DmtData(
 "http://www.example.com/bundles/my_bundle.jar"));
 session.setNodeValue("Bundle/my_bundle/AutoStart",
 DmtData.TRUE_VALUE);
 session.setNodeValue("Bundle/my_bundle/RequestedState",
 new DmtData("ACTIVE"));

Managing Bundles Residential Device Management Tree Specification Version 1.0

Page 20 OSGi Residential Release 6

 session.setNodeValue("Bundle/up_bundle/URL", new DmtData(
 "http://www.example.com/bundles/up_bundle-2.jar"));

 session.setNodeValue("Bundle/old_bundle/RequestedState",
 new DmtData("UNINSTALLED"));
 try {
 session.commit();
 } catch (Exception e) {
 // failure ...
 log....
 }
} catch (Exception e) {
 session.rollback();
 log...
}

2.3.2 Framework Restart
There are no special operations for managing the life cycle of the Framework, these operations are
done on the System Bundle, or bundle 0. The framework can be stopped or restarted:

• Restart - Restarting is an update, requiring the URL to be set to a new URL. This must shutdown
the framework after the commit has succeeded.

• Stopping - Stopping is setting the RequestedState to INSTALLED

If the URL node has changed, the RequestedState will be ignored and the framework must only be
restarted.

Sessions that modify nodes inside the Framework sub-tree must always be atomic and opened on the
Framework node. The Data Plugin managing the Framework node is only required to handle a single
simultaneous atomic session for its whole sub-tree.

For example, the following code restarts the framework after the commit has succeeded.

DmtSession session = admin.getSession($ +"/Framework",
 DmtSession.LOCK_TYPE_ATOMIC);
session.setNodeValue("Bundle/System Bundle/URL",
 new DmtData(""));
session.commit();

2.3.3 Access to Wiring
During runtime a bundle is wired to several different entities, other bundles, fragments, packages,
and services. The framework defines a general Requirement-Capability model and this model is re-
flected in the Wiring API in [1] . The Requirement-Capability model maps to a very generic way of
describing wires between requirers and providers that is applicable to all of the OSGi constructs.

The Core defines namespaces for:

• osgi .wir ing.bundle - The namespace for the Require-Bundle header. It wires the bundle with the
Require-Bundle header to the bundle with the required Bundle-SymbolicName and Bundle-Ver-
sion header.

• osgi .wir ing.host - The namespace for the Fragment-Host header. It wires from bundle with the
Fragment-Host header to the bundle with the required Bundle-SymbolicName and Bundle-Ver-
sion header.

• osgi .wir ing.package - The namespace for the Import/Export-Package header. It wires from bundle
with the Import-Package header to the bundle with the Export-Package header.

Residential Device Management Tree Specification Version 1.0 Managing Bundles

OSGi Residential Release 6 Page 21

In the Core API, the wiring is based on the Bundle revisions. However, this specification requires
that all bundles are refreshed after a management operation to ensure a consistent wiring state. The
management model therefore ignores the Bundle Revision and instead provides wiring only for
bundles since the manager is unable to see different revision of a bundle anyway. The general Re-
quirement-Capability model is depicted in Figure 2.2.

Figure 2.2 Requirements and Capabilities and their Wiring

Capability

Requirement

Requirement/Capability

Runtime
fragmenthost

Bundle

The core does not specify a namespace for services. However, services can also be modeled with re-
quirements capabilities. The registrar is the provider and the service properties are the capabili-
ty. The getter is the requirer, its filter is the requirement. This specification therefore also defines a
namespaces for services:

osgi.wiring.rmt.service

This namespace is defined in osgi.wiring.rmt.service Namespace on page 24.

To access the wiring, each Bundle node has a Wires node. This is a MAP of LIST of Wire . The key of
the MAP node is the name of the namespace, that is, the wires are organized by namespace. This pro-
vides convenient access to all wires of a given namespace. The value of the MAP node is a LIST node,
providing sequential access to the actual wires.

A Wire node provides the following information:

• Namespace - The namespace of the wire
• Requirement - The requirement that cause the wire
• Capabi l i ty - The capability that satisfied the wire
• Requirer - The location of the bundle that required the wire
• Provider - The location of the bundle that satisfied the requirement

2.3.4 Wiring Example
The following example code demonstrates how the wires can be printed out:

String prefix ="Bundle/my_bundle/Wires/osgi.wiring.package";
String [] wires = session.getChildNodeNames(prefix);
for (String wire : wires) {
 String name = session.getNodeValue(prefix + "/"
 + wire + "/Capability/Attribute/osgi.wiring.package").getString();
 String provider = session.getNodeValue(prefix + "/"
 + wire + "/Provider").getString();
 String requirer = session.getNodeValue(prefix + "/"
 + wire + "/Requirer").getString();
 System.out.printf("%-20s %-30s %s\n", name, provider, requirer);
}

Filtering Residential Device Management Tree Specification Version 1.0

Page 22 OSGi Residential Release 6

2.4 Filtering
Frequently it is necessary to search through the tree of nodes for nodes matching specific criteria.
Having to use Java to do this filtering can become cumbersome and impossible if the searching has
to happen remotely. For that reason, the RMT contains a Fi l ter node. This node allows a manager
to specify a Target and a Fi l ter . The Target is an absolute URI that defines a set of nodes that the Fil-
ter Plugin must search. This set is defined by allowing wildcards in the target. A single asterisk ('* '
\u002A) matches a single level, the minus sign (' - ' \u002C) specifies any number of levels and must
not be used at the end of the URI. This implies that there is always a final node. The reason that a mi-
nus sign must not be last is that the final node's type would be undefined, any node on any sub-level
would match.

The Target node must be specified as an absolute URI that must always end in a solidus (' / ' \u002F)
to signify that it represents a path to an interior node. The URI is absolute because the Filter is spec-
ified in a persistent node. It is possible to open a session, create the filter specification, close the ses-
sion, and then open a new session, and use the earlier specified Target . As the two involved session
do not have to have the same session, the base could differ, making it hard to use relative addressing.
However, the result is always unique to a session. It is therefore possible to use relative URIs in the
read out of the result.

For example, the tree in Figure 2.3 defines a sub-tree.

Figure 2.3 Example Sub-Tree

.

B C

D E

F GG

A

The following table shows a number of example targets on the previous sub-tree and their resulting
final nodes, assuming the result is read in a session open on . /A .

Table 2.1 Example Target and results on a session opened on ./A

Target Final nodes
. /A/*/ B, C
./A/*/E/*/ C/E/F, C/E/G
./A/-/G/ C/D/G, C/E/G
./A/*/*/*/ C/D/G, C/E/F, C/E/G
./A/-/*/ This is an error,. /A/-/*/ is the same as . /A/-/ , which is not allowed.
. /A/*/*/ C/D, C/E

The Fi l ter specifies a standard OSGi Filter expression that is applied to the final nodes. If no filter is
specified then all final nodes match. However, when there is a filter specified it is applied against the
final node and only the final nodes that are matching the filter as included in the result.

A node is matched against a filter by using some of its children as properties. The properties of a
node are defined by:

Residential Device Management Tree Specification Version 1.0 Log Access

OSGi Residential Release 6 Page 23

• Primitive child nodes, or
• LIST nodes that have primitive as child nodes. Such nodes must be treated as multi-valued prop-

erties.

The matching rules in the filter must follow the standard OSGi Filter rules. If the filter matches such
a node then it must be available as a session relative URI in the ResultUriL ist node. The relative URIs
are listed in the ResultUriL ist .

The result nodes must only include nodes that satisfy the following conditions:

• The node must match the Target node's URI specification
• The node must be visible in the current session
• The node must not reside in the Filter sub-tree
• The node must be an interior node
• The caller must have access to the node
• It must be possible to get all the values of the child nodes that are necessary for filter matching
• The node must match the filter if a filter is specified

The result is also available as a sub-tree under the Result node and can be traversed as sub-tree in Re-
sult . This tree contains all the result nodes and their sub-tree. The results under the Result node are a
snapshot and cannot be modified, they are read only. This result can be removed after the session is
closed.

2.4.1 Example
For example, the following code prints out the location of active bundles:

session.createInteriorNode("Filter/mq-1");
session.setNodeValue("Filter/mq-1/Target",
 new DmtData($+"/Framework/Bundle/*/"));
session.setNodeValue("Filter/mq-1/Filter", new DmtData("(AutoStart=true)"));

String[] autostarted = session.getChildNodeNames(
 "Filter/mq-1/Result/Framework/Bundle");
System.out.println("Auto started bundles");
for (String location : autostarted)
 System.out.println(location);

session.deleteNode("Filter/mq-1");

2.5 Log Access
The Log node provides access to the Log Service, the node contains a LIST of LogEntry nodes. The
length of this list is implementation dependent. The list is sorted in most recent first order. This al-
lows a manager to retrieve the latest logs. For example, the following code print out the latest 100
log entries:

DataSession session = admin.getSession($+"/Log/LogEntries");
try {
 for (int i =0; i<100; i++) {
 Date date = session.getNodeValue(i+"/Time").getDateTime();
 String message = session.getNodeValue(i+"/Message").getString();
 System.out.println(date + " " + message);
 }
} finally {

osgi.wiring.rmt.service Namespace Residential Device Management Tree Specification Version 1.0

Page 24 OSGi Residential Release 6

 session.close();
}

2.6 osgi.wiring.rmt.service Namespace
This section defines a namespace for the Requirement-Capability model to maintain services
through the standard wiring API. A service is a capability, the Capability attributes are the service
properties. The bundle that gets the service has a requirement on that service.

The filter of the service requirement is not the original filter since this is not possible to obtain reli-
ably. Instead the filter must assert of the service. id , for example: (service. id=123) .

The resulting filter is specified as the f i l ter : directive on the Requirement. This is depicted in Figure
2.4.

Figure 2.4 Requirements and Capabilities and their Wiring

getting
bundle

registering
bundle

service
service

filter
service

properties

The osgi .wir ing.rmt.service attributes are defined in the following table.

Table 2.2 osgi.wiring.rmt.service namespace

Attribute Name Type Syntax Description
osgi .wir ing.rmt.service Str ing service. id The service id.
objectClass Str ing[] fqn Fully qualified name of the types under which this

service is listed
* * * Any service property

2.7 Tree Summary
$ _G__ NODE 1 P

2.7.1 Framework

 Framework _G__ NODE 1 P
 StartLevel _GR_ integer 1 A
 InitialBundleStartLevel _GR_ integer 1 A

 org.osgi/1.0/MAP
 Bundle _G__ MAP 1 A
 [string] AG__ NODE 0..* D
 State _G__ string 0,1 A
 Version _G__ string 0,1 A
 StartLevel _GR_ integer 1 A
 URL _GR_ string 1 A
 RequestedState _GR_ string 1 A
 AutoStart _GR_ boolean 1 A
 FaultType _G__ integer 0,1 A
 FaultMessage _G__ string 0,1 A
 BundleId _G__ long 0,1 A

Residential Device Management Tree Specification Version 1.0 Tree Summary

OSGi Residential Release 6 Page 25

 SymbolicName _G__ string 0,1 A

 org.osgi/1.0/LIST
 BundleType _G__ LIST 0,1 A
 [list] _G__ string 0..* D

 org.osgi/1.0/MAP
 Headers _G__ MAP 0,1 A
 [string] _G__ string 0..* D
 Location _G__ string 1 A
 LastModified _G__ date_time 0,1 A

 org.osgi/1.0/MAP
 Wires _G__ MAP 0,1 A

 org.osgi/1.0/LIST
 [string] _G__ LIST 0..* D
 [list] _G__ NODE 0..* D
 InstanceId _G__ integer 1 A
 Capability _G__ NODE 1 A

 org.osgi/1.0/MAP
 Directive _G__ MAP 1 A
 [string] _G__ string 0..* D

 org.osgi/1.0/MAP
 Attribute _G__ MAP 1 A
 [string] _G__ string 0..* D
 Requirement _G__ NODE 1 A
 Filter _G__ string 1 A

 org.osgi/1.0/MAP
 Directive _G__ MAP 1 A
 [string] _G__ string 0..* D

 org.osgi/1.0/MAP
 Attribute _G__ MAP 1 A
 [string] _G__ string 0..* D
 Namespace _G__ string 1 A
 Requirer _G__ string 1 A
 Provider _G__ string 1 A

 org.osgi/1.0/LIST
 Signers _G__ LIST 0,1 A
 [list] _G__ NODE 0..* D
 InstanceId _G__ integer 1 A
 IsTrusted _G__ boolean 1 A

 org.osgi/1.0/LIST
 CertificateChain _G__ LIST 1 A
 [list] _G__ string 0..* D

 org.osgi/1.0/LIST
 Entries _G__ LIST 0,1 A
 [list] _G__ NODE 0..* D

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 26 OSGi Residential Release 6

 InstanceId _G__ integer 1 A
 Path _G__ string 1 A
 Content _G__ binary 1 A
 InstanceId _G__ integer 1 A

 org.osgi/1.0/MAP
 Property _G__ MAP 1 A
 [string] _G__ string 0..* D

2.7.2 Filter

 org.osgi/1.0/MAP
 Filter _G__ MAP 0,1 P
 [string] AG_D NODE 0..* D
 Filter _GR_ string 1 A
 InstanceId _G__ integer 1 A
 Target _GR_ string 1 A
 Limit _GR_ integer 1 A
 Result _G__ Node 1 A

 org.osgi/1.0/LIST
 ResultUriList _G__ LIST 1 A
 [list] _G__ string 0..* D

2.7.3 Log

 Log _G__ NODE 0,1 P

 org.osgi/1.0/LIST
 LogEntries _G__ LIST 1 A
 [list] _G__ NODE 0..* D
 Bundle _G__ string 1 A
 Level _G__ integer 1 A
 Message _G__ string 1 A
 Time _G__ date_time 1 A
 Exception _G__ string 0,1 A

2.8 org.osgi.dmt.residential

2.8.1 $
The $ describes the root node for OSGi Residential Management. The path to this node is defined in
the system property: org.osgi .dmt.residential .

Table 2.3 Sub-tree Description for $

Name Act Type Card. S Description
Framework Get Framework 1 P The Framework node used to manage the lo-

cal framework.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Residential Release 6 Page 27

Name Act Type Card. S Description
Fi l ter Get MAP 0,1 P
 [Str ing] Add Del

Get
Fi l ter 0. .* D

The Filters node searches the nodes in a tree
that correspond to a target URI and an option-
al filter expression. A new Filter is created by
adding a node to the Filters node. The name of
the node is chosen by the remote manager. If
multiple managers are active they must agree
on a scheme to avoid conflicts or an atomic
sessions must be used to claim exclusiveness.

Filter nodes are persistent but an implemen-
tation can remove the node after a suitable
timeout that should at least be 1 hour.

If this functionality is not supported on this
device then the node is not present.

Log Get Log 0,1 P Access to the optional Log.

If this functionality is not supported on this
device then the node is not present.

2.8.2 Bundle
The management node for a Bundle. It provides access to the life cycle control of the bundle as well
to its metadata, resources, and wiring.

To install a new bundle an instance of this node must be created. Since many of the sub-nodes are
not yet valid as the information from the bundle is not yet available. These nodes are marked to be
optional and will only exists after the bundle has been really installed.

2.8.2.1 FRAGMENT = "FRAGMENT"

The type returned for a fragment bundle.

2.8.2.2 INSTALLED = "INSTALLED"

The Bundle INSTALLED state.

2.8.2.3 RESOLVED = "RESOLVED"

The Bundle RESOLVED state.

2.8.2.4 STARTING = "STARTING"

The Bundle STARTING state.

2.8.2.5 ACTIVE = "ACTIVE"

The Bundle ACTIVE state.

2.8.2.6 STOPPING = "STOPPING"

The Bundle STOPPING state.

2.8.2.7 UNINSTALLED = "UNINSTALLED"

The Bundle UNINSTALLED state.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 28 OSGi Residential Release 6

Table 2.4 Sub-tree Description for Bundle

Name Act Type Card. S Description
URL Get Set str ing 1 A The URL to download the archive from for

this bundle. By default this is the empty
string. In an atomic session this URL can be
replaced to a new URL, which will trigger an
update of this bundle during commit. If this
value is set it must point to a valid JAR from
which a URL can be downloaded, unless it is
the system bundle. If it is the empty string no
action must be taken except when it is the sys-
tem bundle.

If the URL of Bundle 0 (The system bundle)
is replaced to any value, including the empty
string, then the framework will restart.

If both a the URL node has been set the bun-
dle must be updated before any of the other
aspects are handled like RequestedState and
StartLevel.

AutoStart Get Set boolean 1 A Indicates if this Bundle must be started when
the Framework is started.

If the AutoStart node is true then this bundle
is started when the framework is started and
its StartLevel is met.

If the AutoStart node is set to true and the
bundle is not started then it will automatical-
ly be started if the start level permits it. If the
AutoStart node is set to fa lse then the bundle
must not be stopped immediately.

If the AutoStart value of the System Bundle is
changed then the operation must be ignored.

The default value for this node is true
FaultType Get integer 0,1 A The BundleException type associated with a

failure on this bundle, -1 if no fault is associ-
ated with this bundle. If there was no Bundle
Exception associated with the failure the code
must be 0 (UNSPECIFIED). The FaultMessage
provides a human readable message.

Only present after the bundle is installed.
FaultMessage Get str ing 0,1 A A human readable message detailing an error

situation or an empty string if no fault is asso-
ciated with this bundle.

Only present after the bundle is installed.
BundleId Get long 0,1 A The Bundle Id as defined by the getBundleId()

method.

If there is no installed Bundle yet, then this
node is not present.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Residential Release 6 Page 29

Name Act Type Card. S Description
SymbolicName Get str ing 0,1 A The Bundle Symbolic Name as defined by the

Bundle getSymbol icName() method. If this re-
sult is nul l then the value of this node must be
the empty string.

If there is no installed Bundle yet, then this
node is not present.

Version Get str ing 0,1 A The Bundle's version as defined by the Bundle
getVersion() method.

If there is no installed Bundle yet, then this
node is not present.

BundleType Get LIST 0,1 A
 [l ist] Get str ing 0. .* D

A list of the types of the bundle. Currently on-
ly a single type is provided:

• FRAGMENT

If there is no installed Bundle yet, then this
node is not present.

Headers Get MAP 0,1 A
 [Str ing] Get str ing 0. .* D

The Bundle getHeaders() method.

If there is no installed Bundle yet, then this
node is not present.

Location Get str ing 1 A The Bundle's Location as defined by the Bun-
dle getLocation() method.

The location is specified by the management
agent when the bundle is installed. This lo-
cation should be a unique name for a bundle
chosen by the management system. The Bun-
dle Location is immutable for the Bundle's life
(it is not changed when the Bundle is updat-
ed). The Bundle Location is also part of the
URI to this node.

State Get str ing 0,1 A Return the state of the current Bundle. The
values can be:

• INSTALLED
• RESOLVED
• STARTING
• ACTIVE
• STOPPING

If there is no installed Bundle yet, then this
node is not present.

The default value is UNINSTALLED after cre-
ation.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 30 OSGi Residential Release 6

Name Act Type Card. S Description
RequestedState Get Set str ing 1 A Is the requested state the manager wants the

bundle to be in. Can be:

• INSTALLED - Ensure the bundle is stopped
and refreshed.

• RESOLVED - Ensure the bundle is resolved.
• ACTIVE - Ensure the bundle is started.
• UNINSTALLED - Uninstall the bundle.

The Requested State is a request. The manage-
ment agent must attempt to achieve the de-
sired state but there is a no guarantee that this
state is achievable. For example,a Framework
can resolve a bundle at any time or the active
start level can prevent a bundle from running.
Any errors must be reported on FaultType and
FaultMessage.

If the AutoStart node is true then the bun-
dle must be persistently started, otherwise it
must be transiently started. If the StartLevel
is not met then the commit must fail if AutoS-
tart is fa lse as a Bundle cannot be transiently
started when the start level is not met.

If both a the URL node has been set as well as
the RequestedState node then this must result
in an update after which the bundle should go
to the RequestedState.

The RequestedState must be stored persistent-
ly so that it contains the last requested state.
The initial value of the RequestedState must
be INSTALLED.

StartLevel Get Set integer 1 A The Bundle's current Start Level as defined
by the BundleStartLevel adapt interface getS-
tartLevel() method. Changing the StartLevel
can change the Bundle State as a bundle can
become eligible for starting or stopping.

If the URL node is set then a bundle must be
updated before the start level is set,

LastModified Get date_time 0,1 A The Last Modified time of this bundle as
defined by the Bundle getlastModified()
method.

If there is no installed Bundle yet then this
node is not present.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Residential Release 6 Page 31

Name Act Type Card. S Description
Wires Get MAP 0,1 A
 [Str ing] Get LIST 0. .* D
 [l ist] Get Wire 0. .* D

A MAP of name space -> to Wire. A Wire is a
relation between to bundles where the type
of the relation is defined by the name space.
For example, osgi .wir ing.package name space
defines the exporting and importing of pack-
ages. Standard osgi name spaces are:

• osgi .wir ing.bundle
• osgi .wir ing.package
• osgi .wir ing.host

As the Core specification allows custom name
spaces this list can be more extensive.

This specification adds one additional
name space to reflect the services, this is the
osgi .wir ing.rmt.service name space. This
name space will have a wire for each time a
registered service by this Bundle was gotten
for the first time by a bundle. A capability
in the service name space holds all the regis-
tered service properties. The requirement has
no attributes and a single f i l ter directive that
matches the service id property.

If there is no installed Bundle yet then this
node is not present.

Signers Get LIST 0,1 A
 [l ist] Get Cert i f icate 0. .* D

Return all signers of the bundle. See the Bun-
dle getSignerCert i f icates() method with the
SIGNERS_ALL parameter.

If there is no installed Bundle yet then this
node is not present.

Entr ies Get LIST 0,1 A
 [l ist] Get Entry 0. .* D

An optional node providing access to the en-
tries in the Bundle's JAR. This list must be cre-
ated from the Bundle getEntryPaths() method
called with an empty String. For each found
entry, an Entry object must be made available.

If there is no installed Bundle yet then this
node is not present.

InstanceId Get integer 1 A Instance Id used by foreign protocol adapters
as a unique integer key not equal to 0. The in-
stance id for a bundle must be (Bundle Id %
2^32) + 1.

2.8.3 Bundle.Certificate
Place holder for the Signers DN names.

Table 2.5 Sub-tree Description for Bundle.Certificate

Name Act Type Card. S Description
IsTrusted Get boolean 1 A Return if this Certificate is trusted.
Cert i f icateChain Get LIST 1 A
 [l ist] Get str ing 0. .* D

A list of signer DNs of the certificates in the
chain.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 32 OSGi Residential Release 6

Name Act Type Card. S Description
InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

2.8.4 Bundle.Entry
An Entry describes an entry in the Bundle, it combines the path of an entry with the content. Only
entries that have content will be returned, that is, empty directories in the Bundle's archive are not
returned.

Table 2.6 Sub-tree Description for Bundle.Entry

Name Act Type Card. S Description
Path Get str ing 1 A The path in the Bundle archive to the entry.
Content Get binary 1 A The binary content of the entry.
InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

2.8.5 Filter
A Filter node can find the nodes in a given sub-tree that correspond to a given filter expression. This
Filter node is a generic mechanism to select a part of the sub-tree (except itself).

Searching is done by treating an interior node as a map where its leaf nodes are attributes for a filter
expression. That is, an interior node matches when a filter matches on its children. The matching
nodes' URIs are gathered under a ResultUriList node and as a virtual sub-tree under the Result node.

The Filter node can specify the Target node. The Target is an absolute URI ending in a slash, poten-
tially with wild cards. Only nodes that match the target node are included in the result.

There are two different wild cards:

• Asterisk ('* ' \u002A) - Specifies a wild card for one interior node name only. That is A/* / matches
an interior nodes A/B , A/C , but not A/X/Y . The asterisk wild card can be used anywhere in the URI
like A/* /C . Partial matches are not supported, that is a URI like A/xyz* is invalid.

• Minus sign (' - ' \u002D) - Specifies a wildcard for any number of descendant nodes. This is A/-/X/
matches A/B/X , A/C/X , but also A/X . Partial matches are not supported, that is a URI like A/xyz- is
not supported. The - wild card must not be used at the last segment of a URI

The Target node selects a set of nodes N that can be viewed as a list of URIs or as a virtual sub-tree.
The Result node is the virtual sub-tree (beginning at the session base) and the ResultUriList is a LIST
of session relative URIs. The actual selection of the nodes must be postponed until either of these
nodes (or one of their sub-nodes) is accessed for the first time. Either nodes represent a read-only
snapshot that is valid until the end of the session.

It is possible to further refine the selection by specifying the Filter node. The Filter node is an LDAP
filter expression or a simple wild card ('*') which selects all the nodes. As the wild card is the default,
all nodes selected by the Target are selected by default.

The Filter must be applied to each of the nodes selected by target in the set N . By definition, these
nodes are interior nodes only. LDAP expressions assert values depending on their key. In this case, the
child leaf nodes of a node in set N are treated as the property on their parent node.

The attribute name in the LDAP filter can only reference a direct leaf node of the node in the set N or
an interior node with the DDF type org.osgi.service.dmt.DmtConstants.DDF_LIST with leaf nodes as
children, i.e. a LIST. A LIST of primitives must be treated in the filter as a multi valued property, any
of its values satisfy an assertion on that attribute.

Attribute names must not contains a slash, that is, it is only possible to assert values directly below
the node selected by the target .

Each of these leaf nodes and LISTs can be used in the LDAP Filter as a key/value pair. The compar-
ison must be done with the type used in the Dmt Data object of the compared node. That is, if the

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Residential Release 6 Page 33

Dmt Admin data is a number, then the comparison rules of the number must be used. The attributes
given to the filter must be converted to the Java object that represents their type.

The set N must therefore consists only of nodes where the Filter matches.

It is allowed to change the Target or the Filter node after the results are read. In that case, the Result
and ResultUriList must be cleared instantaneously and the search redone once either result node is
read.

The initial value of Target is the empty string, which indicates no target.

Table 2.7 Sub-tree Description for Filter

Name Act Type Card. S Description
Target Get Set str ing 1 A An absolute URI always ending in a slash (’/’),

with optional wildcards, selecting a set of
sub-nodes N . Wildcards can be an asterisk (
'* ' \u002A) or a minus sign (' - ' \u002D). An
asterisk can be used in place of a single node
name in the URI, a minus sign stands for any
number of consecutive node names. The de-
fault value of this node is the empty string,
which indicates that no nodes must be select-
ed. Changing this value must clear any exist-
ing results. If the Result() or ResultUriList is
read to get N then a new search must be exe-
cuted.

A URI must always end in '/' to indicate that
the target can only select interior nodes.

Fi l ter Get Set str ing 1 A An optional filter expression that filters nodes
in the set N selected by Target. The filter ex-
pression is an LDAP filter or an asterisk ('*').
An asterisk is the default value and match-
es any node in set N . If an LDAP expression is
set in the Filter node then the set N must on-
ly contain nodes that match the given filter.
The values the filter asserts are the immediate
leafs and LIST nodes of the nodes in set N . The
name of these child nodes is the name of the
attribute matched in the filter.

The nodes can be removed by the Filter imple-
mentation after a timeout defined by the im-
plementation.

Limit Get Set integer 1 A Limits the number of results to the given
number. If this node is not set there is no lim-
it. The default value is not set, thus no limit.

Result Get NODE 1 A The Result tree is a virtual read-only tree of
all nodes that were selected by the Target and
matched the Filter, that is, all nodes in set N .
The Result node acts as a parent instead of the
session root for each node in N .

The Result node is a snapshot taken the first
time it is accessed after a change in the Fi l ter
and/or the Target nodes.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 34 OSGi Residential Release 6

Name Act Type Card. S Description
ResultUriL ist Get LIST 1 A
 [l ist] Get str ing 0. .* D

A list of URIs of nodes in the Device Manage-
ment Tree from the node selected by the Tar-
get that match the Filter node. All URIs are
relative to current session. The Result node is
a snapshot taken the first time it is accessed
after a change in the Fi l ter and/or the Target
nodes.

InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

2.8.6 Framework
The Framework node represents the information about the Framework itself. The Framework node
allows manipulation of the OSGi framework, start level, framework life cycle, and bundle life cycle.

All modifications to a Framework object must occur in an atomic session. All changes to the frame-
work must occur during the commit.

The Framework node allows the manager to install (create a new child node in Bundle), to uninstall
change the state of the bundle (see Bundle.RequestedState()), update the bundle (see URL), start/
stop bundles, and update the framework. The implementation must execute these actions in the fol-
lowing order during the commit of the session:

1. Create a snapshot of the current installed bundles and their state.
2. stop all bundles that will be uinstalled and updated
3. Uninstall all the to be uninstalled bundles (bundles whose RequestedState is

Bundle.UNINSTALLED)
4. Update all bundles that have a modified URL with this URL using the Bundle

update(InputStream) method in the order that the order that the URLs were last set.
5. Install any new bundles from their URL in the order that the order that the URLs were last set.
6. Refresh all bundles that were updated and installed
7. Ensure that all the bundles have their correct start level
8. If the RequestedState was set, follow this state. Otherwise ensure that any Bundles that have the

AutoStart flag set to true are started persistently. Transiently started bundles that were stopped
in this process are not restarted. The bundle id order must be used.

9. Wait until the desired start level has been reached
10. Return from the commit without error.

If any of the above steps runs in an error (except the restart) than the actions should be undone and
the system state must be restored to the snapshot.

If the System Bundle was updated (its URL) node was modified, then after the commit has returned
successfully, the OSGi Framework must be restarted.

Table 2.8 Sub-tree Description for Framework

Name Act Type Card. S Description
StartLevel Get Set integer 1 A The StartLevel manages the Framework's cur-

rent Start Level. Maps to the Framework Start
Level set/getStartLevel() methods.

This node can set the requested Framework's
StartLevel, however it doesn't store the value.
This node returns the Framework's StartLevel
at the moment of the call.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Residential Release 6 Page 35

Name Act Type Card. S Description
In it ia lBundleS-
tartLevel

Get Set integer 1 A Configures the initial bundle start level, maps
to the the FrameworkStartLevel set/getIni-
t ia lBundleStartLevel() method.

Bundle Get MAP 1 A
 [Str ing] Add Get Bundle 0. .* D

The MAP of location -> Bundle. Each Bundle
is uniquely identified by its location. The lo-
cation is a string that must be unique for each
bundle and can be chosen by the management
system.

The Bundles node will be automatically filled
from the installed bundles, representing the
actual state.

New bundles can be installed by creating
a new node with a given location. At com-
mit, this bundle will be installed from their
Bundle.URL node.

The location of the System Bundle
must be "System Bundle" (see the Core's
Constants.SYSTEM_BUNDLE_LOCATION),
this node cannot be uninstalled and most op-
erations on this node have special meaning.

It is strongly recommended to use a logical
name for the location of a bundle, for example
reverse domain names or a UUID.

To uninstall a bundle, set the
Bundle.RequestedState to UNINSTALLED , the
nodes in Bundle cannot be deleted.

Property Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Framework Properties.

The Framework properties come from the
Bundle Context getProperty() method. How-
ever, this method does not provide the names
of the available properties. If the handler of
this node is aware of the framework prop-
erties then these should be used to provide
the node names. If these properties are now
known, the handler must synthesize the
names from the following sources

• System Properties (as they are backing the
Framework properties)

• Launching properties as defined in the OS-
Gi Core specification

• Properties in the residential specification
• Other known properties

2.8.7 Wire
A Wire is a link between two bundles where the semantics of this link is defined by the used name
space. This is closely modeled after the Wiring API in the Core Framework.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 36 OSGi Residential Release 6

Table 2.9 Sub-tree Description for Wire

Name Act Type Card. S Description
Namespace Get str ing 1 A The name space of this wire. Can be:

• osgi.wiring.bundle - Defined in the OSGi
Core

• osgi.wiring.package - Defined in the OSGi
Core

• osgi.wiring.host - Defined in the OSGi Core
• osgi.wiring.rmt.service - Defined in this

specification
• * - Generic name spaces

The osgi.wiring.rmt.service name space is not
defined by the OSGi Core as it is not part of
the module layer. The name space has the fol-
lowing layout:

• Requirement - A filter on the service.id ser-
vice property.

• Capability - All service properties as attrib-
utes. No defined directives.

• Requirer - The bundle that has gotten the
service

• Provider - The bundle that has registered
the service

There is a wire for each registration-get pair.
That is, if a service is registered by A and got-
ten by B and C then there are two wires: B->A
and C->A .

Requirement Get Requirement 1 A The Requirement that caused this wire.
Capabi l i ty Get Capabi l i ty 1 A The Capability that satisfied the requirement

of this wire.
Requirer Get str ing 1 A The location of the Bundle that contains the

requirement for this wire.
Provider Get str ing 1 A The location of the Bundle that provides the

capability for this wire.
InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

2.8.8 Wire.Capability
Describes a Capability.

Table 2.10 Sub-tree Description for Wire.Capability

Name Act Type Card. S Description
Direct ive Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Directives for this capability.

Attr ibute Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Attributes for this capability.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.service.log

OSGi Residential Release 6 Page 37

2.8.9 Wire.Requirement
Describes a Requirement.

Table 2.11 Sub-tree Description for Wire.Requirement

Name Act Type Card. S Description
Fi l ter Get str ing 1 A The Filter string for this requirement.
Direct ive Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Directives for this requirement. These di-
rectives must contain the filter: directive as
described by the Core.

Attr ibute Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Attributes for this requirement.

2.9 org.osgi.dmt.service.log

2.9.1 Log
Provides access to the Log Entries of the Log Service.

Table 2.12 Sub-tree Description for Log

Name Act Type Card. S Description
LogEntr ies Get LIST 1 A
 [l ist] Get LogEntry 0. .* D

A potentially long list of Log Entries. The
length of this list is implementation depen-
dent. The order of the list is most recent event
at index 0 and later events with higher consec-
utive indexes. No new entries must be added
to the log when there is an open exclusive or
atomic session.

2.9.2 LogEntry
A Log Entry node is the representation of a LogEntry from the OSGi Log Service.

Table 2.13 Sub-tree Description for LogEntry

Name Act Type Card. S Description
Time Get date_time 1 A Time of the Log Entry.
Level Get integer 1 A The severity level of the log entry. The value is

the same as the Log Service level values:

• LOG_ERROR 1
• LOG_WARNING 2
• LOG_INFO 3
• LOG_DEBUG 4

Other values are possible because the Log Ser-
vice allows custom levels.

Message Get str ing 1 A Textual, human-readable description of the
log entry.

Bundle Get str ing 1 A The location of the bundle that originated this
log or an empty string.

References Residential Device Management Tree Specification Version 1.0

Page 38 OSGi Residential Release 6

Name Act Type Card. S Description
Exception Get str ing 0,1 A Human readable information about an excep-

tion. Provides the exception information if
any, optionally including the stack trace.

2.10 References

[1] OSGi Core Release 6
http://www.osgi.org/Specifications/HomePage

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Management Agent

OSGi Residential Release 6 Page 39

3 TR-157 Amendment 3 Software
Module Guidelines

Version 1.0
[1] Broadband Forum (BBF) has defined an object model for managing the software modules in a CPE.
The BBF Software Modules object defines Execution Environments, Deployment Units, and Execu-
tion Units. These concepts are mapped in the following table.

Table 3.1 Mapping of concepts

Software Modules Concept OSGi Concept
Execution Environment OSGi Framework
Deployment Unit Bundle
Execution Unit Bundle

There can be multiple Execution Environments of the same or different types. The parent Execution
Environment is either the native environment, for example Linux, or it can be another Framework.
A BBF Deployment Unit and Execution Unit both map to a bundle since there is no need to separate
those concepts in OSGi. An implementation of this object model should have access to all the Exe-
cution Environments as the Deployment Units and Execution Units are represented in a single ta-
ble.

This section is not a specification in the normal sense. The intention of this chapter is to provide
guidelines for implementers of the [4] TR-157a3 Internet Gateway Device Software Modules on an OSGi
Framework.

3.1 Management Agent
The Broadband Forum TR-157 Software Modules standard provides a uniform view of the different
execution environments that are available in a device. Execution Environments can model the un-
derlying operating system, an OSGi framework, or other environments that support managing the
execution of code.

Most parameters in the Software Modules object model map very well to their OSGi counter parts.
However, there are a number of issues that require support from a management agent. This manage-
ment agent must maintain state to implement the contract implied by the Software Modules stan-
dard. For example, the OSGi Framework does not have an Initial Start Level, an OSGi Framework
always starts at an environment property defined start level. However, the standard requires that a
Framework must start at a given level after it is launched.

There are many other actions that require a management agent to provide the functionality re-
quired by TR-157 that is not build into the OSGi Framework since the standard requires a view that
covers the whole device, not just the OSGi environment. The assumed architecture is depicted in
Figure 3.1.

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 40 OSGi Residential Release 6

Figure 3.1 Management Agent Architecture

ACS TR-069
Protocol Adapter

TR-069
Management
Agent

Other Exec Envs
Mngmt

OSGi Exec Env
Mngmt

Framework

Bundle

ExecEnv.{i}

DeploymentUnit.{i}
ExecutionUnit.{i}

JARs1

0..n

1..n

1

3.2 Parameter Mapping
The following table provides OSGi specific information for the different parameters in the Software
Modules object model.

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

Device.SoftwareModules.
 ExecEnvNumberOfEntr ies
 DeploymentUnitNumberOfEntr ies
 ExecutionUnitNumberOfEntr ies
Device.SoftwareModules.ExecEnv.{i} .
 Enable Indicates whether or not this OSGi Framework is enabled. Disabling an en-

abled OSGi Framework must stop it, while enabling a disabled OSGi Frame-
work must launch it. When an Execution Environment is disabled, Bundles
installed in that OSGi Framework will be unaffected, but any Bundles on that
OSGi Framework are automatically made inactive. When an OSGi Framework
is disabled it is impossible to make changes to the installed bundles, install
new bundles, or query any information about the bundles. Disabling the OS-
Gi Framework could place the device in a non-manageable state. For example,
if the OSGi Framework runs the Protocol Adapter or has a management agent
then it is possible that the device can no longer be restarted.

 Status Indicates the status of the OSGi Framework. Enumeration of:

• Up - The OSGi Framework is up and running.
• Error - The OSGi Framework could not be launched.
• Disabled - The OSGi Framework is not enabled

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Parameter Mapping

OSGi Residential Release 6 Page 41

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 Reset Setting this parameter to true causes this OSGi Framework to revert back to
the state it was in when the device last issued a 0 BOOTSTRAP Inform event
(bootstrap). The following requirements dictate what must happen for the re-
set to be complete:

• The system must restore the set of bundles that were present at the last
bootstrap event. That means that installed bundles since that moment
must be uninstalled, updated bundles rolled back, and uninstalled bundles
re-installed.

• The OSGi Framework must roll back to the version it had during the previ-
ous rollback.

• The OSGi Framework must be restarted after the previous requirements
have been met.

The value of this parameter is not part of the device configuration and is al-
ways fa lse when read.

 Al ias A non-volatile handle used to reference this instance for alias based address-
ing.

 Name A Name that adequately distinguishes this OSGi Framework from all other
OSGi Frameworks. This must be the OSGi Framework UUID as stored in the
org.osgi .f ramework.uuid property.

 Type Indicates the complete type and specification version of this ExecEnv . For an
OSGi Framework it must be:

OSGi <version>

Where the <version> is the value of the framework property
org.osgi .f ramework.version

 Init ia lRunLevel The run level that this ExecEnv will be in upon startup (whether that is caused
by a CPE Boot or the Execution Environment starting). Run levels map to di-
rectly OSGi start levels. However, the OSGi Framework has no concept of an
initial start level, it can use the org.osgi .f ramework.start level .beginning en-
vironment property but this requires a management to control it. A manage-
ment agent must therefore handle this value and instruct the OSGi Frame-
work to move to this start level after a reboot.

If the value of CurrentRunLevel is set to -1, then the value of this parameter is
irrelevant when read. Setting its value to -1 must have no impact on the start
level of this OSGi Framework.

 RequestedRunLevel Sets the start level of this OSGi Framework, meaning that altering this
parameter's value will change the value of the CurrentRunLevel asynchro-
nously. Start levels dictate which Bundles will be started. Setting this value
when CurrentRunLevel is -1 must have no impact on the start Level of this OS-
Gi Framework. The value of this parameter is not part of the device configura-
tion and must always be -1 when read.

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 42 OSGi Residential Release 6

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 CurrentRunLevel The start level that this OSGi Framework is currently operating in. This val-
ue is altered by changing the RequestedRunLevel parameter. Upon startup
(whether that is caused by a CPE Boot or the Execution Environment starting)
CurrentRunLevel must be set equal to In it ia lRunLevel by some management
agent.

If Run Levels are not supported by this OSGi Framework then CurrentRunLev-
el must be -1.

 Version The Version of this OSGi Framework as specified by its Vendor. This is not the
version of its specification. Must be the value of the System Bundle's getVer-
sion() method.

 Vendor The vendor that produced this OSGi Framework, the value of the
org.osgi .f ramework.vendor Framework property.

 ParentExecEnv The value must be the path name of a row in the ExecEnv table, it can either be
the operating system or another OSGi Framework if the framework is nested.
If the referenced object is deleted, the parameter value must be set to an emp-
ty string. If this value is an empty string then this is the Primary Execution Envi-
ronment.

 Al locatedDiskSpace Implementation specific.
 Avai lableDiskSpace Implementation specific.
 Al locatedMemory Implementation specific.
 Avai lableMemory Implementation specific.
 ProcessorRefList Comma-separated list of paths into the DeviceInfo.Processor table. If the refer-

enced object is deleted, the corresponding item must be removed from the list.
Represents the processors that this OSGi Framework has available to it.

 Act iveExecutionUnits Comma-separated list of paths into the ExecutionUnit table. If the referenced
object is deleted, the corresponding item must be removed from the list. Repre-
sents the Bundles currently active on this OSGi Framework.

Device.SoftwareModules.

 DeploymentUnit .{ i} .

This table serves as the Bundles inventory and contains status information
about each Bundle. A new instance of this table gets created during the instal-
lation of a Bundle.

 UUID A Universally Unique Identifier either provided by the ACS, or generated by
the CPE, at the time of Deployment Unit Installation. The format of this val-
ue is defined by [2] RFC 4122 A Universally Unique IDentifier (UUID) URN Name-
space Version 3 (Name-Based) and [5] TR-069a3 CPE WAN Management Proto-
col. This value must not be altered when the Bundle is updated. A management
agent should use the UUID as the bundle location since the location plays the
same role.

 DUID The Bundle id from the getBundleId() method.
 Al ias A non-volatile handle used to reference this instance.
 Name Indicates the Bundle Symbolic Name of this Bundle. The value of this para-

meter is used in the generation of the UUID based on the rules defined in [5]
TR-069a3 CPE WAN Management Protocol.

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Parameter Mapping

OSGi Residential Release 6 Page 43

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 Status Indicates the status of this Bundle. Enumeration of:

• Instal l ing - This bundle is in the process of being Installed and should tran-
sition to the Installed state. This state will never be visible in an OSGi
Framework.

• Instal led - This bundle has been successfully installed.This maps to the
Bundle INSTALLED or RESOLVED state.

• Updating - This bundle is in the process of being updated and should transi-
tion to the Installed state. This state will never be visible in an OSGi Frame-
work.

• Uninstal l ing - This bundle is in the process of being uninstalled and should
transition to the uninstalled state.This state will never be visible in an OS-
Gi Framework.

• Uninstal led - This bundle has been successfully uninstalled. This state will
never be visible in an OSGi Framework.

 Resolved Indicates whether or not this DeploymentUnit has resolved all of its depen-
dencies. Must be true if this Bundle's state is ACTIVE , STARTING , STOPPING , or
RESOLVED . Otherwise it must be fa lse .

 URL Contains the URL used by the most recent ChangeDUState RPC to either In-
stall or Update this Bundle. This must be remembered by a management agent
since this information is not available in a Bundle.

 Descr ipt ion Textual description of this Bundle, must be the value of the Bundle-Descrip-
tion manifest header or an empty string if not present.

 Vendor The author of this DeploymentUnit formatted as a domain name. The value
of this parameter is used in the generation of the UUID based on the rules de-
fined in [5] TR-069a3 CPE WAN Management Protocol. The recommended value
is the value of the Bundle-Vendor header.

 Version Version of this Bundle, it mist be he value of the geVersion() method.
 VendorLogList Empty String
 VendorConfigList Empty String
 ExecutionUnitList A path into the ExecutionUnit table for the corresponding ExecutionUnit for

this Bundle, which is also the bundle since the relation is 1:1.
 ExecutionEnvRef The value must be the path name of a row in the ExecEnv table of the corre-

sponding OSGi Framework.
Device.SoftwareModules.

 ExecutionUnit .{ i} .

This table serves as the Execution Unit inventory and contains both status in-
formation about each Execution Unit as well as configurable parameters for
each Execution Unit. This list contains all the bundles since in an OSGi Frame-
work Deployment Unit and Execution Unit are mapped to Bundles.

 EUID Table wide identifier for a bundle chosen by the OSGi Framework during in-
stallation of the associated DeploymentUnit . The value must be unique across
ExecEnv instances. It is recommended that this be a combination of the Exe-
cEnv.{i} .Name and an OSGi Framework local unique value. The unique value
for an OSGi framework should be the Bundle Location.

 Al ias A non-volatile handle used to reference this instance.
 Name The name should be unique across all Bundles instances contained within its

associated DeploymentUnit . As the Deployment Unit and the Execution Unit
are the same the value must be the Bundle Symbolic Name.

 ExecEnvLabel The name must be unique across all Bundles contained within a specific OSGi
Framework. This must therefore be the Bundle Id.

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 44 OSGi Residential Release 6

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 AutoStart If true and the proper start level is met, then this Bundle will be automatically
started by the device after its OSGi Framework's start level is met. If fa lse this
Bundle must not be started after launch until it is explicitly commanded to do
so.

An OSGi bundle is persistently started or transiently started. It is not possible
to change this state without affecting the active state of the bundle. Therefore,
if the AutoStart is set to true , the bundle must be started persistently, even if
it is already started. This will record the persistent start state. If the AutoStart
is set to fa lse , the bundle must be stopped. Therefore, in an OSGi Framework
setting the AutoStart flag to true has the side effect that the bundle is started if
it was not active; setting it to fa lse will stop the bundle.

 RunLevel Determines when this Bundle will be started. If AutoStart is true and the Cur-
rentRunLevel is greater than or equal to this RunLevel , then this ExecutionUnit
must be started, if run levels are enabled. This maps directly to the Bundles
start level.

 Status Indicates the status of this ExecutionUnit . Enumeration of:

• Id le - This Bundle is in an Idle state and not running. This maps to the Bun-
dle INSTALLED or Bundle RESOLVED state.

• Start ing - This Bundle is in the process of starting and should transition
to the Active state. This maps to the STARTING state in OSGi. In an OSGi
Framework, lazily activated bundles can remain in the STARTING state for a
long time.

• Active - This instance is currently running. This maps to the Bundle ACTIVE
state.

• Stopping - This instance is in the process of stopping and should transition
to the Idle state.

 RequestedState Indicates the state transition that the ACS is requesting for this Bundle. Enu-
meration of:

• Id le - If this Bundle is currently in STARTING or ACTIVE state then the CPE
must attempt to stop the Bundle; otherwise this requested state is ignored.

• Active - If this Bundle is currently in the INSTALLED or RESOLVED state the
management agent must attempt to start the Bundle. If this ExecutionUnit
is in the STOPPING state the request is rejected and a fault raised. Otherwise
this requested state is ignored.

If this Bundle is disabled and an attempt is made to alter this value, then a
CWMP Fault must be generated. The value of this parameter is not part of the
device configuration and is always an empty string when read. Bundles must
be started transiently when the AutoStart is fa lse , otherwise persistently.

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Parameter Mapping

OSGi Residential Release 6 Page 45

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 ExecutionFaultCode If while running or transitioning between states this Bundle raises an Excep-
tion then this parameter embodies the problem. Enumeration of:

• NoFault - No fault, default value.
• Fai lureOnStart - Threw an exception when started.
• Fai lureOnAutoStart - Failed to be started by the framework, this must be

intercepted by the management agent because this is a Framework Error
event.

• Fai lureOnStop - Raised an exception while stopping
• Fai lureWhileActive - Raised when a bundle cannot be restarted after a back-

ground operation of the Framework, for example refreshing.
• DependencyFai lure - Failed to resolve
• UnStartable - Cannot be raised in OSGi since this is the same error as Fai l-

ureOnStart .

For fault codes not included in this list, the vendor can include vendor-specific
values, which must use the format defined in Section 3.3 of [6] TR-106a4 Data
Model Template for TR-069-Enabled Devices.

 ExecutionFaultMessage If while running or transitioning between states this Bundle identifies a fault
this parameter provides a more detailed explanation of the problem enumerat-
ed in the ExecutionFaultCode .

If ExecutionFaultCode has the value of NoFault then the value of this parame-
ter must be an empty string and ignored. This message must be the message
value of the exception thrown by the Bundle.

 Vendor Vendor of this Bundle. The value of the Bundle-Vendor manifest header
 Descr ipt ion Textual description of this Bundle. The value of the Bundle-Description mani-

fest header
 Version Version of the Bundle. The value of the getVersion() method.
 VendorLogList Empty string.
 VendorConfigList Empty string.
 DiskSpaceInUse Implementation defined
 MemoryInUse Implementation defined
 References Empty String
 AssociatedProcessList Empty String as an OSGi bundle reuses the process of the VM.
 SupportedDataModelList Comma-separated list of strings. Each list item must be the path name of a

row in the DeviceInfo.SupportedDataModel table. If the referenced object is
deleted, the corresponding item must be removed from the list. Represents the
CWMP-DT schema instances that have been introduced to this device because
of the existence of this ExecutionUnit . In OSGi this is implementation defined.

 ExecutionEnvRef The path to the OSGi Framework that hosts this bundle in the ExecEnv table.
Device.SoftwareModules.

 ExecutionUnit .{ i} .Extensions.

This object proposes a general location for vendor extensions specific to this
Execution Unit, which allows multiple Execution Units to expose parameters
without the concern of conflicting parameter names. This part is not used in
OSGi.

References TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 46 OSGi Residential Release 6

3.3 References

[1] Broadband Forum
http://www.broadband-forum.org

[2] RFC 4122 A Universally Unique IDentifier (UUID) URN Namespace
http://tools.ietf.org/html/rfc4122

[3] TR-157a3 Component Objects for CWMP
http://www.broadband-forum.org/technical/download/TR-157_Amendment-3.pdf

[4] TR-157a3 Internet Gateway Device Software Modules
http://www.broadband-forum.org/cwmp/tr-157-1-3-0-
igd.html#D.InternetGatewayDevice.SoftwareModules

[5] TR-069a3 CPE WAN Management Protocol
http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf

[6] TR-106a4 Data Model Template for TR-069-Enabled Devices
http://www.broadband-forum.org/technical/download/TR-106_Amendment-4.pdf

Log Service Specification Version 1.3 Introduction

OSGi Residential Release 6 Page 47

101 Log Service Specification

Version 1.3

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi framework. It consists of
two services, one for logging information and another for retrieving current or previously recorded
log information.

This specification defines the methods and semantics of interfaces which bundle developers can use
to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other bundles, oriented toward
management of the environment, can use the Log Reader Service to retrieve Log Entry objects that
were recorded recently or to receive Log Entry objects as they are logged by other bundles.

101.1.1 Entities

• LogService - The service interface that allows a bundle to log information, including a message, a
level, an exception, a ServiceReference object, and a Bundle object.

• LogEntry - An interface that allows access to a log entry in the log. It includes all the information
that can be logged through the Log Service and a time stamp.

• LogReaderService - A service interface that allows access to a list of recent LogEntry objects, and al-
lows the registration of a LogListener object that receives LogEntry objects as they are created.

• LogListener - The interface for the listener to LogEntry objects. Must be registered with the Log
Reader Service.

Figure 101.1 Log Service Class Diagram org.osgi.service.log package

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log
or register
listener

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

Bundle using
Log Service Bundle using

Log Reader
Service

Log implementation bundle

The Log Service Interface Log Service Specification Version 1.3

Page 48 OSGi Residential Release 6

101.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can be distributed to other
bundles, which in turn can forward the logged entries to a file system, remote system, or some other
destination.

The LogService interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged. This should be one of

the levels defined in the LogService interface but it may be any integer that is interpreted in a
user-defined way.

• Specify the Service associated with the log requests.

By obtaining a LogService object from the Framework service registry, a bundle can start logging
messages to the LogService object by calling one of the LogService methods. A Log Service object
can log any message, but it is primarily intended for reporting events and error conditions.

The LogService interface defines these methods for logging messages:

• log(int , Str ing) - This method logs a simple message at a given log level.
• log(int , Str ing, Throwable) - This method logs a message with an exception at a given log level.
• log(ServiceReference, int , Str ing) - This method logs a message associated with a specific ser-

vice.
• log(ServiceReference, int , Str ing, Throwable) - This method logs a message with an exception

associated with a specific service.

While it is possible for a bundle to call one of the log methods without providing a ServiceRefer-
ence object, it is recommended that the caller supply the ServiceReference argument whenever ap-
propriate, because it provides important context information to the operator in the event of prob-
lems.

The following example demonstrates the use of a log method to write a message into the log.

logService.log(
 myServiceReference,
 LogService.LOG_INFO,
 "myService is up and running"
);

In the example, the myServiceReference parameter identifies the service associated with the log re-
quest. The specified level, LogService.LOG_INFO , indicates that this message is informational.

The following example code records error conditions as log messages.

try {
 FileInputStream fis = new FileInputStream("myFile");
 int b;
 while ((b = fis.read()) != -1) {
 ...
 }
 fis.close();
}
catch (IOException exception) {
 logService.log(
 myServiceReference,

Log Service Specification Version 1.3 Log Level and Error Severity

OSGi Residential Release 6 Page 49

 LogService.LOG_ERROR,
 "Cannot access file",
 exception);
}

Notice that in addition to the error message, the exception itself is also logged. Providing this infor-
mation can significantly simplify problem determination by the Operator.

101.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be used to filter log messages
when they are retrieved. The severity levels are defined in the LogService interface.

Callers must supply the log levels that they deem appropriate when making log requests.

The following table lists the log levels.

Table 101.1 Log Levels

Level Descriptions
LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the bun-

dle developer.
LOG_ERROR Indicates the bundle or service may not be functional. Action should be taken

to correct this situation.
LOG_INFO May be the result of any change in the bundle or service and does not indicate a

problem.
LOG_WARNING Indicates a bundle or service is still functioning but may experience problems

in the future because of the warning condition.

101.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log. The Log Reader Service is a
service that bundle developers can use to retrieve information contained in this log, and receive no-
tifications about LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far into the past the log entries
go. Additionally, some log entries may not be recorded in the log in order to save space. In particu-
lar, LOG_DEBUG log entries may not be recorded. Note that this rule is implementation-dependent.
Some implementations may allow a configurable policy to ignore certain LogEntry object types.

The LogReaderService interface defines these methods for retrieving log entries.

• getLog() - This method retrieves past log entries as an enumeration with the most recent entry
first.

• addLogListener(LogListener) - This method is used to subscribe to the Log Reader Service in or-
der to receive log messages as they occur. Unlike the previously recorded log entries, all log mes-
sages must be sent to subscribers of the Log Reader Service as they are recorded.

A subscriber to the Log Reader Service must implement the LogListener interface.

After a subscription to the Log Reader Service has been started, the subscriber's
LogListener. logged method must be called with a Log-Entry object for the message each time a
message is logged.

The LogListener interface defines the following method:

Log Entry Interface Log Service Specification Version 1.3

Page 50 OSGi Residential Release 6

• logged(LogEntry) - This method is called for each Log-Entry object created. A Log Reader Service
implementation must not filter entries to the LogListener interface as it is allowed to do for its
log. A LogListener object should see all LogEntry objects that are created.

The delivery of LogEntry objects to the LogListener object should be done asynchronously.

101.5 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information that was passed when
an event was logged, and consists of a superset of information which can be passed through the
LogService methods. The LogEntry interface defines these methods to retrieve information related
to Log-Entry objects:

• getBundle() - This method returns the Bundle object related to a Log-Entry object.
• getException() - This method returns the exception related to a Log-Entry object. In some imple-

mentations, the returned exception may not be the original exception. To avoid references to a
bundle defined exception class, thus preventing an uninstalled bundle from being garbage col-
lected, the Log Service may return an exception object of an implementation defined Throwable
subclass. This object will attempt to return as much information as possible, such as the message
and stack trace, from the original exception object .

• getLevel() - This method returns the severity level related to a Log-Entry object.
• getMessage() - This method returns the message related to a Log-Entry object.
• getServiceReference() - This method returns the ServiceReference object of the service related

to a Log-Entry object.
• getTime() - This method returns the time that the log entry was created.

101.6 Mapping of Events
Implementations of a Log Service must log Framework-generated events and map the information
to LogEntry objects in a consistent way. Framework events must be treated exactly the same as other
logged events and distributed to all LogListener objects that are associated with the Log Reader Ser-
vice. The following sections define the mapping for the three different event types: Bundle, Service,
and Framework.

101.6.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to the following table.

Table 101.2 Mapping of Bundle Events to Log Entries

Log Entry method Information about Bundle Event
getLevel() LOG_INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle() on the
BundleEvent object.

getException() nul l
getServiceReference() nul l

Log Service Specification Version 1.3 Mapping of Events

OSGi Residential Release 6 Page 51

Log Entry method Information about Bundle Event
getMessage() The message depends on the event type:

• INSTALLED - "BundleEvent INSTALLED"
• STARTED - "BundleEvent STARTED"
• STOPPED - "BundleEvent STOPPED"
• UPDATED - "BundleEvent UPDATED"
• UNINSTALLED - "BundleEvent UNINSTALLED"
• RESOLVED - "BundleEvent RESOLVED"
• UNRESOLVED - "BundleEvent UNRESOLVED"

101.6.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to the following table.

Table 101.3 Mapping of Service Events to Log Entries

Log Entry method Information about Service Event
getLevel() LOG_INFO , except for the ServiceEvent.MODIFIED event. This event can

happen frequently and contains relatively little information. It must be
logged with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with this event.
It is obtained by calling getServiceReference() .getBundle() on the Ser-
viceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is ob-

tained by calling getServiceReference() on the ServiceEvent object.
getMessage() This message depends on the actual event type. The messages are mapped

as follows:

• REGISTERED - "ServiceEvent REGISTERED"
• MODIFIED - "ServiceEvent MODIFIED"
• UNREGISTERING - "ServiceEvent UNREGISTERING"

101.6.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to the following table.

Table 101.4 Mapping of Framework Event to Log Entries

Log Entry method Information about Framework Event
getLevel() LOG_INFO , except for the FrameworkEvent.ERROR event. This event rep-

resents an error and is logged with a level of LOG_ERROR .
getBundle() Identifies the bundle associated with the event. This may be the system

bundle. It is obtained by calling getBundle() on the FrameworkEvent ob-
ject.

getException() Identifies the exception associated with the error. This will be null for
event types other than ERROR. It is obtained by calling getThrowable() on
the FrameworkEvent object.

getServiceReference() nul l

Mapping of Events Log Service Specification Version 1.3

Page 52 OSGi Residential Release 6

Log Entry method Information about Framework Event
getMessage() This message depends on the actual event type. The messages are mapped

as follows:

• STARTED - "FrameworkEvent STARTED"
• ERROR - "FrameworkEvent ERROR"
• PACKAGES_REFRESHED - "FrameworkEvent PACKAGES REFRESHED"
• STARTLEVEL_CHANGED - "FrameworkEvent STARTLEVEL CHANGED"
• WARNING - "FrameworkEvent WARNING"
• INFO - "FrameworkEvent INFO"

101.6.4 Log Events
Log events must be delivered by the Log Service implementation to the Event Admin service (if
present) asynchronously under the topic:

org/osgi/service/log/LogEntry/<event type>

The logging level is used as event type:

LOG_ERROR
LOG_WARNING
LOG_INFO
LOG_DEBUG
LOG_OTHER (when event is not recognized)

The properties of a log event are:

• bundle. id - (Long) The source bundle's id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if not nul l .
• bundle - (Bundle) The source bundle.
• log. level - (Integer) The log level.
• message - (Str ing) The log message.
• t imestamp - (Long) The log entry's timestamp.
• log.entry - (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• exception.class - (Str ing) The fully-qualified class name of the attached exception. Only set if the
getException method returns a non-nul l value.

• exception.message - (Str ing) The message of the attached Exception. Only set if the Exception
message is not nul l .

• exception - (Throwable) The Exception returned by the getException method.

If the getServiceReference method returns a non- nul l value:

• service - (ServiceReference) The result of the getServiceReference method.
• service. id - (Long) The id of the service.
• service.pid - (Str ing) The service's persistent identity. Only set if the service.pid service property

is not nul l .
• service.objectClass - (Str ing[]) The object class of the service object.

Log Service Specification Version 1.3 Security

OSGi Residential Release 6 Page 53

101.7 Security
The Log Service should only be implemented by trusted bundles. This bundle requires
ServicePermission[LogService|LogReaderService, REGISTER] . Virtually all bundles should get
ServicePermission[LogService, GET] . The ServicePermission[LogReaderService, GET] should only
be assigned to trusted bundles.

101.8 org.osgi.service.log

Log Service Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log; vers ion="[1.3,1 .4)"

101.8.1 Summary

• LogEntry - Provides methods to access the information contained in an individual Log Service
log entry.

• LogListener - Subscribes to LogEntry objects from the LogReaderService .
• LogReaderService - Provides methods to retrieve LogEntry objects from the log.
• LogService - Provides methods for bundles to write messages to the log.

101.8.2 public interface LogEntry
Provides methods to access the information contained in an individual Log Service log entry.

A LogEntry object may be acquired from the LogReaderService.getLog method or by registering a
LogListener object.

See Also LogReaderService.getLog, LogListener

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

101.8.2.1 public Bundle getBundle()

□ Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; nul l if no bundle is associated with this LogEntry ob-
ject.

101.8.2.2 public Throwable getException()

□ Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original exception. To avoid ref-
erences to a bundle defined exception class, thus preventing an uninstalled bundle from being
garbage collected, the Log Service may return an exception object of an implementation defined
Throwable subclass. The returned object will attempt to provide as much information as possible
from the original exception object such as the message and stack trace.

org.osgi.service.log Log Service Specification Version 1.3

Page 54 OSGi Residential Release 6

Returns Throwable object of the exception associated with this LogEntry ;nul l if no exception is associated
with this LogEntry object.

101.8.2.3 public int getLevel()

□ Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.

See Also LogService.LOG_ERROR, LogService.LOG_WARNING, LogService.LOG_INFO,
LogService.LOG_DEBUG

101.8.2.4 public String getMessage()

□ Returns the human readable message associated with this LogEntry object.

Returns Str ing containing the message associated with this LogEntry object.

101.8.2.5 public ServiceReference getServiceReference()

□ Returns the ServiceReference object for the service associated with this LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object; nul l if no ServiceRefer-
ence object was provided.

101.8.2.6 public long getTime()

□ Returns the value of currentTimeMil l is() at the time this LogEntry object was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMil l is()

101.8.3 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService .

A LogListener object may be registered with the Log Reader Service using the
LogReaderService.addLogListener method. After the listener is registered, the logged method will
be called for each LogEntry object created. The LogListener object may be unregistered by calling the
LogReaderService.removeLogListener method.

See Also LogReaderService, LogEntry, LogReaderService.addLogListener(LogListener),
LogReaderService.removeLogListener(LogListener)

Concurrency Thread-safe

101.8.3.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

□ Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as possible.

See Also LogEntry

101.8.4 public interface LogReaderService
Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a LogListener object whose
LogListener. logged method will be called for each entry added to the log.

Log Service Specification Version 1.3 org.osgi.service.log

OSGi Residential Release 6 Page 55

• To retrieve past LogEntry objects, the getLog method can be called which will return an Enumer-
at ion of all LogEntry objects in the log.

See Also LogEntry, LogListener, LogListener.logged(LogEntry)

Concurrency Thread-safe

101.8.4.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive LogEntry objects.

□ Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener. logged(LogEntry) method will be called for each LogEntry object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise releases the Log Reader
Service, the Log Reader Service must remove all of the bundle's listeners.

If this Log Reader Service's list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

See Also LogListener, LogEntry, LogListener.logged(LogEntry)

101.8.4.2 public Enumeration getLog()

□ Returns an Enumeration of all LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the most recent entry first.
Whether the enumeration is of all LogEntry objects since the Log Service was started or some recent
past is implementation-specific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

Returns An Enumeration of all LogEntry objects in the log.

101.8.4.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

□ Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If l istener is not contained in this Log Reader Service's list of listeners, this method does nothing.

See Also LogListener

101.8.5 public interface LogService
Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a ServiceReference object or an
exception.

Bundles must log messages in the OSGi environment with a severity level according to the follow-
ing hierarchy:

1. LOG_ERROR
2. LOG_WARNING
3. LOG_INFO
4. LOG_DEBUG

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

org.osgi.service.log Log Service Specification Version 1.3

Page 56 OSGi Residential Release 6

101.8.5.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to anyone but the bundle
developer.

101.8.5.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.

101.8.5.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and does not indicate a prob-
lem.

101.8.5.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may experience problems in the
future because of the warning condition.

101.8.5.5 public void log(int level,String message)

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

□ Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

101.8.5.6 public void log(int level,String message,Throwable exception)

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message The human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

□ Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

101.8.5.7 public void log(ServiceReference sr,int level,String message)

sr The ServiceReference object of the service that this message is associated with or nul l .

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

□ Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

Log Service Specification Version 1.3 org.osgi.service.log

OSGi Residential Release 6 Page 57

101.8.5.8 public void log(ServiceReference sr,int level,String message,Throwable exception)

sr The ServiceReference object of the service that this message is associated with.

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

□ Logs a message with an exception associated and a ServiceReference object.

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

org.osgi.service.log Log Service Specification Version 1.3

Page 58 OSGi Residential Release 6

Http Service Specification Version 1.2 Introduction

OSGi Residential Release 6 Page 59

102 Http Service Specification

Version 1.2

102.1 Introduction
An OSGi framework normally provides users with access to services on the Internet and other net-
works. This access allows users to remotely retrieve information from, and send control to, services
in an OSGi framework using a standard web browser.

Bundle developers typically need to develop communication and user interface solutions for stan-
dard technologies such as HTTP, HTML, XML, and servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets - A servlet is a Java object which implements the Java Servlet API. Registering a
servlet in the Framework gives it control over some part of the Http Service URI name-space.

• Registering resources - Registering a resource allows HTML files, image files, and other static re-
sources to be made visible in the Http Service URI name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the javax.servlet API. This additional support is necessary because the
Http Service is closely related to [3] Java Servlet Technology. Http Service implementations must sup-
port at least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle developer can implement collec-
tively as an Http Service or use individually:

• HttpContext - Allows bundles to provide information for a servlet or resource registration.
• HttpService - Allows other bundles in the Framework to dynamically register and unregister re-

sources and servlets into the Http Service URI name-space.
• NamespaceException - Is thrown to indicate an error with the caller's request to register a servlet

or resource into the Http Service URI name-space.

Registering Servlets Http Service Specification Version 1.2

Page 60 OSGi Residential Release 6

Figure 102.1 Http Service Overview Diagram

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http.
HttpServlet
Request

javax.servlet.http.
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception

102.2 Registering Servlets
javax.servlet .Servlet objects can be registered with the Http Service by using the
HttpService interface. For this purpose, the HttpService interface defines the method
registerServlet(Str ing, javax.servlet .Servlet ,Dict ionary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the machine
www.acme.com and the Servlet object is registered with the name "/servlet" , then the Servlet
object's service method is called when the following URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All Servlet objects and resource registrations share the same name-space. If an attempt is made
to register a resource or Servlet object under the same name as a currently registered resource or
Servlet object, a NamespaceException is thrown. See Mapping HTTP Requests to Servlet and Resource
Registrations on page 63 for more information about the handling of the Http Service name-
space.

Each Servlet registration must be accompanied with an HttpContext object. This object provides
the handling of resources, media typing, and a method to handle authentication of remote requests.
See Authentication on page 66.

For convenience, a default HttpContext object is provided by the Http Service and can be obtained
with createDefaultHttpContext() . Passing a nul l parameter to the registration method achieves the
same effect.

Servlet objects require a ServletContext object. This object provides a number of functions to access
the Http Service Java Servlet environment. It is created by the implementation of the Http Service
for each unique HttpContext object with which a Servlet object is registered. Thus, Servlet objects
registered with the same HttpContext object must also share the same ServletContext object.

Http Service Specification Version 1.2 Registering Servlets

OSGi Residential Release 6 Page 61

Servlet objects are initialized by the Http Service when they are registered and bound to that specif-
ic Http Service. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig)
method. The ServletConfig parameter provides access to the initialization parameters specified
when the Servlet object was registered.

Therefore, the same Servlet instance must not be reused for registration with another Http Service,
nor can it be registered under multiple names. Unique instances are required for each registration.

The following example code demonstrates the use of the registerServlet method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
 String name = "<not set>";

 public void init(ServletConfig config) {
 this.name = (String)
 config.getInitParameter("name");
 }

 public void doGet(
 HttpServletRequest req,
 HttpServletResponse rsp
) throws IOException {
 rsp.setContentType("text/plain");
 req.getWriter().println(this.name);
 }
};

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null // use default context
);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called

This example registers the servlet, myServlet , at alias: /servletAl ias . Future requests for http://
www.acme.com/servletAl ias maps to the servlet, myServlet , whose service method is called to
process the request. (The service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace , or doDelete call depending on the HTTP request method
used.)

Registering Resources Http Service Specification Version 1.2

Page 62 OSGi Residential Release 6

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies, applets, etc. Resources do
not require any handling from the bundle. They are transferred directly from their source - usually
the JAR file that contains the code for the bundle - to the requester using HTTP.

Resources could be handled by Servlet objects as explained in Registering Servlets on page
60. Transferring a resource over HTTP, however, would require very similar Servlet
objects for each bundle. To prevent this redundancy, resources can be registered directly
with the Http Service via the HttpService interface. This HttpService interface defines the
registerResources(Str ing,Str ing,HttpContext)method for registering a resource into the Http Ser-
vice URI name-space.

The first parameter is the external alias under which the resource is registered with the Http Ser-
vice. The second parameter is an internal prefix to map this resource to the bundle's name-space.
When a request is received, the HttpService object must remove the external alias from the URI, re-
place it with the internal prefix, and call the getResource(Str ing) method with this new name on
the associated HttpContext object. The HttpContext object is further used to get the MIME type of
the resource and to authenticate the request.

Resources are returned as a java.net.URL object. The Http Service must read from this URL object and
transfer the content to the initiator of the HTTP request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can retrieve resources direct-
ly from the same place as the one from which the class was loaded - often a package directory in the
JAR file of the bundle. This method makes it very convenient to retrieve resources from the bundle
that are contained in the package.

The following example code demonstrates the use of the register Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {
 public boolean handleSecurity(
 HttpServletRequest request,
 HttpServletResponse response
) throws IOException {
 return true;
 }

 public URL getResource(String name) {
 return getClass().getResource(name);
 }

 public String getMimeType(String name) {
 return null;
 }
};

getHttpService().registerResources (
 "/files",
 "www",
 context
);
...

Http Service Specification Version 1.2 Mapping HTTP Requests to Servlet and Resource Registrations

OSGi Residential Release 6 Page 63

getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for resources below this name-
space are transferred to the HttpContext object with an internal name of www/<name> . This exam-
ple uses the Class.get Resource(Str ing) method. Because the internal name does not start with a "/",
it must map to a resource in the "com/acme/www" directory of the JAR file. If the internal name did
start with a "/", the package name would not have to be prefixed and the JAR file would be searched
from the root. Consult the java. lang.Class.getResource(Str ing) method for more information.

In the example, a request for http://www.acme.com/fi les/myfi le .html must map to the name "com/
acme/www/myfi le .html" which is in the bundle's JAR file.

More sophisticated implementations of the getResource(Str ing) method could filter the input
name, restricting the resources that may be returned or map the input name onto the file system (if
the security implications of this action are acceptable).

Alternatively, the resource registration could have used a default HttpContext object, as demonstrat-
ed in the following call to registerResources :

getHttpService().registerResources(
 "/files",
 "/com/acme/www",
 null
);

In this case, the Http Service implementation would call the createDefaultHttpContext()
method and use its return value as the HttpContext argument for the registerResources method.
The default implementation must map the resource request to the bundle's resource, using
Bundle.getResource(Str ing) . In the case of the previous example, however, the internal name must
now specify the full path to the directory containing the resource files in the JAR file. No automatic
prefixing of the package name is done.

The getMimeType(Str ing) implementation of the default HttpContext object should
rely on the default mapping provided by the Http Service by returning nul l . Its
handleSecurity(HttpServletRequest,HttpServletResponse) may implement an authentication
mechanism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet and Resource
Registrations
When an HTTP request comes in from a client, the Http Service checks to see if the requested URI
matches any registered aliases. A URI matches only if the path part of the URI is exactly the same
string. Matching is case sensitive.

If it does match, a matching registration takes place, which is processed as follows:

1. If the registration corresponds to a servlet, the authorization is verified by calling the handleSe-
curity method of the associated HttpContext object. See Authentication on page 66. If the re-
quest is authorized, the servlet must be called by its service method to complete the HTTP re-
quest.

2. If the registration corresponds to a resource, the authorization is verified by calling the han-
dleSecurity method of the associated HttpContext object. See Authentication on page 66. If
the request is authorized, a target resource name is constructed from the requested URI by sub-
stituting the alias from the registration with the internal name from the registration if the alias
is not "/". If the alias is "/", then the target resource name is constructed by prefixing the request-

The Default Http Context Object Http Service Specification Version 1.2

Page 64 OSGi Residential Release 6

ed URI with the internal name. An internal name of "/" is considered to have the value of the
empty string ("") during this process.

3. The target resource name must be passed to the getResource method of the associated HttpCon-
text object.

4. If the returned URL object is not nul l , the Http Service must return the contents of the URL to the
client completing the HTTP request. The translated target name, as opposed to the original re-
quested URI, must also be used as the argument to HttpContext.getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there was no match.
6. If there is no match, the Http Service must attempt to match sub-strings of the requested URI to

registered aliases. The sub-strings of the requested URI are selected by removing the last "/" and
everything to the right of the last "/".

The Http Service must repeat this process until either a match is found or the sub-string is an empty
string. If the sub-string is empty and the alias "/" is registered, the request is considered to match the
alias "/" . Otherwise, the Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/fudd/bugs/foo.txt" , and the only
registered alias is "/fudd" . A search for "/fudd/bugs/foo.txt" will not match an alias. Therefore, the
Http Service will search for the alias "/fudd/bugs" and the alias "/fudd" . The latter search will result
in a match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the alias "/fudd" , and anoth-
er bundle tries to register the exactly the same alias, the second caller must receive a NamespaceEx-
ception and its resource or servlet must not be registered. It could, however, register a similar alias -
for example, "/fudd/bugs" , as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name-space.

Table 102.1 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter
/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/fudd/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x.gi f tmp/bugs/x.gi f
/fudd/bugs/x.gi f tmp/y.gi f /fudd/bugs/x.gi f tmp/y.gi f

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implementations of the HttpCon-
text interface methods. Alternatively, the example could have used a default HttpContext object, as
demonstrated in the following call to registerServlet :

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null
);

Http Service Specification Version 1.2 Multipurpose Internet Mail Extension (MIME) Types

OSGi Residential Release 6 Page 65

In this case, the Http Service implementation must call createDefault HttpContext and use the re-
turn value as the HttpContext argument.

If the default HttpContext object, and thus the ServletContext object, is to be shared by multiple
servlet registrations, the previous servlet registration example code needs to be changed to use the
same default HttpContext object. This change is demonstrated in the next example:

HttpContext defaultContext =
 getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 defaultContext
);

// defaultContext can be reused
// for further servlet registrations

102.6 Multipurpose Internet Mail Extension (MIME) Types
MIME defines an extensive set of headers and procedures to encode binary messages in US-ASCII
mails. For an overview of all the related RFCs, consult [4] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of the binary messages.
The type is defined by a string containing a general category (text, application, image, audio and
video, multipart, and message) followed by a "/" and a specific media type, as in the example, "text/
html" for HTML formatted text files. A MIME type string can be followed by additional specifiers by
separating key=value pairs with a semicolon (' ; ' \u003B). These specifiers can be used, for example,
to define character sets as follows:

text/plain ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined MIME media types.
This list can be found at [5] Assigned MIME Media Types. MIME media types are extendable, and
when any part of the type starts with the prefix "x-" , it is assumed to be vendor-specific and can be
used for testing. New types can be registered as described in [6] Registration Procedures for new MIME
media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header should contain a MIME
media type so that the browser can recognize the type and format the content correctly.

The source of the data must define the MIME media type for each transfer. Most operating systems
do not support types for files, but use conventions based on file names, such as the last part of the
file name after the last ".". This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of mapping common exten-
sions to media types based on file extensions.

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description
. jpg . jpeg image/jpeg JPEG Files
.g i f image/gif GIF Files
.css text/css Cascading Style Sheet Files
.txt text/plain Text Files

Authentication Http Service Specification Version 1.2

Page 66 OSGi Residential Release 6

Extension MIME media type Description
.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language
.htm .html text/html Hyper Text Markup Language
.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Only the bundle developer, however, knows exactly which files have what media type. The Http-
Context interface can therefore be used to map this knowledge to the media type. The HttpContext
class has the following method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its internal knowledge to
map this name to a MIME media type.

Simple implementations can extract the extension and look up this extension in a table.

Returning nul l from this method allows the Http Service implementation to use its default mapping
mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a request from the execu-
tion of the request. This separation allows bundles to use available Servlet sub-classes while still
providing bundle specific authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method on the HttpContext object that is associated with the request URI. This method controls
whether the request is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the authentication mechanisms
of HTTP. See [7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. These mecha-
nisms normally interpret the headers and decide if the user identity is available, and if it is, whether
that user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecurity method on the Http-
Context object can use whatever method it requires. If the method returns true , the request must
continue to be processed using the potentially modified HttpServletRequest and HttpServletRe-
sponse objects. If the method returns fa lse , the request must not be processed.

A common standard for HTTP is the basic authentication scheme that is not secure when used with
HTTP. Basic authentication passes the password in base 64 encoded strings that are trivial to decode
into clear text. Secure transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Authorizat ion header is set in the request, the method should set the WWW-Authenticate
header in the response. This header indicates the desired authentication mechanism and the
realm. For example, WWW-Authenticate: Basic realm="ACME" .

The header should be set with the response object that is given as a parameter to
the handleSecurity method. The handleSecurity method should set the status to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

2. Secure connections can be verified with the ServletRequest.getScheme() method. This method
returns, for example, "https" for an SSL connection; the handleSecurity method can use this and
other information to decide if the connection's security level is acceptable. If not, the handleSe-
curity method should set the status to HttpServletResponse.SC_FORBIDDEN (403) and return
fa lse .

Http Service Specification Version 1.2 Security

OSGi Residential Release 6 Page 67

3. Next, the request must be authenticated. When basic authentication is used, the Authorizat ion
header is available in the request and should be parsed to find the user and password. See [7] RFC
2617: HTTP Authentication: Basic and Digest Access Authentication for more information.

If the user cannot be authenticated, the status of the response object should be set to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

4. The authentication mechanism that is actually used and the identity of the authenticated user
can be of interest to the Servlet object. Therefore, the implementation of the handleSecurity
method should set this information in the request object using the ServletRequest.setAttr ibute
method. This specification has defined a number of OSGi-specific attribute names for this pur-
pose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication. A Servlet may re-

trieve the value of this attribute by calling the HttpServletRequest.getAuthType method.
This attribute name is org.osgi .service.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet may retrieve the
value of this attribute by calling the HttpServletRequest.getRemoteUser method. This at-
tribute name is org.osgi .service.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environment, then the
handleSecurity method should set this attribute with the Authorizat ion object ob-
tained from the User Admin service. Such an object encapsulates the authentica-
tion of its remote user. A Servlet may retrieve the value of this attribute by calling
ServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This header name is
org.osgi .service.useradmin.authorizat ion .

5. Once the request is authenticated and any attributes are set, the handleSecurity method should
return true . This return indicates to the Http Service that the request is authorized and pro-
cessing may continue. If the request is for a Servlet, the Http Service must then call the service
method on the Servlet object.

102.8 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

102.8.1 Accessing Resources with the Default Http Context
The Http Service must be granted AdminPermission[*,RESOURCE] so that bundles may use a de-
fault HttpContext object. This is necessary because the implementation of the default HttpContext
object must call Bundle.getResource to access the resources of a bundle and this method requires
the caller to have AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation
is privileged. The resulting URL object may then be passed to the Http Service as the result of a
HttpContext.getResource call. No further permission checks are performed when accessing bundle
resource URL objects, so the Http Service does not need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default HttpContext object, the Http
Service must be granted sufficient privileges to access these resources. For example, if the getRe-
source method of the registered HttpContext object returns a file URL, the Http Service requires the
corresponding Fi lePermission to read the file. Similarly, if the getResource method of the registered
HttpContext object returns an HTTP URL, the Http Service requires the corresponding SocketPer-
mission to connect to the resource.

Configuration Properties Http Service Specification Version 1.2

Page 68 OSGi Residential Release 6

Therefore, in most cases, the Http Service should be a privileged service that is granted sufficient
permission to serve any bundle's resources, no matter where these resources are located. Therefore,
the Http Service must capture the AccessControlContext object of the bundle registering resources
or a servlet, and then use the captured AccessControlContext object when accessing resources re-
turned by the registered HttpContext object. This situation prevents a bundle from registering re-
sources that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the following example. When a resource or
servlet is registered, it should capture the context.

AccessControlContext acc =
 AccessController.getContext();

When a URL returned by the getResource method of the associated HttpContext object is called, the
Http Service must call the getResource method in a doPriv i leged construct using the AccessCon-
trolContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

The Http Service must only use the captured AccessControlContext when accessing resource URL
objects.

102.8.3 Servlet and HttpContext objects
This specification does not require that the Http Service is granted All Permission or wraps calls to
the Servlet and Http Context objects in a doPriv i leged block. Therefore, it is the responsibility of the
Servlet and Http Context implementations to use a doPriv i leged block when performing privileged
operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some other means, the Http Ser-
vice implementation should use the following properties to determine the port values upon which
to listen.

The following OSGi environment properties are used to specify default HTTP ports:

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

102.10 org.osgi.service.http

Http Service Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Residential Release 6 Page 69

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,1 .3)"

102.10.1 Summary

• HttpContext - Context for HTTP Requests.
• HttpService - The Http Service allows other bundles in the OSGi environment to dynamically

register resources and servlets into the URI namespace of Http Service.
• NamespaceException - A NamespaceException is thrown to indicate an error with the caller's

request to register a servlet or resources into the URI namespace of the Http Service.

102.10.2 public interface HttpContext
Context for HTTP Requests.

This service defines methods that the Http Service may call to get information for a request.

Servlets may be associated with an HttpContext service. Servlets that are associated using the same
HttpContext object will share the same ServletContext object.

If no HttpContext service is associated, a default HttpContext is used. The behavior of the methods
on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the bundle of the servlet service. This method

calls the servlet bundle's Bundle.getResource method, and returns the appropriate URL to access
the resource. On a Java runtime environment that supports permissions, the Http Service needs
to be granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

102.10.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of
the attribute can be retrieved by HttpServletRequest.getAuthType . This attribute name is
org.osgi .service.http.authenticat ion.type .

Since 1.1

102.10.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This attribute name is
org.osgi .service.useradmin.authorizat ion .

Since 1.1

102.10.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of
the attribute can be retrieved by HttpServletRequest.getRemoteUser . This attribute name is
org.osgi .service.http.authenticat ion.remote.user .

Since 1.1

102.10.2.4 public String getMimeType(String name)

name The name for which to determine the MIME type.

org.osgi.service.http Http Service Specification Version 1.2

Page 70 OSGi Residential Release 6

□ Maps a name to a MIME type.

Called by the Http Service to determine the MIME type for the specified name. For servlets, the Http
Service will call this method to support the ServletContext method getMimeType . For resources,
the Http Service will call this method to determine the MIME type for the Content-Type header in
the response.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Service should
determine the MIME type itself.

102.10.2.5 public URL getResource(String name)

name the name of the requested resource

□ Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet registrations, Http
Service will call this method to support the ServletContext methods getResource and ge-
tResourceAsStream . For resource registrations, Http Service will call this method to lo-
cate the named resource. The context can control from where resources come. For ex-
ample, the resource can be mapped to a file in the bundle's persistent storage area via
bundleContext.getDataFi le(name).toURL() or to a resource in the context's bundle via
getClass() .getResource(name)

Returns URL that Http Service can use to read the resource or nul l if the resource does not exist.

102.10.2.6 public boolean handleSecurity(HttpServletRequest request,HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This method controls
whether the request is processed in the normal manner or an error is returned.

If the request requires authentication and the Authorization header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication (available at http://www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Service will send the response back to the client, thereby
completing the request. When this method returns true , the Http Service will proceed with servic-
ing the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http Service
will send the response back to the client.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Residential Release 6 Page 71

Throws IOException– may be thrown by this method. If this occurs, the Http Service will terminate the re-
quest and close the socket.

102.10.3 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynamically register resources
and servlets into the URI namespace of Http Service. A bundle may later unregister its resources or
servlets.

See Also HttpContext

No Implement Consumers of this API must not implement this interface

102.10.3.1 public HttpContext createDefaultHttpContext()

□ Creates a default HttpContext for registering servlets or resources with the HttpService, a new Http-
Context object is created each time this method is called.

The behavior of the methods on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the context bundle; this method calls the con-

text bundle's Bundle.getResource method, and returns the appropriate URL to access the re-
source. On a Java runtime environment that supports permissions, the Http Service needs to be
granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

Returns a default HttpContext object.

Since 1.1

102.10.3.2 public void registerResources(String alias,String name,HttpContext context) throws NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or nul l if a default HttpContext is to be created
and used.

□ Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped. An alias must begin with slash ('/') and must not end with slash ('/'), with the exception
that an alias of the form "/" is used to denote the root alias. The name parameter must also not end
with slash ('/') with the exception that a name of the form "/" is used to denote the root of the bundle.
See the specification text for details on how HTTP requests are mapped to servlet and resource regis-
trations.

For example, suppose the resource name /tmp is registered to the alias /files. A request for /files/
foo.txt will map to the resource name /tmp/foo.txt.

 httpservice.registerResources("/files", "/tmp", context);

The Http Service will call the HttpContext argument to map resource names to URLs and MIME
types and to handle security for requests. If the HttpContext argument is nul l , a default HttpContext
is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

I l legalArgumentException– if any of the parameters are invalid

org.osgi.service.http Http Service Specification Version 1.2

Page 72 OSGi Residential Release 6

102.10.3.3 public void registerServlet(String alias,Servlet servlet,Dictionary initparams,HttpContext context) throws
ServletException, NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or nul l if there are none. This argument is used by the
servlet's ServletConfig object.

context the HttpContext object for the registered servlet, or nul l if a default HttpContext is to be created and
used.

□ Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped.

An alias must begin with slash ('/') and must not end with slash ('/'), with the exception that an alias
of the form "/" is used to denote the root alias. See the specification text for details on how HTTP re-
quests are mapped to servlet and resource registrations.

The Http Service will call the servlet's in it method before returning.

 httpService.registerServlet("/myservlet", servlet, initparams, context);

Servlets registered with the same HttpContext object will share the same ServletContext .
The Http Service will call the context argument to support the ServletContext methods
getResource ,getResourceAsStream and getMimeType , and to handle security for requests. If the
context argument is nul l , a default HttpContext object is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

javax.servlet .ServletException– if the servlet's in it method throws an exception, or the given servlet
object has already been registered at a different alias.

I l legalArgumentException– if any of the arguments are invalid

102.10.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

□ Unregisters a previous registration done by registerServlet or registerResources methods.

After this call, the registered alias in the URI name-space will no longer be available. If the registra-
tion was for a servlet, the Http Service must call the destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise "unget"s the Http Service
without calling unregister(String) then Http Service must automatically unregister the registration.
However, if the registration was for a servlet, the destroy method of the servlet will not be called in
this case since the bundle may be stopped. unregister(String) must be explicitly called to cause the
destroy method of the servlet to be called. This can be done in the BundleActivator.stop method of
the bundle registering the servlet.

Throws I l legalArgumentException– if there is no registration for the alias or the calling bundle was not the
bundle which registered the alias.

102.10.4 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller's request to register a servlet
or resources into the URI namespace of the Http Service. This exception indicates that the requested
alias already is in use.

Http Service Specification Version 1.2 References

OSGi Residential Release 6 Page 73

102.10.4.1 public NamespaceException(String message)

message the detail message

□ Construct a NamespaceException object with a detail message.

102.10.4.2 public NamespaceException(String message,Throwable cause)

message The detail message.

cause The nested exception.

□ Construct a NamespaceException object with a detail message and a nested exception.

102.10.4.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

102.10.4.4 public Throwable getException()

□ Returns the nested exception.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .

102.10.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

102.11 References
[1] HTTP 1.0 Specification RFC-1945

http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[3] Java Servlet Technology
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

[4] MIME Multipurpose Internet Mail Extension
http://www.mhonarc.org/~ehood/MIME/MIME.html

[5] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[6] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

References Http Service Specification Version 1.2

Page 74 OSGi Residential Release 6

Device Access Specification Version 1.1 Introduction

OSGi Residential Release 6 Page 75

103 Device Access Specification

Version 1.1

103.1 Introduction
A Framework is a meeting point for services and devices from many different vendors: a meeting
point where users add and cancel service subscriptions, newly installed services find their corre-
sponding input and output devices, and device drivers connect to their hardware.

In an OSGi Framework, these activities will dynamically take place while the Framework is run-
ning. Technologies such as USB and IEEE 1394 explicitly support plugging and unplugging devices
at any time, and wireless technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Framework, particularly those re-
lating to devices. When all of the possible services and device requirements are factored in, each OS-
Gi Framework will be unique. Therefore, automated mechanisms are needed that can be extended
and customized, in order to minimize the configuration needs of the OSGi environment.

The Device Access specification supports the coordination of automatic detection and attachment
of existing devices on an OSGi Framework, facilitates hot-plugging and -unplugging of new devices,
and downloads and installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular device or network tech-
nology, and mentioned technologies are used as examples only. Nor does it specify a particular de-
vice discovery method. Rather, this specification focuses on the attachment of devices supplied by
different vendors. It emphasizes the development of standardized device interfaces to be defined in
device categories, although no such device categories are defined in this specification.

103.1.1 Essentials

• Embedded Devices - OSGi bundles will likely run in embedded devices. This environment implies
limited possibility for user interaction, and low-end devices will probably have resource limita-
tions.

• Remote Administration - OSGi environments must support administration by a remote service
provider.

• Vendor Neutrality - OSGi-compliant driver bundles will be supplied by different vendors; each dri-
ver bundle must be well-defined, documented, and replaceable.

• Continuous Operation - OSGi environments will be running for extended periods without being
restarted, possibly continuously, requiring stable operation and stable resource consumption.

• Dynamic Updates - As much as possible, driver bundles must be individually replaceable without
affecting unrelated bundles. In particular, the process of updating a bundle should not require a
restart of the whole OSGi Framework or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementations in order for them to
be OSGi-compliant. Implementations must support the following capabilities:

• Hot-Plugging - Plugging and unplugging of devices at any time if the underlying hardware and
drivers allow it.

• Legacy Systems - Device technologies which do not implement the automatic detection of
plugged and unplugged devices.

Introduction Device Access Specification Version 1.1

Page 76 OSGi Residential Release 6

• Dynamic Device Driver Loading - Loading new driver bundles on demand with no prior device-spe-
cific knowledge of the Device service.

• Multiple Device Representations - Devices to be accessed from multiple levels of abstraction.
• Deep Trees - Connections of devices in a tree of mixed network technologies of arbitrary depth.
• Topology Independence - Separation of the interfaces of a device from where and how it is attached.
• Complex Devices - Multifunction devices and devices that have multiple configurations.

103.1.2 Operation
This specification defines the behavior of a device manager (which is not a service as might be ex-
pected). This device manager detects registration of Device services and is responsible for associat-
ing these devices with an appropriate Driver service. These tasks are done with the help of Driver
Locator services and the Driver Selector service that allow a device manager to find a Driver bundle
and install it.

103.1.3 Entities
The main entities of the Device Access specification are:

• Device Manager - The bundle that controls the initiation of the attachment process behind the
scenes.

• Device Category - Defines how a Driver service and a Device service can cooperate.
• Driver - Competes for attaching Device services of its recognized device category. See Driver Ser-

vices on page 81.
• Device - A representation of a physical device or other entity that can be attached by a Driver ser-

vice. See Device Services on page 77.
• DriverLocator - Assists in locating bundles that provide a Driver service. See Driver Locator Service

on page 87.
• DriverSelector - Assists in selecting which Driver service is best suited to a Device service. See The

Driver Selector Service on page 90.

Figure 103.1 show the classes and their relationships.

Device Access Specification Version 1.1 Device Services

OSGi Residential Release 6 Page 77

Figure 103.1 Device Access Class Overview

Device Manager
impl

Device or
Device_
Category set

<<interface>>
Driver
Locator

<<interface>>
Driver
Selector

a Driver impl

<<interface>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches
them to devices

0..n

1

attaches device and
possible refines 0..n

0..1

0..n

1 1

0..1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver
selected by

device driver
bundle

(provided by application or
vendor specific)

Driver Selector
bundle

Driver Locator
bundle

device manager
(provided by vendor)

downloads
a bundle1

1

(provided by operator)

103.2 Device Services
A Device service represents some form of a device. It can represent a hardware device, but that is not
a requirement. Device services differ widely: some represent individual physical devices and others
represent complete networks. Several Device services can even simultaneously represent the same
physical device at different levels of abstraction. For example:

• A USB network.
• A device attached on the USB network.
• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.
• The same device recognized as a simple printer.
• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB mouse can be considered as:

• A USB device which delivers information over the USB bus.
• A mouse device which delivers x and y coordinates and information about the state of its buttons.

Each representation has specific implications:

Device Services Device Access Specification Version 1.1

Page 78 OSGi Residential Release 6

• That a particular device is a mouse is irrelevant to an application which provides management of
USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconsequential to applications
that respond to mouse-like input.

Device services must belong to a defined device category, or else they can implement a generic service
which models a particular device, independent of its underlying technology. Examples of this type
of implementation could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device service, and enables in-
teroperability between bundles that are based on the same underlying technology. Generic Device
services will allow interoperability between bundles that are not coupled to specific device tech-
nologies.

For example, a device category is required for the USB, so that Driver bundles can be written that
communicate to the devices that are attached to the USB. If a printer is attached, it should also be
available as a generic Printer service defined in a Printer service specification, indistinguishable
from a Printer service attached to a parallel port. Generic categories, such as a Printer service, should
also be described in a Device Category.

It is expected that most Device service objects will actually represent a physical device in some
form, but that is not a requirement of this specification. A Device service is represented as a normal
service in the OSGi Framework and all coordination and activities are performed upon Framework
services. This specification does not limit a bundle developer from using Framework mechanisms
for services that are not related to physical devices.

103.2.1 Device Service Registration
A Device service is defined as a normal service registered with the Framework that either:

• Registers a service object under the interface org.osgi .service.Device with the Framework, or
• Sets the DEVICE_CATEGORY property in the registration. The value of DEVICE_CATEGORY is an

array of Str ing objects of all the device categories that the device belongs to. These strings are de-
fined in the associated device category.

If this document mentions a Device service, it is meant to refer to services registered with the name
org.osgi .service.device.Device or services registered with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that describe the device to the
device manager and potentially to the end users. The following properties have their semantics de-
fined in this specification:

• DEVICE_CATEGORY - A marker property indicating that this service must be regarded as a Device
service by the device manager. Its value is of type Str ing[] , and its meaning is defined in the asso-
ciated device category specification.

• DEVICE_DESCRIPTION - Describes the device to an end user. Its value is of type Str ing .
• DEVICE_SERIAL - A unique serial number for this device. If the device hardware contains a ser-

ial number, the driver bundle is encouraged to specify it as this property. Different Device ser-
vices representing the same physical hardware at different abstraction levels should set the same
DEVICE_SERIAL , thus simplifying identification. Its value is of type Str ing .

• service.pid - Service Persistent ID (PID), defined in org.osgi .f ramework.Constants . Device ser-
vices should set this property. It must be unique among all registered services. Even different
abstraction levels of the same device must use different PIDs. The service PIDs must be repro-
ducible, so that every time the same hardware is plugged in, the same PIDs are used.

103.2.2 Device Service Attachment
When a Device service is registered with the Framework, the device manager is responsible for find-
ing a suitable Driver service and instructing it to attach to the newly registered Device service. The

Device Access Specification Version 1.1 Device Category Specifications

OSGi Residential Release 6 Page 79

Device service itself is passive: it only registers a Device service with the Framework and then waits
until it is called.

The actual communication with the underlying physical device is not defined in the Device in-
terface because it differs significantly between different types of devices. The Driver service is re-
sponsible for attaching the device in a device type-specific manner. The rules and interfaces for this
process must be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device service remains unat-
tached. In that case, if the service object implements the Device interface, it must receive a call to
the noDriverFound() method. The Device service can wait until a new driver is installed, or it can
unregister and attempt to register again with different properties that describe a more generic de-
vice or try a different configuration.

103.2.2.1 Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle devices. For this purpose,
a Device service is considered idle if no bundle that itself has registered a Driver service is using the
Device service.

103.2.2.2 Device Service Unregistration

When a Device service is unregistered, no immediate action is required by the device manager. The
normal service of unregistering events, provided by the Framework, takes care of propagating the
unregistration information to affected drivers. Drivers must take the appropriate action to release
this Device service and perform any necessary cleanup, as described in their device category specifi-
cation.

The device manager may, however, take a device unregistration as an indication that driver bundles
may have become idle and are thus eligible for removal. It is therefore important for Device services
to unregister their service object when the underlying entity becomes unavailable.

103.3 Device Category Specifications
A device category specifies the rules and interfaces needed for the communication between a Device
service and a Driver service. Only Device services and Driver services of the same device category
can communicate and cooperate.

The Device Access service specification is limited to the attachment of Device services by Driver ser-
vices, and does not enumerate different device categories.

Other specifications must specify a number of device categories before this specification can be
made operational. Without a set of defined device categories, no inter-operability can be achieved.

Device categories are related to a specific device technology, such as USB, IEEE 1394, JINI, UPnP, Sa-
lutation, CEBus, Lonworks, and others. The purpose of a device category specification is to make all
Device services of that category conform to an agreed interface, so that, for example, a USB Driver
service of vendor A can control Device services from vendor B attached to a USB bus.

This specification is limited to defining the guidelines for device category definitions only. Device
categories may be defined by the OSGi organization or by external specification bodies - for exam-
ple, when these bodies are associated with a specific device technology.

103.3.1 Device Category Guidelines
A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement. This interface should
lay out the rules of how to communicate with the underlying device. The specification body may
define its own device interfaces (or classes) or leverage existing ones. For example, a serial port

Device Category Specifications Device Access Specification Version 1.1

Page 80 OSGi Residential Release 6

device category could use the javax.comm.SerialPort interface which is defined in [1] Java Com-
munications API.

When registering a device belonging to this category with the Framework, the interface or class
name for this category must be included in the registration.

• A set of service registration properties, their data types, and semantics, each of which must be de-
clared as either MANDATORY or OPTIONAL for this device category.

• A range of match values specific to this device category. Matching is explained later in The Device
Attachment Algorithm on page 91.

103.3.2 Sample Device Category Specification
The following is a partial example of a fictitious device category:

public interface /* com.acme.widget.*/ WidgetDevice{
 int MATCH_SERIAL = 10;
 int MATCH_VERSION = 8;
 int MATCH_MODEL = 6;
 int MATCH_MAKE = 4;
 int MATCH_CLASS = 2;
 void sendPacket(byte [] data);
 byte [] receivePacket(long timeout);
}

Devices in this category must implement the interface com.acme.widget.WidgetDevice to receive
attachments from Driver services in this category.

Device properties for this fictitious category are defined in the following table.

Table 103.1 Example Device Category Properties, M=Mandatory, O=Optional

Property name M/O Type Value
DEVICE_CATEGORY M String[] {"Widget"}
com.acme.class M Str ing A class description of this device. For

example "audio", "video", "ser ia l", etc.
An actual device category specification
should contain an exhaustive list and de-
fine a process to add new classes.

com.acme.model M Str ing A definition of the model. This is usually
vendor specific. For example "Mouse".

com.acme.manufacturer M Str ing Manufacturer of this device, for example
"ACME Widget Division".

com.acme.revis ion O Str ing Revision number. For example, "42".
com.acme.ser ia l O Str ing A serial number. For example

"SN6751293-12-2112/A".

103.3.3 Match Example
Driver services and Device services are connected via a matching process that is explained in The
Device Attachment Algorithm on page 91. The Driver service plays a pivotal role in this matching
process. It must inspect the Device service (from its ServiceReference object) that has just been reg-
istered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The scale of this match value
must be defined in the device category so as to allow Driver services to match on a fair basis. The
scale must start at least at 1 and go upwards.

Device Access Specification Version 1.1 Driver Services

OSGi Residential Release 6 Page 81

Driver services for this sample device category must return one of the match codes defined in the
com.acme.widget.WidgetDevice interface or Device.MATCH_NONE if the Device service is not rec-
ognized. The device category must define the exact rules for the match codes in the device category
specification. In this example, a small range from 2 to 10 (MATCH_NONE is 0) is defined for Widget-
Device devices. They are named in the WidgetDevice interface for convenience and have the follow-
ing semantics.

Table 103.2 Sample Device Category Match Scale

Match name Value Description
MATCH_SERIAL 10 An exact match, including the serial number.
MATCH_VERSION 8 Matches the right class, make model, and version.
MATCH_MODEL 6 Matches the right class and make model.
MATCH_MAKE 4 Matches the make.
MATCH_CLASS 2 Only matches the class.

A Driver service should use the constants to return when it decides how closely the Device ser-
vice matches its suitability. For example, if it matches the exact serial number, it should return
MATCH_SERIAL .

103.4 Driver Services
A Driver service is responsible for attaching to suitable Device services under control of the device
manager. Before it can attach a Device service, however, it must compete with other Driver services
for control.

If a Driver service wins the competition, it must attach the device in a device category-specific way.
After that, it can perform its intended functionality. This functionality is not defined here nor in the
device category; this specification only describes the behavior of the Device service, not how the
Driver service uses it to implement its intended functionality. A Driver service may register one or
more new Device services of another device category or a generic service which models a more re-
fined form of the device.

Both refined Device services as well as generic services should be defined in a Device Category. See
Device Category Specifications on page 79.

103.4.1 Driver Bundles
A Driver service is, like all services, implemented in a bundle, and is recognized by the device man-
ager by registering one or more Driver service objects with the Framework.

Such bundles containing one or more Driver services are called driver bundles. The device manager
must be aware of the fact that the cardinality of the relationship between bundles and Driver ser-
vices is 1:1...*.

A driver bundle must register at least one Driver service in its BundleActivator.start implementa-
tion.

103.4.2 Driver Taxonomy
Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)
• Refining Drivers
• Network Drivers

Driver Services Device Access Specification Version 1.1

Page 82 OSGi Residential Release 6

• Composite Drivers
• Referring Drivers
• Bridging Drivers
• Multiplexing Drivers
• Pure Consuming Drivers

This list is not definitive, and a Driver service is not required to fit into one of these categories. The
purpose of this taxonomy is to show the different topologies that have been considered for the De-
vice Access service specification.

Figure 103.2 Legend for Device Driver Services Taxonomy

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

103.4.2.1 Base Drivers

The first category of device drivers are called base drivers because they provide the lowest-level rep-
resentation of a physical device. The distinguishing factor is that they are not registered as Driver
services because they do not have to compete for access to their underlying technology.

Figure 103.3 Base Driver Types

Parallel port service

Physical hardware
SLP, UPnP

Base driver

Printer service

JINI, Salutation,
SLP, UPnP

Pure Discovery
Base driver

Printer service

Hardware with
discovery: USB,

IEEE 1394,

 Discovery
Base driver

Base drivers discover physical devices using code not specified here (for example, through notifica-
tions from a device driver in native code) and then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical device, a Device service
is then registered. Drivers supporting a discovery mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB devices are registered with
the Framework as a generic USB Device service. The USB specification (see [2] USB Specification) de-
fines a tightly integrated discovery method. Further, devices are individually addressed; no provi-
sion exists for broadcasting a message to all devices attached to the USB bus. Therefore, there is no
reason to expose the USB network itself; instead, a discovery base driver can register the individual
devices as they are discovered.

Not all technologies support a discovery mechanism. For example, most serial ports do not support
detection, and it is often not even possible to detect whether a device is attached to a serial port.

Device Access Specification Version 1.1 Driver Services

OSGi Residential Release 6 Page 83

Although each driver bundle should perform discovery on its own, a driver for a non-discoverable
serial port requires external help - either through a user interface or by allowing the Configuration
Admin service to configure it.

It is possible for the driver bundle to combine automatic discovery of Plug and Play-compliant de-
vices with manual configuration when non-compliant devices are plugged in.

103.4.2.2 Refining Drivers

The second category of device drivers are called refining drivers. Refining drivers provide a refined
view of a physical device that is already represented by another Device service registered with the
Framework. Refining drivers register a Driver service with the Framework. This Driver service is
used by the device manager to attach the refining driver to a less refined Device service that is regis-
tered as a result of events within the Framework itself.

Figure 103.4 Refining Driver Diagram

Mouse service

USB Device

Base driver

Refining driver

An example of a refining driver is a mouse driver, which is attached to the generic USB Device ser-
vice representing a physical mouse. It then registers a new Device service which represents it as a
Mouse service, defined elsewhere.

The majority of drivers fall into the refining driver type.

103.4.2.3 Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports individually addressable de-
vices and allows broadcasts, but does not define an intrinsic discovery protocol. In this case, the en-
tire network should be exposed as a single Device service.

Figure 103.5 Network Driver diagram

IP Network driver

drivers and other services
that use the network service
to discover devices

network

Associated with
(also for other
devices)

103.4.2.4 Composite Drivers

Complex devices can often be broken down into several parts. Drivers that attach to a single service
and then register multiple Device services are called composite drivers. For example, a USB speaker

Driver Services Device Access Specification Version 1.1

Page 84 OSGi Residential Release 6

containing software-accessible buttons can be registered by its driver as two separate Device ser-
vices: an Audio Device service and a Button Device service.

Figure 103.6 Composite Driver structure

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device

This approach can greatly reduce the number of interfaces needed, as well as enhance reusability.

103.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device services. Instead, it acts
as an intermediary to help locate the correct driver bundle. This process is explained in detail in The
Device Attachment Algorithm on page 91.

A referring driver implements the call to the attach method to inspect the Device service, and de-
cides which Driver bundle would be able to attach to the device. This process can actually involve
connecting to the physical device and communicating with it. The attach method then returns a
Str ing object that indicates the DRIVER_ID of another driver bundle. This process is called a referral.

For example, a vendor ACME can implement one driver bundle that specializes in recognizing all
of the devices the vendor produces. The referring driver bundle does not contain code to control the
device - it contains only sufficient logic to recognize the assortment of devices. This referring dri-
ver can be small, yet can still identify a large product line. This approach can drastically reduce the
amount of downloading and matching needed to find the correct driver bundle.

103.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but attaches it to a Device ser-
vice from another device category.

Figure 103.7 Bridging Driver Structure

Ethernet Device

USB device

Bridging driver

Ethernet device drivers

For example, USB to Ethernet bridges exist that allow connection to an Ethernet network through a
USB device. In this case, the top level of the USB part of the Device service stack would be an Ether-
net Device service. But the same Ethernet Device service can also be the bottom layer of an Ethernet
layer of the Device service stack. A few layers up, a bridge could connect into yet another network.

Device Access Specification Version 1.1 Driver Services

OSGi Residential Release 6 Page 85

The stacking depth of Device services has no limit, and the same drivers could in fact appear at dif-
ferent levels in the same Device service stack. The graph of drivers-to-Device services roughly mir-
rors the hardware connections.

103.4.2.7 Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates them in a new Device ser-
vice.

Figure 103.8 Multiplexing Driver Structure

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote
Control

Graphic Tablet

USB Network Serial Port

For example, assume that a system has a mouse on USB, a graphic tablet on a serial port, and a re-
mote control facility. Each of these would be registered as a service with the Framework. A multi-
plexing driver can attach all three, and can merge the different positions in a central Cursor Position
service.

103.4.2.8 Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a refined version.

Figure 103.9 Pure Consuming Driver Structure

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network

For example, one driver bundle could decide to handle all serial ports through javax.comm instead
of registering them as services. When a USB serial port is plugged in, one or more Driver services
are attached, resulting in a Device service stack with a Serial Port Device service. A pure consum-
ing driver may then attach to the Serial Port Device service and register a new serial port with the
javax.comm.* registry instead of the Framework service registry. This registration effectively trans-
fers the device from the OSGi environment into another environment.

103.4.2.9 Other Driver Types

It should be noted that any bundle installed in the OSGi environment may get and use a Device ser-
vice without having to register a Driver service.

The following functionality is offered to those bundles that do register a Driver service and conform
to the this specification:

Driver Services Device Access Specification Version 1.1

Page 86 OSGi Residential Release 6

• The bundles can be installed and uninstalled on demand.
• Attachment to the Device service is only initiated after the winning the competition with other

drivers.

103.4.3 Driver Service Registration
Drivers are recognized by registering a Driver service with the Framework. This event makes the
device manager aware of the existence of the Driver service. A Driver service registration must
have a DRIVER_ID property whose value is a Str ing object, uniquely identifying the driver to the de-
vice manager. The device manager must use the DRIVER_ID to prevent the installation of duplicate
copies of the same driver bundle.

Therefore, this DRIVER_ID must:

• Depend only on the specific behavior of the driver, and thus be independent of unrelated aspects
like its location or mechanism of downloading.

• Start with the reversed form of the domain name of the company that implements it: for exam-
ple, com.acme.widget.1 .1 .

• Differ from the DRIVER_ID of drivers with different behavior. Thus, it must also be different for
each revision of the same driver bundle so they may be distinguished.

When a new Driver service is registered, the Device Attachment Algorithm must be applied to each
idle Device service. This requirement gives the new Driver service a chance to compete with other
Driver services for attaching to idle devices. The techniques outlined in Optimizations on page 94
can provide significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests before the method which
registered the service has returned.

This specification does not define any method for new Driver services to steal already attached de-
vices. Once a Device service has been attached by a Driver service, it can only be released by the Dri-
ver service itself.

103.4.4 Driver Service Unregistration
When a Driver service is unregistered, it must release all Device services to which it is attached.
Thus, all its attached Device services become idle. The device manager must gather all of these idle
Device services and try to re-attach them. This condition gives other Driver services a chance to take
over the refinement of devices after the unregistering driver. The techniques outlined in Optimiza-
tions on page 94 can provide significant shortcuts for this situation.

A Driver service that is installed by the device manager must remain registered as long as the dri-
ver bundle is active. Therefore, a Driver service should only be unregistered if the driver bundle is
stopping, an occurrence which may precede its being uninstalled or updated. Driver services should
thus not unregister in an attempt to minimize resource consumption. Such optimizations can easily
introduce race conditions with the device manager.

103.4.5 Driver Service Methods
The Driver interface consists of the following methods:

• match(ServiceReference) - This method is called by the device manager to find out how well this
Driver service matches the Device service as indicated by the ServiceReference argument. The
value returned here is specific for a device category. If this Device service is of another device cat-
egory, the value Device.MATCH_NONE must be returned. Higher values indicate a better match.
For the exact matching algorithm, see The Device Attachment Algorithm on page 91.

Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results so that results can be cached by the device manager.

Device Access Specification Version 1.1 Driver Locator Service

OSGi Residential Release 6 Page 87

• attach(ServiceReference) - If the device manager decides that a Driver service should be attached
to a Device service, it must call this method on the Driver service object. Once this method is
called, the Device service is regarded as attached to that Driver service, and no other Driver ser-
vice must be called to attach to the Device service. The Device service must remain owned by the
Driver service until the Driver bundle is stopped. No unattach method exists.

The attach method should return nul l when the Device service is correctly attached. A refer-
ring driver (see Referring Drivers on page 84) can return a Str ing object that specifies the
DRIVER_ID of a driver that can handle this Device service. In this case, the Device service is not at-
tached and the device manager must attempt to install a Driver service with the same DRIVER_ID
via a Driver Locator service. The attach method must be deterministic as described in the previ-
ous method.

103.4.6 Idle Driver Bundles
An idle Driver bundle is a bundle with a registered Driver service, and is not attached to any Device
service. Idle Driver bundles are consuming resources in the OSGi Framework. The device manager
should uninstall bundles that it has installed and which are idle.

103.5 Driver Locator Service
The device manager must automatically install Driver bundles, which are obtained from Driver Lo-
cator services, when new Device services are registered.

A Driver Locator service encapsulates the knowledge of how to fetch the Driver bundles needed for
a specific Device service. This selection is made on the properties that are registered with a device:
for example, DEVICE_CATEGORY and any other properties registered with the Device service regis-
tration.

The purpose of the Driver Locator service is to separate the mechanism from the policy. The deci-
sion to install a new bundle is made by the device manager (the mechanism), but a Driver Locator
service decides which bundle to install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system, and this process is also
sensitive to network setup and other configuration details. Using Driver Locator services allows the
Operator to choose a strategy that best fits its needs.

Driver services are identified by the DRIVER_ID property. Driver Locator services use this particular
ID to identify the bundles that can be installed. Driver ID properties have uniqueness requirements
as specified in Device Service Registration on page 78. This uniqueness allows the device manager
to maintain a list of Driver services and prevent unnecessary installs.

An OSGi Framework can have several different Driver Locator services installed. The device manag-
er must consult all of them and use the combined result set, after pruning duplicates based on the
DRIVER_ID values.

103.5.1 The DriverLocator Interface
The DriverLocator interface allows suitable driver bundles to be located, downloaded, and installed
on demand, even when completely unknown devices are detected.

It has the following methods:

• f indDrivers(Dict ionary) - This method returns an array of driver IDs that potentially match a ser-
vice described by the properties in the Dictionary object. A driver ID is the Str ing object that is
registered by a Driver service under the DRIVER_ID property.

• loadDriver(Str ing) - This method returns an InputStream object that can be used to download
the bundle containing the Driver service as specified by the driver ID argument. If the Driver Lo-

Driver Locator Service Device Access Specification Version 1.1

Page 88 OSGi Residential Release 6

cator service cannot download such a bundle, it should return nul l . Once this bundle is down-
loaded and installed in the Framework, it must register a Driver service with the DRIVER_ID prop-
erty set to the value of the Str ing argument.

103.5.2 A Driver Example
The following example shows a very minimal Driver service implementation. It consists of two
classes. The first class is SerialWidget . This class tracks a single WidgetDevice from Sample Device
Category Specification on page 80. It registers a javax.comm.SerialPort service, which is a gener-
al serial port specification that could also be implemented from other device categories like USB, a
COM port, etc. It is created when the SerialWidgetDriver object is requested to attach a WidgetDe-
vice by the device manager. It registers a new javax.comm.SerialPort service in its constructor.

The org.osgi .ut i l .t racker.ServiceTracker is extended to handle the Framework events that are need-
ed to simplify tracking this service. The removedService method of this class is overridden to unreg-
ister the SerialPort when the underlying WidgetDevice is unregistered.

package com.acme.widget;
import org.osgi.service.device.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker
 implements javax.comm.SerialPort,
 org.osgi.service.device.Constants {
 ServiceRegistration registration;

 SerialWidget(BundleContext c, ServiceReference r) {
 super(c, r, null);
 open();
 }

 public Object addingService(ServiceReference ref) {
 WidgetDevice dev = (WidgetDevice)
 context.getService(ref);
 registration = context.registerService(
 javax.comm.SerialPort.class.getName(),
 this,
 null);
 return dev;
 }

 public void removedService(ServiceReference ref,
 Object service) {
 registration.unregister();
 context.ungetService(ref);
 }
 ... methods for javax.comm.SerialPort that are
 ... converted to underlying WidgetDevice
}

A SerialWidgetDriverobject is registered with the Framework in the Bundle Activator start method
under the Driver interface. The device manager must call the match method for each idle Device ser-
vice that is registered. If it is chosen by the device manager to control this Device service, a new Se-
r ia lWidget is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implementsDriver {

Device Access Specification Version 1.1 Driver Locator Service

OSGi Residential Release 6 Page 89

 BundleContext context;

 String spec =
 "(&"
 +" (objectclass=com.acme.widget.WidgetDevice)"
 +" (DEVICE_CATEGORY=WidgetDevice)"
 +" (com.acme.class=Serial)"
 +")";

 Filter filter;

 SerialWidgetDriver(BundleContext context)
 throws Exception {
 this.context = context;
 filter = context.createFilter(spec);
 }
 public int match(ServiceReference d) {
 if (filter.match(d))
 return WidgetDevice.MATCH_CLASS;
 else
 return Device.MATCH_NONE;
 }
 public synchronized String attach(ServiceReference r){
 new SerialWidget(context, r);
 }
}

The Driver Selector Service Device Access Specification Version 1.1

Page 90 OSGi Residential Release 6

103.6 The Driver Selector Service
The purpose of the Driver Selector service is to customize the selection of the best Driver service
from a set of suitable Driver bundles. The device manager has a default algorithm as described in
The Device Attachment Algorithm on page 91. When this algorithm is not sufficient and requires
customizing by the operator, a bundle providing a Driver Selector service can be installed in the
Framework. This service must be used by the device manager as the final arbiter when selecting the
best match for a Device service.

The Driver Selector service is a singleton; only one such service is recognized by the device man-
ager. The Framework method BundleContext.getServiceReference must be used to obtain a Dri-
ver Selector service. In the erroneous case that multiple Driver Selector services are registered, the
service.ranking property will thus define which service is actually used.

A device manager implementation must invoke the method select(ServiceReference,Match[]) .
This method receives a Service Reference to the Device service and an array of Match objects. Each
Match object contains a link to the ServiceReference object of a Driver service and the result of the
match value returned from a previous call to Driver.match . The Driver Selector service should in-
spect the array of Match objects and use some means to decide which Driver service is best suited.
The index of the best match should be returned. If none of the Match objects describe a possible Dri-
ver service, the implementation must return DriverSelector.SELECT_NONE (-1) .

103.7 Device Manager
Device Access is controlled by the device manager in the background. The device manager is respon-
sible for initiating all actions in response to the registration, modification, and unregistration of
Device services and Driver services, using Driver Locator services and a Driver Selector service as
helpers.

The device manager detects the registration of Device services and coordinates their attachment
with a suitable Driver service. Potential Driver services do not have to be active in the Framework to
be eligible. The device manager must use Driver Locator services to find bundles that might be suit-
able for the detected Device service and that are not currently installed. This selection is done via a
DRIVER_ID property that is unique for each Driver service.

The device manager must install and start these bundles with the help of a Driver Locator service.
This activity must result in the registration of one or more Driver services. All available Driver ser-
vices, installed by the device manager and also others, then participate in a bidding process. The Dri-
ver service can inspect the Device service through its ServiceReference object to find out how well
this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it is used to decide which
of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with tie breaks defined on the
service.ranking and service. id properties. The selected Driver service is then asked to attach the De-
vice service.

If no Driver service is suitable, the Device service remains idle. When new Driver bundles are in-
stalled, these idle Device services must be reattached.

The device manager must reattach a Device service if, at a later time, a Driver service is unregistered
due to an uninstallation or update. At the same time, however, it should prevent superfluous and
non-optimal reattachments. The device manager should also garbage-collect driver bundles it in-
stalled which are no longer used.

Device Access Specification Version 1.1 Device Manager

OSGi Residential Release 6 Page 91

The device manager is a singleton. Only one device manager may exist, and it must have no public
interface.

103.7.1 Device Manager Startup
To prevent race conditions during Framework startup, the device manager must monitor the state
of Device services and Driver services immediately when it is started. The device manager must not,
however, begin attaching Device services until the Framework has been fully started, to prevent su-
perfluous or non-optimal attachments.

The Framework has completed starting when the FrameworkEvent.STARTED event has been pub-
lished. Publication of that event indicates that Framework has finished all its initialization and
all bundles are started. If the device manager is started after the Framework has been initialized, it
should detect the state of the Framework by examining the state of the system bundle.

103.7.2 The Device Attachment Algorithm
A key responsibility of the device manager is to attach refining drivers to idle devices. The following
diagram illustrates the device attachment algorithm.

Device Manager Device Access Specification Version 1.1

Page 92 OSGi Residential Release 6

Figure 103.10 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing

Selector

Try selector
D

Nothing attachedAttach completed

Default selection

Attach

Cleanup

Try to load

Add the driver to
the exclusion list

Device

noDriverFound

Cleanup

E

F

K

I

K

G

H

Device Access Specification Version 1.1 Device Manager

OSGi Residential Release 6 Page 93

103.7.3 Legend

Table 103.3 Driver attachment algorithm

Step Description
A DriverLocator.f indDrivers is called for each registered Driver Locator service, passing

the properties of the newly detected Device service. Each method call returns zero or
more DRIVER_ID values (identifiers of particular driver bundles).

If the f indDrivers method throws an exception, it is ignored, and processing contin-
ues with the next Driver Locator service. See Optimizations on page 94 for further
guidance on handling exceptions.

B For each found DRIVER_ID that does not correspond to an already registered Driver
service, the device manager calls DriverLocator. loadDriver to return an InputStream
containing the driver bundle. Each call to loadDriver is directed to one of the Driver
Locator services that mentioned the DRIVER_ID in step A. If the loadDriver method
fails, the other Driver Locator objects are tried. If they all fail, the driver bundle is ig-
nored.

If this method succeeds, the device manager installs and starts the driver bundle. Dri-
ver bundles must register their Driver services synchronously during bundle activa-
tion.

C For each Driver service, except those on the exclusion list, call its Driver.match
method, passing the ServiceReference object to the Device service.

Collect all successful matches - that is, those whose return values are greater than
Device.MATCH_NONE - in a list of active matches. A match call that throws an ex-
ception is considered unsuccessful and is not added to the list.

D If there is a Driver Selector service, the device manager calls the
DriverSelector.select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects from the
array, its associated Driver service is selected for attaching the Device service. If the
Driver Selector service returns DriverSelector.SELECT_NONE , no Driver service
must be considered for attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid result, the de-
fault selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one registered in
the Framework. See The Driver Selector Service on page 90.

E The winner is the one with the highest match value. Tie breakers are respectively:

• Highest service.ranking property.
• Lowest service. id property.

F The selected Driver service's attach method is called. If the attach method returns
nul l , the Device service has been successfully attached. If the attach method returns
a Str ing object, it is interpreted as a referral to another Driver service and processing
continues at G. See Referring Drivers on page 84.

If an exception is thrown, the Driver service has failed, and the algorithm proceeds
to try another Driver service after excluding this one from further consideration at
Step H.

Device Manager Device Access Specification Version 1.1

Page 94 OSGi Residential Release 6

Step Description
G The device manager attempts to load the referred driver bundle in a manner simi-

lar to Step B, except that it is unknown which Driver Locator service to use. There-
fore, the loadDriver method must be called on each Driver Locator service until one
succeeds (or they all fail). If one succeeds, the device manager installs and starts the
driver bundle. The driver bundle must register a Driver service during its activation
which must be added to the list of Driver services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new referral
adds an entry to the exclusion list, which in turn disqualifies another driver from
further matching, the algorithm cannot loop indefinitely. This list is maintained for
the duration of this algorithm. The next time a new Device service is processed, the
exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked to
see whether it implements the Device interface. If so, the noDriverFound method is
called. Note that this action may cause the Device service to unregister and possibly
a new Device service (or services) to be registered in its place. Each new Device ser-
vice registration must restart the algorithm from the beginning.

K Whether an attachment was successful or not, the algorithm may have installed a
number of driver bundles. The device manager should remove any idle driver bun-
dles that it installed.

103.7.4 Optimizations
Optimizations are explicitly allowed and even recommended for an implementation of a device
manager. Implementations may use the following assumptions:

• Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results.

• The device manager may cache match values and referrals. Therefore, optimizations in the de-
vice attachment algorithm based on this assumption are allowed.

• The device manager may delay loading a driver bundle until it is needed. For example, a delay
could occur when that DRIVER_ID 's match values are cached.

• The results of calls to DriverLocator and DriverSelector methods are not required to be determin-
istic, and must not be cached by the device manager.

• Thrown exceptions must not be cached. Exceptions are considered transient failures, and the de-
vice manager must always retry a method call even if it has thrown an exception on a previous
invocation with the same arguments.

103.7.5 Driver Bundle Reclamation
The device manager may remove driver bundles it has installed at any time, provided that all the
Driver services in that bundle are idle. This recommended practice prevents unused driver bundles
from accumulating over time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified matching algorithm is not
guaranteed to terminate unless the device manager takes reclamation into account.

For example, assume that a new Device service triggers the attachment algorithm. A driver bundle
recommended by a Driver Locator service is loaded. It does not match, so the Device service remains
idle. The device manager is eager to reclaim space, and unloads the driver bundle. The disappear-
ance of the Driver service causes the device manager to reattach idle devices. Because it has not kept
a record of its previous activities, it tries to reattach the same device, which closes the loop.

On systems where the device manager implements driver bundle reclamation, all refining drivers
should be loaded through Driver Locator services. This recommendation is intended to prevent the

Device Access Specification Version 1.1 Security

OSGi Residential Release 6 Page 95

device manager from erroneously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on previously stored infor-
mation to determine which driver bundles were pre-installed and which were dynamically installed
and thus are eligible for removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent information and still be able
to manage an existing connection state, satisfying all of the requirements in this specification.

103.7.6 Handling Driver Bundle Updates
It is not straightforward to determine whether a driver bundle is being updated when the UN-
REGISTER event for a Driver service is received. In order to facilitate this distinction, the device man-
ager should wait for a period of time after the unregistration for one of the following events to oc-
cur:

• A BundleEvent.UNINSTALLED event for the driver bundle.
• A ServiceEvent.REGISTERED event for another Driver service registered by the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are received within the allotted
time period, the driver is assumed to be inactive. The appropriate waiting period is implementa-
tion-dependent and will vary for different installations. As a general rule, this period should be long
enough to allow a driver to be stopped, updated, and restarted under normal conditions, and short
enough not to cause unnecessary delays in reattaching devices. The actual time should be config-
urable.

103.7.7 Simultaneous Device Service and Driver Service Registration
The device attachment algorithm may discover new driver bundles that were installed outside its
direct control, which requires executing the device attachment algorithm recursively. However, in
this case, the appearance of the new driver bundles should be queued until completion of the cur-
rent device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment in time.

The following example sequence illustrates this process when a Driver service is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.
• If no Driver services were registered during the execution of the device attachment algorithm,

processing terminates.
• Otherwise, restart this process.

103.8 Security
The device manager is the only privileged bundle in the Device Access specification and requires
the org.osgi .f ramework.AdminPermission with the LIFECYCLE action to install and uninstall driver
bundles.

The device manager itself should be free from any knowledge of policies and should not actively set
bundle permissions. Rather, if permissions must be set, it is up to the Management Agent to listen to
synchronous bundle events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because they deliver the content of
a bundle to the privileged device manager and could potentially insert a Trojan horse into the envi-
ronment. Therefore, Driver Locator bundles need the ServicePermission[DriverLocator, REGISTER]

org.osgi.service.device Device Access Specification Version 1.1

Page 96 OSGi Residential Release 6

to register Driver Locator services, and the operator should exercise prudence in assigning this Ser-
vicePermission .

Bundles with Driver Selector services only require ServicePermission[DriverSelector, REGISTER]
to register the DriverSelector service. The Driver Selector service can play a crucial role in the selec-
tion of a suitable Driver service, but it has no means to define a specific bundle itself.

103.9 org.osgi.service.device

Device Access Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.device; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.device; vers ion="[1.1 ,1 .2)"

103.9.1 Summary

• Constants - This interface defines standard names for property keys associated with Device and
Driver services.

• Device - Interface for identifying device services.
• Driver - A Driver service object must be registered by each Driver bundle wishing to attach to

Device services provided by other drivers.
• DriverLocator - A Driver Locator service can find and load device driver bundles given a proper-

ty set.
• DriverSelector - When the device manager detects a new Device service, it calls all registered

Driver services to determine if anyone matches the Device service.
• Match - Instances of Match are used in the DriverSelector.select(ServiceReference, Match[])

method to identify Driver services matching a Device service.

103.9.2 public interface Constants
This interface defines standard names for property keys associated with Device and Driver services.

The values associated with these keys are of type java. lang.Str ing , unless otherwise stated.

See Also Device, Driver

Since 1.1

No Implement Consumers of this API must not implement this interface

103.9.2.1 public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"

Property (named "DEVICE_CATEGORY") containing a human readable description of the device cat-
egories implemented by a device. This property is of type Str ing[]

Services registered with this property will be treated as devices and discovered by the device manag-
er

103.9.2.2 public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"

Property (named "DEVICE_DESCRIPTION") containing a human readable string describing the ac-
tual hardware device.

Device Access Specification Version 1.1 org.osgi.service.device

OSGi Residential Release 6 Page 97

103.9.2.3 public static final String DEVICE_SERIAL = "DEVICE_SERIAL"

Property (named "DEVICE_SERIAL") specifying a device's serial number.

103.9.2.4 public static final String DRIVER_ID = "DRIVER_ID"

Property (named "DRIVER_ID") identifying a driver.

A DRIVER_ID should start with the reversed domain name of the company that implemented the
driver (e.g., com.acme), and must meet the following requirements:

• It must be independent of the location from where it is obtained.
• It must be independent of the DriverLocator service that downloaded it.
• It must be unique.
• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with it.

103.9.3 public interface Device
Interface for identifying device services.

A service must implement this interface or use the Constants.DEVICE_CATEGORY registration
property to indicate that it is a device. Any services implementing this interface or registered with
the DEVICE_CATEGORY property will be discovered by the device manager.

Device services implementing this interface give the device manager the opportunity to indicate to
the device that no drivers were found that could (further) refine it. In this case, the device manager
calls the noDriverFound() method on the Device object.

Specialized device implementations will extend this interface by adding methods appropriate to
their device category to it.

See Also Driver

Concurrency Thread-safe

103.9.3.1 public static final int MATCH_NONE = 0

Return value from Driver.match(ServiceReference) indicating that the driver cannot refine the de-
vice presented to it by the device manager. The value is zero.

103.9.3.2 public void noDriverFound()

□ Indicates to this Device object that the device manager has failed to attach any drivers to it.

If this Device object can be configured differently, the driver that registered this Device object may
unregister it and register a different Device service instead.

103.9.4 public interface Driver
A Driver service object must be registered by each Driver bundle wishing to attach to Device ser-
vices provided by other drivers. For each newly discovered Device object, the device manager enters
a bidding phase. The Driver object whose match(ServiceReference) method bids the highest for a
particular Device object will be instructed by the device manager to attach to the Device object.

See Also Device, DriverLocator

Concurrency Thread-safe

103.9.4.1 public String attach(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to attach to

□ Attaches this Driver service to the Device service represented by the given ServiceReference object.

org.osgi.service.device Device Access Specification Version 1.1

Page 98 OSGi Residential Release 6

A return value of nul l indicates that this Driver service has successfully attached to the given Device
service. If this Driver service is unable to attach to the given Device service, but knows of a more
suitable Driver service, it must return the DRIVER_ID of that Driver service. This allows for the im-
plementation of referring drivers whose only purpose is to refer to other drivers capable of handling
a given Device service.

After having attached to the Device service, this driver may register the underlying device as a new
service exposing driver-specific functionality.

This method is called by the device manager.

Returns nul l if this Driver service has successfully attached to the given Device service, or the DRIVER_ID of a
more suitable driver

Throws Exception– if the driver cannot attach to the given device and does not know of a more suitable dri-
ver

103.9.4.2 public int match(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to match

□ Checks whether this Driver service can be attached to the Device service. The Device service is rep-
resented by the given ServiceReference and returns a value indicating how well this driver can sup-
port the given Device service, or Device.MATCH_NONE if it cannot support the given Device ser-
vice at all.

The return value must be one of the possible match values defined in the device category definition
for the given Device service, or Device.MATCH_NONE if the category of the Device service is not rec-
ognized.

In order to make its decision, this Driver service may examine the properties associated with the
given Device service, or may get the referenced service object (representing the actual physical de-
vice) to talk to it, as long as it ungets the service and returns the physical device to a normal state be-
fore this method returns.

A Driver service must always return the same match code whenever it is presented with the same
Device service.

The match function is called by the device manager during the matching process.

Returns value indicating how well this driver can support the given Device service, or
Device.MATCH_NONE if it cannot support the Device service at all

Throws Exception– if this Driver service cannot examine the Device service

103.9.5 public interface DriverLocator
A Driver Locator service can find and load device driver bundles given a property set. Each driver is
represented by a unique DRIVER_ID .

Driver Locator services provide the mechanism for dynamically downloading new device driver
bundles into an OSGi environment. They are supplied by providers and encapsulate all provider-
specific details related to the location and acquisition of driver bundles.

See Also Driver

Concurrency Thread-safe

103.9.5.1 public String[] findDrivers(Dictionary props)

props the properties of the device for which a driver is sought

□ Returns an array of DRIVER_ID strings of drivers capable of attaching to a device with the given
properties.

The property keys in the specified Dictionary objects are case-insensitive.

Device Access Specification Version 1.1 org.osgi.service.device

OSGi Residential Release 6 Page 99

Returns array of driver DRIVER_ID strings of drivers capable of attaching to a Device service with the given
properties, or nul l if this Driver Locator service does not know of any such drivers

103.9.5.2 public InputStream loadDriver(String id) throws IOException

id the DRIVER_ID of the driver that needs to be installed.

□ Get an InputStream from which the driver bundle providing a driver with the giving DRIVER_ID can
be installed.

Returns An InputStream object from which the driver bundle can be installed or nul l if the driver with the
given ID cannot be located

Throws IOException– the input stream for the bundle cannot be created

103.9.6 public interface DriverSelector
When the device manager detects a new Device service, it calls all registered Driver services to de-
termine if anyone matches the Device service. If at least one Driver service matches, the device man-
ager must choose one. If there is a Driver Selector service registered with the Framework, the device
manager will ask it to make the selection. If there is no Driver Selector service, or if it returns an in-
valid result, or throws an Exception , the device manager uses the default selection strategy.

Since 1.1

Concurrency Thread-safe

103.9.6.1 public static final int SELECT_NONE = -1

Return value from DriverSelector.select , if no Driver service should be attached to the Device ser-
vice. The value is -1.

103.9.6.2 public int select(ServiceReference reference,Match[] matches)

reference the ServiceReference object of the Device service.

matches the array of all non-zero matches.

□ Select one of the matching Driver services. The device manager calls this method if there is at
least one driver bidding for a device. Only Driver services that have responded with nonzero (not
Device.MATCH_NONE) match values will be included in the list.

Returns index into the array of Match objects, or SELECT_NONE if no Driver service should be attached

103.9.7 public interface Match
Instances of Match are used in the DriverSelector.select(ServiceReference, Match[]) method to identi-
fy Driver services matching a Device service.

See Also DriverSelector

Since 1.1

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

103.9.7.1 public ServiceReference getDriver()

□ Return the reference to a Driver service.

Returns ServiceReference object to a Driver service.

103.9.7.2 public int getMatchValue()

□ Return the match value of this object.

Returns the match value returned by this Driver service.

References Device Access Specification Version 1.1

Page 100 OSGi Residential Release 6

103.10 References

[1] Java Communications API
http://www.oracle.com/technetwork/java/index-jsp-141752.html

[2] USB Specification
http://www.usb.org

[3] Universal Plug and Play
http://www.upnp.org

[4] Jini, Service Discovery and Usage
http://en.wikipedia.org/wiki/Jini

Configuration Admin Service Specification Version 1.5 Introduction

OSGi Residential Release 6 Page 101

104 Configuration Admin Service
Specification

Version 1.5

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Figure 104.1 Configuration Admin Service Overview

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration
data

Configuration
Admin

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

• Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy - The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

Introduction Configuration Admin Service Specification Version 1.5

Page 102 OSGi Residential Release 6

• Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

• Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

• Immediate Response - Changes in configuration should be reflected immediately.
• Execution Environment - The Configuration Admin service will not require more than an environ-

ment that fulfills the minimal execution requirements.
• Communications - The Configuration Admin service should not assume "always-on" connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability - The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information - It should be possible to share configuration data between bundles.

104.1.2 Entities

• Configuration information - The information needed by a bundle before it can provide its intended
functionality.

• Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

• Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Configuration Admin Service Specification Version 1.5 Configuration Targets

OSGi Residential Release 6 Page 103

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

Figure 104.2 Overall Service Diagram

Configuration
Admin Impl.

Configuration
Admin

Configuration
Listener

Managed
Service

Managed
Service Factory

Configuration
Plugin

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configurat ion objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

The Persistent Identity Configuration Admin Service Specification Version 1.5

Page 104 OSGi Residential Release 6

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

Framework Service
Registry ManagedService ManagedServiceFactory

Management layer

Service layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi .f ramework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 107.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Configuration Admin Service Specification Version 1.5 The Persistent Identity

OSGi Residential Release 6 Page 105

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop ('.' \u002E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4)

idProduct (hex 4)

iSerialNumber (decimal)

Universal Serial Bus. Use the standard
device descriptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,

Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial number in-

cluding CRC (hex 6)
1-wire bus of Dallas Semiconductor

COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2 Targeted PIDs
PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
 ('|' symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

The Persistent Identity Configuration Admin Service Specification Version 1.5

Page 106 OSGi Residential Release 6

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toStr ing() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

 <pid>|<bsn>|<version>|<location>
 <pid>|<bsn>|<version>
 <pid>|<bsn>
 <pid>

For example:

 com.example.web.WebConf|com.acme.example|3.2.0|http://www.xyz.com/acme.jar
 com.example.web.WebConf|com.acme.example|3.2.0
 com.example.web.WebConf|com.acme.example
 com.example.web.WebConf

If a registered target service has a PID that contains a vertical line (' | ' \u007c) | then the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set
to the targeted PID. That is, if the PID is com.example.web.WebConf and the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.

Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the l istConfigurat ions(Str ing) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.

String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
 String bsn = bundle.getSymbolicName();
 Version version = bundle.getVersion();
 String location = bundle.getLocation();
 String f = String.format("(|(%1$s=%2$s)(%1$s=%2$s|%3$s)" +
 "(%1$s=%2$s|%3$s|%4$s)(%1$s=%2$s|%3$s|%4$s|%5$s))",
 key, pid, bsn, version, location);

 Configuration[] configurations = cm.listConfigurations(f);
 if (configurations == null)
 return null;

 String largest = null;
 for (Configuration c : configurations) {
 String s = (String) c.getProperties().get(key);
 if ((largest == null) || (largest.length() < s.length()))

Configuration Admin Service Specification Version 1.5 The Configuration Object

OSGi Residential Release 6 Page 107

 largest = s;
 }
 return largest;
}

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 104 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configurat ion object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created with either getConfigurat ion(Str ing) or
createFactoryConfigurat ion(Str ing) , it becomes bound to the location of the calling bundle. This lo-
cation is obtained with the getBundleLocation() method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) take a location Str ing as their second argument. These
methods require the correct permission, and they create Configurat ion objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

• Single-Location - If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c. locat ion . In this case there is never a security check.

• Multi-Location - If c. locat ion is a multi-location (that is, starts with a question mark):

The Configuration Object Configuration Admin Service Specification Version 1.5

Page 108 OSGi Residential Release 6

• Security Off - The Bundle always has visibility
• Security On - The target's Bundle must have Configurat ionPermission[c . locat ion, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately
be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
at least have Configurat ionPermission[?, CONFIGURE] when security is on, it is also possible to
use Configurat ionPermission[?*, CONFIGURE] to not limit the management agent. See Regions on
page 119 for some examples of using the locations in isolation scenarios.

A nul l location parameter can be used to create Configurat ion objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object's the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in OSGi Core Release 6 Fil-
ter Syntax.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

property-name ::= public | private
public ::= symbolic-name // See General Syntax in Core Framework
private ::= '.' symbolic-name

Configuration Admin Service Specification Version 1.5 The Configuration Object

OSGi Residential Release 6 Page 109

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbol ic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 145.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name
does not start with a '.' or \u002E) of the Dictionary object argument in updated(Dict ionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
122. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

• service.pid - Set to the PID of the associated Configurat ion object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 105.

• service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.

• service.bundleLocation - Set to the location of the Configurat ion object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Propert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi .f ramework.Constants and the Con-
figurat ionAdmin interface. These service properties are all of type Str ing .

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

Managed Service Configuration Admin Service Specification Version 1.5

Page 110 OSGi Residential Release 6

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
rat ion object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton - A single entity in the bundle that needs to be configured.
• Externally Detected Devices - Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

Configuration Admin Service Specification Version 1.5 Managed Service

OSGi Residential Release 6 Page 111

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 124.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
nul l parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 107.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dict ionary) will be called multiple times with a nul l pa-
rameter.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

Client Bundle Framework

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration
Admin

The updated method may throw a Configurat ionException . This object must describe the problem
and what property caused the exception.

Managed Service Configuration Admin Service Specification Version 1.5

Page 112 OSGi Residential Release 6

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

Configuration
Admin Impl

16.1

com.
acme

name=Erica
size=8
name=Elmer
size=42

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

PID configuration

pid=4.102

no associated PID registered

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the properties name=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dict ionary)
method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.

class SampleManagedService implements ManagedService{
 Dictionary properties;
 ServiceRegistration registration;
 Console console;

 public void start(
 BundleContext context) throws Exception {
 properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,
 "com.acme.console");

 registration = context.registerService(

Configuration Admin Service Specification Version 1.5 Managed Service Factory

OSGi Residential Release 6 Page 113

 ManagedService.class.getName(),
 this,
 properties
);
 }

 public synchronized void updated(Dictionary np) {
 if (np != null) {
 properties = np;
 properties.put(
 Constants.SERVICE_PID, "com.acme.console");
 }

 if (console == null)
 console = new Console();

 int port = ((Integer)properties.get("port"))
 .intValue();

 String network = (String) properties.get("network");
 console.setPort(port, network);
 registration.setProperties(properties);
 }
 ... further methods
}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a nul l argument on a thread that is different from that on
which the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

Managed Service Factory Configuration Admin Service Specification Version 1.5

Page 114 OSGi Residential Release 6

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When a Configurat ion object for a Managed Service Factory is creat-
ed (Configurat ionAdmin.createFactoryConfigurat ion(Str ing,Str ing) or
createFactoryConfigurat ion(Str ing)), a new unique PID is created for this object by the Configura-
tion Admin service. The scheme used for this PID is defined by the Configuration Admin service and
is unrelated to the factory PID, which is chosen by the registering bundle.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first ar-

Configuration Admin Service Specification Version 1.5 Managed Service Factory

OSGi Residential Release 6 Page 115

gument is the PID of the Configurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

Client bundle Framework

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration
for a new
instance

get pid

for each found pid

MUST be on another thread

Configuration
Admin

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(Str ing)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

Managed Service Factory Configuration Admin Service Specification Version 1.5

Page 116 OSGi Residential Release 6

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds
three Configurat ion objects for which the factory PID is equal to com.acme.emai l . It must call
updated(Str ing,Dict ionary) for each of these Configurat ion objects on the newly registered Man-
agedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).

• The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Figure 104.7 Managed Service Factory Example

Configuration
Admin

MailFetchFactory
pid=com.acme.email

pid=16.1
name=erica

OSGi Service
Registry

registration
events

pid=16.1
name=erica
pid=16.2
name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service
Factory

factory pid
= com.acme
.email

factory pid
= eric.mf

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
 Hashtable consoles = new Hashtable();
 BundleContext context;
 public void start(BundleContext context)
 throws Exception {
 this.context = context;
 Hashtable local = new Hashtable();
 local.put(Constants.SERVICE_PID,"com.acme.console");
 context.registerService(
 ManagedServiceFactory.class.getName(),

Configuration Admin Service Specification Version 1.5 Configuration Admin Service

OSGi Residential Release 6 Page 117

 this,
 local);
 }

 public void updated(String pid, Dictionary config){
 Console console = (Console) consoles.get(pid);
 if (console == null) {
 console = new Console(context);
 consoles.put(pid, console);
 }

 int port = getInt(config, "port", 2011);
 String network = getString(
 config,
 "network",
 null /*all*/
);
 console.setPort(port, network);
 }

 public void deleted(String pid) {
 Console console = (Console) consoles.get(pid);
 if (console != null) {
 consoles.remove(pid);
 console.close();
 }
 }
}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects as-
sociated with specific configuration targets. Configurat ion objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfigurat ion method must atomically create and persistently store an ob-
ject if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) - This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

Configuration Admin Service Configuration Admin Service Specification Version 1.5

Page 118 OSGi Residential Release 6

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l be-
cause the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two methods to create a new instance of a Managed Service
Factory:

• createFactoryConfigurat ion(Str ing) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
t ion object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.

Creating a new factory configuration must not initiate a callback to the Managed Service Factory up-
dated method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(Str ing) . The argu-
ment is a Str ing object with a filter expression. This filter expression has the same syntax as the
Framework Fi l ter class. For example:

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 107.

A single Configurat ion object is identified with a PID, and can be obtained with
l istConfigurat ions(Str ing) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 105.

104.7.4 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Services and Managed Ser-
vice Factories. First, l istConfigurat ions(Str ing) or getConfigurat ion(Str ing) should be used to get a
Configurat ion object. The properties can be obtained with Configurat ion.getPropert ies . When no
update has occurred since this object was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin ser-
vice must first store the configuration information and then call all configuration targets that
have visibility with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update method calls in Configurat ion objects are not executed synchronously with the related
target services updated method. The updated method must be called asynchronously. The Configu-

Configuration Admin Service Specification Version 1.5 Configuration Admin Service

OSGi Residential Release 6 Page 119

ration Admin service, however, must have updated the persistent storage before the update method
returns.

The update method must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

104.7.5 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 107. A multi-location for a Configuration enables this Configuration to be deliv-
ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host . A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 119. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
 if (d.get("service.pid").equals("com.acme.host"))
 this.url = new URL(d.get("host"));
 if (d.get("service.pid").equals("com.acme.system"))

}

104.7.6 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 107,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has Configurat ionPermission [location name, TARGET] . It is
therefore possible to create region by choosing a region name for the location. A management agent

Configuration Admin Service Configuration Admin Service Specification Version 1.5

Page 120 OSGi Residential Release 6

then requires Configurat ionPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires Configurat ionPermission [?region-name, TARGET] .

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have Configurat ionPermission[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to nul l . All managers must be restrict-
ed to a permission like Configurat ionPermission[?com.acme.region.*,CONFIGURE] . The resource
name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermission[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

Configurat ionPermission["?com.acme.alpha",TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

Another, similar, example with two regions:

• system
• appl icat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl icat ion region.

104.7.7 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the tar-
get service's updated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
t ion object by a call to ManagedServiceFactory.deleted(Str ing) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously
with respect to Configurat ion.delete() .

Configuration Admin Service Specification Version 1.5 Configuration Events

OSGi Residential Release 6 Page 121

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The update method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

104.7.8 Updating a Bundle's Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).
Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-
uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service
registry.

There are two types of Configuration Listener services:

• Configurat ionListener - The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

• SynchronousConfigurat ionListener - A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive Configurat ionEvent objects if important changes
take place. The Configuration Admin service must call the configurat ionEvent(Configurat ionEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
OSGi Core Release 6.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is nul l , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configurat ion object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED - The Configurat ion object is deleted.
• CM_UPDATED - The Configurat ion object is updated.
• CM_LOCATION_CHANGED - The location of the Configurat ion object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously by the Configuration Admin implementa-
tion, if present. The topic of a configuration event must be:

org/osgi/service/cm/ConfigurationEvent/<eventtype>

Configuration Plugin Configuration Admin Service Specification Version 1.5

Page 122 OSGi Residential Release 6

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid - (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid - (Str ing) The PID of the associated Configurat ion object.
• service - (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id - (Long) The Configuration Admin service's ID.
• service.objectClass - (Str ing[]) The Configuration Admin service's object class (which must in-

clude org.osgi .service.cm.Configurat ionAdmin)
• service.pid - (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference,Dict ionary) . This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object or a ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 109.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

Configuration Admin Service Specification Version 1.5 Configuration Plugin

OSGi Residential Release 6 Page 123

Figure 104.8 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

modifyConfiguration()update()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a Configurat ionPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The Configurat ionPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Meta Typing Configuration Admin Service Specification Version 1.5

Page 124 OSGi Residential Release 6

The Configurat ionPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configurat ion object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
< 0 The Configuration Plugin service should not modify properties and must

be called before any modifications are made.
>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The

calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-
ter all modifications are made.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

Configuration Admin Service Specification Version 1.5 Security

OSGi Residential Release 6 Page 125

104.11 Security

104.11.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE - Can manage matching configurations
• TARGET - Can be updated with a matching configuration

To be able to set the location to nul l requires a Configurat ionPermission[*, CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

104.11.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin,REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener,REGISTER]

The Configuration Admin service must have ServicePermission[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | Configurat ionPlugin, GET] . No other bundle should be allowed to

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 126 OSGi Residential Release 6

have GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermission[Configurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Configurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
Configurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need ServicePermission[Configurat ionAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE]is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.11.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1. Stop the bundle.
2. Update the appropriate Configurat ion object via the Configuration Admin service.
3. Update the permissions in the Framework.
4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.12 org.osgi.service.cm

Configuration Admin Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 127

Import-Package: org.osgi .service.cm; version="[1.5,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version="[1.5,1 .6)"

104.12.1 Summary

• Configurat ion - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

• Configurat ionAdmin - Service for administering configuration data.
• Configurat ionEvent - A Configuration Event.
• Configurat ionException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener - Listener for Configuration Events.
• Configurat ionPermission - Indicates a bundle's authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin - A service interface for processing configuration dictionary before the up-

date.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
• SynchronousConfigurat ionListener - Synchronous Listener for Configuration Events.

104.12.2 Permissions

104.12.2.1 Configuration

• setBundleLocation(Str ing)
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l or if location is nul l

• getBundleLocation()
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l

104.12.2.2 ConfigurationAdmin

• createFactoryConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if location is nul l

• getConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getConfigurat ion(Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• l istConfigurat ions(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] - Only configurations c are returned for

which the caller has this permission

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 128 OSGi Residential Release 6

104.12.2.3 ManagedService

• updated(Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.12.2.4 ManagedServiceFactory

• updated(Str ing,Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.12.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('* ') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion" is used.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.12.3.1 public void delete() throws IOException

□ Delete this Configurat ion object. Removes this configuration object from the persistent store. Notify
asynchronously the corresponding Managed Service or Managed Service Factory. A ManagedService
object is notified by a call to its updated method with a nul l properties argument. A ManagedSer-
viceFactory object is notified by a call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.

Throws IOException– If delete fails.

I l legalStateException– If this configuration has been deleted.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 129

104.12.3.2 public boolean equals(Object other)

other Configurat ion object to compare against

□ Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.

104.12.3.3 public String getBundleLocation()

□ Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nul l if it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l

104.12.3.4 public long getChangeCount()

□ Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

Returns A monotonically increasing value reflecting changes in this Configuration.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.5

104.12.3.5 public String getFactoryPid()

□ For a factory configuration return the PID of the corresponding Managed Service Factory, else return
nul l .

Returns factory PID or nul l

Throws I l legalStateException– If this configuration has been deleted.

104.12.3.6 public String getPid()

□ Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws I l legalStateException– if this configuration has been deleted

104.12.3.7 public Dictionary<String,Object> getProperties()

□ Return the properties of this Configurat ion object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

Throws I l legalStateException– If this configuration has been deleted.

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 130 OSGi Residential Release 6

104.12.3.8 public int hashCode()

□ Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

Returns hash code for this Configuration object

104.12.3.9 public void setBundleLocation(String location)

location a location, region, or nul l

□ Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configurat ion object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes
visible then they must be updated with this configuration.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l or if location is nul l

104.12.3.10 public void update(Dictionary<String,?> properties) throws IOException

properties the new set of properties for this configuration

□ Update the properties of this Configurat ion object. Stores the properties in persistent storage after
adding or overwriting the following properties:

• "service.pid" : is set to be the PID of this configuration.
• "service.factoryPid" : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.

Throws IOException– if update cannot be made persistent

I l legalArgumentException– if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

104.12.3.11 public void update() throws IOException

□ Update the Configurat ion object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 131

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its Configurat ionPlugin object.

Throws IOException– if update cannot access the properties in persistent storage

I l legalStateException– If this configuration has been deleted.

See Also ConfigurationPlugin

104.12.4 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dictionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services" whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configurat ion objects, it calls the
ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires Configurat ionPermission[location,CONFIGURE] , where location is the configura-
tion location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is
its location field is set back to nul l .

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location,TARGET], where location matches given the configu-

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 132 OSGi Residential Release 6

ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.12.4.1 public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type Str ing .

Since 1.1

104.12.4.2 public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type Str ing .

Since 1.1

104.12.4.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException– if access to persistent storage fails.

104.12.4.4 public Configuration createFactoryConfiguration(String factoryPid,String location) throws IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is nul l it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 133

Returns a new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if location is nul l

104.12.4.5 public Configuration getConfiguration(String pid,String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

□ Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

104.12.4.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

□ Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object
for this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l .
Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

104.12.4.7 public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

□ List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- nul l properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned Configura-
t ion objects.

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 134 OSGi Residential Release 6

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configurat ion objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren't any.

Throws IOException– if access to persistent storage fails

Inval idSyntaxException– if the filter string is invalid

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – Only configurations c are returned for which
the caller has this permission

104.12.5 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable

104.12.5.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

104.12.5.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This Configurat ionEvent type that indicates that the location of a Configurat ion object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

Since 1.4

104.12.5.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 135

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

104.12.5.4 public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference,int type,String
factoryPid,String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType().

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

□ Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.

104.12.5.5 public String getFactoryPid()

□ Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

104.12.5.6 public String getPid()

□ Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.

104.12.5.7 public ServiceReference<ConfigurationAdmin> getReference()

□ Return the ServiceReference object of the Configuration Admin service that created this event.

Returns The ServiceReference object for the Configuration Admin service that created this event.

104.12.5.8 public int getType()

□ Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.

104.12.6 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.

104.12.6.1 public ConfigurationException(String property,String reason)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

□ Create a Configurat ionException object.

104.12.6.2 public ConfigurationException(String property,String reason,Throwable cause)

property name of the property that caused the problem, nul l if no specific property was the cause

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 136 OSGi Residential Release 6

reason reason for failure

cause The cause of this exception.

□ Create a Configurat ionException object.

Since 1.2

104.12.6.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

104.12.6.4 public String getProperty()

□ Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem

104.12.6.5 public String getReason()

□ Return the reason for this exception.

Returns reason of the failure

104.12.6.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

104.12.7 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to all Configurat ionListeners.

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configurat ion object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[Configurat ionListener,REGISTER] to register a Configurat ionListener service.

Since 1.2

Concurrency Thread-safe

104.12.7.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

□ Receives notification of a Configuration that has changed.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 137

104.12.8 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe

104.12.8.1 public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

104.12.8.2 public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

Since 1.4

104.12.8.3 public ConfigurationPermission(String name,String actions)

name Name of the permission. Wildcards ('* ') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

actions Comma separated list of CONFIGURE, TARGET (case insensitive).

□ Create a new ConfigurationPermission.

104.12.8.4 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Determines the equality of two Configurat ionPermission objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.

104.12.8.5 public String getActions()

□ Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present Configurat ionPermission actions in the following order: "configure", "target"

Returns Canonical string representation of the Configurat ionPermission actions.

104.12.8.6 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

104.12.8.7 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Configurat ionPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

104.12.8.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 138 OSGi Residential Release 6

Returns A new PermissionCol lect ion object.

104.12.9 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will
detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integer service.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < 0 or service.cmRanking > 1000 should not make
modifications to the properties.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Concurrency Thread-safe

104.12.9.1 public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer , is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2

104.12.9.2 public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

104.12.9.3 public void modifyConfiguration(ServiceReference<?> reference,Dictionary<String,Object> properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configurat ion.getBundleLocation method.

□ View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 139

order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 .

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

104.12.10 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configurat ion object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
t ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is
called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

 class SerialPort implements ManagedService {

 ServiceRegistration registration;
 Hashtable configuration;
 CommPortIdentifier id;

 synchronized void open(CommPortIdentifier id,
 BundleContext context) {
 this.id = id;
 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 getDefaults()
);
 }

 Hashtable getDefaults() {
 Hashtable defaults = new Hashtable();
 defaults.put("port", id.getName());
 defaults.put("product", "unknown");
 defaults.put("baud", "9600");
 defaults.put(Constants.SERVICE_PID,

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 140 OSGi Residential Release 6

 "com.acme.serialport." + id.getName());
 return defaults;
 }

 public synchronized void updated(
 Dictionary configuration) {
 if (configuration == null)
 registration.setProperties(getDefaults());
 else {
 setSpeed(configuration.get("baud"));
 registration.setProperties(configuration);
 }
 }
 ...
 }

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

Concurrency Thread-safe

104.12.10.1 public void updated(Dictionary<String,?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

□ Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws Configurat ionException– when the update fails

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.12.11 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Residential Release 6 Page 141

menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configurat ion ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

 class SerialPortFactory
 implements ManagedServiceFactory {
 ServiceRegistration registration;
 Hashtable ports;
 void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,
 "com.acme.serialportfactory");
 registration = context.registerService(
 ManagedServiceFactory.class.getName(),
 this,
 properties
);
 }
 public void updated(String pid,
 Dictionary properties) {
 String portName = (String) properties.get("port");
 SerialPortService port =
 (SerialPort) ports.get(pid);
 if (port == null) {
 port = new SerialPortService();
 ports.put(pid, port);
 port.open();
 }
 if (port.getPortName().equals(portName))
 return;
 port.setPortName(portName);
 }
 public void deleted(String pid) {
 SerialPortService port =
 (SerialPort) ports.get(pid);
 port.close();
 ports.remove(pid);
 }
 ...
 }

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 142 OSGi Residential Release 6

Concurrency Thread-safe

104.12.11.1 public void deleted(String pid)

pid the PID of the service to be removed

□ Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.

104.12.11.2 public String getName()

□ Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.12.11.3 public void updated(String pid,Dictionary<String,?> properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

□ Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
urat ion object is new for the Managed Service Factory, then create a new factory instance, using the
configuration propert ies provided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws Configurat ionException– when the configuration properties are invalid.

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.12.12 public interface SynchronousConfigurationListener
extends ConfigurationListener
Synchronous Listener for Configuration Events. When a Configurat ionEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurat ionListeners.

Configuration Admin Service Specification Version 1.5 Changes

OSGi Residential Release 6 Page 143

SynchronousConfigurat ionListener objects are registered with the Framework service registry and
are synchronously notified with a Configurat ionEvent object when an event is fired.

SynchronousConfigurat ionListener objects can inspect the received Configurat ionEvent object to
determine its type, the PID of the Configurat ion object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurat ionListener,REGISTER] to register a Synchronous-
Configurat ionListener service.

Since 1.5

Concurrency Thread-safe

104.13 Changes
• Clarified that collection property values may have an ordering that must be preserved.
• Changed vector references to list.
• Clarified that a if Managed Service is registered with more than one PID and more than one PID

has no configuration information available, then updated(Dict ionary) can be called multiple
time with a nul l parameter.

Changes Configuration Admin Service Specification Version 1.5

Page 144 OSGi Residential Release 6

Metatype Service Specification Version 1.3 Introduction

OSGi Residential Release 6 Page 145

105 Metatype Service Specification

Version 1.3

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that
they can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the lan-
guage constructs to exchange data or using a technique based on attributes/properties that are based
on key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern
programming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data
needs to be communicated between different entities which "speak" different languages. Attribut-
es are uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different
types of data.

As an example, the OSGi framework Specifications define several attribute types which are used in
a Framework implementation, but which are also used and referenced by other OSGi specifications
such as the Configuration Admin Service Specification on page 101. A Configuration Admin service im-
plementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associat-
ed with bundles. This Meta Type information can be defined by an XML resource in a bundle (OSGI-
INF/metatype directories must be scanned for any XML resources), it can come from the Meta Type
Provider service, or it can be obtained from Managed Service or Managed Service Factory services.

105.1.1 Essentials

• Conceptual model - The specification must have a conceptual model for how classes and attributes
are organized.

• Standards - The specification should be aligned with appropriate standards, and explained in situ-
ations where the specification is not aligned with, or cannot be mapped to, standards.

• Remote Management - Remote management should be taken into account.
• Size - Minimal overhead in size for a bundle using this specification is required.
• Localization - It must be possible to use this specification with different languages at the same

time. This ability allows servlets to serve information in the language selected in the browser.
• Type information - The definition of an attribute should contain the name (if it is required), the

cardinality, a label, a description, labels for enumerated values, and the Java class that should be
used for the values.

• Validation - It should be possible to validate the values of the attributes.

Attributes Model Metatype Service Specification Version 1.3

Page 146 OSGi Residential Release 6

105.1.2 Entities

• Meta Type Service - A service that provides a unified access point for meta type information.
• Attribute - A key/value pair.
• PID - A unique persistent ID, defined in configuration management.
• Attribute Definition - Defines a description, name, help text, and type information of an attribute.
• Object Class Definition - Defines the type of a datum. It contains a description and name of the type

plus a set of Attr ibuteDefinit ion objects.
• Meta Type Provider - Provides access to the object classes that are available for this object. Access

uses the PID and a locale to find the best ObjectClassDefinit ion object.
• Meta Type Information - Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

Any bundleMeta Type Client

Meta Type
Service Impl

Metatype
xml resources

Any bundle

Meta Type
Service

Meta Type
Provider

Any bundle

Managed
Service
(Factory)

metatype.pid=...
metatype.factory.pid=...

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProvider interface on the Managed Service or Managed Service Factory, by carrying one
or more XML resources that define a number of Meta Types in the OSGI-INF/metatype directories,
or registering a Meta Type Provider as a service. Additionally, a Meta Type service could have other
sources that are not defined in this specification.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bun-
dles. The Meta Type Service collects this information from the bundles and provides uniform ac-
cess to it. A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypeInformation object provides a list of ObjectClassDefinit ion objects for a bundle. These ob-
jects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This speci-
fication does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute

Metatype Service Specification Version 1.3 Object Class Definition

OSGi Residential Release 6 Page 147

model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

• Attr ibuteDefinit ion
• ObjectClassDefinit ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined at-
tributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of
a number of attributes. So, if an object class inherits the same attribute from different parents, only
one copy of the attribute must become part of the object class definition. This name-space implies
that a given attribute, for example cn , should always be the common name and the type must al-
ways be a Str ing . An attribute cn cannot be an Integer in another object class definition. In this re-
spect, the OSGi approach towards attribute definitions is comparable with the LDAP attribute mod-
el.

105.3 Object Class Definition
The ObjectClassDefinit ion interface is used to group the attributes which are defined in Attr ibut-
eDefinit ion objects.

An ObjectClassDefinit ion object contains the information about the overall set of attributes and
has the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as LDAP/X.500 object classes.

In these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If
such an OID exists, (which can be requested at several standard organizations, and many compa-
nies already have a node in the tree) it can be returned here. Otherwise, a unique id should be re-
turned. This id can be a Java class name (reverse domain name) or can be generated with a GUID
algorithm. All LDAP-defined object classes already have an associated OID. It is strongly advised
to define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or optional. Note that in X.500 the

mandatory or required status of an attribute is part of the object class definition and not of the at-
tribute definition.

• An icon, in different sizes.

105.4 Attribute Definition
The Attr ibuteDefinit ion interface provides the means to describe the data type of attributes.

The Attr ibuteDefinit ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

• Attr ibuteDefinit ion objects should use an ID that is similar to the OID as described in the ID field
for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.

Meta Type Service Metatype Service Specification Version 1.3

Page 148 OSGi Residential Release 6

• A localized description that defines the semantics of the attribute and possible constraints,
which should be usable for tooltips.

• An indication if this attribute should be stored as a unique value, a List , or an array of values, as
well as the maximum cardinality of the type.

• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user

to choose from a set.
• A default value (String[]). The return depends on the following cases:

• not specified - Return nul l if this attribute is not specified.
• cardinality = 0 - Return an array with one element.
• otherwise - Return an array with less or equal than the absolute value of cardinality, possibly

empty if the value is an empty string.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

• Meta Type Resource - A bundle can provide one or more XML resources that are contained in its
JAR file. These resources contain an XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

• Managed Service [Factory] objects - As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for ManagedService and
ManagedServiceFactory service objects that implement MetaTypeProvider if no meta type re-
sources are found in the bundle.

• Meta Type Provider service - Bundles can register Meta Type Provider services to dynamically pro-
vide meta types for PIDs and factory PIDs.

Figure 105.2 Sources for Meta Types

<<service>>
Meta Type
Service

<<service>>
Meta Type
Provider

<<service>>
Managed Service
(Factory)

OSGI-INF/metatype
xml resource

... alternative
meta type
sources

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide MetaTypeProvider objects and/or services. If multi-
ple sources define the same Object Class Definition, the Meta Type service must select which source
to use. Meta Type Provider services must take precedence over Managed Service [Factory] objects im-
plementing MetaTypeProvider or Meta Type Resources.

The MetaTypeService interface has a single method:

Metatype Service Specification Version 1.3 Meta Type Service

OSGi Residential Release 6 Page 149

• getMetaTypeInformation(Bundle) - Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to ObjectClassDefinit ion
objects. The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypeInformation object with the following methods:

• getPids() - PIDs for which Meta Types are available.
• getFactoryPids() - PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Designate Element
on page 154.

The MetaTypeInformation interface extends the MetaTypeProvider interface. The MetaType-
Provider interface is used to access meta type information. It supports locale dependent information
so that the text used in Attr ibuteDefinit ion and ObjectClassDefinit ion objects can be adapted to dif-
ferent locales.

Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources. The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefinit ion(Str ing,Str ing) - Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

• getLocales() - List the locales that are available.

Locale objects are represented in Str ing objects because not all profiles support Locale. The Str ing
holds the standard Locale presentation of:

locale = language ('_' country ('_' variation))
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

For example, en , nl_BE , en_CA_posix are valid locales. The use of nul l for locale indicates that
java.ut i l .Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the
org.osgi .service.metatype.MetaTypeService service and has a method to get a MetaTypeInforma-
tion object for a bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts,Bundle b) {
 MetaTypeInformation mti =
 mts.getMetaTypeInformation(b);
 String [] pids = mti.getPids();
 String [] locales = mti.getLocales();

 for (int locale = 0; locale<locales.length; locale++) {
 System.out.println("Locale " + locales[locale]);
 for (int i=0; i< pids.length; i++) {
 ObjectClassDefinition ocd =
 mti.getObjectClassDefinition(pids[i], null);
 AttributeDefinition[] ads =
 ocd.getAttributeDefinitions(
 ObjectClassDefinition.ALL);
 for (int j=0; j< ads.length; j++) {

Meta Type Provider Service Metatype Service Specification Version 1.3

Page 150 OSGi Residential Release 6

 System.out.println("OCD="+ocd.getName()
 + "AD="+ads[j].getName());
 }
 }
 }
}

105.6 Meta Type Provider Service
A Meta Type Provider service allows third party contributions to the internal Object Class Defini-
tion repository. A Meta Type Provider can contribute multiple PIDs, both factory and singleton PIDs.
A Meta Type Provider service must register with both or one of the following service properties:

• METATYPE_PID - (Str ing+) Provides a list of PIDs that this Meta Type Provider can provide Object
Class Definitions for. The listed PIDs are intended to be used as normal singleton PIDs used by
Managed Services.

• METATYPE_FACTORY_PID - (Str ing+) Provides a list of factory PIDs that this Meta Type Provider
can provide Object Class Definitions for. The listed PIDs are intended to be used as factory PIDs
used by Managed Service Factories.

The Object Class Definitions must originate from the bundle that registered the Meta Type Provider
service. Third party extenders should therefore use the bundle of their extendee. A Meta Type Ser-
vice must report these Object Class Definitions on the Meta Type Information of the registering
bundle, merged with any other information from that bundle.

The Meta Type Service must track these Meta Type Provider services and make their Meta Types
available as if they were provided on the Managed Service (Factory) services. The Meta Types must
become unavailable when the Meta Type Provider service is unregistered.

105.7 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid bundle entry path. All resources
in that directory must be meta type documents. Fragments can contain additional meta type re-
sources in the same directory and they must be taken into account when the meta type resources
are searched. A meta type resource must be encoded in UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, see Localization, using the same property resource. However, it is possible to override
the property resource in the meta type definition resources with the local izat ion attribute of the
MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization
resources for the localization base name. From that list, the Meta Type Service derives the list
of locales which are available for the meta type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time because the bundle
could be refreshed. Clients should be prepared that this list changes after they received it.

Metatype Service Specification Version 1.3 Using the Meta Type Resources

OSGi Residential Release 6 Page 151

105.7.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.3.0

The namespace abbreviation should be metatype . That is, the following header should be:

<metatype:MetaData
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.3.0">

The file can be found in the osgi.jar file that can be downloaded from the www.osgi.org web site.

Figure 105.3 XML Schema Instance Structure (Type name = Element name)

MetaData

OCD

AD

Designate

Option

Icon

1

Object

Attribute

1

1 *

1 *

1

1

1

0..n

1

0..n

1

0..n

1

Value

1

0..n

0..n

0..n

0..n

The element structure of the XML file is:

MetaData ::= OCD* Designate*

OCD ::= AD* Icon*
AD ::= Option*

Designate ::= Object
Object ::= Attribute*

Attribute ::= Value*

The different elements are described in Table 105.1.

Using the Meta Type Resources Metatype Service Specification Version 1.3

Page 152 OSGi Residential Release 6

Table 105.1 XML Schema for Meta Type resources

Attribute Deflt Type Method Description
MetaData Top Element
 local izat ion str ing Points to the Properties file that can lo-

calize this XML. See Localization in OSGi
Core Release 6.

OCD Object Class Definition
 name <> str ing getName() A human readable name that can be lo-

calized.
 descr ipt ion getDescr ipt ion() A human readable description of the

Object Class Definition that can be lo-
calized.

 id <> getID() A unique id, cannot be localized.
Designate An association between one PID and an

Object Class Definition. This element
designates a PID to be of a certain type.

 pid <> str ing The PID that is associated with an OCD .
This can be a reference to a factory or
singleton configuration object. The PID
can be a Targeted PID, if factoryPid is
not set or empty. Either pid or facto-
ryPid must be specified. See Designate El-
ement on page 154.

 factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory. If it
is not set or empty, it designates a sin-
gleton configuration. The PID can be a
Targeted PID. Either pid or factoryPid
must be specified. See Designate Element
on page 154.

 bundle str ing The value is used to set the location of
any configuration created using this
Meta Type resource. This may contain a
bundle location or a multi-location. In a
Meta Type resource, using the wildcard
value ('* ' \u002A) indicates the bundle
location of the bundle containing the
resource must be used as the location.
See Location Binding on page 107

This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource
Processor.

 optional false boolean If true , then this Designate element is
optional, errors during processing must
be ignored.

 merge false boolean If the PID refers to an existing configu-
ration, then merge the properties with
the existing properties if this attribute
is true . Otherwise, replace the proper-
ties.

Metatype Service Specification Version 1.3 Using the Meta Type Resources

OSGi Residential Release 6 Page 153

Attribute Deflt Type Method Description
AD Attribute Definition
 name str ing getName() A localizable name for the Attribute De-

finition. descr ipt ion
 descr ipt ion str ing getDescr ipt ion() A localizable description for the At-

tribute Definition.
 id getID() The unique ID of the Attribute Defini-

tion.
 type str ing getType() The type of an attribute is an enumer-

ation of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT
Password ↔ PASSWORD

 cardinal ity 0 getCardinal ity() The number of elements an instance
can take. Positive numbers describe
an array ([]) and negative numbers de-
scribe a List object.

 min str ing val idate(Str ing) A validation value. This value is not
directly available from the Attr ibut-
eDefinit ion interface. However, the
val idate(Str ing) method must verify
this. The semantics of this field depend
on the type of this Attribute Definition.

 max str ing val idate(Str ing) A validation value. Similar to the min
field. When min or max are numbers,
attribute values with a numeric da-
ta type are valid if min <= value <=
max . Attribute values with a string (or
equivalent) data type are valid if min <=
value. length() <= max .

Using the Meta Type Resources Metatype Service Specification Version 1.3

Page 154 OSGi Residential Release 6

Attribute Deflt Type Method Description
 default str ing getDefaultValue() The default value. A default is an ar-

ray of Str ing objects. The XML attribute
must contain a comma delimited list.
The default value is trimmed and es-
caped in the same way as described in
the val idate(Str ing) method. The empty
string is significant and must be seen as
an empty List or array if specified as the
default for an attribute with a cardinal-
ity that is not equal to zero. Default val-
ues must be valid or otherwise ignored.

 required true boolean Required attribute. The required at-
tribute indicates whether or not the at-
tribute key must appear within the con-
figuration dictionary to be valid.

Option One option label/value for the options
in an AD . Options are exclusive. The
val idate(Str ing) method must verify
that an attribute value matches one of
the option values when present.

 label <> str ing getOptionLabels() The label
 value <> str ing getOptionValues() The value
Icon An icon definition.
 resource <> str ing getIcon(int) The resource is a URL. The base URL is

assumed to be the root of the bundle
containing the XML file. That is, this
URL can reference another resource in
the bundle using a relative URL.

 size <> str ing getIcon(int) The number of pixels of the icon, maps
to the size parameter of the getIcon(int)
method.

Object A definition of an instance.
 ocdref <> str ing A reference to the id attribute of an

OCD element. That is, this attribute de-
fines the OCD type of this object.

Attr ibute A value for an attribute of an object.
 adref <> str ing A reference to the id of the AD in the

OCD as referenced by the parent Object .
 content str ing The content of the attributes. If this is

an array, the content must be separated
by commas (',' \u002C). Commas must
be escaped as described at the default at-
tribute of the AD element.

Value Holds a single value. This element can
be repeated multiple times under an At-
tribute

105.7.2 Designate Element
For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

Metatype Service Specification Version 1.3 Using the Meta Type Resources

OSGi Residential Release 6 Page 155

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory con-
figuration.

 <Designate pid="com.acme.designate.1">
 <Object ocdref="com.acme.designate"/>
 </Designate>
 <Designate factoryPid="com.acme.designate.factory"
 bundle="*">
 <Object ocdref="com.acme.designate"/>
 </Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configurat ion object's PID.

105.7.3 Example Metadata File
This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<MetaData
 xmlns="http://www.osgi.org/xmlns/metatype/v1.3.0"
 localization="person">
 <OCD name="%person" id="2.5.6.6"
 description="%person record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%female" value="0"/>
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8"
 default="http://www.google.com,http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object ocdref="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root direc-
tory (e.g. person_du_NL.propert ies). The default localization base name for the properties is OSGI-
INF/l10n/bundle , but can be overridden by the manifest Bundle-Localization header and the local-
izat ion attribute of the Meta Data element. The property files have the base name of person . The
Dutch, French and English translations could look like:

person_du_NL.propert ies :

person=Persoon
person\ record=Persoons beschrijving

Meta Type Resource XML Schema Metatype Service Specification Version 1.3

Page 156 OSGi Residential Release 6

cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.propert ies :

person=Personne
person\ record=Description de la personne
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme

person_en_US.propert ies :

person=Person
person\ record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female

105.7.4 Object Element
The OCD element can be used to describe the possible contents of a Dictionary object. In this case,
the attribute name is the key. The Object element can be used to assign a value to a Dictionary ob-
ject.

For example:

<Designate pid="com.acme.b">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
</Designate>

105.8 Meta Type Resource XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.3.0"

Metatype Service Specification Version 1.3 Meta Type Resource XML Schema

OSGi Residential Release 6 Page 157

 targetNamespace="http://www.osgi.org/xmlns/metatype/v1.3.0"
 version="1.3.0">

 <element name="MetaData" type="metatype:Tmetadata" />

 <complexType name="Tmetadata">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="OCD" type="metatype:Tocd" />
 <element name="Designate" type="metatype:Tdesignate" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="localization" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tocd">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="AD" type="metatype:Tad" />
 <element name="Icon" type="metatype:Ticon" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tad">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Option" type="metatype:Toption" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="optional" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <attribute name="type" type="metatype:Tscalar" use="required" />
 <attribute name="cardinality" type="int" use="optional"
 default="0" />
 <attribute name="min" type="string" use="optional" />
 <attribute name="max" type="string" use="optional" />
 <attribute name="default" type="string" use="optional" />
 <attribute name="required" type="boolean" use="optional"
 default="true" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tobject">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Attribute" type="metatype:Tattribute" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="ocdref" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Value" type="string" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="adref" type="string" use="required" />
 <attribute name="content" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

Meta Type Resource XML Schema Metatype Service Specification Version 1.3

Page 158 OSGi Residential Release 6

 <complexType name="Tdesignate">
 <sequence>
 <element name="Object" type="metatype:Tobject" minOccurs="1"
 maxOccurs="1" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="pid" type="string" use="optional" />
 <attribute name="factoryPid" type="string" use="optional" />
 <attribute name="bundle" type="string" use="optional" />
 <attribute name="optional" type="boolean" default="false"
 use="optional" />
 <attribute name="merge" type="boolean" default="false"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="Tscalar">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 <enumeration value="Password" />
 </restriction>
 </simpleType>

 <complexType name="Toption">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="label" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Ticon">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="resource" type="string" use="required" />
 <attribute name="size" type="positiveInteger" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

Metatype Service Specification Version 1.3 Meta Type Annotations

OSGi Residential Release 6 Page 159

105.9 Meta Type Annotations
A developer can use Meta Type Annotations on a Component Property Type, see Component Proper-
ty Types on page 282, or an interface to define an Object Class Definition in a type safe manner.
The Meta Type Annotations are CLASS retention annotations intended to be used during build time
to generate Meta Type Resources from the Java class files providing a convenient way to create the
Meta Type Resource XML documents.

Tools processing these annotations must always generate valid Meta Type Resource XML docu-
ments. If the Meta Type Annotations are used in a way that is not supported or in error, then the tool
must report the error to enable the developer to take corrective action.

105.9.1 ObjectClassDefinition Annotation
The ObjectClassDefinit ion annotation can be applied to a Component Property Type or an inter-
face. From that type, tooling can generate an OCD element. When applied to an interface, all the
methods inherited from supertypes are include as Attribute Definitions. The tool processing the an-
notations must be able to examine all the types in the hierarchy of the annotated type to generate
the Meta Type Resource. It is an error if the tool cannot examine a type in the hierarchy.

It is an error to apply the ObjectClassDefinit ion annotation to concrete and abstract class types. It is
also an error to apply it to an interface if any of the methods of the interface take arguments.

The ObjectClassDefinit ion annotation can be applied without defining any element values as de-
fault values for the ObjectClassDefinit ion annotation elements can be generated from the annotat-
ed type. For example:

@ObjectClassDefinition
@interface Config {
 boolean enabled();
 String[] names();
 String topic();
}

In the following larger example, the ObjectClassDefinit ion annotation defines the description and
name of the OCD which are to be localized using the specified resource as well as an icon resource.
Also, Attr ibuteDefinit ion annotations are applied to the methods to supply some non-default values
for the generated AD elements.

@ObjectClassDefinition(localization = "OSGI-INF/l10n/member",
 description = "%member.description",
 name = "%member.name"
 icon = @Icon(resource = "icon/member-32.png", size = 32))
@interface Member {
 @AttributeDefinition(type = AttributeType.PASSWORD,
 description = "%member.password.description",
 name = "%member.password.name")
 public String _password();

 @AttributeDefinition(options = {
 @Option(label = "%strategic", value = "strategic"),
 @Option(label = "%principal", value = "principal"),
 @Option(label = "%contributing", value = "contributing")
 },
 defaultValue = "contributing",
 description = "%member.membertype.description",

Meta Type Annotations Metatype Service Specification Version 1.3

Page 160 OSGi Residential Release 6

 name = "%member.membertype.name")
 public String type();
}

105.9.2 AttributeDefinition Annotation
The Attr ibuteDefinit ion annotation is an optional annotation which can applied to the methods in
a type annotated by ObjectClassDefinit ion . Each method of the type annotated by ObjectClassDe-
finit ion is mapped to an AD child element of the OCD element in the generated Meta Type Resource
XML document. The Attr ibuteDefinit ion annotation only needs to be applied to a method if values
other than the defaults are desired.

The id of the Attribute Definition is generated from the method name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by another dollar sign in which
case the two consecutive dollar signs ("$$") are converted to a single dollar sign.

• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.

The generated id becomes the value of the id attribute of the AD element in the generated Meta Type
Resource XML document.

105.9.3 Designate Annotation
The Designate annotation can be applied to a Declarative Services component class to make the
connection between the pid of the component and an Object Class Definition. This annotation must
be used on a type that is also annotated with the Declarative Services Component annotation. The
component must only have a single PID which is used for the generated Designate element.

In the following example, the Designate annotation is applied to a Declarative Services component
and references the Object Class Definition type.

@ObjectClassDefinition(id="my.config.ocd")
@interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

@Component(configurationPid="my.component.pid")
@Designate(ocd = Config.class)
public class MyComponent {
 static final String DEFAULT_TOPIC_PREFIX = "topic.prefix";
 protected void activate(Config configuration) {
 String t = configuration.topic();
 }
}

Tools processing these annotations will generate a Designate element in the generated Meta Type
Resource XML document using the PID of the component and the id of the Object Class Definition.
For example:

<Designate pid="my.component.pid">
 <Object ocdref="my.config.ocd"/>
</Designate>

Metatype Service Specification Version 1.3 Limitations

OSGi Residential Release 6 Page 161

105.10 Limitations
The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/lists, or nested arrays/lists.

105.11 Related Standards
One of the primary goals of this specification is to make metatype information available at run-
time with minimal overhead. Many related standards are applicable to metatypes; except for Java
beans, however, all other metatype standards are based on document formats (e.g. XML). In the OSGi
framework, document format standards are deemed unsuitable due to the overhead required in the
execution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were devel-
oped for management systems on platforms where resources are not necessarily a concern. In this
case, a metatype standard is normally used to describe the data structures needed to control some
other computer via a network. This other computer, however, does not require the metatype infor-
mation as it is implementing this information.

In some traditional cases, a management system uses the metatype information to control objects
in an OSGi framework. Therefore, the concepts and the syntax of the metatype information must be
mappable to these popular standards. Clearly, then, these standards must be able to describe objects
in an OSGi framework. This ability is usually not a problem, because the metatype languages used
by current management systems are very powerful.

105.12 Capabilities
Implementations of the Metatype Service specification must provide the following capabilities.

• A capability in the osgi . implementation namespace declaring a specification implementation
with the name METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint
for the org.osgi .service.metatype package. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.metatype";
 version:Version="1.3";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.implementation Namespace on page
501.

• A capability in the osgi .extender namespace declaring an extender with the name
METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.metatype package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.metatype";
 version:Version="1.3";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.extender Namespace on page 497.

Security Considerations Metatype Service Specification Version 1.3

Page 162 OSGi Residential Release 6

• A capability in the osgi .service namespace representing the MetaTypeService service. This capa-
bility must also declare a uses constraint for the org.osgi .service.metatype package. For exam-
ple:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.metatype.MetaTypeService";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.service Namespace on page 501.

105.13 Security Considerations
Special security issues are not applicable for this specification.

105.14 org.osgi.service.metatype

Metatype Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.3,1 .4)"

105.14.1 Summary

• Attr ibuteDefinit ion - An interface to describe an attribute.
• MetaTypeInformation - A MetaType Information object is created by the MetaTypeService to re-

turn meta type information for a specific bundle.
• MetaTypeProvider - Provides access to metatypes.
• MetaTypeService - The MetaType Service can be used to obtain meta type information for a

bundle.
• ObjectClassDefinit ion - Description for the data type information of an objectclass.

105.14.2 public interface AttributeDefinition
An interface to describe an attribute.

An Attr ibuteDefinit ion object defines a description of the data type of a property/attribute.

Concurrency Thread-safe

105.14.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL type. Attributes of this type should be stored as BigDecimal , List<BigDecimal> or
BigDecimal[] objects depending on getCardinality().

Deprecated As of 1.1.

Metatype Service Specification Version 1.3 org.osgi.service.metatype

OSGi Residential Release 6 Page 163

105.14.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER type. Attributes of this type should be stored as BigInteger , List<BigInteger> or
BigInteger[] objects, depending on the getCardinality() value.

Deprecated As of 1.1.

105.14.2.3 public static final int BOOLEAN = 11

The BOOLEAN type. Attributes of this type should be stored as Boolean , List<Boolean> or boolean[]
objects depending on getCardinality().

105.14.2.4 public static final int BYTE = 6

The BYTE type. Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depend-
ing on the getCardinality() value.

105.14.2.5 public static final int CHARACTER = 5

The CHARACTER type. Attributes of this type should be stored as Character , List<Character> or
char[] objects, depending on the getCardinality() value.

105.14.2.6 public static final int DOUBLE = 7

The DOUBLE type. Attributes of this type should be stored as Double , List<Double> or double[] ob-
jects, depending on the getCardinality() value.

105.14.2.7 public static final int FLOAT = 8

The FLOAT type. Attributes of this type should be stored as Float , List<Float> or f loat[] objects, de-
pending on the getCardinality() value.

105.14.2.8 public static final int INTEGER = 3

The INTEGER type. Attributes of this type should be stored as Integer , List< Integer> or int[] objects,
depending on the getCardinality() value.

105.14.2.9 public static final int LONG = 2

The LONG type. Attributes of this type should be stored as Long , List<Long> or long[] objects, de-
pending on the getCardinality() value.

105.14.2.10 public static final int PASSWORD = 12

The PASSWORD type. Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects
depending on getCardinality(). A PASSWORD must be treated as a string but the type can be used to
disguise the information when displayed to a user to prevent others from seeing it.

Since 1.2

105.14.2.11 public static final int SHORT = 4

The SHORT type. Attributes of this type should be stored as Short , List<Short> or short[] objects, de-
pending on the getCardinality() value.

105.14.2.12 public static final int STRING = 1

The STRING type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
getCardinality() value.

105.14.2.13 public int getCardinality()

□ Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in List objects. The return value is defined as follows:

org.osgi.service.metatype Metatype Service Specification Version 1.3

Page 164 OSGi Residential Release 6

 x = Integer.MIN_VALUE no limit, but use List
 x < 0 -x = max occurrences, store in List
 x > 0 x = max occurrences, store in array []
 x = Integer.MAX_VALUE no limit, but use array []
 x = 0 1 occurrence required

Returns The cardinality of this attribute.

105.14.2.14 public String[] getDefaultValue()

□ Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType() . The return type is a list of Str ing objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. For ex-
ample, if the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain
0 or 1 elements. If it is -5, it must contain from 0 to max 5 elements. Note that the special case of a 0
cardinality, meaning a single value, does not allow arrays or lists of 0 elements.

Returns Return a default value or nul l if no default exists.

105.14.2.15 public String getDescription()

□ Return a description of this attribute. The description may be localized and must describe the se-
mantics of this type and any constraints.

Returns The localized description of the definition.

105.14.2.16 public String getID()

□ Unique identity for this attribute. Attributes share a global namespace in the registry. For example,
an attribute cn or commonName must always be a Str ing and the semantics are always a name of
some object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be re-
quested at several standard organizations and many companies already have a node in the tree) it
can be returned here. Otherwise, a unique id should be returned which can be a Java class name (re-
verse domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes al-
ready have an OID. It is strongly advised to define the attributes from existing LDAP schemes which
will give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id or oid

105.14.2.17 public String getName()

□ Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.

105.14.2.18 public String[] getOptionLabels()

□ Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with getOption-
Values . The labels returned here are ordered in the same way as the values in that method.

If the function returns nul l , there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. That is, for each index i in
getOptionLabels , i in getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for
dutch) new Str ing[] { "Man", "Vrouw", "Onbekend" } .

Returns A list values

Metatype Service Specification Version 1.3 org.osgi.service.metatype

OSGi Residential Release 6 Page 165

105.14.2.19 public String[] getOptionValues()

□ Return a list of option values that this attribute can take.

If the function returns nul l , there are no option values available.

Each value must be acceptable to validate() (return "") and must be a Str ing object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionLabels() . That is, for each index i in getOption-
Values , i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new
Str ing[] { "male", " female", "unknown" } .

Returns A list values

105.14.2.20 public int getType()

□ Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, SHORT, CHARACTER, BYTE,DOUBLE,FLOAT, BOOLEAN, PASSWORD.

Returns The type for this attribute.

105.14.2.21 public String validate(String value)

value The value before turning it into the basic data type. If the cardinality indicates a multi-valued at-
tribute then the given string must be escaped.

□ Validate an attribute in Str ing form. An attribute might be further constrained in value. This
method will attempt to validate the attribute according to these constraints. It can return three dif-
ferent values:

 null No validation present
 "" No problems detected
 "..." A localized description of why the value is wrong

If the cardinality of this attribute is multi-valued then this string must be interpreted as a comma
delimited string. The complete value must be trimmed from white space as well as spaces around
commas. Commas (',' \u002C) and spaces (' ' \u0020) and backslashes (' \ ' \u005C) can be escaped
with another backslash. Escaped spaces must not be trimmed. For example:

 value=" a\,b,b\,c,\ c\\,d " => ["a,b", "b,c", " c\", "d"]

Returns nul l , "", or another string

105.14.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.3.1 public Bundle getBundle()

□ Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.

org.osgi.service.metatype Metatype Service Specification Version 1.3

Page 166 OSGi Residential Release 6

105.14.3.2 public String[] getFactoryPids()

□ Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition informa-
tion is available.

Returns Array of Factory PIDs.

105.14.3.3 public String[] getPids()

□ Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Returns Array of PIDs.

105.14.4 public interface MetaTypeProvider
Provides access to metatypes. This interface can be implemented on a Managed Service or Managed
Service Factory as well as registered as a service. When registered as a service, it must be registered
with a METATYPE_FACTORY_PID or METATYPE_PID service property (or both). Any PID men-
tioned in either of these factories must be a valid argument to the getObjectClassDefinition(String,
String) method.

Concurrency Thread-safe

105.14.4.1 public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given factory
PIDs. The type of this service property is Str ing+ .

Since 1.2

105.14.4.2 public static final String METATYPE_PID = "metatype.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given PIDs. The
type of this service property is Str ing+ .

Since 1.2

105.14.4.3 public String[] getLocales()

□ Return a list of available locales. The results must be names that consists of language [_ country [_
variation]] as is customary in the Locale class.

Returns An array of locale strings or nul l if there is no locale specific localization can be found.

105.14.4.4 public ObjectClassDefinition getObjectClassDefinition(String id,String locale)

id The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFacto-
ryPids.

locale The locale of the definition or nul l for default locale.

□ Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language ["_" country ["_" var iat ion]] as is cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

Returns A ObjectClassDefinit ion object.

Throws I l legalArgumentException– If the id or locale arguments are not valid

105.14.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned MetaTypeIn-
formation object.

Metatype Service Specification Version 1.3 org.osgi.service.metatype

OSGi Residential Release 6 Page 167

If the specified bundle does not contain any meta type documents, then a MetaTypeInformation ob-
ject will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider . Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.5.1 public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"

Capability name for meta type document processors.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.metatype)(version>=1.3)(!(version>=2.0)))"

Since 1.3

105.14.5.2 public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.

105.14.5.3 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

□ Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.

105.14.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.

Concurrency Thread-safe

105.14.6.1 public static final int ALL = -1

Argument for getAttr ibuteDefinit ions(int) .

ALL indicates that all the definitions are returned. The value is -1.

105.14.6.2 public static final int OPTIONAL = 2

Argument for getAttr ibuteDefinit ions(int) .

OPTIONAL indicates that only the optional definitions are returned. The value is 2.

105.14.6.3 public static final int REQUIRED = 1

Argument for getAttr ibuteDefinit ions(int) .

REQUIRED indicates that only the required definitions are returned. The value is 1.

105.14.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL ,REQUIRED ,OPTIONAL

□ Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL ,REQUIRED or the OP-
TIONAL attributes.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 168 OSGi Residential Release 6

Returns An array of attribute definitions or nul l if no attributes are selected

105.14.6.5 public String getDescription()

□ Return a description of this object class. The description may be localized.

Returns The description of this object class.

105.14.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon. For example, a 16x16 pixel icon has a size of 16

□ Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or nul l

Throws IOException– If the InputStream cannot be returned.

105.14.6.7 public String getID()

□ Return the id of this object class.

ObjectDefint ion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify ob-
ject classes. If such an OID exists, (which can be requested at several standard organizations and
many companies already have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned which can be a java class name (reverse domain name) or generated with a GUID
algorithm. Note that all LDAP defined object classes already have an OID associated. It is strongly
advised to define the object classes from existing LDAP schemes which will give the OID for free.
Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id of this object class.

105.14.6.8 public String getName()

□ Return the name of this object class. The name may be localized.

Returns The name of this object class.

105.15 org.osgi.service.metatype.annotations

Metatype Annotations Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype.annotations; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype.annotations; vers ion="[1.3,1 .4)"

105.15.1 Summary

• Attr ibuteDefinit ion - Attr ibuteDefinit ion information for the annotated method.
• Attr ibuteType - Attribute types for the AttributeDefinition annotation.

Metatype Service Specification Version 1.3 org.osgi.service.metatype.annotations

OSGi Residential Release 6 Page 169

• Designate - Generate a Designate element in the Meta Type Resource for an ObjectClassDefini-
tion using the annotated Declarative Services component.

• Icon - Icon information for an ObjectClassDefinition.
• ObjectClassDefinit ion - Generate a Meta Type Resource using the annotated type.
• Option - Option information for an AttributeDefinition.

105.15.2 @AttributeDefinition
Attr ibuteDefinit ion information for the annotated method.

Each method of a type annotated by ObjectClassDefinition has an implied AttributeDefinition an-
notation. This annotation is only used to specify non-default AttributeDefinition information.

The id of this AttributeDefinition is generated from the name of the annotated method. The anno-
tated method name is processed from left to right changing each character as follows:

• A dollar sign ('$ ' \u0024) is removed unless it is followed by another dollar sign in which case the
two consecutive dollar signs ('$$') are changed to a single dollar sign.

• A low line ('_ ' \u005F) is changed to a full stop ('.' \u002E) unless is it followed by another low
line in which case the two consecutive low lines ('__ ') are changed to a single low line.

• All other characters are unchanged.

This id is the value of the id attribute of the generate AD element and is used as the name of the cor-
responding configuration property.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The AD element of a Meta Type Resource.

Retention CLASS

Target METHOD

105.15.2.1 String name default ""

□ The human readable name of this AttributeDefinition.

If not specified, the name of this AttributeDefinition is derived from the name of the annotated
method. For example, low line ('_ ' \u005F) and dollar sign ('$ ' \u0024) are replaced with space (' '
\u0020) and space is inserted between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the AD element of a Meta Type Resource.

105.15.2.2 String description default ""

□ The human readable description of this AttributeDefinition.

If not specified, the description of this AttributeDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the AD element of a Meta Type Resource.

105.15.2.3 AttributeType type default STRING

□ The type of this AttributeDefinition.

This must be one of the defined attributes types.

If not specified, the type is derived from the return type of the annotated method. Return types of
Class and Enum are mapped to STRING. If the return type is List , Set , Collect ion , I terable or some
type which can be determined at annotation processing time to

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 170 OSGi Residential Release 6

1. be a subtype of Collect ion and
2. have a public no argument constructor,

then the type is derived from the generic type. For example, a return type of List<Str ing> will be
mapped to STRING. A return type of a single dimensional array is supported and the type is the
component type of the array. Multi dimensional arrays are not supported. Annotation return types
are not supported. Any unrecognized type is mapped to STRING. A tool processing the annotation
should declare an error for unsupported return types.

See Also The type attr ibute of the AD element of a Meta Type Resource.

105.15.2.4 int cardinality default 0

□ The cardinality of this AttributeDefinition.

If not specified, the cardinality is derived from the return type of the annotated method. For an array
return type, the cardinality is a large positive value. If the return type is List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

the cardinality is a large negative value. Otherwise, the cardinality is 0.

See Also The cardinal ity attr ibute of the AD element of a Meta Type Resource.

105.15.2.5 String min default ""

□ The minimum value for this AttributeDefinition.

If not specified, there is no minimum value.

See Also The min attr ibute of the AD element of a Meta Type Resource.

105.15.2.6 String max default ""

□ The maximum value for this AttributeDefinition.

If not specified, there is no maximum value.

See Also The max attr ibute of the AD element of a Meta Type Resource.

105.15.2.7 String[] defaultValue default {}

□ The default value for this AttributeDefinition.

The specified values are concatenated into a comma delimited list to become the value of the de-
fault attribute of the generated AD element.

If not specified and the annotated method is an annotation element that has a default value, then
the value of this element is the default value of the annotated element. Otherwise, there is no de-
fault value.

See Also The default attr ibute of the AD element of a Meta Type Resource.

105.15.2.8 boolean required default true

□ The required value for this AttributeDefinition.

If not specified, the value is true .

See Also The required attr ibute of the AD element of a Meta Type Resource.

105.15.2.9 Option[] options default {}

□ The option information for this AttributeDefinition.

Metatype Service Specification Version 1.3 org.osgi.service.metatype.annotations

OSGi Residential Release 6 Page 171

For each specified Option, an Option element is generated for this AttributeDefinition.

If not specified, the option information is derived from the return type of the annotated method. If
the return type is an enum , a single dimensional array of an enum , or a List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

with a generic type of an enum , then the value of this element has an Option for each value of the
enum . The label and value of each Option are set to the name of the corresponding enum value. Oth-
erwise, no Option elements will be generated.

See Also The Option element of a Meta Type Resource.

105.15.3 enum AttributeType
Attribute types for the AttributeDefinition annotation.

See Also AttributeDefinition.type()

105.15.3.1 STRING

The Str ing type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
cardinality value.

105.15.3.2 LONG

The Long type.

Attributes of this type should be stored as Long , List<Long> or long[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.3 INTEGER

The Integer type.

Attributes of this type should be stored as Integer , List< Integer> or int[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.4 SHORT

The Short type.

Attributes of this type should be stored as Short , List<Short> or short[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.5 CHARACTER

The Character type.

Attributes of this type should be stored as Character , List<Character> or char[] objects, depending
on the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.6 BYTE

The Byte type.

Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.7 DOUBLE

The Double type.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 172 OSGi Residential Release 6

Attributes of this type should be stored as Double , List<Double> or double[] objects, depending on
the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.8 FLOAT

The Float type.

Attributes of this type should be stored as Float , List<Float> or f loat[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.9 BOOLEAN

The Boolean type.

Attributes of this type should be stored as Boolean , List<Boolean> or boolean[] objects depending on
Attr ibuteDefinit ion#cardinal ity() cardinal ity .

105.15.3.10 PASSWORD

The Password type.

Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects depending on cardi-
nality.

A Password must be treated as a Str ing but the type can be used to disguise the information when
displayed to a user to prevent it from being seen.

105.15.4 @Designate
Generate a Designate element in the Meta Type Resource for an ObjectClassDefinition using the an-
notated Declarative Services component.

This annotation must be used on a type that is also annotated with the Declarative Services Compo-
nent annotation. The component must only have a single PID which is used for the generated Des-
ignate element.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The Designate element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.4.1 Class<?> ocd

□ The type of the ObjectClassDefinition for this Designate.

The specified type must be annotated with ObjectClassDefinition.

See Also The ocdref attr ibute of the Designate element of a Meta Type Resource.

105.15.4.2 boolean factory default false

□ Specifies whether this Designate is for a factory PID.

If fa lse , then the PID value from the annotated component will be used in the pid attribute of the
generated Designate element. If true , then the PID value from the annotated component will be
used in the factoryPid attribute of the generated Designate element.

See Also The pid and factoryPid attr ibutes of the Designate element of a Meta Type Resource.

105.15.5 @Icon
Icon information for an ObjectClassDefinition.

Metatype Service Specification Version 1.3 org.osgi.service.metatype.annotations

OSGi Residential Release 6 Page 173

See Also ObjectClassDefinition.icon()

Retention CLASS

Target

105.15.5.1 String resource

□ The resource name for this Icon.

The resource is a URL. The resource URL can be relative to the root of the bundle containing the
Meta Type Resource.

If the resource begins with the percent sign ('%' \u0025), the resource can be localized.

See Also The resource attr ibute of the Icon element of a Meta Type Resource.

105.15.5.2 int size

□ The pixel size of this Icon.

For example, 32 represents a 32x32 icon.

See Also The s ize attr ibute of the Icon element of a Meta Type Resource.

105.15.6 @ObjectClassDefinition
Generate a Meta Type Resource using the annotated type.

This annotation can be used without defining any element values since defaults can be generated
from the annotated type. Each method of the annotated type has an implied AttributeDefinition an-
notation if not explicitly annotated.

This annotation may only be used on annotation types and interface types. Use on concrete or ab-
stract class types is unsupported. If applied to an interface then all methods inherited from super
types are included as attributes.

This annotation is not processed at runtime. It must be processed by tools and used to generate a
Meta Type Resource document for the bundle.

See Also The OCD element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.6.1 String id default ""

□ The id of this ObjectClassDefinition.

If not specified, the id of this ObjectClassDefinition is the fully qualified name of the annotated type
using the dollar sign ('$ ' \u0024) to separate nested class names from the name of their enclosing
class. The id is not to be confused with a PID which can be specified by the pid() or factoryPid() ele-
ment.

See Also The id attr ibute of the OCD element of a Meta Type Resource.

105.15.6.2 String name default ""

□ The human readable name of this ObjectClassDefinition.

If not specified, the name of this ObjectClassDefinition is derived from the id(). For example, low
line ('_ ' \u005F) and dollar sign ('$ ' \u0024) are replaced with space (' ' \u0020) and space is inserted
between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the OCD element of a Meta Type Resource.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 174 OSGi Residential Release 6

105.15.6.3 String description default ""

□ The human readable description of this ObjectClassDefinition.

If not specified, the description of this ObjectClassDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the OCD element of a Meta Type Resource.

105.15.6.4 String localization default ""

□ The localization resource of this ObjectClassDefinition.

This refers to a resource property entry in the bundle that can be augmented with locale informa-
tion. If not specified, the localization resource for this ObjectClassDefinition is the string "OSGI-INF/
l10n/" followed by the id().

See Also The local izat ion attr ibute of the MetaData element of a Meta Type Resource.

105.15.6.5 String[] pid default {}

□ The PIDs associated with this ObjectClassDefinition.

For each specified PID, a Designate element with a pid attribute is generated that references this Ob-
jectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

See Also The pid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.6 String[] factoryPid default {}

□ The factory PIDs associated with this ObjectClassDefinition.

For each specified factory PID, a Designate element with a factoryPid attribute is generated that ref-
erences this ObjectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

See Also The factoryPid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.7 Icon[] icon default {}

□ The icon resources associated with this ObjectClassDefinition.

For each specified Icon, an Icon element is generated for this ObjectClassDefinition. If not specified,
no Icon elements will be generated.

See Also The Icon element of a Meta Type Resource.

105.15.7 @Option
Option information for an AttributeDefinition.

See Also AttributeDefinition.options()

Retention CLASS

Target

105.15.7.1 String label default ""

□ The human readable label of this Option.

If not specified, the label of this Option is the empty string.

If the label begins with the percent sign ('%' \u0025), the label can be localized.

Metatype Service Specification Version 1.3 References

OSGi Residential Release 6 Page 175

See Also The label attr ibute of the Option element of a Meta Type Resource.

105.15.7.2 String value

□ The value of this Option.

See Also The value attr ibute of the Option element of a Meta Type Resource.

105.16 References

[1] LDAP.
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

[2] Understanding and Deploying LDAP Directory services
Timothy Howes, et al. ISBN 1-57870-070-1, MacMillan Technical publishing.

105.17 Changes
• Changed vector references to list.
• Updates schema to 1.3.0. This includes changing Char to Character to conform with other OSGi

schema and allowing some more flexibility in ordering of elements.
• Clarified that Meta Type Service will only search for ManagedService and ManagedServiceFacto-

ry service objects that implement MetaTypeProvider if no meta type resources are found in the
bundle.

• Clarify that if multiple sources define the same Object Class Definition, that Meta Type Provider
services must take precedence over Managed Service [Factory] objects implementing MetaType-
Provider or Meta Type Resources.

• The Meta Type Resource schema is updated to allow an OCD element to contain zero AD ele-
ments.

• New Meta Type Annotations. See Meta Type Annotations on page 159.
• Added capabilities that Metatype Service specification implementations must provide. See Capa-

bilities on page 161.

Changes Metatype Service Specification Version 1.3

Page 176 OSGi Residential Release 6

User Admin Service Specification Version 1.1 Introduction

OSGi Residential Release 6 Page 177

107 User Admin Service Specification

Version 1.1

107.1 Introduction
OSGi frameworks are often used in places where end users or devices initiate actions. These kinds
of actions inevitably create a need for authenticating the initiator. Authenticating can be done in
many different ways, including with passwords, one-time token cards, biometrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is authorized to per-
form the requested action. This authorization can only be decided by the operator of the OSGi envi-
ronment, and thus requires administration.

The User Admin service provides this type of functionality. Bundles can use the User Admin service
to authenticate an initiator and represent this authentication as an Authorizat ion object. Bundles
that execute actions on behalf of this user can use the Authorizat ion object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code, instead of using the Ja-
va code-based permission model. See [1] The Java Security Architecture for JDK 1.2. It performs a role
similar to [2] Java Authentication and Authorization Service.

107.1.1 Essentials

• Authentication - A large number of authentication schemes already exist, and more will be devel-
oped. The User Admin service must be flexible enough to adapt to the many different authentica-
tion schemes that can be run on a computer system.

• Authorization - All bundles should use the User Admin service to authenticate users and to find
out if those users are authorized. It is therefore paramount that a bundle can find out authoriza-
tion information with little effort.

• Security - Detailed security, based on the Framework security model, is needed to provide safe ac-
cess to the User Admin service. It should allow limited access to the credentials and other proper-
ties.

• Extensibility - Other bundles should be able to build on the User Admin service. It should be possi-
ble to examine the information from this service and get real-time notifications of changes.

• Properties - The User Admin service must maintain a persistent database of users. It must be possi-
ble to use this database to hold more information about this user.

• Administration - Administering authorizations for each possible action and initiator is time-con-
suming and error-prone. It is therefore necessary to have mechanisms to group end users and
make it simple to assign authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• User Admin - This interface manages a database of named roles which can be used for authoriza-
tion and authentication purposes.

• Role - This interface exposes the characteristics shared by all roles: a name, a type, and a set of
properties.

Introduction User Admin Service Specification Version 1.1

Page 178 OSGi Residential Release 6

• User - This interface (which extends Role) is used to represent any entity which may have creden-
tials associated with it. These credentials can be used to authenticate an initiator.

• Group - This interface (which extends User) is used to contain an aggregation of named Role ob-
jects (Group or User objects).

• Authorization - This interface encapsulates an authorization context on which bundles can base
authorization decisions.

• User Admin Event - This class is used to represent a role change event.
• User Admin Listener - This interface provides a listener for events of type UserAdminEvent that

can be registered as a service.
• User Admin Permission - This permission is needed to configure and access the roles managed by a

User Admin service.
• Role.USER_ANYONE - This is a special User object that represents any user, it implies all

other User objects. It is also used when a Group is used with only basic members. The
Role.USER_ANYONE is then the only required member.

Figure 107.1 User Admin Service, org.osgi.service.useradmin

<<interface>>
User Admin

<<interface>>
Role

<<interface>>
Group

User Admin
Event

<<interface>>
Authorization

<<interface>>
User Admin
Listener

<<interface>>
User

User Admin
Permission

User Admin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation perform action

consult for
authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

ba
sic

 m
em

be
r

re
qu

ire
d

m
em

be
r

107.1.3 Operation
An Operator uses the User Admin service to define OSGi framework users and configure them with
properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This specification defines
two types of roles:

User Admin Service Specification Version 1.1 Authentication

OSGi Residential Release 6 Page 179

• User - A User object can be configured with credentials, such as a password, and properties, such
as address, telephone number, and so on.

• Group - A Group object is an aggregation of basic and required roles. Basic and required roles are
used in the authorization phase.

An OSGi framework can have several entry points, each of which will be responsible for authen-
ticating incoming requests. An example of an entry point is the Http Service, which delegates au-
thentication of incoming requests to the handleSecurity method of the HttpContext object that was
specified when the target servlet or resource of the request was registered.

The OSGi framework entry points should use the information in the User Admin service to authen-
ticate incoming requests, such as a password stored in the private credentials or the use of a certifi-
cate.

A bundle can determine if a request for an action is authorized by looking for a Role object that has
the name of the requested action.

The bundle may execute the action if the Role object representing the initiator implies the Role ob-
ject representing the requested action.

For example, an initiator Role object X implies an action Group object A if:

• X implies at least one of A's basic members, and
• X implies all of A's required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorizat ion class handles this non-trivial logic. The User Admin service can capture the priv-
ileges of an authenticated User object into an Authorizat ion object. The Authorizat ion.hasRole
method checks if the authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can authenticate the initiator
and place an Authorizat ion object in the request header. The servlet calls the hasRole method on this
Authorizat ion object to verify that the initiator has the authority to perform a certain action. See Au-
thentication on page 66.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it says it is. Mechanisms to
authenticate always need some information related to the user or the OSGi framework to authenti-
cate an external user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has a unique name and a
set of properties that are readable by anyone, and are changeable when the changer has the UserAd-
minPermission . Additionally, User objects, a sub-interface of Role , also have a set of private protected
properties called credentials. Credentials are an extra set of properties that are used to authenticate
users and that are protected by UserAdminPermission .

Authentication User Admin Service Specification Version 1.1

Page 180 OSGi Residential Release 6

Properties are accessed with the Role.getPropert ies() method and credentials with the
User.getCredentials()method. Both methods return a Dictionary object containing key/value pairs.
The keys are Str ing objects and the values of the Dictionary object are limited to Str ing or byte[] ob-
jects.

This specification does not define any standard keys for the properties or credentials. The keys de-
pend on the implementation of the authentication mechanism and are not formally defined by OS-
Gi specifications.

The repository can be searched for objects that have a unique property (key/value pair) with the
method UserAdmin.getUser(Str ing,Str ing) . This makes it easy to find a specific user related to a
specific authentication mechanism. For example, a secure card mechanism that generates unique
tokens could have a serial number identifying the user. The owner of the card could be found with
the method

User owner = useradmin.getUser(
 "secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is returned.

There is a convenience method to verify that a user has a credential without actually getting the cre-
dential. This is the User.hasCredential(Str ing,Object) method.

Access to credentials is protected on a name basis by UserAdminPermission . Because properties can
be read by anyone with access to a User object, UserAdminPermission only protects change access to
properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based on passwords.

The vendor of the authentication bundle uses the property "com.acme.basic- id" to contain the
name of a user as it logs in. This property is used to locate the User object in the repository. Next, the
credential "com.acme.password" contains the password and is compared to the entered password. If
the password is correct, the User object is returned. In all other cases a SecurityException is thrown.

public User authenticate(
 UserAdmin ua, String name, String pwd)
 throws SecurityException {
 User user = ua.getUser("com.acme.basicid",
 username);
 if (user == null)
 throw new SecurityException("No such user");

 if (!user.hasCredential("com.acme.password", pwd))
 throw new SecurityException(
 "Invalid password");
 return user;
}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a certificate contains a
name, a public key, and the signature of one or more signers.

The name in the certificate can be used to locate a User object in the repository. Locating a User ob-
ject, however, only identifies the initiator and does not authenticate it.

1. The first step to authenticate the initiator is to verify that it has the private key of the certificate.

User Admin Service Specification Version 1.1 Authorization

OSGi Residential Release 6 Page 181

2. Next, the User Admin service must verify that it has a User object with the right property, for ex-
ample "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The bundle could use a cen-
tral list of trusted signers and only accept certificates signed by those sources. Alternatively, it
could require that the certificate itself is already stored in the repository under a unique key as a
byte[] in the credentials.

4. In any case, once the certificate is verified, the associated User object is authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In this model, every ac-
tion that can be performed by a bundle is associated with a role. Such a role is a Group object (called
group from now on) from the User Admin service repository. For example, if a servlet could be used
to activate the alarm system, there should be a group named AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with User objects (users) and
other groups. Groups are used to minimize the amount of administration required. For example, it is
easier to create one Administrators group and add administrative roles to it rather than individually
administer all users for each role. Such a group requires only one action to remove or add a user as
an administrator.

The authorization decision can now be made in two fundamentally different ways:

An initiator could be allowed to carry out an action (represented by a Group object) if it implied any
of the Group object's members. For example, the AlarmSystemActivat ion Group object contains an
Administrators and a Family Group object:

 Administrators = { Elmer, Pepe,Bugs }
 Family = { Elmer, Pepe, Daffy }

 AlarmSystemActivation = { Administrators, Family}

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm system.

Alternatively, an initiator could be allowed to perform an action (represented by a Group object) if it
implied all the Group object's members. In this case, using the same AlarmSystemActivat ion group,
only Elmer and Pepe would be authorized to activate the alarm system, since Daffy and Bugs are not
members of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining both a set of basic
members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs}
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
 required = { Administrators }
 basic = { Family }

The difference is made when Role objects are added to the Group object. To add a basic
member, use the Group.addMember(Role) method. To add a required member, use the
Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required members reduce this set
by requiring the initiator to imply each required member.

A User object implies a Group object if it implies the following:

Authorization User Admin Service Specification Version 1.1

Page 182 OSGi Residential Release 6

• All of the Group's required members, and
• At least one of the Group's basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the standard user
Role.USER_ANYONE can be obtained from the User Admin service and added to the Group object.
This Role object is implied by anybody and therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Normally, the authenticator
should retrieve an Authorizat ion object from the User Admin service by passing the authenticated
User object as an argument. This Authorizat ion object is then passed to the bundle that performs
the action. This bundle checks the authorization with the Authorizat ion.hasRole(Str ing) method.
The performing bundle must pass the name of the action as an argument. The Authorizat ion object
checks whether the authenticated user implies the Role object, specifically a Group object, with the
given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
 if (auth.hasRole("AlarmSystemActivation")) {
 // activate the alarm
 ...
 }
 else throw new SecurityException(
 "Not authorized to activate alarm");
}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The service has a flexible model
and many other schemes are possible.

Assume an Operator installs an OSGi framework. Bundles in this environment have defined the fol-
lowing action groups:

AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. Therefore, the Operator also
defines a number of groups that can be used to contain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the following residents and
buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Second, the user groups need
to be assigned to the action groups.

User Admin Service Specification Version 1.1 Repository Maintenance

OSGi Residential Release 6 Page 183

The following tables show how the groups could be assigned.

Table 107.1 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn
Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 107.2 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin
AlarmSystemControl Basic - - - Required
InternetAccess Basic - - Required -
TemperatureControl Basic - - Required -
PhotoAlbumEdit Basic - Basic Basic -
PhotoAlbumView Basic Basic - - -
PortForwarding Basic - - - Required

107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of User and Group objects.
It contains methods to create new Group and User objects with the createRole(Str ing, int) method.
The method is prepared so that the same signature can be used to create new types of roles in the fu-
ture. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role objects using a filter argu-
ment. This filter, which has the same syntax as the Framework filter, must only return the Role ob-
jects for which the filter matches the properties.

Several utility methods simplify getting User objects depending on their properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each User Admin service imple-
mentation must send a UserAdminEvent object to any service in the Framework service registry that
is registered under the UserAdminListener interface. This event must be send asynchronously from
the cause of the event. The way events must be delivered is the same as described in Delivering Events
of OSGi Core Release 6.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener{
 public void roleChanged(UserAdminEvent event) {
 ...
 }
}
public class MyActivator
 implements BundleActivator {
 public void start(BundleContext context) {
 context.registerService(
 UserAdminListener.class.getName(),

Security User Admin Service Specification Version 1.1

Page 184 OSGi Residential Release 6

 new Listener(), null);
 }
 public void stop(BundleContext context) {}
}

It is not necessary to unregister the listener object when the bundle is stopped because the Frame-
work automatically unregisters it. Once registered, the UserAdminListener object must be notified
of all changes to the role repository.

107.5.1 Event Admin and User Admin Change Events
User Admin events must be delivered asynchronously to the Event Admin service by the implemen-
tation, if present. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<eventtype>

The following event types are supported:

ROLE_CREATED
ROLE_CHANGED
ROLE_REMOVED

All User Admin Events must have the following properties:

• event - (UserAdminEvent) The event that was broadcast by the User Admin service.
• role - (Role) The Role object that was created, modified or removed.
• role.name - (Str ing) The name of the role.
• role.type - (Integer) One of ROLE, USER or GROUP .
• service - (ServiceReference) The Service Reference of the User Admin service.
• service. id - (Long) The User Admin service's ID.
• service.objectClass - (Str ing[]) The User Admin service's object class (which must include

org.osgi .service.useradmin.UserAdmin)
• service.pid - (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi framework, but is complemen-
tary to the [1] The Java Security Architecture for JDK 1.2. The final permission of most code should be
the intersection of the Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the code runs.

107.6.1 User Admin Permission
The User Admin service defines the UserAdminPermission class that can be used to restrict bundles
in accessing credentials. This permission class has the following actions:

• changeProperty - This permission is required to modify properties. The name of the permission
is the prefix of the property name.

• changeCredential - This action permits changing credentials. The name of the permission is the
prefix of the name of the credential.

• getCredential - This action permits getting credentials. The name of the permission is the prefix
of the credential.

If the name of the permission is "admin" , it allows the owner to administer the repository. No action
is associated with the permission in that case.

User Admin Service Specification Version 1.1 Relation to JAAS

OSGi Residential Release 6 Page 185

Otherwise, the permission name is used to match the property name. This name may end with a
".*" string to indicate a wildcard. For example, com.acme.* matches com.acme.fudd.elmer and
com.acme.bugs .

107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS) seems to be a very suitable
model for user administration. The OSGi organization, however, decided to develop an independent
User Admin service because JAAS was not deemed applicable. The reasons for this include depen-
dency on Java SE version 1.3 ("JDK 1.3") and existing mechanisms in the previous OSGi Service Gate-
way 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.security.DomainCombiner interface, which
provides a means to dynamically update the Protect ionDomain objects affiliated with an Access-
ControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDomainCombiner object,
which implements the DomainCombiner interface, is used to update Protect ionDomain objects. The
permissions of Protect ionDomain objects depend on where code came from and who signed it, with
permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the OSGi framework being
available only with JDK 1.3, which was not deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a pluggable authentication architecture, which enables applications and their under-
lying authentication services to remain independent from each other.

The Http Service already provides a similar feature by allowing servlet and resource registrations to
be supported by an HttpContext object, which uses a callback mechanism to perform any required
authentication checks before granting access to the servlet or resource. This way, the registering
bundle has complete control on a per-servlet and per-resource basis over which authentication pro-
tocol to use, how the credentials presented by the remote requester are to be validated, and who
should be granted access to the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS could then be implement-
ed in an OSGi environment. At that time, the User Admin service will still be needed and will pro-
vide complementary services in the following ways:

• The authorization component relies on group membership information to be stored and man-
aged outside JAAS. JAAS does not manage persistent information, so the User Admin service can
be a provider of group information when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and verified, but a repository
is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS. The only aspect JAAS
will remove from the User Admin service is the need for the Authorizat ion interface.

107.8 org.osgi.service.useradmin

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 186 OSGi Residential Release 6

User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,1 .2)"

107.8.1 Summary

• Authorizat ion - The Authorizat ion interface encapsulates an authorization context on which
bundles can base authorization decisions, where appropriate.

• Group - A named grouping of roles (Role objects).
• Role - The base interface for Role objects managed by the User Admin service.
• User - A User role managed by a User Admin service.
• UserAdmin - This interface is used to manage a database of named Role objects, which can be

used for authentication and authorization purposes.
• UserAdminEvent - Role change event.
• UserAdminListener - Listener for UserAdminEvents.
• UserAdminPermission - Permission to configure and access the Role objects managed by a User

Admin service.

107.8.2 public interface Authorization
The Authorizat ion interface encapsulates an authorization context on which bundles can base au-
thorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations with roles. Before granti-
ng access to a restricted resource or operation, a bundle will check if the Authorizat ion object passed
to it possess the required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the UserAdmin.getAuthorization(User) method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorizat ion objects. Hence, a service must on-
ly accept Authorizat ion objects from bundles that has been authorized to use the service using code
based (or Java 2) permissions.

In some cases it is useful to use ServicePermission to do the code based access control. A service bas-
ing user access control on Authorizat ion objects passed to it, will then require that a calling bundle
has the ServicePermission to get the service in question. This is the most convenient way. The OSGi
environment will do the code based permission check when the calling bundle attempts to get the
service from the service registry.

Example: A servlet using a service on a user's behalf. The bundle with the servlet must be given the
ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more fine-grained. A service
might allow all bundles to get it, but require certain code based permissions for some of its methods.

Example: A servlet using a service on a user's behalf, where some service functionality is open to
anyone, and some is restricted by code based permissions. When a restricted method is called (e.g.,
one handing over an Authorizat ion object), the service explicitly checks that the calling bundle has
permission to make the call.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Residential Release 6 Page 187

No Implement Consumers of this API must not implement this interface

107.8.2.1 public String getName()

□ Gets the name of the User that this Authorizat ion context was created for.

Returns The name of the User object that this Authorizat ion context was created for, or nul l if no user was
specified when this Authorizat ion context was created.

107.8.2.2 public String[] getRoles()

□ Gets the names of all roles implied by this Authorizat ion context.

Returns The names of all roles implied by this Authorizat ion context, or nul l if no roles are in the context.
The predefined role user.anyone will not be included in this list.

107.8.2.3 public boolean hasRole(String name)

name The name of the role to check for.

□ Checks if the role with the specified name is implied by this Authorizat ion context.

Bundles must define globally unique role names that are associated with the privilege of accessing
restricted resources or operations. Operators will grant users access to these resources, by creating a
Group object for each role and adding User objects to it.

Returns true if this Authorizat ion context implies the specified role, otherwise fa lse .

107.8.3 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends on the members of
that Group object.

A Group object can have two kinds of members: basic and required . A Group object is implied by an
Authorizat ion context if all of its required members are implied and at least one of its basic members
is implied.

A Group object must contain at least one basic member in order to be implied. In other words, a
Group object without any basic member roles is never implied by any Authorizat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects, which means that it is pos-
sible to create circular implications. Loop detection is instead done when roles are checked. The se-
mantics is that if a role depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be implied is motivated by the
following example:

 group foo
 required members: marketing
 basic members: alice, bob

Privileged operations that require membership in "foo" can be performed only by "alice" and "bob",
who are in marketing.

If "alice" and "bob" ever transfer to a different department, anybody in marketing will be able to as-
sume the "foo" role, which certainly must be prevented. Requiring that "foo" (or any Group object for
that matter) must have at least one basic member accomplishes that.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 188 OSGi Residential Release 6

However, this would make it impossible for a Group object to be implied by just its required mem-
bers. An example where this implication might be useful is the following declaration: "Any citizen
who is an adult is allowed to vote." An intuitive configuration of "voter" would be:

 group voter
 required members: citizen, adult
 basic members:

However, according to the above rule, the "voter" role could never be assumed by anybody, since
it lacks any basic members. In order to address this issue a predefined role named "user.anyone"
can be specified, which is always implied. The desired implication of the "voter" group can then be
achieved by specifying "user.anyone" as its basic member, as follows:

 group voter
 required members: citizen, adult
 basic members: user.anyone

No Implement Consumers of this API must not implement this interface

107.8.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

□ Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and fa lse if this Group object already con-
tains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

□ Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and fa lse if this Group object al-
ready contains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.3 public Role[] getMembers()

□ Gets the basic members of this Group object.

Returns The basic members of this Group object, or nul l if this Group object does not contain any basic mem-
bers.

107.8.3.4 public Role[] getRequiredMembers()

□ Gets the required members of this Group object.

Returns The required members of this Group object, or nul l if this Group object does not contain any required
members.

107.8.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

□ Removes the specified Role object from this Group object.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Residential Release 6 Page 189

Returns true if the Role object could be removed, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.4 public interface Role
The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name, a type, and a set of prop-
erties.

Properties represent public information about the Role object that can be read by anyone. Specific
UserAdminPermission objects are required to change a Role object's properties.

Role object properties are Dictionary objects. Changes to these objects are propagated to the User Ad-
min service and made persistent.

Every User Admin service contains a set of predefined Role objects that are always present
and cannot be removed. All predefined Role objects are of type ROLE . This version of the
org.osgi .service.useradmin package defines a single predefined role named "user.anyone", which is
inherited by any other role. Other predefined roles may be added in the future. Since "user.anyone"
is a Role object that has properties associated with it that can be read and modified. Access to these
properties and their use is application specific and is controlled using UserAdminPermission in the
same way that properties for other Role objects are.

No Implement Consumers of this API must not implement this interface

107.8.4.1 public static final int GROUP = 2

The type of a Group role.

The value of GROUP is 2.

107.8.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.

107.8.4.3 public static final int USER = 1

The type of a User role.

The value of USER is 1.

107.8.4.4 public static final String USER_ANYONE = "user.anyone"

The name of the predefined role, user.anyone, that all users and groups belong to.

Since 1.1

107.8.4.5 public String getName()

□ Returns the name of this role.

Returns The role's name.

107.8.4.6 public Dictionary getProperties()

□ Returns a Dictionary of the (public) properties of this Role object. Any changes to the returned Dic-
t ionary will change the properties of this Role object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListener objects.

Only objects of type Str ing may be used as property keys, and only objects of type Str ing or byte[]
may be used as property values. Any other types will cause an exception of type I l legalArgumentEx-
ception to be raised.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 190 OSGi Residential Release 6

In order to add, change, or remove a property in the returned Dictionary , a UserAdminPermission
named after the property name (or a prefix of it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.

107.8.4.7 public int getType()

□ Returns the type of this role.

Returns The role's type.

107.8.5 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term "user" is not limited to just human beings. Instead, it refers to any entity
that may have any number of credentials associated with it that it may use to authenticate itself.

In general, User objects are associated with a specific User Admin service (namely the one that creat-
ed them), and cannot be used with other User Admin services.

A User object may have credentials (and properties, inherited from the Role class) associated with it.
Specific UserAdminPermission objects are required to read or change a User object's credentials.

Credentials are Dictionary objects and have semantics that are similar to the properties in the Role
class.

No Implement Consumers of this API must not implement this interface

107.8.5.1 public Dictionary getCredentials()

□ Returns a Dictionary of the credentials of this User object. Any changes to the returned Dictionary
object will change the credentials of this User object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of type Str ing or of type
byte[] may be used as credential values. Any other types will cause an exception of type I l legalArgu-
mentException to be raised.

In order to retrieve a credential from the returned Dictionary object, a UserAdminPermission named
after the credential name (or a prefix of it) with action getCredential is required.

In order to add or remove a credential from the returned Dictionary object, a UserAdminPermission
named after the credential name (or a prefix of it) with action changeCredential is required.

Returns Dictionary object containing the credentials of this User object.

107.8.5.2 public boolean hasCredential(String key,Object value)

key The credential key .

value The credential value .

□ Checks to see if this User object has a credential with the specified key set to the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored, that is, fa lse is returned
(as opposed to an I l legalArgumentException being raised).

Returns true if this user has the specified credential; fa lse otherwise.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion named after the credential key (or a prefix of it) with action getCredential .

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Residential Release 6 Page 191

107.8.6 public interface UserAdmin
This interface is used to manage a database of named Role objects, which can be used for authentica-
tion and authorization purposes.

This version of the User Admin service defines two types of Role objects: "User" and "Group". Each
type of role is represented by an int constant and an interface. The range of positive integers is re-
served for new types of roles that may be added in the future. When defining proprietary role types,
negative constant values must be used.

Every role has a name and a type.

A User object can be configured with credentials (e.g., a password) and properties (e.g., a street ad-
dress, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other words, the members of
a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role objects, in which each
Role object has a unique name.

No Implement Consumers of this API must not implement this interface

107.8.6.1 public Role createRole(String name,int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role.USER type or Role.GROUP type.

□ Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type UserAdminEvent.ROLE_CREATED is
broadcast to any UserAdminListener object.

Returns The newly created Role object, or nul l if a role with the given name already exists.

Throws I l legalArgumentException– if type is invalid.

SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorizat ion object for, or nul l for the anonymous user.

□ Creates an Authorizat ion object that encapsulates the specified User object and the Role objects it
possesses. The nul l user is interpreted as the anonymous user. The anonymous user represents a user
that has not been authenticated. An Authorizat ion object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorizat ion object for the specified User object.

107.8.6.3 public Role getRole(String name)

name The name of the Role object to get.

□ Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or nul l if this User Admin service does not have a Role object with the giv-
en name .

107.8.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

□ Gets the Role objects managed by this User Admin service that have properties matching the speci-
fied LDAP filter criteria. See org.osgi .f ramework.Fi l ter for a description of the filter syntax. If a nul l
filter is specified, all Role objects managed by this User Admin service are returned.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 192 OSGi Residential Release 6

Returns The Role objects managed by this User Admin service whose properties match the specified filter
criteria, or all Role objects if a nul l filter is specified. If no roles match the filter, nul l will be returned.

Throws Inval idSyntaxException– If the filter is not well formed.

107.8.6.5 public User getUser(String key,String value)

key The property key to look for.

value The property value to compare with.

□ Gets the user with the given property key -value pair from the User Admin service database. This is a
convenience method for retrieving a User object based on a property for which every User object is
supposed to have a unique value (within the scope of this User Admin service), such as for example
a X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching users are found, nul l is re-
turned.

107.8.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.

□ Removes the Role object with the given name from this User Admin service and all groups it is a
member of.

If the Role object was removed, a UserAdminEvent object of type UserAdminEvent.ROLE_REMOVED
is broadcast to any UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin service and could be re-
moved, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.7 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdminListener objects when a
change occurs in any of the Role objects managed by a User Admin service.

A type code is used to identify the event. The following event types are defined: ROLE_CREATED
type, ROLE_CHANGED type, and ROLE_REMOVED type. Additional event types may be defined in
the future.

See Also UserAdmin, UserAdminListener

107.8.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.

107.8.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.

107.8.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Residential Release 6 Page 193

107.8.7.4 public UserAdminEvent(ServiceReference ref,int type,Role role)

ref The ServiceReference object of the User Admin service that generated this event.

type The event type.

role The Role object on which this event occurred.

□ Constructs a UserAdminEvent object from the given ServiceReference object, event type, and Role
object.

107.8.7.5 public Role getRole()

□ Gets the Role object this event was generated for.

Returns The Role object this event was generated for.

107.8.7.6 public ServiceReference getServiceReference()

□ Gets the ServiceReference object of the User Admin service that generated this event.

Returns The User Admin service's ServiceReference object.

107.8.7.7 public int getType()

□ Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type.

Returns The event type.

107.8.8 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service registry and notified with a
UserAdminEvent object when a Role object has been created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdminEvent object to determine its
type, the Role object it occurred on, and the User Admin service that generated it.

See Also UserAdmin, UserAdminEvent

107.8.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

□ Receives notification that a Role object has been created, removed, or modified.

107.8.9 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role objects managed by a User Admin service.

This class represents access to the Role objects managed by a User Admin service and their proper-
ties and credentials (in the case of User objects).

The permission name is the name (or name prefix) of a property or credential. The naming con-
vention follows the hierarchical property naming convention. Also, an asterisk may appear
at the end of the name, following a ".", or by itself, to signify a wildcard match. For example:
"org.osgi.security.protocol.*" or "*" is valid, but "*protocol" or "a*b" are not valid.

The UserAdminPermission with the reserved name "admin" represents the permission required for
creating and removing Role objects in the User Admin service, as well as adding and removing mem-
bers in a Group object. This UserAdminPermission does not have any actions associated with it.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 194 OSGi Residential Release 6

The actions to be granted are passed to the constructor in a string containing a list of one or more
comma-separated keywords. The possible keywords are: changeProperty ,changeCredential , and
getCredential . Their meaning is defined as follows:

 action
 changeProperty Permission to change (i.e., add and remove)
 Role object properties whose names start with
 the name argument specified in the constructor.
 changeCredential Permission to change (i.e., add and remove)
 User object credentials whose names start
 with the name argument specified in the constructor.
 getCredential Permission to retrieve and check for the
 existence of User object credentials whose names
 start with the name argument specified in the
 constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user administration bundle a num-
ber of UserAdminPermission object:

 (org.osgi.service.useradmin.UserAdminPermission "admin")
 (org.osgi.service.useradmin.UserAdminPermission "com.foo.*"
 "changeProperty,getCredential,changeCredential")
 (org.osgi.service.useradmin.UserAdminPermission "user.*"
 "changeProperty,changeCredential")

The first permission statement grants the bundle the permission to perform any User Admin service
operations of type "admin", that is, create and remove roles and configure Group objects.

The second permission statement grants the bundle the permission to change any properties as well
as get and change any credentials whose names start with com.foo. .

The third permission statement grants the bundle the permission to change any properties and cre-
dentials whose names start with user. . This means that the bundle is allowed to change, but not re-
trieve any credentials with the given prefix.

The following policy entry empowers the Http Service bundle to perform user authentication:

 grant codeBase "${jars}http.jar" {
 permission org.osgi.service.useradmin.UserAdminPermission
 "user.password", "getCredential";
 };

The permission statement grants the Http Service bundle the permission to validate any password
credentials (for authentication purposes), but the bundle is not allowed to change any properties or
credentials.

Concurrency Thread-safe

107.8.9.1 public static final String ADMIN = "admin"

The permission name "admin".

107.8.9.2 public static final String CHANGE_CREDENTIAL = "changeCredential"

The action string "changeCredential".

107.8.9.3 public static final String CHANGE_PROPERTY = "changeProperty"

The action string "changeProperty".

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Residential Release 6 Page 195

107.8.9.4 public static final String GET_CREDENTIAL = "getCredential"

The action string "getCredential".

107.8.9.5 public UserAdminPermission(String name,String actions)

name the name of this UserAdminPermission

actions the action string.

□ Creates a new UserAdminPermission with the specified name and actions. name is either
the reserved string "admin" or the name of a credential or property, and actions contains
a comma-separated list of the actions granted on the specified name. Valid actions are
changeProperty ,changeCredential , and getCredential.

Throws I l legalArgumentException– If name equals "admin" and actions are specified.

107.8.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.

□ Checks two UserAdminPermission objects for equality. Checks that obj is a UserAdminPermission ,
and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and actions as this UserAdmin-
Permission object.

107.8.9.7 public String getActions()

□ Returns the canonical string representation of the actions, separated by comma.

Returns the canonical string representation of the actions.

107.8.9.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

107.8.9.9 public boolean implies(Permission p)

p the permission to check against.

□ Checks if this UserAdminPermission object "implies" the specified permission.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermission ,
• p's actions are a proper subset of this object's actions, and
• p's name is implied by this object's name. For example, "java.*" implies "java.home".

Returns true if the specified permission is implied by this object; fa lse otherwise.

107.8.9.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing UserAdminPermission objects.

Returns a new PermissionCol lect ion object suitable for storing UserAdminPermission objects.

107.8.9.11 public String toString()

□ Returns a string describing this UserAdminPermission object. This string must be in PermissionInfo
encoded format.

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi .service.permissionadmin.PermissionInfo.getEncoded()

References User Admin Service Specification Version 1.1

Page 196 OSGi Residential Release 6

107.9 References

[1] The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

[2] Java Authentication and Authorization Service
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Initial Provisioning Specification Version 1.2 Introduction

OSGi Residential Release 6 Page 197

110 Initial Provisioning Specification

Version 1.2

110.1 Introduction
To allow freedom regarding the choice of management protocol, the OSGi Specifications assumes
an architecture to remotely manage a OSGi framework with a Management Agent. The Manage-
ment Agent is implemented with a Management Bundle that can communicate with an unspecified
management protocol.

This specification defines how the Management Agent can make its way to the OSGi framework,
and gives a structured view of the problems and their corresponding resolution methods.

The purpose of this specification is to enable the management of a OSGi framework by an Operator,
and (optionally) to hand over the management of the OSGi framework later to another Operator.
This approach is in accordance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management Agent, with appropriate con-
figuration data, in the OSGi framework.

This specification consists of a prologue, in which the principles of the Initial Provisioning are out-
lined, and a number of mappings to different mechanisms.

110.1.1 Essentials

• Policy Free - The proposed solution must be business model agnostic; none of the affected parties
(Operators, SPS Manufacturers, etc.) should be forced into any particular business model.

• Inter-operability - The Initial Provisioning must permit arbitrary inter-operability between man-
agement systems and OSGi frameworks. Any compliant Remote Manager should be able to man-
age any compliant OSGi framework, even in the absence of a prior business relationship. Adher-
ing to this requirement allows a particular Operator to manage a variety of makes and models of
OSGi framework Servers using a single management system of the Operator's choice. This rule
also gives the consumer the greatest choice when selecting an Operator.

• Flexible - The management process should be as open as possible, to allow innovation and special-
ization while still achieving interoperability.

110.1.2 Entities

• Provisioning Service - A service registered with the Framework that provides information about
the initial provisioning to the Management Agent.

• Provisioning Dictionary - A Dictionary object that is filled with information from the ZIP files that
are loaded during initial setup.

• RSH Protocol - An OSGi specific secure protocol based on HTTP.
• Management Agent - A bundle that is responsible for managing a OSGi framework under control

of a Remote Manager.

Procedure Initial Provisioning Specification Version 1.2

Page 198 OSGi Residential Release 6

Figure 110.1 Initial Provisioning

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is installed by

gets

uses protocol defined by setup information

110.2 Procedure
The following procedure should be executed by an OSGi Framework implementation that supports
this Initial Provisioning specification.

When the OSGi framework is first brought under management control, it must be provided with an
initial request URL in order to be provisioned. Either the end user or the manufacturer may provide
the initial request URL. How the initial request URL is transferred to the Framework is not specified,
but a mechanism might, for example, be a command line parameter when the framework is started.

When asked to start the Initial Provisioning, the OSGi framework will send a request to the manage-
ment system. This request is encoded in a URL, for example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the OSGi framework Server. Many standard
protocols exist, but it is also possible to use a proprietary protocol. For example, software could be
present which can communicate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

Before the request URL is executed, the OSGi framework information is appended to the URL. This
information includes at least the OSGi framework Identifier, but may also contain proprietary infor-
mation, as long as the keys for this information do not conflict. Different URL schemes may use dif-
ferent methods of appending parameters; these details are specified in the mappings of this specifi-
cation to concrete protocols.

The result of the request must be a ZIP file. (The content type should be appl icat ion/zip). It is the re-
sponsibility of the underlying protocol to guarantee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bundle-url entries, described in Table
110.2) are placed in a Dictionary object. This Dictionary object is called the Provisioning Dictionary.
It must be made available from the Provisioning Service in the service registry. The names of the en-
tries in the ZIP file must not start with a solidus (' / ' \u002F).

Initial Provisioning Specification Version 1.2 Procedure

OSGi Residential Release 6 Page 199

The ZIP file may contain only four types of dictionary entries: text , binary , bundle , or bundle-url .
The type of an entry can be specified in different ways. An Initial Provisioning service must look in
the following places to find the information about an entry's (MIME) type (in the given order):

1. The manifest header InitialProvisioning-Entries of the given ZIP file. This header is defined in
InitialProvisioning-Entries Manifest Header on page 201. If this header is present, but a given
entry's path is not named then try the next step.

2. The extension of the entry path name if one of .txt , . jar , .ur l extensions. See Table 110.1 on page
199 for the mapping of types, MIME types, and extensions.

3. The entry is assumed to be a binary type

The types can optionally be specified as a MIME type as defined in [7] MIME Types. The text and
bundle-url entries are translated into a Str ing object from an UTF-8 encoded byte array. All other en-
tries must be stored as a byte[] .

Table 110.1 Content types of provisioning ZIP file

Type MIME Type Ext Description
text MIME_STRING

text/plain;charset=utf-8

.txt Must be represented as a String object

binary MIME_BYTE_ARRAY

appl icat ion/octet-stream

not txt ,
.ur l , or
. jar

Must be represented as a byte array (byte[]).

bundle MIME_BUNDLE

appl icat ion/vnd.osgi .bundle

MIME_BUNDLE_ALT

appl icat ion/x-osgi-bundle

. jar Entries must be installed using
BundleContext. instal lBundle(Str ing, In-
putStream) , with the InputStream object
constructed from the contents of the ZIP
entry. The location must be the name of
the ZIP entry without leading solidus (' / '
\u002F). This entry must not be stored in
the Provisioning Dictionary.

If a bundle with this location name is al-
ready installed in this system, then this
bundle must be updated instead of in-
stalled.

The MIME_BUNDLE_ALT version is intend-
ed for backward compatibility, it specifies
the original MIME type for bundles before
there was an official IANA MIME type.

bundle-url MIME_BUNDLE_URL

text/x-osgi-bundle-url ;
charset=utf-8

.ur l The content of this entry is a string coded
in utf-8 . Entries must be installed using
BundleContext. instal lBundle(Str ing, In-
putStream) , with the InputStream object
created from the given URL. The location
must be the name of the ZIP entry with-
out leading solidus (' / ' \u002F). This entry
must not be stored in the Provisioning Dic-
tionary.

If a bundle with this location URL is already
installed in this system, then this bundle
must be updated instead of installed.

The Provisioning Service must install (but not start) all entries in the ZIP file that are typed with
bundle or bundle-url .

Procedure Initial Provisioning Specification Version 1.2

Page 200 OSGi Residential Release 6

If an entry named PROVISIONING_START_BUNDLE is present in the Provisioning Dictionary, then
its content type must be text as defined in Table 110.1. The content of this entry must match the
bundle location of a previously loaded bundle. This designated bundle must be given AllPermission
and started.

If no PROVISIONING_START_BUNDLE entry is present in the Provisioning Dictionary, the Provision-
ing Dictionary should contain a reference to another ZIP file under the PROVISIONING_REFERENCE
key. If both keys are absent, no further action must take place.

If this PROVISIONING_REFERENCE key is present and holds a Str ing object that can be mapped to
a valid URL, then a new ZIP file must be retrieved from this URL. The PROVISIONING_REFERENCE
link may be repeated multiple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a fixed reference inside
the OSGi framework Server (in a file or smart card) that will provide some platform identifying
information and then also immediately load the information from the management system. The
PROVISIONING_REFERENCE link may be repeated multiple times in successively loaded ZIP files.
The entry PROVISIONING_UPDATE_COUNT must be an Integer object that must be incremented on
every iteration.

Information retrieved while loading subsequent PROVISIONING_REFERENCE URLs may replace pre-
vious key/values in the Provisioning Dictionary, but must not erase unrecognized key/values. For ex-
ample, if an assignment has assigned the key proprietary-x , with a value '3', then later assignments
must not override this value, unless the later loaded ZIP file contains an entry with that name. All
these updates to the Provisioning Dictionary must be stored persistently. At the same time, each en-
try of type bundle or bundle-url (see Table 110.1) must be installed and not started.

Once the Management Agent has been started, the Initial Provisioning service has become opera-
tional. In this state, the Initial Provisioning service must react when the Provisioning Dictionary is
updated with a new PROVISIONING_REFERENCE property. If this key is set, it should start the cycle
again. For example, if the control of a OSGi framework needs to be transferred to another Remote
Manager, the Management Agent should set the PROVISIONING_REFERENCE to the location of this
new Remote Manager's Initial Provisioning ZIP file. This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try to notify the Service
User of the problem.

The previous description is depicted in Figure 110.2 as a flow chart.

Initial Provisioning Specification Version 1.2 Special Configurations

OSGi Residential Release 6 Page 201

Figure 110.2 Flow chart installation Management Agent bundle

U = platform URL

provisioning

load ZIP file from U
into Provisioning

Dictionary

U = P. REFERENCE

Start
Management

Agent

install all bundles
with content type

bundle (-url)

PROVISIONING
START_BUNDLE set yes

no PROVISIONING
REFERENCE set

yes

no

operational

re-provisioning

The Management Agent may require configuration data that is specific to the OSGi framework in-
stance. If this data is available outside the Management Agent bundle, the merging of this data with
the Management Agent may take place in the OSGi framework. Transferring the data separately will
make it possible to simplify the implementation on the server side, as it is not necessary to create
personalized OSGi framework bundles. The PROVISIONING_AGENT_CONFIG key is reserved for this
purpose, but the Management Agent may use another key or mechanisms if so desired.

The PROVISIONING_SPID key must contain the OSGi framework Identifier.

110.2.1 InitialProvisioning-Entries Manifest Header
The InitialProvisioning-Entries manifest header optionally specifies the type of the entries in the
ZIP file. The syntax for this header is:

InitialProvisioning-Entries ::= ip-entry (',' ip-entry) *
ip-entry ::= path (';' parameter) *

The entry is the path name of a resource in the ZIP file. This InitialProvisioning-Entries header rec-
ognizes the following attribute:

• type - Gives the type of the dictionary entry. The type can have one of the following values: text ,
binary , bundle , or bundle-url

If the type parameter entry is not specified for an entry, then the type will be inferred from the ex-
tension of the entry, as defined in table Table 110.1 on page 199.

110.3 Special Configurations
The next section shows some examples of specially configured types of OSGi framework Servers
and how they are treated with the respect to the specifications in this document.

The Provisioning Service Initial Provisioning Specification Version 1.2

Page 202 OSGi Residential Release 6

110.3.1 Branded OSGi framework Server
If a OSGi framework Operator is selling OSGi framework Servers branded exclusively for use with
their service, the provisioning will most likely be performed prior to shipping the OSGi frame-
work Server to the User. Typically the OSGi framework is configured with the Dictionary entry
PROVISIONING_REFERENCE pointing at a location controlled by the Operator.

Up-to-date bundles and additional configuration data must be loaded from that location at activa-
tion time. The OSGi framework is probably equipped with necessary security entities, like certifi-
cates, to enable secure downloads from the Operator's URL over open networks, if necessary.

110.3.2 Non-connected OSGi framework
Circumstances might exist in which the OSGi framework Server has no WAN connectivity, or
prefers not to depend on it for the purposes not covered by this specification.

The non-connected case can be implemented by specifying a f i le :// URL for the initial ZIP file (
PROVISIONING_REFERENCE). That f i le :// URL would name a local file containing the response that
would otherwise be received from a remote server.

The value for the Management Agent PROVISIONING_REFERENCE found in that file will be used as
input to the load process. The PROVISIONING_REFERENCE may point to a bundle file stored either
locally or remotely. No code changes are necessary for the non-connected scenario. The f i le :// URLs
must be specified, and the appropriate files must be created on the OSGi framework.

110.4 The Provisioning Service
Provisioning information is conveyed between bundles using the Provisioning Service, as defined
in the Provis ioningService interface. The Provisioning Dictionary is retrieved from the Provis ion-
ingService object using the getInformation() method. This is a read-only Dictionary object, any
changes to this Dictionary object must throw an UnsupportedOperationException .

The Provisioning Service provides a number of methods to update the Provisioning Dictionary.

• addInformation(Dict ionary) - Add all key/value pairs in the given Dictionary object to the Provi-
sioning Dictionary.

• addInformation(ZipInputStream) - It is also possible to add a ZIP file to the Provisioning Service
immediately. This will unpack the ZIP file and add the entries to the Provisioning Dictionary.
This method must install the bundles contained in the ZIP file as described in Procedure on page
198.

• setInformation(Dict ionary) - Set a new Provisioning Dictionary. This will remove all existing en-
tries.

Each of these method will increment the PROVISIONING_UPDATE_COUNT entry.

110.5 Management Agent Environment
The Management Agent should be written with great care to minimize dependencies on other pack-
ages and services, as all services in OSGi are optional. Some OSGi frameworks may have other bun-
dles pre-installed, so it is possible that there may be exported packages and services available. Mech-
anisms outside the current specification, however, must be used to discover these packages and ser-
vices before the Management Agent is installed.

The Provisioning Service must ensure that the Management Agent is running with AllPermission .
The Management Agent should check to see if the Permission Admin service is available, and es-
tablish the initial permissions as soon as possible to insure the security of the device when later

Initial Provisioning Specification Version 1.2 Mapping To File Scheme

OSGi Residential Release 6 Page 203

bundles are installed. As the PermissionAdmin interfaces may not be present (it is an optional ser-
vice), the Management Agent should export the PermissionAdmin interfaces to ensure they can be
resolved.

Once started, the Management Agent may retrieve its configuration data from the Provisioning Ser-
vice by getting the byte[] object that corresponds to the PROVISIONING_AGENT_CONFIG key in the
Provisioning Dictionary. The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the raw configuration data
to the Management Agent. The Management Agent bundle may alternatively be packaged with its
configuration data in the bundle, so it may not be necessary for the Management Agent bundle to
use the Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to provision the OSGi frame-
work. Installing other bundles might even involve downloading a more full featured Management
Agent to replace the initial Management Agent.

110.6 Mapping To File Scheme
The f i le : scheme is the simplest and most completely supported scheme which can be used by the
Initial Provisioning specification. It can be used to store the configuration data and Management
Agent bundle on the OSGi framework Server, and avoids any outside communication.

If the initial request URL has a f i le scheme, no parameters should be appended, because the f i le :
scheme does not accept parameters.

110.6.1 Example With File Scheme
The manufacturer should prepare a ZIP file containing only one entry named
PROVISIONING_START_BUNDLE that contains a location string of an entry of type bundle or bun-
dle-url . For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent
agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:

provisioning.start.bundle text http://acme.com/a.jar
agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le : scheme that points to this ZIP
file:

file:/opt/osgi/ma.zip

110.7 Mapping To HTTP(S) Scheme
This section defines how HTTP and HTTPS URLs must be used with the Initial Provisioning specifi-
cation.

• HTTP - May be used when the data exchange takes place over networks that are secured by oth-
er means, such as a Virtual Private Network (VPN) or a physically isolated network. Otherwise,
HTTP is not a valid scheme because no authentication takes place.

• HTTPS - May be used if the OSGi framework is equipped with appropriate certificates.

HTTP and HTTPS share the following qualities:

Mapping To HTTP(S) Scheme Initial Provisioning Specification Version 1.2

Page 204 OSGi Residential Release 6

• Both are well known and widely used
• Numerous implementations of the protocols exist
• Caching of the Management Agent will be desired in many implementations where limited

bandwidth is an issue. Both HTTP and HTTPS already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is a ZIP file, implying that
the response header Content-Type header must contain appl icat ion/zip.

110.7.1 HTTPS Certificates
In order to use HTTPS, certificates must be in place. These certificates, that are used to establish
trust towards the Operator, may be made available to the OSGi framework using the Provisioning
Service. The root certificate should be assigned to the Provisioning Dictionary before the HTTPS
provider is used. Additionally, the OSGi framework should be equipped with a OSGi framework cer-
tificate that allows the OSGi framework to properly authenticate itself towards the Operator. This
specification does not state how this certificate gets installed into the OSGi framework.

The root certificate is stored in the Provisioning Dictionary under the key:

PROVISIONING_ROOTX509

The Root X.509 Certificate holds certificates used to represent a handle to a common base for estab-
lishing trust. The certificates are typically used when authenticating a Remote Manager to the OSGi
framework. In this case, a Root X.509 certificate must be part of a certificate chain for the Operator's
certificate. The format of the certificate is defined in Certificate Encoding on page 204.

110.7.2 Certificate Encoding
Root certificates are X.509 certificates. Each individual certificate is stored as a byte[] object. This
byte[] object is encoded in the default Java manner, as follows:

• The original, binary certificate data is DER encoded
• The DER encoded data is encoded into base64 to make it text.
• The base64 encoded data is prefixed with

-----BEGIN CERTIFICATE-----

and suffixed with:

-----END CERTIFICATE-----

• If a record contains more than one certificate, they are simply appended one after the other, each
with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the java.security.cert .Cert i f icateFactory class:

InputStream bis = new ByteArrayInputStream(x509);// byte[]
CertificateFactory cf =
 CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(bis);
Iterator i = c.iterator();
while (i.hasNext()) {
 Certificate cert = (Certificate)i.next();
 System.out.println(cert);
}

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme

OSGi Residential Release 6 Page 205

110.7.3 URL Encoding
The URL must contain the OSGi framework Identity, and may contain more parameters. These para-
meters are encoded in the URL according to the HTTP(S) URL scheme. A base URL may be set by an
end user but the Provisioning Service must add the OSGi framework Identifier.

If the request URL already contains HTTP parameters (if there is a '?' in the request), the
service_platform_id is appended to this URL as an additional parameter. If, on the other hand, the
request URL does not contain any HTTP parameters, the service_platform_id will be appended to
the URL after a '?', becoming the first HTTP parameter. The following two examples show these two
variants:

http://server.operator.com/service-x? «
 foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x? «
 service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters that are not allowed. See
[6] RFC 2396 - Uniform Resource Identifier (URI).

110.8 Mapping To RSH Scheme
The RSH protocol is an OSGi-specific protocol, and is included in this specification because it is op-
timized for Initial Provisioning. It requires a shared secret between the management system and the
OSGi framework that is small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes (MACs) that have been
derived from a secret that is shared between the OSGi framework and the Operator prior to the start
of the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which the request must be
signed and the response must be encrypted and authenticated. Both the signature and encryption key are
derived from the shared secret using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce and one server-generat-
ed nonce are used to prevent replay attacks. The nonces are fairly large random numbers that must
be generated in relation to each invocation of the protocol, in order to guarantee freshness. These
nonces are called cl ientfg (client-generated freshness guarantee) and serverfg (server-generated
freshness guarantee).

In order to separate the HMAC calculations for authentication and encryption, each is based on a
different constant value. These constants are called the authentication constant and the encryption con-
stant.

From an abstract perspective, the protocol may be described as follows.

• δ - Shared secret, 160 bits or more
• s - Server nonce, called servercfg , 128 bits
• c - Client nonce, called cl ientfg , 128 bits
• Ka - Authentication key, 160 bits
• Ke - Encryption key, 192 bits
• r - Response data
• e - Encrypted data
• E - Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)
• A - Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2

Page 206 OSGi Residential Release 6

• M - Message material, used for Ke calculation.
• m - The calculated message authentication code.
• 3DES - Triple DES, encryption function, see [8] 3DES. The bytes of the key must be set to odd par-

ity. CBC mode must be used where the padding method is defined in [9] RFC 1423 Part III: Algo-
rithms, Modes, and Identifiers. In [11] Java Cryptography API (part of Java 1.4) this is addressed as
PKCS5Padding .

• IV - Initialization vector for 3DES.
• SHA1 - Secure Hash Algorithm to generate the Hashed Message Authentication Code, see [12]

SHA-1. The function takes a single parameter, the block to be worked upon.
• HMAC - The function that calculates a message authentication code, which must HMAC-SHA1.

HMAC-SHA1 is defined in [1] HMAC: Keyed-Hashing for Message Authentication. The HMAC func-
tion takes a key and a block to be worked upon as arguments. Note that the lower 16 bytes of the
result must be used.

• {} - Concatenates its arguments
• [] - Indicates access to a sub-part of a variable, in bytes. Index starts at one, not zero.

In each step, the emphasized server or client indicates the context of the calculation. If both are used
at the same time, each variable will have server or client as a subscript.

1. The client generates a random nonce, stores it and denotes it cl ientfg

c = nonce
2. The client sends the request with the cl ientfg to the server.

cserver ⇐ cclient

3. The server generates a nonce and denotes it serverfg .

s = nonce
4. The server calculates an authentication key based on the SHA1 function, the shared secret, the

received cl ientfg , the serverfg and the authentication constant.

Ka ← SHA1({δ, c, s, A})
5. The server calculates an encryption key using an SHA-1 function, the shared secret, the received

cl ientfg , the serverfg and the encryption constant. It must first calculate the key material M.

M[1, 20] ← SHA1({ δ, c, s, E})

M[21, 40] ← SHA1({ δ, M[1, 20], c, s, E})
6. The key for DES consists Ke and IV.

Ke ← M[1, 24]

IV ← M[25, 32]

The server encrypts the response data using the encryption key derived in step 5. The encryption
algorithm that must be used to encrypt/decrypt the response data is 3DES. 24 bytes (192 bits)
from M are used to generate Ke, but the low order bit of each byte must be used as an odd parity
bit. This means that before using Ke, each byte must be processed to set the low order bit so that
the byte has odd parity.

The encryption/decryption key used is specified by the following:

e ← 3DES(Ke, IV, r)
7. The server calculates a MAC m using the HMAC function, the encrypted response data and the

authentication key derived in 4.

m ← HMAC(Ka, e)
8. The server sends a response to the client containing the serverfg , the MAC m and the encrypted

response data

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme

OSGi Residential Release 6 Page 207

sclient ⇐ sserver

mclient ⇐ mserver

eclient ⇐ eserver

The client calculates the encryption key Ke the same way the server did in steps 5 and 6, and uses
this to decrypt the encrypted response data. The serverfg value received in the response is used
in the calculation.

r ← 3DES(Ke, IV, e)
9. The client performs the calculation of the MAC m' in the same way the server did, and checks

that the results match the received MAC m. If they do not match, further processing is discarded.
The serverfg value received in the response is used in the calculation.

Ka ← SHA1({δ, c, s, A})

m' ← HMAC(Ka, e)

m' = m

Figure 110.3 Action Diagram for RSH

Remote ManagerOSGi framework

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret

110.8.1 Shared Secret
The shared secret should be a key of length 160 bits (20 bytes) or more. The length is selected to
match the output of the selected hash algorithm [2] NIST, FIPS PUB 180-1: Secure Hash Standard,
April 1995..

In some scenarios, the shared secret is generated by the Operator and communicated to the User,
who inserts the secret into the OSGi framework through some unspecified means.

The opposite is also possible: the shared secret can be stored within the OSGi framework, extract-
ed from it, and then communicated to the Operator. In this scenario, the source of the shared secret
could be either the OSGi framework or the Operator.

In order for the server to calculate the authentication and encryption keys, it requires the prop-
er shared secret. The server must have access to many different shared secrets, one for each OSGi
framework it is to support. To be able to resolve this issue, the server must typically also have access
to the OSGi framework Identifier of the OSGi framework. The normal way for the server to know
the OSGi framework Identifier is through the application protocol, as this value is part of the URL
encoded parameters of the HTTP, HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used. The new secret may be
generated by the new Operator and then inserted into the OSGi framework device using a mecha-
nism not covered by this specification. Or the device itself may generate the new secret and convey
it to the owner of the device using a display device or read-out, which is then communicated to the
new operator out-of-band. Additionally, the generation of the new secret may be triggered by some
external event, like holding down a button for a specified amount of time.

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2

Page 208 OSGi Residential Release 6

110.8.2 Request Coding
RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL encoded as discussed in
URL Encoding on page 205. RSH requires an additional parameter in the URL: the cl ientfg parame-
ter. This parameter is a nonce that is used to counter replay attacks. See also RSH Transport on page
208.

110.8.3 Response Coding
The server's response to the client is composed of three parts:

• A header containing the protocol version and the serverfg
• The MAC
• The encrypted response

These three items are packaged into a binary container according to Table 110.2.

Table 110.2 RSH Header description

Bytes Description Value hex
4 Number of bytes in header 2E
1 Major version number 01
1 Minor version number 00
16 serverfg ...
4 Number of bytes in MAC 10
16 Message Authentication Code MAC
4 Number of bytes of encrypted ZIP file N
N Encrypted ZIP file ...

The response content type is an RSH-specific encrypted ZIP file, implying that the response header
Content-Type must be appl icat ion/x-rsh for the HTTP request. When the content file is decrypted,
the content must be a ZIP file.

110.8.4 RSH URL
The RSH URL must be used internally within the OSGi framework to indicate the usage of RSH
for initial provisioning. The RSH URL format is identical to the HTTP URL format, except that the
scheme is rsh: instead of http: . For example (« means line continues on next line):

rsh://server.operator.com/service-x

110.8.5 Extensions to the Provisioning Service Dictionary
RSH specifies one additional entry for the Provisioning Dictionary:

PROVISIONING_RSH_SECRET

The value of this entry is a byte[] containing the shared secret used by the RSH protocol.

110.8.6 RSH Transport
RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules, except that the cl ientfg
is additionally appended to the URL. The key in the URL must be cl ientfg and the value must be en-
coded in base 64 format:

The cl ientfg parameter is transported as an HTTP parameter that is appended after the
service_platform_id parameter. The second example above would then be:

Initial Provisioning Specification Version 1.2 Exception Handling

OSGi Residential Release 6 Page 209

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x «
 service_platform_id=VIN:123456789& «
 clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

110.9 Exception Handling
The Initial Provisioning process is a sensitive process that must run without user supervision. There
is therefore a need to handle exceptional cases in a well defined way to simplify trouble shooting.

There are only 2 types of problems that halt the provisioning process. They are:

• IO Exception when reading or writing provisioning information.
• IO Exception when retrieving or processing a provisioning zip file.

Other exceptions can occur and the Provisioning Service must do any attempt to log these events.

In the cases that the provisioning process stops, it is important that the clients of the provisioning
service have a way to find out that the process is stopped. The mechanism that is used for this is a
special entry in the provisioning dictionary. The name of the entry must be provis ioning.error . The
value is a String object with the following format:

• Numeric error code
• Space
• A human readable string describing the error.

Permitted error codes are:

• 0 - Unknown error
• 1 - Couldn't load or save provisioning information
• 2 - Malformed URL Exception
• 3 - IO Exception when retrieving document of a URL
• 4 - Corrupted Zip Input Stream

The provisioning.update.count will be incremented as normal when a provis ioning.error entry is
added to the provisioning information. After, the provisioning service will take no further action.

Some examples:

0 SIM card removed
2 "http://www.acme.com/secure/blib/ifa.zip"

110.10 Security
The security model for the OSGi framework is based on the integrity of the Management Agent de-
ployment. If any of the mechanisms used during the deployment of management agents are weak,
or can be compromised, the whole security model becomes weak.

From a security perspective, one attractive means of information exchange would be a smart card.
This approach enables all relevant information to be stored in a single place. The Operator could
then provide the information to the OSGi framework by inserting the smart card into the OSGi
framework.

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2

Page 210 OSGi Residential Release 6

110.10.1 Concerns
The major security concerns related to the deployment of the Management Agent are:

• The OSGi framework is controlled by the intended Operator
• The Operator controls the intended OSGi framework(s)
• The integrity and confidentiality of the information exchange that takes place during these

processes must be considered

In order to address these concerns, an implementation of the OSGi Remote Management Architec-
ture must assure that:

• The Operator authenticates itself to the OSGi framework
• The OSGi framework authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates, and configuration data

are fully protected if they are transported over public transports.

Each mapping of the Initial Provisioning specification to a concrete implementation must describe
how these goals are met.

110.10.2 OSGi framework Long-Term Security
Secrets for long-term use may be exchanged during the Initial Provisioning procedures. This way,
one or more secrets may be shared securely, assuming that the Provisioning Dictionary assignments
used are implemented with the proper security characteristics.

110.10.3 Permissions
The provisioning information may contain sensitive information. Also, the ability to modify
provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register, or get the Provisioning Service. This restriction can be enforced using
ServicePermission[Provis ioningService, GET] .

No Permission classes guard reading or modification of the Provisioning Dictionary, so care must be
taken not to leak the Dictionary object received from the Provisioning Service to bundles that are
not trusted.

Whether message-based or connection-based, the communications used for Initial Provisioning
must support mutual authentication and message integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of establishing identity is
solved. In addition, HTTPS will encrypt the transmitted data. HTTPS requires a Public Key Infras-
tructure implementation in order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between the Operator and the OS-
Gi framework, and no one else.

110.11 org.osgi.service.provisioning

Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.provis ioning; vers ion="[1.2,2.0)"

Initial Provisioning Specification Version 1.2 org.osgi.service.provisioning

OSGi Residential Release 6 Page 211

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.provis ioning; vers ion="[1.2,1 .3)"

110.11.1 Summary

• Provis ioningService - Service for managing the initial provisioning information.

110.11.2 public interface ProvisioningService
Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culminates with the installation
and execution of the initial management agent. At each step of the process, information is collected
for the next step. Multiple bundles may be involved and this service provides a means for these bun-
dles to exchange information. It also provides a means for the initial Management Bundle to get its
initial configuration information.

The provisioning information is collected in a Dictionary object, called the Provisioning Dictionary.
Any bundle that can access the service can get a reference to this object and read and update provi-
sioning information. The key of the dictionary is a Str ing object and the value is a Str ing or byte[]
object. The single exception is the PROVISIONING_UPDATE_COUNT value which is an Integer.
The provis ioning prefix is reserved for keys defined by OSGi, other key names may be used for im-
plementation dependent provisioning systems.

Any changes to the provisioning information will be reflected immediately in all the dictionary ob-
jects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should be only one Provision-
ing Service registered. This restriction will not be enforced by the Framework. Gateway operators or
manufactures should ensure that a Provisioning Service bundle is not installed on a device that al-
ready has a bundle providing the Provisioning Service.

The provisioning information has the potential to contain sensitive information. Also, the ability to
modify provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register and get the Provisioning Service. The ServicePermission is used to limit the
bundles that can gain access to the Provisioning Service. There is no check of Permission objects to
read or modify the provisioning information, so care must be taken not to leak the Provisioning Dic-
tionary received from getInformation method.

No Implement Consumers of this API must not implement this interface

110.11.2.1 public static final String INITIALPROVISIONING_ENTRIES = "InitialProvisioning-Entries"

Name of the header that specifies the type information for the ZIP file entries.

Since 1.2

110.11.2.2 public static final String MIME_BUNDLE = "application/vnd.osgi.bundle"

MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file. Zip en-
tries of this type will be installed in the framework, but not started. The entry will also not be put in-
to the information dictionary.

110.11.2.3 public static final String MIME_BUNDLE_ALT = "application/x-osgi-bundle"

Alternative MIME type to be stored in the extra field of a ZipEntry object for an installable bundle
file. Zip entries of this type will be installed in the framework, but not started. The entry will also
not be put into the information dictionary. This alternative entry is only for backward compatibili-
ty, new applications are recommended to use MIME_BUNDLE , which is an official IANA MIME type.

Since 1.2

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2

Page 212 OSGi Residential Release 6

110.11.2.4 public static final String MIME_BUNDLE_URL = "text/x-osgi-bundle-url"

MIME type to be stored in the extra field of a ZipEntry for a String that represents a URL for a bun-
dle. Zip entries of this type will be used to install (but not start) a bundle from the URL. The entry
will not be put into the information dictionary.

110.11.2.5 public static final String MIME_BYTE_ARRAY = "application/octet-stream"

MIME type to be stored in the extra field of a ZipEntry object for byte[] data.

110.11.2.6 public static final String MIME_STRING = "text/plain;charset=utf-8"

MIME type to be stored in the extra field of a ZipEntry object for String data.

110.11.2.7 public static final String PROVISIONING_AGENT_CONFIG = "provisioning.agent.config"

The key to the provisioning information that contains the initial configuration information of the
initial Management Agent. The value will be of type byte[] .

110.11.2.8 public static final String PROVISIONING_REFERENCE = "provisioning.reference"

The key to the provisioning information that contains the location of the provision data provider.
The value must be of type Str ing .

110.11.2.9 public static final String PROVISIONING_ROOTX509 = "provisioning.rootx509"

The key to the provisioning information that contains the root X509 certificate used to establish
trust with operator when using HTTPS.

110.11.2.10 public static final String PROVISIONING_RSH_SECRET = "provisioning.rsh.secret"

The key to the provisioning information that contains the shared secret used in conjunction with
the RSH protocol.

110.11.2.11 public static final String PROVISIONING_SPID = "provisioning.spid"

The key to the provisioning information that uniquely identifies the Service Platform. The value
must be of type Str ing .

110.11.2.12 public static final String PROVISIONING_START_BUNDLE = "provisioning.start.bundle"

The key to the provisioning information that contains the location of the bundle to start with
AllPermission . The bundle must have be previously installed for this entry to have any effect.

110.11.2.13 public static final String PROVISIONING_UPDATE_COUNT = "provisioning.update.count"

The key to the provisioning information that contains the update count of the info data. Each set
of changes to the provisioning information must end with this value being incremented. The value
must be of type Integer . This key/value pair is also reflected in the properties of the ProvisioningSer-
vice in the service registry.

110.11.2.14 public void addInformation(Dictionary info)

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictio-
nary. Any keys are values that are of an invalid type will be silently ignored.

□ Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.11.2.15 public void addInformation(ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provisioning Information dic-
tionary and install and start bundles. If a ZipEntry does not have an Extra field that corresponds
to one of the four defined MIME types (MIME_STRING , MIME_BYTE_ARRAY , MIME_BUNDLE , and
MIME_BUNDLE_URL) in will be silently ignored.

Initial Provisioning Specification Version 1.2 References

OSGi Residential Release 6 Page 213

□ Processes the ZipInputStream and extracts information to add to the Provisioning Infor-
mation dictionary, as well as, install/update and start bundles. This method causes the
PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException– if an error occurs while processing the ZipInputStream. No additions will be made to
the Provisioning Information dictionary and no bundles must be started or installed.

110.11.2.16 public Dictionary getInformation()

□ Returns a reference to the Provisioning Dictionary. Any change operations (put and remove) to the
dictionary will cause an UnsupportedOperationException to be thrown. Changes must be done us-
ing the setInformation and addInformation methods of this service.

Returns A reference to the Provisioning Dictionary.

110.11.2.17 public void setInformation(Dictionary info)

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

□ Replaces the Provisioning Information dictionary with the key/value pairs contained in info . Any
key/value pairs not in info will be removed from the Provisioning Information dictionary. This
method causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.12 References
[1] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997.

[2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[3] Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[4] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000
http://www.ietf.org/rfc/rfc2818.txt.

[5] ZIP Archive format
http://www.pkware.com/support/zip-app-note/archives

[6] RFC 2396 - Uniform Resource Identifier (URI)
http://www.ietf.org/rfc/rfc2396.txt

[7] MIME Types
http://www.ietf.org/rfc/rfc2046.txt
http://www.iana.org/assignments/media-types

[8] 3DES
W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE Spectrum, v. 16, n. 7 July 1979,
pp40-41.

[9] RFC 1423 Part III: Algorithms, Modes, and Identifiers
http://www.ietf.org/rfc/rfc1423.txt

[10] PKCS 5
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[11] Java Cryptography API (part of Java 1.4)
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html/

[12] SHA-1
U.S. Government, Proposed Federal Information Processing Standard for Secure Hash Standard, Jan-
uary 1992

References Initial Provisioning Specification Version 1.2

Page 214 OSGi Residential Release 6

[13] Transport Layer Security
http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version 1.0, T. Dierks & C. Allen.

UPnP™ Device Service Specification Version 1.2 Introduction

OSGi Residential Release 6 Page 215

111 UPnP™ Device Service
Specification

Version 1.2

111.1 Introduction
The UPnP Device Architecture specification provides the protocols for a peer-to-peer network. It
specifies how to join a network and how devices can be controlled using XML messages sent over
HTTP. The OSGi specifications address how code can be download and managed in a remote system.
Both standards are therefore fully complimentary. Using an OSGi Framework to work with UPnP
enabled devices is therefore a very successful combination.

This specification specifies how OSGi bundles can be developed that interoperate with UPnP™
(Universal Plug and Play) devices and UPnP control points. The specification is based on the UPnP
Device Architecture and does not further explain the UPnP specifications. The UPnP specifications
are maintained by [1] UPnP Forum.

UPnP™ is a trademark of the UPnP Implementers Corporation.

111.1.1 Essentials

• Scope - This specification is limited to device control aspects of the UPnP specifications. Aspects
concerning the TCP/IP layer, like DHCP and limited TTL, are not addressed.

• Transparency - OSGi services should be made available to networks with UPnP enabled devices in
a transparent way.

• Network Selection - It must be possible to restrict the use of the UPnP protocols to a selection of the
connected networks. For example, in certain cases OSGi services that are UPnP enabled should
not be published to the Wide Area Network side of a gateway, nor should UPnP devices be detect-
ed on this WAN.

• Event handling - Bundles must be able to listen to UPnP events.
• Export OSGi services as UPnP devices - Enable bundles that make a service available to UPnP con-

trol points.
• Implement UPnP Control Points - Enable bundles that control UPnP devices.

111.1.2 Entities

• UPnP Base Driver - The bundle that implements the bridge between OSGi and UPnP networks.
This entity is not represented as a service.

• UPnP Root Device -A physical device can contain one or more root devices. Root devices contain
one ore more devices. A root device is modeled with a UPnPDevice object, there is no separate in-
terface defined for root devices.

• UPnP Device - The representation of a UPnP device. A UPnP device may contain other UPnP de-
vices and UPnP services. This entity is represented by a UPnPDevice object. A device can be local
(implemented in the Framework) or external (implemented by another device on the net).

Introduction UPnP™ Device Service Specification Version 1.2

Page 216 OSGi Residential Release 6

• UPnP Service -A UPnP device consists of a number of services. A UPnP service has a number of UP-
nP state variables that can be queried and modified with actions. This concept is represented by a
UPnPService object.

• UPnP Action - A UPnP service is associated with a number of actions that can be performed on
that service and that may modify the UPnP state variables. This entity is represented by a UPn-
PAction object.

• UPnP State Variable - A variable associated with a UPnP service, represented by a UPnPStateVari-
able object.

• UPnP Local State Variable - Extends the UPnPStateVariable interface when the state variable is im-
plemented locally. This interface provides access to the actual value.

• UPnP Event Listener Service - A listener to events coming from UPnP devices.
• UPnP Host - The machine that hosts the code to run a UPnP device or control point.
• UPnP Control Point - A UPnP device that is intended to control UPnP devices over a network. For

example, a UPnP remote controller.
• UPnP Icon - A representation class for an icon associated with a UPnP device.
• UPnP Exception - An exception that delivers errors that were discovered in the UPnP layer.
• UDN - Unique Device Name, a name that uniquely identifies the a specific device.

Figure 111.1 UPnP Service Specification class Diagram org.osgi.service.upnp package

<<interface>>
UPnP Service

a listener

<<interface>>
UPnP Action

<<interface>>
UPnP State
Variable

<<interface>>
UPnP Event
Listener

<<interface>>
UPnPIcon

A UPnP device
implementer

A UPnP control
point

A UPnP device
implementation

in parameter

out parm

has

1

1..n 0..n

1

10..n

11..n

UPnP Base Driver
Implementation

associated w
ith

has

has

registers getsregisters

receives events from

0..n

0..n

has

1..n

1

0..n

1

10..n

<<interface>>
UPnP Device

child

0..n

0,1

<<interface>>
UPnP Local
State Variable

receives events from

0..n

0..n

1 1

111.1.3 Operation Summary
To make a UPnP service available to UPnP control points on a network, an OSGi service object must
be registered under the UPnPDevice interface with the Framework. The UPnP driver bundle must de-

UPnP™ Device Service Specification Version 1.2 UPnP Specifications

OSGi Residential Release 6 Page 217

tect these UPnP Device services and must make them available to the network as UPnP devices us-
ing the UPnP protocol.

UPnP devices detected on the local network must be detected and automatically registered under
the UPnPDevice interface with the Framework by the UPnP driver implementation bundle.

A bundle that wants to control UPnP devices, for example to implement a UPnP control point,
should track UPnP Device services in the OSGi service registry and control them appropriately. Such
bundles should not distinguish between resident or remote UPnP Device services.

111.2 UPnP Specifications
The UPnP DA is intended to be used in a broad range of device from the computing (PCs printers),
consumer electronics (DVD, TV, radio), communication (phones) to home automation (lighting
control, security) and home appliances (refrigerators, coffee makers) domains.

For example, a UPnP TV might announce its existence on a network by broadcasting a message. A
UPnP control point on that network can then discover this TV by listening to those announce mes-
sages. The UPnP specifications allow the control point to retrieve information about the user inter-
face of the TV. This information can then be used to allow the end user to control the remote TV
from the control point, for example turn it on or change the channels.

The UPnP specification supports the following features:

• Detect and control a UPnP standardized device. In this case the control point and the remote device
share a priori knowledge about how the device should be controlled. The UPnP Forum intends to
define a large number of these standardized devices.

• Use a user interface description. A UPnP control point receives enough information about a device
and its services to automatically build a user interface for it.

• Programmatic Control. A program can directly control a UPnP device without a user interface.
This control can be based on detected information about the device or through a priori knowl-
edge of the device type.

• Allows the user to browse a web page supplied by the device. This web page contains a user interface
for the device that be directly manipulated by the user. However, this option is not well defined
in the UPnP Device Architecture specification and is not tested for compliance.

The UPnP Device Architecture specification and the OSGi Framework provide complementary func-
tionality. The UPnP Device Architecture specification is a data communication protocol that does
not specify where and how programs execute. That choice is made by the implementations. In con-
trast, the OSGi Framework specifies a (managed) execution point and does not define what proto-
cols or media are supported. The UPnP specification and the OSGi specifications are fully comple-
mentary and do not overlap.

From the OSGi perspective, the UPnP specification is a communication protocol that can be imple-
mented by one or more bundles. This specification therefore defines the following:

• How an OSGi bundle can implement a service that is exported to the network via the UPnP pro-
tocols.

• How to find and control services that are available on the local network.

The UPnP specifications related to the assignment of IP addresses to new devices on the network or
auto-IP self configuration should be handled at the operating system level. Such functions are out-
side the scope of this specification.

UPnP Device UPnP™ Device Service Specification Version 1.2

Page 218 OSGi Residential Release 6

111.2.1 UPnP Base Driver
The functionality of the UPnP service is implemented in a UPnP base driver. This is a bundle that im-
plements the UPnP protocols and handles the interaction with bundles that use the UPnP devices. A
UPnP base driver bundle must provide the following functions:

• Discover UPnP devices on the network and map each discovered device into an OSGi registered
UPnP Device service.

• Present UPnP marked services that are registered with the OSGi Framework on one or more net-
works to be used by other computers.

111.3 UPnP Device
The principle entity of the UPnP specification is the UPnP device. There is a UPnP root device that
represents a physical appliance, such as a complete TV. The root device contains a number of sub-de-
vices. These might be the tuner, the monitor, and the sound system. Each sub-device is further com-
posed of a number of UPnP services. A UPnP service represents some functional unit in a device. For
example, in a TV tuner it can represent the TV channel selector. Figure 111.2 on page 218 illus-
trates this hierarchy.

Figure 111.2 UPnP device hierarchy

Network

UPnP root device

UPnP device

UPnP service

UPnP Action

Each UPnP service can be manipulated with a number of UPnP actions. UPnP actions can modify
the state of a UPnP state variable that is associated with a service. For example, in a TV there might
be a state variable volume. There are then actions to set the volume, to increase the volume, and to
decrease the volume.

111.3.1 Root Device
The UPnP root device is registered as a UPnP Device service with the Framework, as well as all its
sub-devices. Most applications will work with sub-devices, and, as a result, the children of the root
device are registered under the UPnPDevice interface.

UPnP device properties are defined per sub-device in the UPnP specification. These properties must
be registered with the OSGi Framework service registry so they are searchable.

Bundles that want to handle the UPnP device hierarchy can use the registered service properties to
find the parent of a device (which is another registered UPnPDevice).

The following service registration properties can be used to discover this hierarchy:

UPnP™ Device Service Specification Version 1.2 Device Category

OSGi Residential Release 6 Page 219

• PARENT_UDN - (Str ing) The Universal Device Name (UDN) of the parent device. A root device
most not have this property registered. Type is a Str ing object.

• CHILDREN_UDN - (Str ing[]) An array of UDNs of this device's children.

111.3.2 Exported Versus Imported Devices
Both imported (from the network to the OSGi service registry) and exported (from the service reg-
istry to the network) UPnPDevice services must have the same representation in the OSGi Frame-
work for identical devices. For example, if an OSGi UPnP Device service is exported as a UPnP device
from an OSGi Framework to the network, and it is imported into another OSGi Framework, the ob-
ject representation should be equal. Application bundles should therefore be able to interact with
imported and exported forms of the UPnP device in the same manner.

Imported and exported UPnP devices differ only by two marker properties that can be added to the
service registration. One marker, DEVICE_CATEGORY , should typically be set only on imported de-
vices. By not setting DEVICE_CATEGORY on internal UPnP devices, the Device Manager does not
try to refine these devices (See the Device Access Specification on page 75 for more information about
the Device Manager). If the device service does not implement the Device interface and does not
have the DEVICE_CATEGORY property set, it is not considered a device according to the Device Ac-
cess Specification.

The other marker, UPNP_EXPORT , should only be set on internally created devices that the bundle
developer wants to export. By not setting UPNP_EXPORT on registered UPnP Device services, the UP-
nP Device service can be used by internally created devices that should not be exported to the net-
work. This allows UPnP devices to be simulated within an OSGi Framework without announcing all
of these devices to any networks.

The UPNP_EXPORT service property has no defined type, any value is correct.

111.3.3 Icons
A UPnP device can optionally support an icon. The purpose of this icon is to identify the device on
a UPnP control point. UPnP control points can be implemented in large computers like PC's or sim-
ple devices like a remote control. However, the graphic requirements for these UPnP devices differ
tremendously. The device can, therefore, export a number of icons of different size and depth.

In the UPnP specifications, an icon is represented by a URL that typically refers to the device itself.
In this specification, a list of icons is available from the UPnP Device service.

In order to obtain localized icons, the method getIcons(Str ing) can be used to obtain different ver-
sions. If the locale specified is a nul l argument, then the call returns the icons of the default locale of
the called device (not the default locale of the UPnP control point).When a bundle wants to access
the icon of an imported UPnP device, the UPnP driver gets the data and presents it to the application
through an input stream.

A bundle that needs to export a UPnP Device service with one or more icons must provide an imple-
mentation of the UPnPIcon interface. This implementation must provide an InputStream object to
the actual icon data. The UPnP driver bundle must then register this icon with an HTTP server and
include the URL to the icon with the UPnP device data at the appropriate place.

111.4 Device Category
UPnP Device services are devices in the context of the Device Manager. This means that these ser-
vices need to register with a number of properties to participate in driver refinement. The value for
UPnP devices is defined in the UPnPDevice constant DEVICE_CATEGORY . The value is UPnP . The UP-
nPDevice interface contains a number of constants for matching values. Refer to MATCH_GENERIC
for further information.

UPnPService UPnP™ Device Service Specification Version 1.2

Page 220 OSGi Residential Release 6

111.5 UPnPService
A UPnP Device contains a number of UPnPService objects. UPnPService objects combine zero or
more actions and one or more state variables.

111.5.1 State Variables
The UPnPStateVariable interface encapsulates the properties of a UPnP state variable. In addition
to the properties defined by the UPnP specification, a state variable is also mapped to a Java data
type. The Java data type is used when an event is generated for this state variable and when an ac-
tion is performed containing arguments related to this state variable. There must be a strict corre-
spondence between the UPnP data type and the Java data type so that bundles using a particular UP-
nP device profile can predict the precise Java data type.

The function QueryStateVariable defined in the UPnP specification has been deprecated and is
therefore not implemented. It is recommended to use the UPnP event mechanism to track UPnP
state variables.

Additionally, a UPnPStateVariableobject can also implement the UPnPLocalStateVariable interface
if the device is implemented locally. That is, the device is not imported from the network. The UP-
nPLocalStateVariable interface provides a getCurrentValue() method that provides direct access to
the actual value of the state variable.

111.6 Working With a UPnP Device
The UPnP driver must register all discovered UPnP devices in the local networks. These devices are
registered under a UPnPDevice interface with the OSGi Framework.

Using a remote UPnP device thus involves tracking UPnP Device services in the OSGi service reg-
istry. The following code illustrates how this can be done. The sample Control ler class extends the
ServiceTracker class so that it can track all UPnP Device services and add them to a user interface,
such as a remote controller application.

class Controller extends ServiceTracker {
 UI ui;

 Controller(BundleContext context) {
 super(context, UPnPDevice.class.getName(), null);
 }
 public Object addingService(ServiceReference ref) {
 UPnPDevice dev = (UPnPDevice)super.addingService(ref);
 ui.addDevice(dev);
 return dev;
 }
 public void removedService(ServiceReference ref,
 Object dev) {
 ui.removeDevice((UPnPDevice) dev);
 }
 ...
}

UPnP™ Device Service Specification Version 1.2 Implementing a UPnP Device

OSGi Residential Release 6 Page 221

111.7 Implementing a UPnP Device
OSGi services can also be exported as UPnP devices to the local networks, in a way that is transpar-
ent to typical UPnP devices. This allows developers to bridge legacy devices to UPnP networks. A
bundle should perform the following to export an OSGi service as a UPnP device:

• Register an UPnP Device service with the registration property UPNP_EXPORT .
• Use the registration property PRESENTATION_URL to provide the presentation page. The service

implementer must register its own servlet with the Http Service to serve out this interface. This
URL must point to that servlet.

There can be multiple UPnP root devices hosted by one OSGi platform. The relationship between
the UPnP devices and the OSGi platform is defined by the PARENT_UDN and CHILDREN_UDN service
properties. The bundle registering those device services must make sure these properties are set ac-
cordingly.

Devices that are implemented on the OSGi Framework (in contrast with devices that are imported
from the network) should use the UPnPLocalStateVariable interface for their state variables instead
of the UPnPStateVariable interface. This interface provides programmatic access to the actual value
of the state variable as maintained by the device specific code.

111.8 Event API
There are two distinct event directions for the UPnP Service specification.

• External events from the network must be dispatched to listeners inside the OSGi Frameworks.
The UPnP Base driver is responsible for mapping the network events to internal listener events.

• Implementations of UPnP devices must send out events to local listeners as well as cause the
transmission of the UPnP network events.

UPnP events are sent using the whiteboard model, in which a bundle interested in receiving the UP-
nP events registers an object implementing the UPnPEventListener interface. A filter can be set to
limit the events for which a bundle is notified. The UPnP Base driver must register a UPnP Event Lis-
ter without filter that receives all events.

Figure 111.3 Event Dispatching for Local and External Devices

<<service>>
UPnP Event
Listener

Local Device

UPnP Base Driver

send events to

get events from

multicast
network

receive

send

0,10..n

0..n

1

If a service is registered with a property named upnp.fi l ter with the value of an instance of an Fi l-
ter object, the listener is only notified for matching events (This is a Fi l ter object and not a Str ing ob-
ject because it allows the Inval idSyntaxException to be thrown in the client and not the UPnP driver
bundle).

UPnP Events and Event Admin service UPnP™ Device Service Specification Version 1.2

Page 222 OSGi Residential Release 6

The filter might refer to any valid combination of the following pseudo properties for event filter-
ing:

• UPnPDevice.UDN - (UPnP.device.UDN/Str ing) Only events generated by services contained
in the specific device are delivered. For example: (UPnP.device.UDN=uuid:Upnp-TVEmula-
tor-1_0-1234567890001)

• UPnPDevice.TYPE - (UPnP.device.type/Str ing or Str ing[]) Only events generated by services con-
tained in a device of the given type are delivered. For example: (UPnP.device.type=urn:schemas-
upnp-org:device:tvdevice:1)

• UPnPService. ID - (UPnP.service. id/Str ing) Service identity. Only events generated by services
matching the given service ID are delivered.

• UPnPService.TYPE - (UPnP.service.type/Str ing or Str ing[]) Only events generated by services of
the given type are delivered.

If an event is generated by either a local device or via the base driver for an external device, the
notifyUPnPEvent(Str ing,Str ing,Dict ionary) method is called on all registered UPnPEventListener
services for which the optional filter matches for that event. If no filter is specified, all events must
be delivered. If the filter does not match, the UPnP Driver must not call the UPnP Event Listener ser-
vice. The way events must be delivered is the same as described in Delivering Events of OSGi Core Re-
lease 6.

One or multiple events are passed as parameters to the notifyUPnPEvent(Str ing,Str ing,Dict ionary)
method. The Dictionary object holds a pair of UpnPStateVariable objects that triggered the event
and an Object for the new value of the state variable.

111.8.1 Initial Event Delivery
Special care must be taken with the initial subscription to events. According to the UPnP specifi-
cation, when a client subscribes for notification of events for the first time, the device sends out a
number of events for each state variable, indicating the current value of each state variable. This be-
havior simplifies the synchronization of a device and an event-driven client.

The UPnP Base Driver must mimic this event distribution on behalf of external devices. It must
therefore remember the values of the state variables of external devices. A UPnP Device implemen-
tation must send out these initial events for each state variable they have a value for.

The UPnP Base Driver must have stored the last event from the device and retransmit the value over
the multicast network. The UPnP Driver must register an event listener without any filter for this
purpose.

The call to the listener's notification method must be done asynchronously.

111.9 UPnP Events and Event Admin service
UPnP events must be delivered asynchronously to the Event Admin service by the UPnP implemen-
tation, if present. UPnP events have the following topic:

org/osgi/service/upnp/UPnPEvent

The properties of a UPnP event are the following:

• upnp.deviceId - (Str ing) The identity as defined by UPnPDevice.UDN of the device sending the
event.

• upnp.serviceId - (Str ing) The identity of the service sending the events.
• upnp.events - (Dict ionary) A Dictionary object containing the new values for the state variables

that have changed.

UPnP™ Device Service Specification Version 1.2 Localization

OSGi Residential Release 6 Page 223

111.10 Localization
All values of the UPnP properties are obtained from the device using the device's default lo-
cale. If an application wants to query a set of localized property values, it has to use the method
getDescr ipt ions(Str ing) . For localized versions of the icons, the method getIcons(Str ing) is to be
used.

111.11 Dates and Times
The UPnP specification uses different types for date and time concepts. An overview of these types is
given in the following table.

Table 111.1 Mapping UPnP Date/Time types to Java

UPnP Type Class Example Value (TZ=CEST=UTC+0200)
date Date 1985-04-12 Sun Apri l 12 00:00:00 CEST 1985
dateTime Date 1985-04-12T10:15:30 Sun Apri l 12 10:15:30 CEST 1985
dateTime.tz Date 1985-04-12T10:15:30+0400 Sun Apri l 12 08:15:30 CEST 1985
time Long 23:20:50 84.050.000 (ms)
t ime.tz Long 23:20:50+0100 1.250.000 (ms)

The UPnP specification points to [2] XML Schema. In this standard, [3] ISO 8601 Date And Time
formats are referenced. The mapping is not completely defined which means that this OSGi UP-
nP specification defines a complete mapping to Java classes. The UPnP types date , dateTime and
dateTime.tz are represented as a Date object. For the date type, the hours, minutes and seconds must
all be zero.

The UPnP types t ime and t ime.tz are represented as a Long object that represents the number of ms
since midnight. If the time wraps to the next day due to a time zone value, then the final value must
be truncated modulo 86.400.000.

See also TYPE_DATE .

111.12 UPnP Exception
The UPnP Exception can be thrown when a UPnPAction is invoked. This exception contains infor-
mation about the different UPnP layers. The following errors are defined:

INVALID_ACTION - (401) No such action could be found.

INVALID_ARGS - (402) Invalid argument.

INVALID_SEQUENCE_NUMBER - (403) Out of synchronization.

INVALID_VARIABLE - (404) State variable not found.

DEVICE_INTERNAL_ERROR - (501) Internal error.

Further errors are categorized as follows:

• Common Action Errors - In the range of 600-69 , defined by the UPnP Forum Technical Committee.
• Action Specific Errors - In the range of 700-799, defined by the UPnP Forum Working Committee.
• Non-Standard Action Specific Errors - In the range of 800-899. Defined by vendors.

Configuration UPnP™ Device Service Specification Version 1.2

Page 224 OSGi Residential Release 6

111.13 Configuration
In order to provide a standardized way to configure a UPnP driver bundle, the Configuration Admin
property upnp.ssdp.address is defined.

The value is a Str ing[] with a list of IP addresses, optionally followed with a colon (' : ' \u003A) and a
port number. For example:

239.255.255.250:1900

Those addresses define the interfaces which the UPnP driver is operating on. If no SSDP address is
specified, the default assumed will be 239.255.255.250:1900. If no port is specified, port 1900 is as-
sumed as default.

111.14 Networking considerations

111.14.1 The UPnP Multicasts
The operating system must support multicasting on the selected network device. In certain cases, a
multicasting route has to be set in the operating system routing table.

These configurations are highly dependent on the underlying operating system and beyond the
scope of this specification.

111.15 Security
The UPnP specification is based on HTTP and uses plain text SOAP (XML) messages to control de-
vices. For this reason, it does not provide any inherent security mechanisms. However, the UPnP
specification is based on the exchange of XML files and not code. This means that at least worms
and viruses cannot be implemented using the UPnP protocols.

However, a bundle registering a UPnP Device service is represented on the outside network and has
the ability to communicate. The same is true for getting a UPnP Device service. It is therefore recom-
mended that ServicePermission[UPnPDevice|UPnPEventListener, REGISTER|GET] be used sparingly
and only for bundles that are trusted.

111.16 org.osgi.service.upnp

UPnP Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.upnp; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.upnp; vers ion="[1.2,1 .3)"

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 225

111.16.1 Summary

• UPnPAction - A UPnP action.
• UPnPDevice - Represents a UPnP device.
• UPnPEventListener - UPnP Events are mapped and delivered to applications according to the OS-

Gi whiteboard model.
• UPnPException - There are several defined error situations describing UPnP problems while a

control point invokes actions to UPnPDevices.
• UPnPIcon - A UPnP icon representation.
• UPnPLocalStateVariable - A local UPnP state variable which allows the value of the state vari-

able to be queried.
• UPnPService - A representation of a UPnP Service.
• UPnPStateVariable - The meta-information of a UPnP state variable as declared in the device's

service state table (SST).

111.16.2 public interface UPnPAction
A UPnP action. Each UPnP service contains zero or more actions. Each action may have zero or more
UPnP state variables as arguments.

111.16.2.1 public String[] getInputArgumentNames()

□ Lists all input arguments for this action.

Each action may have zero or more input arguments.

This method must continue to return the action input argument names after the UPnP action has
been removed from the network.

Returns Array of input argument names or nul l if no input arguments.

See Also UPnPStateVariable

111.16.2.2 public String getName()

□ Returns the action name. The action name corresponds to the name field in the actionList of the ser-
vice description.

• For standard actions defined by a UPnP Forum working committee, action names must not begin
with X_ nor A_ .

• For non-standard actions specified by a UPnP vendor and added to a standard service, action
names must begin with X_ .

This method must continue to return the action name after the UPnP action has been removed from
the network.

Returns Name of action, must not contain a hyphen character or a hash character

111.16.2.3 public String[] getOutputArgumentNames()

□ List all output arguments for this action.

This method must continue to return the action output argument names after the UPnP action has
been removed from the network.

Returns Array of output argument names or nul l if there are no output arguments.

See Also UPnPStateVariable

111.16.2.4 public String getReturnArgumentName()

□ Returns the name of the designated return argument.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 226 OSGi Residential Release 6

One of the output arguments can be flagged as a designated return argument.

This method must continue to return the action return argument name after the UPnP action has
been removed from the network.

Returns The name of the designated return argument or nul l if none is marked.

111.16.2.5 public UPnPStateVariable getStateVariable(String argumentName)

argumentName The name of the UPnP action argument.

□ Finds the state variable associated with an argument name. Helps to resolve the association of state
variables with argument names in UPnP actions.

Returns State variable associated with the named argument or nul l if there is no such argument.

Throws I l legalStateException– if the UPnP action has been removed from the network.

See Also UPnPStateVariable

111.16.2.6 public Dictionary invoke(Dictionary args) throws Exception

args A Dictionary of arguments. Must contain the correct set and type of arguments for this action. May
be nul l if no input arguments exist.

□ Invokes the action. The input and output arguments are both passed as Dictionary objects. Each en-
try in the Dictionary object has a Str ing object as key representing the argument name and the val-
ue is the argument itself. The class of an argument value must be assignable from the class of the as-
sociated UPnP state variable. The input argument Dictionary object must contain exactly those ar-
guments listed by getInputArguments method. The output argument Dictionary object will contain
exactly those arguments listed by getOutputArguments method.

Returns A Dictionary with the output arguments. nul l if the action has no output arguments.

Throws UPnPException– A UPnP error has occurred.

I l legalStateException– if the UPnP action has been removed from the network.

Exception– The execution fails for some reason.

See Also UPnPStateVariable

111.16.3 public interface UPnPDevice
Represents a UPnP device. For each UPnP root and embedded device, an object is registered with the
framework under the UPnPDevice interface.

The relationship between a root device and its embedded devices can be deduced using the
UPnPDevice.CHILDREN_UDN and UPnPDevice.PARENT_UDN service registration properties.

The values of the UPnP property names are defined by the UPnP Forum.

All values of the UPnP properties are obtained from the device using the device's default locale.

If an application wants to query for a set of localized property values, it has to use the method
UPnPDevice.getDescr ipt ions(Str ing locale) .

111.16.3.1 public static final String CHILDREN_UDN = "UPnP.device.childrenUDN"

The property key that must be set for all devices containing other embedded devices.

The value is an array of UDNs for each of the device's children (Str ing[]). The array contains UDNs
for the immediate descendants only.

If an embedded device in turn contains embedded devices, the latter are not included in the array.

The UPnP Specification does not encourage more than two levels of nesting.

The property is not set if the device does not contain embedded devices.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 227

The property is of type Str ing[] . Value is "UPnP.device.childrenUDN"

111.16.3.2 public static final String DEVICE_CATEGORY = "UPnP"

Constant for the value of the service property DEVICE_CATEGORY used for all UPnP devices. Value is
"UPnP".

See Also org.osgi .service.device.Constants.DEVICE_CATEGORY

111.16.3.3 public static final String FRIENDLY_NAME = "UPnP.device.friendlyName"

Mandatory property key for a short user friendly version of the device name. The property value
holds a Str ing object with the user friendly name of the device. Value is "UPnP.device.friendlyName".

111.16.3.4 public static final String ID = "UPnP.device.UDN"

Property key for the Unique Device ID property. This property is an alias to UPnPDevice.UDN . It is
merely provided for reasons of symmetry with the UPnPService. ID property. The value of the prop-
erty is a Str ing object of the Device UDN. The value of the key is "UPnP.device.UDN".

111.16.3.5 public static final String MANUFACTURER = "UPnP.device.manufacturer"

Mandatory property key for the device manufacturer's property. The property value holds a String
representation of the device manufacturer's name. Value is "UPnP.device.manufacturer".

111.16.3.6 public static final String MANUFACTURER_URL = "UPnP.device.manufacturerURL"

Optional property key for a URL to the device manufacturers Web site. The value of the property is a
Str ing object representing the URL. Value is "UPnP.device.manufacturerURL".

111.16.3.7 public static final int MATCH_GENERIC = 1

Constant for the UPnP device match scale, indicating a generic match for the device. Value is 1.

111.16.3.8 public static final int MATCH_MANUFACTURER_MODEL = 7

Constant for the UPnP device match scale, indicating a match with the device model. Value is 7.

111.16.3.9 public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15

Constant for the UPnP device match scale, indicating a match with the device revision. Value is 15.

111.16.3.10 public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31

Constant for the UPnP device match scale, indicating a match with the device revision and the serial
number. Value is 31.

111.16.3.11 public static final int MATCH_TYPE = 3

Constant for the UPnP device match scale, indicating a match with the device type. Value is 3.

111.16.3.12 public static final String MODEL_DESCRIPTION = "UPnP.device.modelDescription"

Optional (but recommended) property key for a Str ing object with a long description of the device
for the end user. The value is "UPnP.device.modelDescription".

111.16.3.13 public static final String MODEL_NAME = "UPnP.device.modelName"

Mandatory property key for the device model name. The property value holds a Str ing object giving
more information about the device model. Value is "UPnP.device.modelName".

111.16.3.14 public static final String MODEL_NUMBER = "UPnP.device.modelNumber"

Optional (but recommended) property key for a Str ing class typed property holding the model num-
ber of the device. Value is "UPnP.device.modelNumber".

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 228 OSGi Residential Release 6

111.16.3.15 public static final String MODEL_URL = "UPnP.device.modelURL"

Optional property key for a Str ing typed property holding a string representing the URL to the Web
site for this model. Value is "UPnP.device.modelURL".

111.16.3.16 public static final String PARENT_UDN = "UPnP.device.parentUDN"

The property key that must be set for all embedded devices. It contains the UDN of the parent de-
vice. The property is not set for root devices. The value is "UPnP.device.parentUDN".

111.16.3.17 public static final String PRESENTATION_URL = "UPnP.presentationURL"

Optional (but recommended) property key for a Str ing typed property holding a string representing
the URL to a device representation Web page. Value is "UPnP.presentationURL".

111.16.3.18 public static final String SERIAL_NUMBER = "UPnP.device.serialNumber"

Optional (but recommended) property key for a Str ing typed property holding the serial number of
the device. Value is "UPnP.device.serialNumber".

111.16.3.19 public static final String TYPE = "UPnP.device.type"

Property key for the UPnP Device Type property. Some standard property values are defined by the
Universal Plug and Play Forum. The type string also includes a version number as defined in the UP-
nP specification. This property must be set.

For standard devices defined by a UPnP Forum working committee, this must consist of the follow-
ing components in the given order separated by colons:

• urn
• schemas-upnp-org
• device
• a device type suffix
• an integer device version

For non-standard devices specified by UPnP vendors following components must be specified in the
given order separated by colons:

• urn
• an ICANN domain name owned by the vendor
• device
• a device type suffix
• an integer device version

To allow for backward compatibility the UPnP driver must automatically generate additional De-
vice Type property entries for smaller versions than the current one. If for example a device an-
nounces its type as version 3, then properties for versions 2 and 1 must be automatically generated.

In the case of exporting a UPnPDevice, the highest available version must be announced on the net-
work.

Syntax Example: urn:schemas-upnp-org:device:deviceType:v

The value is "UPnP.device.type".

111.16.3.20 public static final String UDN = "UPnP.device.UDN"

Property key for the Unique Device Name (UDN) property. It is the unique identifier of an instance
of a UPnPDevice . The value of the property is a Str ing object of the Device UDN. Value of the key is
"UPnP.device.UDN". This property must be set.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 229

111.16.3.21 public static final String UPC = "UPnP.device.UPC"

Optional property key for a Str ing typed property holding the Universal Product Code (UPC) of the
device. Value is "UPnP.device.UPC".

111.16.3.22 public static final String UPNP_EXPORT = "UPnP.export"

The UPnP.export service property is a hint that marks a device to be picked up and exported by the
UPnP Service. Imported devices do not have this property set. The registered property requires no
value.

The UPNP_EXPORT string is "UPnP.export".

111.16.3.23 public Dictionary getDescriptions(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include "de", "en" or "
en-US". The default locale of the device is specified by passing a nul l argument.

□ Get a set of localized UPnP properties. The UPnP specification allows a device to present different
device properties based on the client's locale. The properties used to register the UPnPDevice service
in the OSGi registry are based on the device's default locale. To obtain a localized set of the proper-
ties, an application can use this method.

Not all properties might be available in all locales. This method does not substitute missing proper-
ties with their default locale versions.

This method must continue to return the properties after the UPnP device has been removed from
the network.

Returns Dictionary mapping property name Strings to property value Strings

111.16.3.24 public UPnPIcon[] getIcons(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include "de", "en" or "
en-US". The default locale of the device is specified by passing a nul l argument.

□ Lists all icons for this device in a given locale. The UPnP specification allows a device to present dif-
ferent icons based on the client's locale.

Returns Array of icons or null if no icons are available.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.3.25 public UPnPService getService(String serviceId)

serviceId The service id

□ Locates a specific service by its service id.

Returns The requested service or null if not found.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.3.26 public UPnPService[] getServices()

□ Lists all services provided by this device.

Returns Array of services or nul l if no services are available.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.4 public interface UPnPEventListener
UPnP Events are mapped and delivered to applications according to the OSGi whiteboard model.
An application that wishes to be notified of events generated by a particular UPnP Device registers a
service extending this interface.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 230 OSGi Residential Release 6

The notification call from the UPnP Service to any UPnPEventListener object must be done asyn-
chronous with respect to the originator (in a separate thread).

Upon registration of the UPnP Event Listener service with the Framework, the service is notified for
each variable which it listens for with an initial event containing the current value of the variable.
Subsequent notifications only happen on changes of the value of the variable.

A UPnP Event Listener service filter the events it receives. This event set is limited using a standard
framework filter expression which is specified when the listener service is registered.

The filter is specified in a property named "upnp.filter" and has as a value an object of type
org.osgi .f ramework.Fi l ter .

When the Filter is evaluated, the following keywords are recognized as defined as literal constants
in the UPnPDevice class.

The valid subset of properties for the registration of UPnP Event Listener services are:

• UPnPDevice.TYPE -- Which type of device to listen for events.
• UPnPDevice. ID -- The ID of a specific device to listen for events.
• UPnPService.TYPE -- The type of a specific service to listen for events.
• UPnPService. ID -- The ID of a specific service to listen for events.

111.16.4.1 public static final String UPNP_FILTER = "upnp.filter"

Key for a service property having a value that is an object of type org.osgi .f ramework.Fi l ter and that
is used to limit received events.

111.16.4.2 public void notifyUPnPEvent(String deviceId,String serviceId,Dictionary events)

deviceId ID of the device sending the events

serviceId ID of the service sending the events

events Dictionary object containing the new values for the state variables that have changed.

□ Callback method that is invoked for received events. The events are collected in a Dictionary object.
Each entry has a Str ing key representing the event name (= state variable name) and the new value
of the state variable. The class of the value object must match the class specified by the UPnP State
Variable associated with the event. This method must be called asynchronously

111.16.5 public class UPnPException
extends Exception
There are several defined error situations describing UPnP problems while a control point invokes
actions to UPnPDevices.

Since 1.1

111.16.5.1 public static final int DEVICE_INTERNAL_ERROR = 501

The invoked action failed during execution.

111.16.5.2 public static final int INVALID_ACTION = 401

No Action found by that name at this service.

111.16.5.3 public static final int INVALID_ARGS = 402

Not enough arguments, too many arguments with a specific name, or one of more of the arguments
are of the wrong type.

111.16.5.4 public static final int INVALID_SEQUENCE_NUMBER = 403

The different end-points are no longer in synchronization.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 231

111.16.5.5 public static final int INVALID_VARIABLE = 404

Refers to a non existing variable.

111.16.5.6 public UPnPException(int errorCode,String errorDescription)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of problem.

□ This constructor creates a UPnPException on the specified error code and error description.

111.16.5.7 public UPnPException(int errorCode,String errorDescription,Throwable errorCause)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of the problem.

errorCause cause of that UPnPException .

□ This constructor creates a UPnPException on the specified error code, error description and error
cause.

Since 1.2

111.16.5.8 public int getUPnPError_Code()

□ Returns the UPnPError Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Deprecated As of version 1.2, replaced by getUPnPErrorCode()

111.16.5.9 public int getUPnPErrorCode()

□ Returns the UPnP Error Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Since 1.2

111.16.6 public interface UPnPIcon
A UPnP icon representation. Each UPnP device can contain zero or more icons.

111.16.6.1 public int getDepth()

□ Returns the color depth of the icon in bits.

This method must continue to return the icon depth after the UPnP device has been removed from
the network.

Returns The color depth in bits. If the actual color depth of the icon is unknown, -1 is returned.

111.16.6.2 public int getHeight()

□ Returns the height of the icon in pixels. If the actual height of the icon is unknown, -1 is returned.

This method must continue to return the icon height after the UPnP device has been removed from
the network.

Returns The height in pixels, or -1 if unknown.

111.16.6.3 public InputStream getInputStream() throws IOException

□ Returns an InputStream object for the icon data. The InputStream object provides a way for a client
to read the actual icon graphics data. The number of bytes available from this InputStream object
can be determined via the getSize() method. The format of the data encoded can be determined by
the MIME type available via the getMimeType() method.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 232 OSGi Residential Release 6

Returns An InputStream to read the icon graphics data from.

Throws IOException– If the InputStream cannot be returned.

I l legalStateException– if the UPnP device has been removed from the network.

See Also UPnPIcon.getMimeType()

111.16.6.4 public String getMimeType()

□ Returns the MIME type of the icon. This method returns the format in which the icon graphics, read
from the InputStream object obtained by the getInputStream() method, is encoded.

The format of the returned string is in accordance to RFC2046. A list of valid MIME types is main-
tained by the IANA [http://www.iana.org/assignments/media-types/].

Typical values returned include: "image/jpeg" or "image/gif"

This method must continue to return the icon MIME type after the UPnP device has been removed
from the network.

Returns The MIME type of the encoded icon.

111.16.6.5 public int getSize()

□ Returns the size of the icon in bytes. This method returns the number of bytes of the icon available
to read from the InputStream object obtained by the getInputStream() method. If the actual size can
not be determined, -1 is returned.

Returns The icon size in bytes, or -1 if the size is unknown.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.6.6 public int getWidth()

□ Returns the width of the icon in pixels. If the actual width of the icon is unknown, -1 is returned.

This method must continue to return the icon width after the UPnP device has been removed from
the network.

Returns The width in pixels, or -1 if unknown.

111.16.7 public interface UPnPLocalStateVariable
extends UPnPStateVariable
A local UPnP state variable which allows the value of the state variable to be queried.

Since 1.1

111.16.7.1 public Object getCurrentValue()

□ This method will keep the current values of UPnPStateVariables of a UPnPDevice whenever
UPnPStateVariable's value is changed , this method must be called.

Returns Object current value of UPnPStateVariable. if the current value is initialized with the default value
defined UPnP service description.

Throws I l legalStateException– if the UPnP state variable has been removed.

111.16.8 public interface UPnPService
A representation of a UPnP Service. Each UPnP device contains zero or more services. The UPnP de-
scription for a service defines actions, their arguments, and event characteristics.

111.16.8.1 public static final String ID = "UPnP.service.id"

Property key for the optional service id. The service id property is used when registering UPnP De-
vice services or UPnP Event Listener services. The value of the property contains a Str ing array

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 233

(Str ing[]) of service ids. A UPnP Device service can thus announce what service ids it contains. A
UPnP Event Listener service can announce for what UPnP service ids it wants notifications. A ser-
vice id does not have to be universally unique. It must be unique only within a device. A nul l value
is a wildcard, matching all services. The value is "UPnP.service.id".

111.16.8.2 public static final String TYPE = "UPnP.service.type"

Property key for the optional service type uri. The service type property is used when registering UP-
nP Device services and UPnP Event Listener services. The property contains a Str ing array (Str ing[])
of service types. A UPnP Device service can thus announce what types of services it contains. A UP-
nP Event Listener service can announce for what type of UPnP services it wants notifications. The
service version is encoded in the type string as specified in the UPnP specification. A nul l value is a
wildcard, matching all service types. Value is "UPnP.service.type".

See Also UPnPService.getType()

111.16.8.3 public UPnPAction getAction(String name)

name Name of action. Must not contain hyphen or hash characters. Should be < 32 characters.

□ Locates a specific action by name. Looks up an action by its name.

Returns The requested action or nul l if no action is found.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.4 public UPnPAction[] getActions()

□ Lists all actions provided by this service.

Returns Array of actions (UPnPAction[])or nul l if no actions are defined for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.5 public String getId()

□ Returns the serviceId field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceId must contain the
following components in the indicated order:

• urn:upnp-org:serviceId:
• service ID suffix

Example: urn:upnp-org:serviceId:serviceID .

Note that upnp-org is used instead of schemas-upnp-org in this example because an XML schema is
not defined for each serviceId.

For non-standard services specified by UPnP vendors, the serviceId must contain the following com-
ponents in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :serviceId:
• service ID suffix

Example: urn:domain-name:serviceId:serviceID .

This method must continue to return the service id after the UPnP service has been removed from
the network.

Returns The service ID suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters. Single URI.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 234 OSGi Residential Release 6

111.16.8.6 public UPnPStateVariable getStateVariable(String name)

name Name of the State Variable

□ Gets a UPnPStateVariable objects provided by this service by name

Returns State variable or nul l if no such state variable exists for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.7 public UPnPStateVariable[] getStateVariables()

□ Lists all UPnPStateVariable objects provided by this service.

Returns Array of state variables or nul l if none are defined for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.8 public String getType()

□ Returns the serviceType field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceType must contain
the following components in the indicated order:

• urn:schemas-upnp-org:service:
• service type suffix:
• integer service version

Example: urn:schemas-upnp-org:service:serviceType:v .

For non-standard services specified by UPnP vendors, the serviceType must contain the following
components in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :service:
• service type suffix:
• integer service version

Example: urn:domain-name:service:serviceType:v .

This method must continue to return the service type after the UPnP service has been removed from
the network.

Returns The service type suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters, not including the version suffix and separating colon. Single URI.

111.16.8.9 public String getVersion()

□ Returns the version suffix encoded in the serviceType field in the UPnP service description.

This method must continue to return the service version after the UPnP service has been removed
from the network.

Returns The integer service version defined by a UPnP Forum working committee or specified by a UPnP
vendor.

111.16.9 public interface UPnPStateVariable
The meta-information of a UPnP state variable as declared in the device's service state table (SST).

Method calls to interact with a device (e.g. UPnPAction. invoke(. . .) ;) use this class to encapsulate
meta information about the input and output arguments.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 235

The actual values of the arguments are passed as Java objects. The mapping of types from UPnP data
types to Java data types is described with the field definitions.

111.16.9.1 public static final String TYPE_BIN_BASE64 = "bin.base64"

MIME-style Base64 encoded binary BLOB.

Takes 3 Bytes, splits them into 4 parts, and maps each 6 bit piece to an octet. (3 octets are encoded as
4.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.

111.16.9.2 public static final String TYPE_BIN_HEX = "bin.hex"

Hexadecimal digits representing octets.

Treats each nibble as a hex digit and encodes as a separate Byte. (1 octet is encoded as 2.) No limit on
size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.

111.16.9.3 public static final String TYPE_BOOLEAN = "boolean"

True or false.

Mapped to Boolean object.

111.16.9.4 public static final String TYPE_CHAR = "char"

Unicode string.

One character long.

Mapped to Character object.

111.16.9.5 public static final String TYPE_DATE = "date"

A calendar date.

Date in a subset of ISO 8601 format without time data.

See http://www.w3.org/TR/ xmlschema-2/#date [http://www.w3.org/TR/xmlschema-2/#date].

Mapped to java.ut i l .Date object. Always 00:00 hours.

111.16.9.6 public static final String TYPE_DATETIME = "dateTime"

A specific instant of time.

Date in ISO 8601 format with optional time but no time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime [http://www.w3.org/TR/xmlschema-2/#date-
Time].

Mapped to java.ut i l .Date object using default time zone.

111.16.9.7 public static final String TYPE_DATETIME_TZ = "dateTime.tz"

A specific instant of time.

Date in ISO 8601 format with optional time and optional time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime [http://www.w3.org/TR/xmlschema-2/#date-
Time].

Mapped to java.ut i l .Date object adjusted to default time zone.

http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 236 OSGi Residential Release 6

111.16.9.8 public static final String TYPE_FIXED_14_4 = "fixed.14.4"

Same as r8 but no more than 14 digits to the left of the decimal point and no more than 4 to the
right.

Mapped to Double object.

111.16.9.9 public static final String TYPE_FLOAT = "float"

Floating-point number.

Mantissa (left of the decimal) and/or exponent may have a leading sign. Mantissa and/or exponent
may have leading zeros. Decimal character in mantissa is a period, i.e., whole digits in mantissa sep-
arated from fractional digits by period. Mantissa separated from exponent by E. (No currency sym-
bol.) (No grouping of digits in the mantissa, e.g., no commas.)

Mapped to Float object.

111.16.9.10 public static final String TYPE_I1 = "i1"

1 Byte int.

Mapped to Integer object.

111.16.9.11 public static final String TYPE_I2 = "i2"

2 Byte int.

Mapped to Integer object.

111.16.9.12 public static final String TYPE_I4 = "i4"

4 Byte int.

Must be between -2147483648 and 2147483647

Mapped to Integer object.

111.16.9.13 public static final String TYPE_INT = "int"

Integer number.

Mapped to Integer object.

111.16.9.14 public static final String TYPE_NUMBER = "number"

Same as r8.

Mapped to Double object.

111.16.9.15 public static final String TYPE_R4 = "r4"

4 Byte float.

Same format as float. Must be between 3.40282347E+38 to 1.17549435E-38.

Mapped to Float object.

111.16.9.16 public static final String TYPE_R8 = "r8"

8 Byte float.

Same format as float. Must be between -1.79769313486232E308 and -4.94065645841247E-324 for
negative values, and between 4.94065645841247E-324 and 1.79769313486232E308 for positive val-
ues, i.e., IEEE 64-bit (8-Byte) double.

Mapped to Double object.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Residential Release 6 Page 237

111.16.9.17 public static final String TYPE_STRING = "string"

Unicode string.

No limit on length.

Mapped to Str ing object.

111.16.9.18 public static final String TYPE_TIME = "time"

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with no date and no time zone.

See http://www.w3.org /TR/xmlschema-2/#time [http://www.w3.org/TR/xmlschema-2/#dateTime].

Mapped to Long . Converted to milliseconds since midnight.

111.16.9.19 public static final String TYPE_TIME_TZ = "time.tz"

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with optional time zone but no date.

See http://www.w3.org /TR/xmlschema-2/#time [http://www.w3.org/TR/xmlschema-2/#dateTime].

Mapped to Long object. Converted to milliseconds since midnight and adjusted to default time zone,
wrapping at 0 and 24*60*60*1000.

111.16.9.20 public static final String TYPE_UI1 = "ui1"

Unsigned 1 Byte int.

Mapped to an Integer object.

111.16.9.21 public static final String TYPE_UI2 = "ui2"

Unsigned 2 Byte int.

Mapped to Integer object.

111.16.9.22 public static final String TYPE_UI4 = "ui4"

Unsigned 4 Byte int.

Mapped to Long object.

111.16.9.23 public static final String TYPE_URI = "uri"

Universal Resource Identifier.

Mapped to Str ing object.

111.16.9.24 public static final String TYPE_UUID = "uuid"

Universally Unique ID.

Hexadecimal digits representing octets. Optional embedded hyphens are ignored.

Mapped to Str ing object.

111.16.9.25 public String[] getAllowedValues()

□ Returns the allowed values, if defined. Allowed values can be defined only for String types.

This method must continue to return the state variable allowed values after the UPnP state variable
has been removed from the network.

Returns The allowed values or nul l if not defined. Should be less than 32 characters.

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 238 OSGi Residential Release 6

111.16.9.26 public Object getDefaultValue()

□ Returns the default value, if defined.

This method must continue to return the state variable default value after the UPnP state variable
has been removed from the network.

Returns The default value or nul l if not defined. The type of the returned object can be determined by get-
JavaDataType .

111.16.9.27 public Class getJavaDataType()

□ Returns the Java class associated with the UPnP data type of this state variable.

Mapping between the UPnP data types and Java classes is performed according to the schema men-
tioned above.

 Integer ui1, ui2, i1, i2, i4, int
 Long ui4, time, time.tz
 Float r4, float
 Double r8, number, fixed.14.4
 Character char
 String string, uri, uuid
 Date date, dateTime, dateTime.tz
 Boolean boolean
 byte[] bin.base64, bin.hex

This method must continue to return the state variable java type after the UPnP state variable has
been removed from the network.

Returns A class object corresponding to the Java type of this argument.

111.16.9.28 public Number getMaximum()

□ Returns the maximum value, if defined. Maximum values can only be defined for numeric types.

This method must continue to return the state variable maximum value after the UPnP state vari-
able has been removed from the network.

Returns The maximum value or nul l if not defined.

111.16.9.29 public Number getMinimum()

□ Returns the minimum value, if defined. Minimum values can only be defined for numeric types.

This method must continue to return the state variable minimum value after the UPnP state vari-
able has been removed from the network.

Returns The minimum value or nul l if not defined.

111.16.9.30 public String getName()

□ Returns the variable name.

• All standard variables defined by a UPnP Forum working committee must not begin with X_ nor
A_ .

• All non-standard variables specified by a UPnP vendor and added to a standard service must be-
gin with X_ .

This method must continue to return the state variable name after the UPnP state variable has been
removed from the network.

Returns Name of state variable. Must not contain a hyphen character nor a hash character. Should be < 32
characters.

UPnP™ Device Service Specification Version 1.2 References

OSGi Residential Release 6 Page 239

111.16.9.31 public Number getStep()

□ Returns the size of an increment operation, if defined. Step sizes can be defined only for numeric
types.

This method must continue to return the step size after the UPnP state variable has been removed
from the network.

Returns The increment size or null if not defined.

111.16.9.32 public String getUPnPDataType()

□ Returns the UPnP type of this state variable. Valid types are defined as constants.

This method must continue to return the state variable UPnP data type after the UPnP state variable
has been removed from the network.

Returns The UPnP data type of this state variable, as defined in above constants.

111.16.9.33 public boolean sendsEvents()

□ Tells if this StateVariable can be used as an event source. If the StateVariable is eventable, an event
listener service can be registered to be notified when changes to the variable appear.

This method must continue to return the correct value after the UPnP state variable has been re-
moved from the network.

Returns true if the StateVariable generates events, fa lse otherwise.

111.17 References

[1] UPnP Forum
http://www.upnp.org

[2] XML Schema
http://www.w3.org/TR/xmlschema-2

[3] ISO 8601 Date And Time formats
http://www.iso.ch

References UPnP™ Device Service Specification Version 1.2

Page 240 OSGi Residential Release 6

Declarative Services Specification Version 1.3 Introduction

OSGi Residential Release 6 Page 241

112 Declarative Services Specification

Version 1.3

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a publish/find/bind mod-
el for using services. This model is elegant and powerful, it enables the building of applications out
of bundles that communicate and collaborate using these services.

This specification addresses some of the complications that arise when the OSGi service model is
used for larger systems and wider deployments, such as:

• Startup Time - The procedural service model requires a bundle to actively register and acquire
its services. This is normally done at startup time, requiring all present bundles to be initial-
ized with a Bundle Activator. In larger systems, this quickly results in unacceptably long startup
times.

• Memory Footprint - A service registered with the Framework implies that the implementation,
and related classes and objects, are loaded in memory. If the service is never used, this memory is
unnecessarily occupied. The creation of a class loader may therefore cause significant overhead.

• Complexity - Service can come and go at any time. This dynamic behavior makes the service pro-
gramming model more complex than more traditional models. This complexity negatively influ-
ences the adoption of the OSGi service model as well as the robustness and reliability of applica-
tions because these applications do not always handle the dynamicity correctly.

The service component model uses a declarative model for publishing, finding and binding to OSGi
services. This model simplifies the task of authoring OSGi services by performing the work of reg-
istering the service and handling service dependencies. This minimizes the amount of code a pro-
grammer has to write; it also allows service components to be loaded only when they are needed.
As a result, bundles need not provide a BundleActivator class to collaborate with others through the
service registry.

From a system perspective, the service component model means reduced startup time and potential-
ly a reduction of the memory footprint. From a programmer's point of view the service component
model provides a simplified programming model.

The Service Component model makes use of concepts described in [1] Automating Service Dependency
Management in a Service-Oriented Component Model.

112.1.1 Essentials

• Backward Compatibility - The service component model must operate seamlessly with the exist-
ing service model.

• Size Constraints - The service component model must not require memory and performance in-
tensive subsystems. The model must also be applicable on resource constrained devices.

• Delayed Activation - The service component model must allow delayed activation of a service
component. Delayed activation allows for delayed class loading and object creation until needed,
thereby reducing the overall memory footprint.

• Simplicity - The programming model for using declarative services must be very simple and not
require the programmer to learn a complicated API or XML sub-language.

Introduction Declarative Services Specification Version 1.3

Page 242 OSGi Residential Release 6

• Reactive - It must be possible to react to changes in the external dependencies with different poli-
cies.

• Annotations - Annotations must be provided that can leverage the type information to create the
XML descriptor.

• Introspection - It must be possible to introspect the service components.

112.1.2 Entities

• Service Component - A service component contains a description that is interpreted at run time to
create and dispose objects depending on the availability of other services, the need for such an
object, and available configuration data. Such objects can optionally provide a service. This speci-
fication also uses the generic term component to refer to a service component.

• Service Component Runtime (SCR) - The actor that manages the components and their life cycle
and allows introspection of the components.

• Component Description - The declaration of a service component. It is contained within an XML
document in a bundle.

• Component Properties - A set of properties which can be specified by the component description,
Configuration Admin service and from the component factory.

• Component Property Type - A user defined annotation type which defines component properties
and is implemented by SCR to provide type safe access to the defined component properties.

• Component Configuration - A component configuration represents a component description para-
meterized by component properties. It is the entity that tracks the component dependencies and
manages a component instance. An activated component configuration has a component con-
text.

• Component Instance - An instance of the component implementation class. A component instance
is created when a component configuration is activated and discarded when the component con-
figuration is deactivated. A component instance is associated with exactly one component con-
figuration.

• Delayed Component - A component whose component configurations are activated when their
service is requested.

• Immediate Component - A component whose component configurations are activated immediate-
ly upon becoming satisfied.

• Factory Component - A component whose component configurations are created and activated
through the component's component factory.

• Reference - A specified dependency of a component on a set of target services.
• Target Services - The set of services that is defined by the reference interface and target property

filter.
• Bound Services - The set of target services that are bound to a component configuration.
• Event methods - The bind, updated, and unbind methods associated with a Reference.

Declarative Services Specification Version 1.3 Introduction

OSGi Residential Release 6 Page 243

Figure 112.1 Service Component Runtime, org.osgi.service.component package

a Component
Impl

a Service Impl

Service
Component
Runtime Impl

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

1

<<service>>
Service Component
Runtime

112.1.3 Synopsis
The Service Component Runtime reads component descriptions from started bundles. These de-
scriptions are in the form of XML documents which define a set of components for a bundle. A com-
ponent can refer to a number of services that must be available before a component configuration
becomes satisfied. These dependencies are defined in the descriptions and the specific target ser-
vices can be influenced by configuration information in the Configuration Admin service. After a
component configuration becomes satisfied, a number of different scenarios can take place depend-
ing on the component type:

• Immediate Component - The component configuration of an immediate component must be acti-
vated immediately after becoming satisfied. Immediate components may provide a service.

• Delayed Component - When a component configuration of a delayed component becomes satis-
fied, SCR will register the service specified by the service element without activating the com-
ponent configuration. If this service is requested, SCR must activate the component configura-
tion creating an instance of the component implementation class that will be returned as the ser-
vice object. If the scope attribute of the service element is bundle , then, for each distinct bundle
that requests the service object, a different component configuration is created and activated and
a new instance of the component implementation class is returned as the service object. If the
scope attribute of the service element is prototype , then, for each distinct request for the service
object, such as via ServiceObjects , a different component configuration is created and activated
and a new instance of the component implementation class is returned as the service object.

• Factory Component - If a component's description specifies the factory attribute of the component
element, SCR will register a Component Factory service. This service allows client bundles to
create and activate multiple component configurations and dispose of them. If the component's
description also specifies a service element, then as each component configuration is activated,
SCR will register it as a service.

112.1.4 Readers

• Architects - The chapter, Components on page 244, gives a comprehensive introduction to the
capabilities of the component model. It explains the model with a number of examples. The sec-
tion about Component Life Cycle on page 266 provides some deeper insight in the life cycle of
components.

Components Declarative Services Specification Version 1.3

Page 244 OSGi Residential Release 6

• Service Programmers - Service programmers should read Components on page 244. This chapter
should suffice for the most common cases. For the more advanced possibilities, they should con-
sult Component Description on page 257 for the details of the XML grammar for component de-
scriptions.

• Deployers - Deployers should consult Deployment on page 277.

112.2 Components
A component is a normal Java class contained within a bundle. The distinguishing aspect of a com-
ponent is that it is declared in an XML document. Component configurations are activated and deac-
tivated under the full control of SCR. SCR bases its decisions on the information in the component's
description. This information consists of basic component information like the name and type, op-
tional services that are implemented by the component, and references. References are dependencies
that the component has on other services.

SCR must activate a component configuration when the component is enabled and the component
configuration is satisfied and a component configuration is needed. During the life time of a compo-
nent configuration, SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when the component becomes
disabled, the component configuration becomes unsatisfied, or the component configuration is no
longer needed.

If an activated component configuration's configuration properties change, SCR must either notify
the component configuration of the change, if the component description specifies a method to be
notified of such changes, or deactivate the component configuration and then attempt to reactivate
the component configuration using the new configuration information.

112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML documents that contain the

component descriptions.
• An implementation class that is specified in the component description.

The elements in the component's description are defined in Component Description on page 257.
The XML grammar for the component declaration is defined by the XML Schema, see Component De-
scription Schema on page 290.

112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied. If an immediate compo-
nent has no dependencies, it is activated immediately. A component is an immediate component if
it is not a factory component and either does not specify a service or specifies a service and the im-
mediate attribute of the component element set to true . If an immediate component configuration
is satisfied and specifies a service, SCR must register the component configuration as a service in the
service registry and then activate the component configuration.

For example, the bundle entry /OSGI-INF/act ivator.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.activator"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.Activator"/>

Declarative Services Specification Version 1.3 Components

OSGi Residential Release 6 Page 245

</scr:component>

The manifest header Service-Component must also be specified in the bundle manifest. For exam-
ple:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
 public Activator() {...}
 private void activate(BundleContext context) {...}
 private void deactivate() {...}
}

This example component is virtually identical to a Bundle Activator. It has no references to other
services so it will be satisfied immediately. It publishes no service so SCR will activate a component
configuration immediately.

The activate method is called when SCR activates the component configuration and the deactivate
method is called when SCR deactivates the component configuration. If the activate method throws
an Exception, then the component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory component and does not have
the immediate attribute of the component element set to true . If a delayed component configura-
tion is satisfied, SCR must register the component configuration as a service in the service registry
but the activation of the component configuration is delayed until the registered service is request-
ed. The registered service of a delayed component looks like a normal registered service but does not
incur the overhead of an ordinarily registered service that require a service's bundle to be initialized
to register the service.

For example, a bundle needs to see events of a specific topic. The Event Admin uses the white board
pattern, receiving the events is therefore as simple as registering a Event Handler service. The exam-
ple XML for the delayed component looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.handler"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.HandlerImpl"/>
 <property name="event.topics">some/topic</property>
 <service>
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>
</scr:component>

The associated component class looks like:

public class HandlerImpl implements EventHandler{
 public void handleEvent(Event evt) {
 ...
 }
}

The component configuration will only be activated once the Event Admin service requires the ser-
vice because it has an event to deliver on the topic to which the component subscribed.

Components Declarative Services Specification Version 1.3

Page 246 OSGi Residential Release 6

112.2.4 Factory Component
Certain software patterns require the creation of component configurations on demand. For exam-
ple, a component could represent an application that can be launched multiple times and each ap-
plication instance can then quit independently. Such a pattern requires a factory that creates the in-
stances. This pattern is supported with a factory component. A factory component is used if the fac-
tory attribute of the component element is set to a factory identifier. This identifier can be used by a
bundle to associate the factory with externally defined information.

SCR must register a Component Factory service on behalf of the component as soon as the compo-
nent factory is satisfied. The service properties must be:

• component.name - The name of the component.
• component.factory - The factory identifier.

The service properties of the Component Factory service must not include the component proper-
ties.

New configurations of the component can be created and activated by calling the newInstance
method on this Component Factory service. The newInstance(Dict ionary) method has a Dictionary
object as argument. This Dictionary object is merged with the component properties as described
in Component Properties on page 276. If the component specifies a service, then the service is reg-
istered after the created component configuration is satisfied with the component properties. Then
the component configuration is activated.

For example, a component can provide a connection to a USB device. Such a connection should nor-
mally not be shared and should be created each time such a service is needed. The component de-
scription to implement this pattern looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
</scr:component>

The component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {
 ...
 }
}

A factory component can be associated with a service. In that case, such a service is registered for
each component configuration. For example, the previous example could provide a USB Connection
service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
 <service>
 <provide interface="com.acme.usb.USBConnection"/>
 </service>
</scr:component>

Declarative Services Specification Version 1.3 References to Services

OSGi Residential Release 6 Page 247

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {...}
 public void connect() { ... }
 ...
 public void close() { ... }
}

A new service will be registered each time a new component configuration is created and activat-
ed with the newInstance method. This allows a bundle other than the one creating the component
configuration to utilize the service. If the component configuration is deactivated, the service must
be unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry. The dynamics of the
service registry require care and attention of the programmer because referenced services, once ac-
quired, could be unregistered at any moment. The component model simplifies the handling of
these service dependencies significantly.

The services that are selected by a reference are called the target services. These are the services select-
ed by the BundleContext.getServiceReferences method where the first argument is the reference's
interface and the second argument is the reference's target property, which must be a valid filter.

A component configuration becomes satisfied when each specified reference is satisfied. A refer-
ence is satisfied if it specifies optional cardinality or when the number of target services is equal to or
more than the minimum cardinality of the reference. An activated component configuration that
becomes unsatisfied must be deactivated.

During the activation of a component configuration, SCR must bind some or all of the target ser-
vices of a reference to the component configuration. Any target service that is bound to the compo-
nent configuration is called a bound service. See Binding Services on page 270.

112.3.1 Accessing Services
A component instance must be able to use the services that are referenced by the component config-
uration, that is, the bound services of the references. The following strategies are available for a com-
ponent instance to acquire these bound services:

• Event strategy - SCR calls a method on the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated. These methods are the
bind, updated, and unbind methods specified by the reference. The event strategy is useful if the
component needs to be notified of changes to the bound services for a dynamic reference.

• Field strategy - SCR modifies a field in the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated.

• Lookup strategy - The component instance can use one of the locateService methods of Compo-
nentContext to locate a bound service. These methods take the name of the reference as a para-
meter. If the reference has a dynamic policy, it is important to not store returned service objects
but look them up every time they are needed.

A component may use multiple strategies to access the bound services of a reference.

112.3.2 Event Methods
When using the event strategy, SCR must callback the component instance at the appropriate time.
SCR must callback on the following events:

References to Services Declarative Services Specification Version 1.3

Page 248 OSGi Residential Release 6

• bind - The bind method, if specified, is called to bind a new service to the component that match-
es the selection criteria. If the pol icy is dynamic then the bind method of a replacement service
can be called before its corresponding unbind method.

• updated - The updated method, if specified, is called when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The unbind method, if specified, is called when SCR needs to unbind the service.

Each event is associated with an event method. The prototype of the event methods is:

void <method-name>(<arguments>);

An event method can take one or more arguments. Each argument must be of one of the following
types:

• <service-type> - The bound service object.
• ServiceReference - A Service Reference for the bound service. This Service Reference may later be

passed to the locateService(Str ing,ServiceReference) method to obtain the actual service object.
This approach is useful when the service properties need to be examined before accessing the
service object. It also allows for the delayed activation of bound services when using the event
strategy.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

A suitable method is selected using the following priority:

1. The method takes a single argument and the type of the argument is
org.osgi .f ramework.ServiceReference . This method will receive a Service Reference for the
bound service.

2. The method takes a single argument and the type of the argument is ComponentServiceOb-
jects . This method will receive a Component Service Objects for the bound service.

3. The method takes a single argument and the type of the argument is the type specified by the
reference's interface attribute. This method will receive the bound service object.

4. The method takes a single argument and the type of the argument is assignable from the type
specified by the reference's interface attribute. If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call. This method
will receive the bound service object.

5. The method takes a single argument and the type of the argument is java.ut i l .Map . This method
will receive an unmodifiable Map containing the service properties of the bound service.

6. The method takes two or more arguments and the types of the arguments must be one of: the
type specified by the reference's interface attribute, a type assignable from the type specified
by the reference's interface attribute, org.osgi .f ramework.ServiceReference , ComponentSer-
viceObjects , or java.ut i l .Map . If multiple methods match this rule, this implies the method
name is overloaded and SCR may choose any of the methods to call. In the case where the type
specified by the reference's interface attribute is org.osgi .f ramework.ServiceReference , Compo-
nentServiceObjects , or java.ut i l .Map , the first argument of that type will receive the bound ser-
vice object. If selected event method has more than one argument of that type, the remaining ar-
guments of that type will receive a Service Reference for the bound service, a Service Objects for

Declarative Services Specification Version 1.3 References to Services

OSGi Residential Release 6 Page 249

the bound service, or an unmodifiable Map containing the service properties of the bound ser-
vice.

When searching for an event method to call, SCR must locate a suitable method as specified in Lo-
cating Component Methods and Fields on page 286. If no suitable method is located, SCR must log an
error message with the Log Service, if present, and there will be no bind, updated, or unbind notifi-
cation.

The bind and unbind methods must be called once for each bound service. This implies that if the
reference has multiple cardinality, then the methods may be called multiple times. The updated
method can be called multiple times per service.

In the following examples, a component requires the Log Service. The first example uses the lookup
strategy. The reference is declared without any bind, updated, and unbind methods:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.LogLookupImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"/>
</scr:component>

The component implementation class must now lookup the service. This looks like:

public class LogLookupImpl {
 private void activate(ComponentContext ctxt) {
 LogService log = (LogService)
 ctxt.locateService("LOG");
 log.log(LogService.LOG_INFO, "Hello Components!"));
 }
}

Alternatively, the component could use the event strategy and ask to be notified with the Log Ser-
vice by declaring bind, updated, and unbind methods.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 bind="setLog"
 updated="updatedLog"
 unbind="unsetLog"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LogService log;
 Integer level;
 void setLog(LogService l, Map<String,?> ref) {
 log = l;
 updatedLog(ref);
 }

References to Services Declarative Services Specification Version 1.3

Page 250 OSGi Residential Release 6

 void updatedLog(LogService l, Map<String,?> ref) {
 level = (Integer) ref.get("level");
 }
 void unsetLog(LogService l) { log = null; }

 private void activate() {
 log.log(LogService.LOG_INFO, "Hello Components!"));
 }
}

Event methods can be declared private in the component class but are only looked up in the inheri-
tance chain when they are protected, public, or have default access. See Locating Component Methods
and Fields on page 286.

112.3.3 Field Strategy
When using the field strategy, SCR must modify fields in the component instance at the appropriate
time. SCR must modify the fields on the following events:

• bind - The field is modified to bind a new service to the component that matches the selection
criteria.

• updated - For certain field types, the field is modified when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The field is modified when SCR needs to unbind the service.

For a reference with unary cardinality, a field must be of one of the following types:

• <service-type> - The bound service object. The type of the field can be the actual service type or it
can be a type that is assignable from the actual service type.

• ServiceReference - A Service Reference for the bound service. This Service Reference may later be
passed to the locateService(Str ing,ServiceReference) method to obtain the actual service object.
This approach is useful when the service properties need to be examined before accessing the
service object. It also allows for the delayed activation of bound services when using field strate-
gy.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

• Map.Entry - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the ser-
vice properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must additionally implement Comparable with the compareTo method comparing
the service property map key using the same ordering as ServiceReference.compareTo based up-
on service ranking and service id.

If the actual service type is one of ServiceReference , ComponentServiceObjects , Map , or
Map.Entry , the field will be set to the service object rather than the object about the service.

For a reference with multiple cardinality, a field must be a collection of one of the following types:

• Collect ion
• List

Declarative Services Specification Version 1.3 References to Services

OSGi Residential Release 6 Page 251

• A subtype of Collect ion - This type can only be used for dynamic references using the update ref-
erence field option. The component instance must initialize the field to a collection object in its
constructor.

The type of objects set in the collection are specified by the f ie ld-col lect ion-type attribute in the
component description:

• service - The bound service object. This is the default field collection type.
• reference - A Service Reference for the bound service.
• serviceobjects - A Component Service Objects for the bound service.
• propert ies - An unmodifiable Map containing the service properties of the bound service. This

Map must implement Comparable , as above.
• tuple - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the service

properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must implement Comparable , as above.

Only instance fields of the field types above are supported. If a referenced field is declared with the
stat ic modifier or has a type other than one of the above, SCR must log an error message with the
Log Service, if present, and the field must not be modified.

Care must be taken by the component implementation regarding the field. SCR has no way to know
if the component implementation itself may alter the field value. The component implementation
should not alter the field value and allow SCR to manage it. SCR must treat the field as if the compo-
nent implementation does not alter the field value so SCR may retain its own copy of the value set
in the field.

In the following examples, a component requires the Log Service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 field="log"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LogService log;
 private void activate() {
 log.log(LogService.LOG_INFO, "Hello Components!"));
 }
}

Fields can be declared private in the component class but are only looked up in the inheritance
chain when they are protected, public, or have default access. See Locating Component Methods and
Fields on page 286.

112.3.4 Reference Cardinality
A component implementation is always written with a certain cardinality for each reference in
mind. The cardinality represents two important concepts:

• Multiplicity - Does the component implementation assume a single service or does it explicitly
handle multiple services? For example, when a component uses the Log Service, it only needs to

References to Services Declarative Services Specification Version 1.3

Page 252 OSGi Residential Release 6

bind to one Log Service to function correctly. Alternatively, when the Configuration Admin us-
es the Configuration Listener services it needs to bind to all target services present in the service
registry to dispatch its events correctly.

• Optionality - Can the component function without any bound service present? Some components
can still perform useful tasks even when no service is available; other components must bind to
at least one service before they can be useful. For example, the Configuration Admin in the pre-
vious example must still provide its functionality even if there are no Configuration Listener ser-
vices present. Alternatively, an application that registers a Servlet with the Http Service has little
to do when the Http Service is not present, it should therefore use a reference with a mandatory
cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality '..' multiplicity
optionality ::= '0' | '1'
multiplicity ::= '1' | 'n'

The cardinality for a reference can be specified as one of four choices:

• 0..1 - Optional and unary.
• 1. .1 - Mandatory and unary (Default) .
• 0..n - Optional and multiple.
• 1. .n - Mandatory and multiple.

The minimum cardinality is specified by the optionality part of the cardinality. This is either 0 or 1 .
A minimum cardinality property can be used to raise the minimum cardinality of a reference from
this initial value. For example, a 0..n cardinality in the component description can be raised into a
3. .n cardinality at runtime by setting the minimum cardinality property for the reference to 3 . This
would typically be done by a deployer setting the minimum cardinality property in a configuration
for the component. The minimum cardinality for a unary cardinality cannot exceed 1 . See Minimum
Cardinality Property on page 277 for more information.

A reference is satisfied if the number of target services is equal to or more than the minimum cardi-
nality. The mult ipl ic ity is irrelevant for the satisfaction of the reference. The mult ipl ic ity only spec-
ifies if the component implementation is written to handle being bound to multiple services (n) or
requires SCR to select and bind to a single service (1).

When a satisfied component configuration is activated, there must be at most one bound service for
each reference with a unary cardinality and at least as many bound services as the minimum cardi-
nality for each reference. If the cardinality constraints cannot be maintained after a component con-
figuration is activated, that is the reference becomes unsatisfied, the component configuration must
be deactivated. If the reference has a unary cardinality and there is more than one target service for
the reference, then the bound service must be the target service with the highest service ranking as
specified by the service.ranking property. If there are multiple target services with the same service
ranking, then the bound service must be the target service with the highest service ranking and the
lowest service id as specified by the service. id property.

In the following example, a component wants to register a resource with all Http Services that are
available. Such a scenario has the cardinality of 0..n . The code must be prepared to handle multiple
calls to the bind method for each Http Service in such a case. In this example, the code uses the reg-
isterResources method to register a directory for external access.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"

Declarative Services Specification Version 1.3 References to Services

OSGi Residential Release 6 Page 253

 cardinality="0..n"
 bind="setPage"
 unbind="unsetPage"
 />
</scr:component>

public class HttpResourceImpl {
 private void setPage(HttpService http) {
 http.registerResources("/scr", "scr", null);
 }
 private void unsetPage(HttpService http) {
 http.unregister("/scr");
 }
}

112.3.5 Reference Scope
A component implementation must be written to understand the service scope of referenced ser-
vices. The reference scope defines whether the component expects the bundle to be exposed to a sin-
gle service object for a bound service or to potentially multiple services objects. The following refer-
ence scopes are available:

• bundle - For all references to a given bound service, all activated component instances within a
bundle must use the same service object. That is, for a given bound service, all component in-
stances within a bundle will be using the same service object. This is the default reference scope.

• prototype - For all references to a given bound service, each activated component instance may
use a single, distinct service object. That is, for a given bound service, each component instance
may use a distinct service object but within a component instance all references to the bound
service will use the same service object.

• prototype_required - For all references to a given bound service, each activated component in-
stance must use a single, distinct service object. That is, for a given bound service, each compo-
nent instance will use a distinct service object but within a component instance all references to
the bound service will use the same service object.

For a bound service of a reference with bundle reference scope, SCR must get the service object from
the OSGi Framework's service registry using the getService method on the component's Bundle
Context. If the service object for a bound service has been obtained and the service becomes un-
bound, SCR must unget the service object using the ungetService method on the component's Bun-
dle Context and discard all references to the service object. This ensures that the bundle will only be
exposed to a single instance of the service object at any given time.

For a bound service of a reference with prototype or prototype required reference scope, SCR
must use a Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context to get any service objects. If service objects for a bound service have
been obtained and the service becomes unbound, SCR must unget any unreleased service objects
using the Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context. This means that if a component instance used a Component Service
Objects object to obtain service objects, SCR must track those service objects so that when the ser-
vice becomes unbound, SCR can unget any unreleased service objects.

Additionally, for a bound service of a reference with prototype required reference scope, only ser-
vices registered with prototype service scope can be considered as target services. This ensures that
each component instance can be exposed to a single, distinct instance of the service object. Using
prototype required reference scope effectively adds service.scope=prototype to the target property
for the reference. A service that does not use prototype service scope cannot be used as a bound ser-
vice for a reference with prototype required reference scope since the service cannot provide a dis-
tinct service object for each component instance.

References to Services Declarative Services Specification Version 1.3

Page 254 OSGi Residential Release 6

112.3.6 Reference Policy
Once all the references of a component are satisfied, a component configuration can be activat-
ed and therefore bound to target services. However, the dynamic nature of the OSGi service reg-
istry makes it likely that services are registered, modified and unregistered after target services are
bound. These changes in the service registry could make one or more bound services no longer a tar-
get service thereby making obsolete any object references that the component has to these service
objects. Components therefore must specify a policy how to handle these changes in the set of bound
services. A policy-option can further refine how changes affect bound services.

112.3.6.1 Static Reference Policy

The static policy is the most simple policy and is the default policy. A reference with a static policy is
called a static reference. A component instance never sees any of the dynamics of the static reference.
The bind method is called and/or the field is set before the component instance is activated. Com-
ponent configurations are deactivated before any bound service for the static reference becomes
unavailable. If a target service is available to replace the bound service which became unavailable,
the component configuration must be reactivated and the replacement service is bound to the new
component instance.

If the pol icy-option is reluctant then the registration of an additional target service for a reference
must not result in deactivating and reactivating a component configuration. If the pol icy-option
is greedy then the component configuration must be reactivated when new applicable services be-
come available. See Table 112.1 on page 255.

If a static reference specifies an updated method and the bound service's properties change, SCR
must call the updated method.

The static policy can be very expensive if it depends on services that frequently unregister and re-
register or if the cost of activating and deactivating a component configuration is high. Static policy
is usually also not applicable if the cardinality specifies multiple bound services.

112.3.6.2 Dynamic Reference Policy

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services that can occur on any thread at any time after the com-
ponent instance is created. A reference with a dynamic policy is called a dynamic reference. With the
dynamic policy, SCR can change the set of bound services without deactivating a component config-
uration. If the component uses the event strategy to access services, then the component instance
will be notified of changes in the set of bound services by calls to the bind, updated, and unbind
methods.

If the pol icy-option is reluctant then a bound reference is not rebound even if a more suitable ser-
vice becomes available for a 1..1 or 0..1 reference. If the pol icy-option is greedy then the component
must be unbound and rebound for that reference. See Table 112.1 on page 255.

The previous example with the registering of a resource directory used a static policy. This implied
that the component configurations are deactivated when there is a change in the bound set of Http
Services. The code in the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..n"
 policy="dynamic"
 bind="setPage"

Declarative Services Specification Version 1.3 References to Services

OSGi Residential Release 6 Page 255

 unbind="unsetPage"
 />
</scr:component>

The code is identical to the previous example.

112.3.7 Reference Policy Option
The reference policy option defines how eager the reference is to rebind when a new, potentially a
higher ranking, target service becomes available. The reference policy option can have the follow-
ing values:

• reluctant - Minimize rebinding and reactivating. This is the default reference policy option.
• greedy - Maximize the use of the best service by deactivating static references or rebinding dy-

namic references.

Table 112.1 defines the actions that are taken when a better target service becomes available. In this
context, better is when the reference is not bound or when the new target service has a higher rank-
ing than the bound service.

Table 112.1 Action taken for policy-option when a new or higher ranking service becomes available

Cardinality static reluctant static greedy dynamic reluctant dynamic greedy
0..1 Ignore Reactivate to bind the

better target service.
If no service is bound,
bind to new target ser-
vice. Otherwise, ignore
new target service.

If no service is bound,
bind to better target ser-
vice. Otherwise, unbind
the bound service and
bind the better target ser-
vice.

1. .1 Ignore Reactivate to bind the
better target service.

Ignore Unbind the bound ser-
vice, then bind the new
service.

0..n Ignore Reactivate Bind new target service Bind new target service
1. .n Ignore Reactivate Bind new target service Bind new target service

112.3.8 Reference Field Option
For a reference using field strategy, the reference field option defines how SCR must manage the
field value. The reference field option can have the following values:

• replace - SCR must set the field value. Any field value set by the constructor of the component in-
stance is overwritten. This is the default reference field option.

• update - SCR must update the collection set in the field. This collection can be set by the con-
structor of the component instance. This reference field option can only be used for a dynamic
reference with multiple cardinality.

For a static reference, the replace option must be used.

For a dynamic reference, the choice of reference field option is influenced by the cardinality of the
reference. For unary cardinality, the replace option must be used. For multiple cardinality, either the
replace or update option can be used.

If the update option is used when not permitted, SCR must log an error message with the Log Ser-
vice, if present, and the field must not be modified.

112.3.8.1 Replace Field Option

If the field is declared with the f inal modifier, SCR must log an error message with the Log Service, if
present, and the field must not be modified.

References to Services Declarative Services Specification Version 1.3

Page 256 OSGi Residential Release 6

For a static reference, SCR must set the value of the field before the component instance is activat-
ed and must not change the field while the component is active. This means there is a happens-before
relationship between setting the field and activating the component instance, so the active compo-
nent can safely read the field.

For a dynamic reference, the field must be declared with the volat i le modifier so that field value
changes made by SCR are visible to other threads. If the field is not declared with the volat i le modi-
fier, SCR must log an error message with the Log Service, if present, and the field must not be modi-
fied.

For a dynamic reference with unary cardinality, SCR must set the field with initial bound service, if
any, before the component instance is activated. When there is a new bound service or the service
properties of the bound service are modified and the field holds service properties, SCR must replace
the field value. If the reference has optional cardinality and there is no bound service, SCR must set
the field value to nul l .

For a dynamic reference with multiple cardinality, the type of the field must be Collect ion or List . If
the field has a different type, SCR must log an error message with the Log Service, if present, and the
field must not be modified. Before the component instance is activated, SCR must set the field with
a new mutable collection that must contain the initial set of bound services sorted using the same
ordering as ServiceReference.compareTo based upon service ranking and service id. The new collec-
tion may be empty if the reference has optional cardinality and there are no bound services. When
there is a change in the set of bound services or the service properties of a bound service are modi-
fied and the collection holds service properties, SCR must replace the field value with a new muta-
ble collection that must contain the updated set of bound services sorted using the same ordering as
ServiceReference.compareTo based upon service ranking and service id. The new collection may be
empty if the reference has optional cardinality and there are no bound services.

112.3.8.2 Update Field Option

The update option can only be used for a dynamic reference with multiple cardinality. The
component's constructor can set the field with its choice of collection implementation. In this case,
the field can be declared with the f inal modifier. The collection implementation used by the compo-
nent should use identity rather than equals or hashCode to manage the elements of the collection.
The collection implementation should also be thread-safe since SCR may update the collection from
threads different than those used by the component instance.

After constructing the component instance, if the field value is nul l :

• If the type of the field is Collect ion or List , SCR will set the field to a new mutable empty collec-
tion or list object, respectively. If the field is declared with the f inal modifier, SCR must log an er-
ror message with the Log Service, if present, and the field must not be modified.

• Otherwise, SCR must log an error message with the Log Service, if present, and the field must not
be modified.

SCR must not change the field value while the component is active and only update the contents of
the collection. SCR must update the collection before the component instance is activated by calling
Collect ion.add for each bound service. When there is a change to the set of bound services:

• SCR must call Collect ion.add for a newly bound service.
• SCR must call Collect ion.remove for an unbound service.
• If the service properties of a bound service are modified and the collection holds service proper-

ties, SCR must call Collect ion.add for the replacement element followed by Collect ion.remove
for the old element.

The collection may be empty if the reference has optional cardinality and there are no bound ser-
vices.

Declarative Services Specification Version 1.3 Component Description

OSGi Residential Release 6 Page 257

112.3.9 Selecting Target Services
The target services for a reference are constrained by the reference's interface name and target prop-
erty. By specifying a filter in the target property, the programmer and deployer can constrain the set
of services that should be part of the target services.

For example, a component wants to track all Component Factory services that have a factory identi-
fication of acme.appl icat ion . The following component description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.FactoryTracker"/>
 <reference name="FACTORY"
 interface=
 "org.osgi.service.component.ComponentFactory"
 target="(component.factory=acme.application)"
 />
</scr:component>

The filter is manifested as a component property called the target property. The target property can
also be set by property and propert ies elements, see Property and Properties Elements on page 261.
The deployer can also set the target property by establishing a configuration for the component
which sets the value of the target property. This allows the deployer to override the target property
in the component description. See Target Property on page 277 for more information.

112.3.10 Circular References
It is possible for a set of component descriptions to create a circular dependency. For example, if
component A references a service provided by component B and component B references a service
provided by component A then a component configuration of one component cannot be satisfied
without accessing a partially activated component instance of the other component. SCR must en-
sure that a component instance is never accessible to another component instance or as a service
until it has been fully activated, that is it has returned from its activate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy component configurations
and SCR must fail to satisfy the references involved in the cycle and log an error message with the
Log Service, if present. However, if one of the references in the cycle has optional cardinality SCR
must break the cycle. The reference with the optional cardinality can be satisfied and bound to zero
target services. Therefore the cycle is broken and the other references may be satisfied.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bundle and any attached
fragments.

If SCR detects an error when processing a component description, it must log an error message with
the Log Service, if present, and ignore the component description. Errors can include XML parsing
errors and ill-formed component descriptions.

112.4.1 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. These annotations will be discussed with the ap-
propriate elements and attributes. Since the naming rules between XML and Java differ, some name
changes are necessary.

Component Description Declarative Services Specification Version 1.3

Page 258 OSGi Residential Release 6

Multi-word element and attribute names that use a minus sign (' - ' \u002D) are changed to camel
case. For example, the configurat ion-pid attribute in the component element is the configurat ionPid
member in the @Component annotation. The annotation class that corresponds to an element
starts with an upper case letter. For example the component element is represented by the @Com-
ponent annotation.

Some elements do not have a corresponding annotation since the annotations can be parameterized
by the type information in the Java class. For example, the @Component annotation synthesizes
the implement element's class attribute from the type it is applied to.

See Component Annotations on page 280 for more information.

112.4.2 Service Component Header
XML documents containing component descriptions must be specified by the Service-Component
header in the manifest. The value of the header is a comma separated list of paths to XML entries
within the bundle.

Service-Component ::= header // See Common Header Syntax in Core

The Service-Component header has no architected directives or properties. The header can be left
empty.

The last component of each path in the Service-Component header may use wildcards so that
Bundle.f indEntr ies can be used to locate the XML document within the bundle and its fragments.
For example:

Service-Component: OSGI-INF/*.xml

A Service-Component manifest header specified in a fragment is ignored by SCR. However, XML
documents referenced by a bundle's Service-Component manifest header may be contained in at-
tached fragments.

SCR must process each XML document specified in this header. If an XML document specified by
the header cannot be located in the bundle and its attached fragments, SCR must log an error mes-
sage with the Log Service, if present, and continue.

112.4.3 XML Document
A component description must be in a well-formed XML document, [4] Extensible Markup Language
(XML) 1.0, stored in a UTF-8 encoded bundle entry. The namespace for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.3.0

The recommended prefix for this namespace is scr . This prefix is used by examples in this specifica-
tion. XML documents containing component descriptions may contain a single, root component el-
ement or one or more component elements embedded in a larger document. Use of the namespace
for component descriptions is mandatory. The attributes and sub-elements of a component element
are always unqualified.

If an XML document contains a single, root component element which does not specify a name-
space, then the http://www.osgi .org/xmlns/scr/v1.0.0 namespace is assumed. Component descrip-
tions using the http://www.osgi .org/xmlns/scr/v1.0.0 namespace must be treated according to ver-
sion 1.0 of this specification.

SCR must parse all component elements in the namespace. Elements not in this namespace must
be ignored. Ignoring elements that are not recognized allows component descriptions to be embed-
ded in any XML document. For example, an entry can provide additional information about compo-
nents. These additional elements are parsed by another sub-system.

See Component Description Schema on page 290 for component description schema.

Declarative Services Specification Version 1.3 Component Description

OSGi Residential Release 6 Page 259

112.4.4 Component Element
The component element specifies the component description. The following text defines the struc-
ture of the XML grammar using a form that is similar to the normal grammar used in OSGi specifi-
cations. In this case the grammar should be mapped to XML elements:

<component> ::= (<property> | <properties>)*
 <service>?
 <reference>*
 <implementation>

SCR must not require component descriptions to specify the elements in the order listed above and
as required by the XML schema. SCR must allow other orderings since arbitrary orderings of these
elements do not affect the meaning of the component description. Only the relative ordering of
property and propert ies elements and of reference elements have meaning.

The component element has the attributes and @Component annotations defined in the following
table.

Table 112.2 Component Element and Annotations

Attribute Annotation Description
name name The name of a component must be unique within a bundle. The component

name is used as a PID to retrieve component properties from the OSGi Con-
figuration Admin service if present, unless a configurat ion-pid attribute has
been defined. See Deployment on page 277 for more information. If the com-
ponent name is used as a PID then it should be unique within the framework.
The XML schema allows the use of component names which are not valid
PIDs. Care must be taken to use a valid PID for a component name if the com-
ponent should be configured by the Configuration Admin service. This at-
tribute is optional. The default value of this attribute is the value of the class
attribute of the nested implementation element. If multiple component ele-
ments in a bundle use the same value for the class attribute of their nested im-
plementation element, then using the default value for this attribute will re-
sult in duplicate component names. In this case, this attribute must be speci-
fied with a unique value.

enabled enabled Controls whether the component is enabled when the bundle is started. The
default value is true . If enabled is set to fa lse , the component is disabled un-
til the method enableComponent is called on the ComponentContext object.
This allows some initialization to be performed by some other component in
the bundle before this component can become satisfied. See Enabled on page
266.

factory factory If set to a non-empty string, it indicates that this component is a factory compo-
nent. SCR must register a Component Factory service for each factory compo-
nent. See Factory Component on page 246.

immediate immediate Controls whether component configurations must be immediately activated
after becoming satisfied or whether activation should be delayed. The default
value is fa lse if the factory attribute or if the service element is specified and
true otherwise. If this attribute is specified, its value must be fa lse if the facto-
ry attribute is also specified or must be true unless the service element is also
specified.

Component Description Declarative Services Specification Version 1.3

Page 260 OSGi Residential Release 6

Attribute Annotation Description
configura-
t ion-pol icy

configurat ionPol-
icy

OPTIONAL

REQUIRE

IGNORE

Controls whether component configurations must be satisfied depending on
the presence of a corresponding Configurat ion object in the OSGi Configura-
tion Admin service. A corresponding configuration is a Configurat ion object
where the PID is the name of the component.

• optional - (default) Use the corresponding Configurat ion object if present
but allow the component to be satisfied even if the corresponding Configu-
rat ion object is not present.

• require - There must be a corresponding Configurat ion object for the com-
ponent configuration to become satisfied.

• ignore - Always allow the component configuration to be satisfied and do
not use the corresponding Configurat ion object even if it is present.

configurat ion-pid configurat ionPid The configuration PIDs to be used for the component in conjunction with
Configuration Admin. Multiple configuration PIDs can be specified by using a
whitespace separated list in the attribute. The default value for this attribute is
the name of the component.

The annotation uses a Str ing[] to specify multiple configuration PIDs. The or-
der in which configuration PIDs are specified must be preserved in the gen-
erated component description. The annotation can also use the special con-
figuration PID name "$" to specify the name of the component. This special
name must be replaced with the actual name of the component in the generat-
ed component description.

activate Activate Specifies the name of the method to call when a component configuration is
activated. The default value of this attribute is activate . See Activate Method on
page 270 for more information.

The annotation must be applied to the activate method and can only be used
once.

deactivate Deactivate Specifies the name of the method to call when a component configuration is
deactivated. The default value of this attribute is deactivate . See Deactivate
Method on page 273 for more information.

The annotation must be applied to the deactivate method and can only be
used once.

modified Modified Specifies the name of the method to call when the configuration properties
for a component configuration is using a Configurat ion object from the Con-
figuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this attribute
is not specified, then the component configuration will become unsatisfied if
its configuration properties use a Configurat ion object that is modified in any
way. See Modified Method on page 272 for more information.

The annotation must be applied to the modified method and can only be used
once.

112.4.5 Implementation Element
The implementation element is required and defines the name of the component implementation
class. The single attribute is defined in the following table.

Declarative Services Specification Version 1.3 Component Description

OSGi Residential Release 6 Page 261

Table 112.3 Implementation Element and Annotations

Attribute Annotation Description
class Component The Java fully qualified name of the implementation class.

The component Component annotation will define the implementation ele-
ment automatically from the type it is applied to.

The class is retrieved with the loadClass method of the component's bundle. The class must be pub-
lic and have a public constructor without arguments (this is normally the default constructor) so
component instances may be created by SCR with the newInstance method on Class .

If the component description specifies a service, the class must implement all interfaces that are
provided by the service.

112.4.6 Property and Properties Elements
A component description can define a number of properties. These can defined inline or from a re-
source in the bundle. The property and propert ies elements can occur multiple times and they can
be interleaved. This interleaving is relevant because the properties are processed from top to bot-
tom. Later properties override earlier properties that have the same name.

Properties can also be overridden by a Configuration Admin service's Configurat ion object before
they are exposed to the component or used as service properties. This is described in Component
Properties on page 276 and Deployment on page 277.

The property element has the attributes and annotations defined in the following table.

Table 112.4 Property Element and Annotations

Attribute Annotation Description
name Component prop-

erty
The name of the property.

value The value of the property. This value is parsed according to the property type.
If the value attribute is specified, the body of the element is ignored. If the
type of the property is not Str ing , parsing of the value is done by the static
valueOf(Str ing) method in the given type. For Character types, the conversion
must be handled by Integer.valueOf method, a Character is always represented
by its Unicode value.

type The type of the property. Defines how to interpret the value. The type must be
one of the following Java types:

• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

Component Description Declarative Services Specification Version 1.3

Page 262 OSGi Residential Release 6

Attribute Annotation Description
<body> If the value attribute is not specified, the body of the property element must

contain one or more values. The value of the property is then an array of the
specified type. Except for Str ing objects, the result will be translated to an ar-
ray of primitive types. For example, if the type attribute specifies Integer , then
the resulting array must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of the
value is done by the parse methods in the class identified by the type, after
trimming the line of any beginning and ending white space. Str ing values are
also trimmed of beginning and ending white space before being placed in the
array.

For example, a component that needs an array of hosts can use the following property definition:

<property name="hosts">
 www.acme.com
 backup.acme.com
</property>

This property declaration results in the property hosts, with a value of Str ing[] { "www.acme.com",
"backup.acme.com" } .

A property can also be set with the property annotation element of Component . This element is an
array of strings that must follow the following syntax:

property ::= name (':' type)? '=' value

In this case name , type , and value parts map to the attributes of the property element. If multiple
values must be specified then the same name can be repeated multiple times. For example:

@Component(property={"foo:Integer=1","foo:Integer=2","foo:Integer=3"})
public class FooImpl {
 ...
}

The propert ies element references an entry in the bundle whose contents conform to a standard [3]
Java Properties File.

At runtime, SCR reads the entry to obtain the properties and their values. The properties element at-
tributes are defined in the following table.

Table 112.5 Properties Element and Annotations

Attribute Annotation Description
entry Component prop-

ert ies
The entry path relative to the root of the bundle

For example, to include vendor identification properties that are stored in the OSGI-INF directory,
the following definition could be used:

<properties entry="OSGI-INF/vendor.properties"/>

The Component propert ies element can be used to provide the same information, this element con-
sists of an array of strings where each string defines an entry. The order within the array is the order
that must be used for the XML. However, the annotations do not support interleaving of the generat-
ed property and propert ies elements.

For example:

Declarative Services Specification Version 1.3 Component Description

OSGi Residential Release 6 Page 263

@Component(properties="OSGI-INF/vendor.properties")

See Ordering of Generated Properties on page 284 for more information on the ordering of generat-
ed properties when using annotations.

112.4.7 Service Element
The service element is optional. It describes the service information to be used when a component
configuration is to be registered as a service.

A service element has the following attribute defined in the following table.

Table 112.6 Service Element and Annotations

Attribute Annotation Description
scope Component scope

SINGLETON

BUNDLE

PROTOTYPE

Controls the scope of the provided service. If set to singleton , when the com-
ponent is registered as a service, it must be registered as a bundle scope ser-
vice but only a single component configuration must be created and activat-
ed and a new instance of the component implementation class of the compo-
nent must be used for all bundles using the service. If set to bundle , when the
component is registered as a service, it must be registered as a bundle scope
service and a different component configuration is created and activated and
a new instance of the component implementation class must be created for
each bundle using the service. If set to prototype , when the component is reg-
istered as a service, it must be registered as a prototype scope service and a dif-
ferent component configuration is created and activated and a new instance of
the component implementation class must be created for each distinct request
for the service, such as via ServiceObjects .

The scope attribute must be singleton if the component is a factory component or an immediate
component. This is because SCR is not free to create component configurations as necessary to sup-
port non-singleton scoped services. A component description is ill-formed if it specifies that the
component is a factory component or an immediate component and scope is not singleton .

The service element must have one or more provide elements that define the service interfaces. The
provide element has the attribute defined in the following table.

Table 112.7 Provide Element and Annotations

Attribute Annotation Description
interface Component ser-

vice
The name of the interface that this service is registered under. This
name must be the fully qualified name of a Java class. For example,
org.osgi .service. log.LogService . The specified Java class should be an inter-
face rather than a class, however specifying a class is supported. The compo-
nent implementation class must implement all the specified service inter-
faces.

The Component annotation can specify the provided services, if this element
is not specified all directly implemented interfaces on the component's type
are defined as service interfaces. Specifying an empty array indicates that no
service should be registered.

For example, a component implements an Event Handler service.

<service>
 <provide interface=
 "org.osgi.service.eventadmin.EventHandler"/>
</service>

Component Description Declarative Services Specification Version 1.3

Page 264 OSGi Residential Release 6

This previous example can be generated with the following annotation:

@Component
public class Foo implements EventHandler { ... }

112.4.8 Reference Element
A reference declares a dependency that a component has on a set of target services. A component con-
figuration is not satisfied, unless all its references are satisfied. A reference specifies target services
by specifying their interface and an optional target property.

A reference element has the attributes defined in the following table.

Table 112.8 Reference Element and Annotations

Attribute Annotation Description
name name The name of the reference. This name is local to the component and can be

used to locate a bound service of this reference with one of the locateService
methods of ComponentContext . Each reference element within the compo-
nent must have a unique name. This name attribute is optional. The default
value of this attribute is the value of the interface attribute of this element. If
multiple reference elements in the component use the same interface name,
then using the default value for this attribute will result in duplicate reference
names. In this case, this attribute must be specified with a unique name for the
reference to avoid an error.

The Reference annotation will use the name of the annotated method or field
as the default reference name. If the method name begins with bind , set or
add , that prefix is removed.

interface service Fully qualified name of the class that is used by the component to access the
service. The service provided to the component must be type compatible with
this class. That is, the component must be able to cast the service object to this
class. A service must be registered under this name to be considered for the set
of target services.

The Reference annotation will use the type of the first argument of the anno-
tated method or the type of the annotated field to determine the service value.

cardinal ity cardinal ity

MANDATORY

OPTIONAL

MULTIPLE

AT_LEAST_ONE

Specifies if the reference is optional and if the component implementation
support a single bound service or multiple bound services. See Reference Cardi-
nality on page 251.

pol icy pol icy

STATIC

DYNAMIC

The policy declares the assumption of the component about dynamicity. See
Reference Policy on page 254.

pol icy-option pol icyOption

RELUCTANT

GREEDY

Defines the policy when a better service becomes available. See Reference Policy
on page 254.

target target An optional OSGi Framework filter expression that further constrains the set
of target services. The default is no filter, limiting the set of matched services
to all service registered under the given reference interface. The value of this
attribute is used for the value of the target property of the reference. See Target
Property on page 277.

Declarative Services Specification Version 1.3 Component Description

OSGi Residential Release 6 Page 265

Attribute Annotation Description
scope scope

BUNDLE

PROTOTYPE

PROTOTYPE_

 REQUIRED

The reference scope for this reference. See Reference Scope on page 253.

bind Reference

bind

The name of a method in the component implementation class that is used to
notify that a service is bound to the component configuration. For static refer-
ences, this method is only called before the activate method. For dynamic ref-
erences, this method can also be called while the component configuration is
active. See Accessing Services on page 247.

The Reference annotation will use the name of the method it is applied to as
the bind method name.

updated updated The name of a method in the component implementation class that is used to
notify that a bound service has modified its properties.

unbind unbind Same as bind, but is used to notify the component configuration that the ser-
vice is unbound. For static references, the method is only called after the deac-
t ivate method. For dynamic references, this method can also be called while
the component configuration is active. See Accessing Services on page 247.

f ie ld Reference

field

The name of a field in the component implementation class that is used to
hold service(s) that are bound to the component configuration. For static refer-
ences, this field is only set before the activate method. For dynamic references,
this field can modified while the component configuration is active. See Ac-
cessing Services on page 247.

The Reference annotation will use the name of the field it is applied to as the
field name.

f ie ld-option fieldOption

REPLACE

UPDATE

Defines how the field value must be managed. This is ignored if the f ie ld at-
tribute is not set. See Reference Field Option on page 255.

f ie ld-col lec-
t ion-type

 Defines the types of elements in the collection referenced by the field value.
This is ignored if the f ie ld attribute is not set or the cardinality is unary. See
Field Strategy on page 250 for more information.

The Reference annotation can infer the value of the collection elements from
the generic type information of the annotated field.

In the generated component description, the reference elements must be ordered in ascending lexi-
cographical order, using Str ing.compareTo , of the names of the references.

The following code demonstrates the use of the Reference annotation for the event strategy.

@Component
public class FooImpl implements Foo {
 @Reference(
 policy = DYNAMIC,
 policyOption = GREEDY,
 cardinality = MANDATORY)
 void setLog(LogService log) { ... }
 void unsetLog(LogService log) { ... }
 void updatedLog(Map<String,?> ref) { ... }

 @Activate

Component Life Cycle Declarative Services Specification Version 1.3

Page 266 OSGi Residential Release 6

 void open() { ... }
 @Deactivate
 void close() { ... }
}

The following code demonstrates the use of the Reference annotation for the field strategy.

@Component
public class FooImpl implements Foo {
 @Reference(
 policy = DYNAMIC,
 policyOption = GREEDY,
 cardinality = MANDATORY)
 volatile LogService log;

 @Activate
 void open() { log.log(LOG_INFO, "activated"); }
 @Deactivate
 void close() { log.log(LOG_INFO, "deactivated"); }
}

For a reference to be used with the lookup strategy, there are no bind methods or fields to annotate
with the Reference annotation. Instead Reference annotations can be specified in the reference el-
ement of the Component annotation. When used in this way, the name and service elements must
be specified since there is no annotated member from which the name or service can be determined.
The following code demonstrates the use of the Reference annotation for the lookup strategy.

@Component(reference =
 @Reference(name = "log", service = LogService.class)
)
public class FooImpl implements Foo {
 @Activate
 void open(ComponentContext context) {
 LogService log = (LogService) context.locateService("log");
 ...
 }
 @Deactivate
 void close() { ... }
}

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component cannot be enabled unless the
component's bundle is started. See Starting Bundles in OSGi Core Release 6. All components in a bun-
dle become disabled when the bundle is stopped. So the life cycle of a component is contained with-
in the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a component is specified in
the component description via the enabled attribute of the component element. See Component El-
ement on page 259. Component configurations can be created, satisfied and activated only when
the component is enabled.

The enabled state of a component can be controlled with the Component Context
enableComponent(Str ing) and disableComponent(Str ing) methods. The purpose of later enabling

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Residential Release 6 Page 267

a component is to be able to decide programmatically when a component can become enabled. For
example, an immediate component can perform some initialization work before other components
in the bundle are enabled. The component descriptions of all other components in the bundle can
be disabled by having enabled set to fa lse in their component descriptions. After any necessary ini-
tialization work is complete, the immediate component can call enableComponent to enable the re-
maining components.

The enableComponent and disableComponent methods must return after changing the enabled
state of the named component. Any actions that result from this, such as activating or deactivating
a component configuration, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argument to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component configuration is satisfied. A
component configuration becomes satisfied when the following conditions are all satisfied:

• The component is enabled.
• If the component description specifies configurat ion-pol icy=required , then a Configurat ion ob-

ject for the component is present in the Configuration Admin service.
• Using the component properties of the component configuration, all the component's references

are satisfied. A reference is satisfied when the reference specifies optional cardinality or the num-
ber of target services is equal to or more than the minimum cardinality of the reference.

Once any of the listed conditions are no longer true, the component configuration becomes unsatis-
fied. An activated component configuration that becomes unsatisfied must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as soon as its dependencies are
satisfied. Once the component configuration becomes unsatisfied, the component configuration
must be deactivated. If an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service registry and then activate
the component configuration. The service properties for this registration consist of the component
properties as defined in Service Properties on page 276.

The state diagram is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and object creation. There-
fore, the activation of a delayed component configuration does not occur until there is an actual re-
quest for a service object. A component is a delayed component when it specifies a service but it is

Component Life Cycle Declarative Services Specification Version 1.3

Page 268 OSGi Residential Release 6

not a factory component and does not have the immediate attribute of the component element set
to true .

SCR must register a service after the component configuration becomes satisfied. The registration of
this service must look to observers of the service registry as if the component's bundle actually reg-
istered this service. This strategy makes it possible to register services without creating a class loader
for the bundle and loading classes, thereby allowing reduction in initialization time and a delay in
memory footprint.

When SCR registers the service on behalf of a component configuration, it must avoid causing a
class load to occur from the component's bundle. SCR can ensure this by registering a ServiceFacto-
ry object with the Framework for that service. By registering a ServiceFactory object, the actual ser-
vice object is not needed until the ServiceFactory is called to provide the service object. The service
properties for this registration consist of the component properties as defined in Service Properties on
page 276.

The activation of a component configuration must be delayed until its service is requested. When
the service is requested, if the service has the scope attribute set to bundle , SCR must create and ac-
tivate a unique component configuration for each bundle requesting the service. If the service has
the scope attribute set to prototype , SCR must create and activate a unique component configura-
tion for each distinct request for the service. Otherwise, if the service has the scope attribute set to
singleton , SCR must activate a single component configuration which is used by all requests for the
service. A component instance can determine the bundle it was activated for by calling the getUs-
ingBundle() method on the Component Context.

The activation of delayed components is depicted in a state diagram in Figure 112.3. Notice that
multiple component configurations can be created from the REGISTERED state if a delayed compo-
nent specifies a service scope set to a value other than singleton .

If the service registered by a component configuration becomes unused because there are no more
bundles using it, then SCR should deactivate that component configuration. This allows SCR imple-
mentations to eagerly reclaim activated component configurations.

Figure 112.3 Delayed Component Configuration

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

activate

deactivate

ACTIVE

REGISTERED becomes
unsatisfied

get
service

unget
service1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component factory becomes satisfied.
The component factory is satisfied when the following conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component description, all the component's

references are satisfied. A reference is satisfied when the reference specifies optional cardinality
or there is at least one target service for the reference

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Residential Release 6 Page 269

The component factory, however, does not use any of the target services and does not bind to them.

Once any of the listed conditions are no longer true, the component factory becomes unsatisfied
and the Component Factory service must be unregistered. Any component configurations activated
via the component factory are unaffected by the unregistration of the Component Factory service,
but may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org.osgi .service.component.ComponentFactory with the following service properties:

• component.name - The name of the component.
• component.factory - The value of the factory attribute.

The service properties of the Component Factory service must not include the component proper-
ties.

New component configurations are created and activated when the newInstance method of the
Component Factory service is called. If the component description specifies a service, the compo-
nent configuration is registered as a service under the provided interfaces. The service properties for
this registration consist of the component properties as defined in Service Properties on page 276.
The service registration must take place before the component configuration is activated. Service
unregistration must take place before the component configuration is deactivated.

Figure 112.4 Factory Component

activate

deactivate

ACTIVE

FACTORY

becomes
unsatisfied

newInstance

dispose

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

A Component Factory service has a single method: newInstance(Dict ionary) . This method must cre-
ate, satisfy and activate a new component configuration and register its component instance as a
service if the component description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component instance with the getIn-
stance() method.

SCR must attempt to satisfy the component configuration created by newInstance before activating
it. If SCR is unable to satisfy the component configuration given the component properties and the
Dictionary argument to newInstance , the newInstance method must throw a ComponentException .

The client of the Component Factory service can also deactivate a component configuration with
the dispose() method on the ComponentInstance object. If the component configuration is already

Component Life Cycle Declarative Services Specification Version 1.3

Page 270 OSGi Residential Release 6

deactivated, or is being deactivated, then this method is ignored. Also, if the component configura-
tion becomes unsatisfied for any reason, it must be deactivated by SCR.

Once a component configuration created by the Component Factory has been deactivated, that com-
ponent configuration will not be reactivated or used again.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1. Load the component implementation class.
2. Create the component instance and component context.
3. Bind the target services. See Binding Services on page 270.
4. Call the activate method, if present. See Activate Method on page 270.

Component instances must never be reused. Each time a component configuration is activated, SCR
must create a new component instance to use with the activated component configuration. A com-
ponent instance must complete activation before it can be deactivated. Once the component config-
uration is deactivated or fails to activate due to an exception, SCR must unbind all the component's
bound services and discard all references to the component instance associated with the activation.

112.5.7 Binding Services
When a component configuration's reference is satisfied, there is a set of zero or more target services
for that reference. When the component configuration is activated, a subset of the target services for
each reference are bound to the component configuration. The subset is chosen by the cardinality of
the reference. See Reference Cardinality on page 251.

When binding services, the references are processed in the order in which they are specified in the
component description. That is, target services from the first specified reference are bound before
services from the next specified reference.

Obtaining the service object for a bound service may result in activating a component configuration
of the bound service which could result in an exception. If the loss of the bound service due to the
exception causes the reference's cardinality constraint to be violated, then activation of this compo-
nent configuration will fail. Otherwise the bound service which failed to activate will be considered
unbound.

If the reference uses the field strategy, the field must be set. Then, if the reference uses the event
strategy, the bind method must be called for each bound service of that reference. If a bind method
throws an exception, SCR must log an error message containing the exception with the Log Service,
if present, but the activation of the component configuration does not fail.

112.5.8 Activate Method
A component instance can have an activate method. The name of the activate method can be spec-
ified by the activate attribute. See Component Element on page 259. If the activate attribute is not
specified, the default method name of activate is used. The prototype of the activate method is:

void <method-name>(<arguments>);

The activate method can take zero or more arguments. Each argument must be of one of the follow-
ing types:

• ComponentContext - The component instance will be passed the Component Context for the
component configuration.

• BundleContext - The component instance will be passed the Bundle Context of the component's
bundle.

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Residential Release 6 Page 271

• Map - The component instance will be passed an unmodifiable Map containing the component
properties.

• A component property type - The component instance will be passed an instance of the compo-
nent property type which allows type safe access to component properties defined by the compo-
nent property type. See Component Property Types on page 282.

A suitable method is selected using the following priority:

1. The method takes a single argument and the type of the argument is
org.osgi .service.component.ComponentContext .

2. The method takes a single argument and the type of the argument is
org.osgi .f ramework.BundleContext .

3. The method takes a single argument and the type of the argument is a component property
type.

4. The method takes a single argument and the type of the argument is java.ut i l .Map .
5. The method takes two or more arguments and the type of each argument must be

org.osgi .service.component.ComponentContext , org.osgi .f ramework.BundleContext , a com-
ponent property type or java.ut i l .Map . If multiple methods match this rule, this implies the
method name is overloaded and SCR may choose any of the methods to call.

6. The method takes zero arguments.

When searching for the activate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 286. If the activate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
component configuration is not activated.

If an activate method is located, SCR must call this method to complete the activation of the compo-
nent configuration. If the activate method throws an exception, SCR must log an error message con-
taining the exception with the Log Service, if present, and the component configuration is not acti-
vated.

112.5.9 Component Context
The Component Context is made available to a component instance via the activate and deactivate
methods. It provides the interface to the execution context of the component, much like the Bundle
Context provides a bundle the interface to the Framework. A Component Context should therefore
be regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context. Component Contexts are
not reused and must be discarded when the component configuration is deactivated.

112.5.10 Bound Service Replacement
If an active component configuration has a dynamic reference with unary cardinality and the
bound service is modified or unregistered and ceases to be a target service, or the pol icy-option is
greedy and a better target service becomes available then SCR must attempt to replace the bound
service with a new bound service.

If the reference uses the field strategy, the field must be set for the replacement bound service. Then,
if the reference uses the event strategy, SCR must first bind the new bound service and then unbind
the outgoing service. This reversed order allows the component to not have to handle the inevitable
gap between the unbind and bind methods. However, this means that in the unbind method care
must be taken to not overwrite the newly bound service. For example, the following code handles
the associated concurrency issues and simplify handling the reverse order.

final AtomicReference<LogService> log = new AtomicReference<LogService>();

Component Life Cycle Declarative Services Specification Version 1.3

Page 272 OSGi Residential Release 6

void setLogService(LogService log) {
 this.log.set(log);
}
void unsetLogService(LogService log) {
 this.log.compareAndSet(log, null);
}

If the dynamic reference falls below the minimum cardinality, the component configuration must
be deactivated because the cardinality constraints will be violated.

If a component configuration has a static reference and a bound service is modified or unregistered
and ceases to be a target service, or the pol icy-option is greedy and a better target service becomes
available then SCR must deactivate the component configuration. Afterwards, SCR must attempt to
activate the component configuration again if another target service can be used as a replacement
for the outgoing service.

112.5.11 Updated
If an active component is bound to a service that modifies its service properties then the component
can be updated. If the reference uses the field strategy and the field holds the service properties, the
field must be set for the updated bound service. Then, if the reference uses the event strategy and
specifies an updated method, the updated method must be called.

112.5.12 Modification
Modifying a component configuration can occur if the component description specifies the mod-
if ied attribute and the component properties of the component configuration use a Configurat ion
object from the Configuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this occurs, the component instance
will be notified of the change in the component properties.

If the modified attribute is not specified, then the component configuration will become unsatisfied
if its component properties use a Configurat ion object and that Configuration object is modified in
any way.

Modifying a component configuration consists of the following steps:

1. Update the component context for the component configuration with the modified configura-
tion properties.

2. Call the modified method. See Modified Method on page 272.
3. Modify the bound services for the dynamic references if the set of target services changed due to

changes in the target properties. See Bound Service Replacement on page 271.
4. If the component configuration is registered as a service, modify the service properties.

A component instance must complete activation, or a previous modification, before it can be modi-
fied.

See Configuration Changes on page 278 for more information.

112.5.13 Modified Method
The name of the modified method is specified by the modified attribute. See Component Element on
page 259. The prototype and selection priority of the modified method is identical to that of the
activate method. See Activate Method on page 270.

SCR must locate a suitable method as specified in Locating Component Methods and Fields on page
286. If the modified attribute is specified and no suitable method is located, SCR must log an error
message with the Log Service, if present, and the component configuration becomes unsatisfied and
is deactivated as if the modified attribute was not specified.

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Residential Release 6 Page 273

If a modified method is located, SCR must call this method to notify the component configuration
of changes to the component properties. If the modified method throws an exception, SCR must log
an error message containing the exception with the Log Service, if present and continue processing
the modification.

112.5.14 Deactivation
Deactivating a component configuration consists of the following steps:

1. Call the deactivate method, if present. See Deactivate Method on page 273.
2. Unbind any bound services. See Unbinding on page 274.
3. Release all references to the component instance and component context.

A component instance must complete activation or modification before it can be deactivated. A
component configuration can be deactivated for a variety of reasons. The deactivation reason can be
received by the deactivate method. The following reason values are defined:

• 0 - Unspecified.
• 1 - The component was disabled.
• 2 - A reference became unsatisfied.
• 3 - A configuration was changed.
• 4 - A configuration was deleted.
• 5 - The component was disposed.
• 6 - The bundle was stopped.

Once the component configuration is deactivated, SCR must discard all references to the compo-
nent instance and component context associated with the activation.

112.5.15 Deactivate Method
A component instance can have a deactivate method. The name of the deactivate method can be
specified by the deactivate attribute. See Component Element on page 259. If the deactivate at-
tribute is not specified, the default method name of deactivate is used. The prototype of the deacti-
vate method is:

void <method-name>(<arguments>);

The deactivate method can take zero or more arguments. Each argument must be assignable from
one of the following types:

• ComponentContext - The component instance will be passed the Component Context for the
component.

• BundleContext - The component instance will be passed the Bundle Context of the component's
bundle.

• Map - The component instance will be passed an unmodifiable Map containing the component
properties.

• A component property type - The component instance will be passed an instance of the compo-
nent property type which allows type safe access to component properties defined by the compo-
nent property type. See Component Property Types on page 282.

• int or Integer - The component instance will be passed the reason the component configuration
is being deactivated. See Deactivation on page 273.

A suitable method is selected using the following priority:

1. The method takes a single argument and the type of the argument is
org.osgi .service.component.ComponentContext .

Component Life Cycle Declarative Services Specification Version 1.3

Page 274 OSGi Residential Release 6

2. The method takes a single argument and the type of the argument is
org.osgi .f ramework.BundleContext .

3. The method takes a single argument and the type of the argument is a component property
type.

4. The method takes a single argument and the type of the argument is java.ut i l .Map .
5. The method takes a single argument and the type of the argument is int .
6. The method takes a single argument and the type of the argument is java. lang. Integer .
7. The method takes two or more arguments and the type of each argument must be

org.osgi .service.component.ComponentContext , org.osgi .f ramework.BundleContext , a com-
ponent property type, java.ut i l .Map , int or java. lang. Integer . If multiple methods match this
rule, this implies the method name is overloaded and SCR may choose any of the methods to
call.

8. The method takes zero arguments.

When searching for the deactivate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 286. If the deactivate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
deactivation of the component configuration will continue.

If a deactivate method is located, SCR must call this method to commence the deactivation of the
component configuration. If the deactivate method throws an exception, SCR must log an error
message containing the exception with the Log Service, if present, and the deactivation of the com-
ponent configuration will continue.

112.5.16 Unbinding
When a component configuration is deactivated, the bound services are unbound from the compo-
nent configuration.

When unbinding services, the references are processed in the reverse order in which they are spec-
ified in the component description. That is, target services from the last specified reference are un-
bound before services from the previous specified reference.

If the reference uses the event strategy, the unbind method must be called for each bound service of
that reference. If an unbind method throws an exception, SCR must log an error message containing
the exception with the Log Service, if present, and the deactivation of the component configuration
will continue. Then, if the reference uses the field strategy, the field must be set to nul l .

112.5.17 Life Cycle Example
A component could declare a dependency on the Http Service to register some resources.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.binding"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.Binding"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 cardinality="1..1"
 policy="static"
 />
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..1"
 policy="dynamic"
 bind="setHttp"
 unbind="unsetHttp"

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Residential Release 6 Page 275

 />
</scr:component>

The component implementation code looks like:

public class Binding {
 LogService log;
 HttpService http;

 private void setHttp(HttpService h) {
 http = h;
 // register servlet
 }
 private void unsetHttp(HttpService h){
 if (http == h)
 http = null;
 // unregister servlet
 }
 private void activate(ComponentContext context) {
 log = (LogService) context.locateService("LOG");
 }
 private void deactivate(ComponentContext context) {...}
}

This example is depicted in a sequence diagram in Figure 112.5 with the following scenario:

1. A bundle with the example.Binding component is started. At that time there is a Log Service l1
and a Http Service h1 registered.

2. The Http Service h1 is unregistered
3. A new Http Service h2 is registered
4. The Log Service h1 is unregistered.

Figure 112.5 Sequence Diagram for binding

a Component
Configuration

Log Service Ref.
static, 1..1

Http Service Ref.
dynamic, 0..1

SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered
unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

create

Component Properties Declarative Services Specification Version 1.3

Page 276 OSGi Residential Release 6

112.6 Component Properties
Each component configuration is associated with a set of component properties. The component
properties are specified in the following configuration sources (in order of precedence):

1. Properties specified in the argument of the ComponentFactory.newInstance method. This is on-
ly applicable for factory components.

2. Properties retrieved from the OSGi Configuration Admin service in Configuration objects whose
PID matches a configuration PID. The configuration PIDs are specified by the configurat ion-pid
attribute of the component element. See Component Element on page 259. If no configura-
t ion-pid attribute is specified, the component name is used as the default configuration PID. If
multiple configuration PIDs are specified, the order of precedence follows the order the configu-
ration PIDs are specified in the component description. That is, the precedence for the configu-
ration for an earlier specified configuration PID is lower than the precedence for the configura-
tions for a later specified configuration PID.

3. Properties specified in the component description. Properties specified later in the component
description override properties that have the same name specified earlier. Properties can be spec-
ified in the component description in the following ways:
• target attribute of reference elements - Sets the target property of the reference. See Target

Property on page 277. The value of the target attribute is used for the value of a target prop-
erty.

• property and propert ies elements - See Property and Properties Elements on page 261.

The precedence behavior allows certain default values to be specified in the component description
while allowing properties to be replaced and extended by:

• A configuration in Configuration Admin
• The argument to the ComponentFactory.newInstance method

Normally, a property value from a higher precedence configuration source replace a property value
from a lower precedence configuration source. However, the service.pid property values receive dif-
ferent treatment. For the service.pid property, if the property appears multiple times in the config-
uration sources, SCR must aggregate all the values found into a Collect ion<Str ing> having an itera-
tion order such that the first item in the iteration is the property value from the lowest precedence
configuration source and the last item in the iteration is the property value from the highest prece-
dence configuration source. If the component description specifies multiple configuration PIDs,
then the order of the service.pid property values from the corresponding configurations match-
es the order the configuration PIDs are specified in the component description. The values of the
service.pid component property are the values as they come from the configuration sources which,
for Configuration objects, may be more detailed than the configuration PIDs specified in the compo-
nent description.

SCR always adds the following component properties, which cannot be overridden:

• component.name - The component name.
• component. id - A unique value (Long) that is larger than all previously assigned values. These

values are not persistent across restarts of SCR.

112.6.1 Service Properties
When SCR registers a service on behalf of a component configuration, SCR must follow the recom-
mendations in Property Propagation on page 109 and must not propagate private configuration prop-
erties. That is, the service properties of the registered service must be all the component properties
of the component configuration whose property names do not start with full stop ('.' \u002E).

Declarative Services Specification Version 1.3 Deployment

OSGi Residential Release 6 Page 277

Component properties whose names start with full stop are available to the component instance
but are not available as service properties of the registered service.

112.6.2 Reference Properties
This specification defines some component properties which are associated with specific compo-
nent references. These are called reference properties. The name of a reference property for a reference
is the name of the reference appended with a full stop ('.' \u002E) and a suffix unique to the refer-
ence property. Reference properties can be set wherever component properties can be set.

All component property names starting with a reference name followed by a full stop ('.' \u002E)
are reserved for use by this specification.

Following are the reference properties defined by this specification.

112.6.2.1 Target Property

The target property is a reference property which aids in the selection of target services for the refer-
ence. See Selecting Target Services on page 257. The name of a target property is the name of a ref-
erence appended with .target . For example, the target property for a reference with the name http
would have the name http.target . The value of a target property is a filter string used to select tar-
gets services for the reference.

The target property for a reference can also be set by the target attribute of the reference element.
See Reference Element on page 264.

112.6.2.2 Minimum Cardinality Property

The initial minimum cardinality of a reference is specified by the optionality: the first part of the
cardinality. It is either 0 or 1 . The minimum cardinality of a reference cannot exceed the multiplici-
ty: the second part of the cardinality. See Reference Cardinality on page 251 for more information
on the cardinality of a reference.

The minimum cardinality property is a reference property which can be used to raise the minimum
cardinality of a reference from its initial value. That is, a 0..1 cardinality can be raised to a 1. .1 cardi-
nality by setting the reference's minimum cardinality property to 1 , and a 0..n or 1. .n cardinality can
be raised to a m..n cardinality by setting the reference's minimum cardinality property to m such
that m is a positive integer. The minimum cardinality of a reference cannot be lowered. That is, a 1. .1
or 1. .n cardinality can be lowered to a 0..1 or 0..n cardinality because the component was coded to
expect at least one bound service.

The name of a minimum cardinality property is the name of a reference appended with
.cardinal ity.minimum . For example, the minimum cardinality property for a reference with the
name http would have the name http.cardinal ity.minimum . The value of a minimum cardinality
property must be a positive integer or a value that can be coerced into a positive integer. See Coerc-
ing Component Property Values on page 284 for information on coercing property values. If the nu-
merical value of the minimum cardinality property is not valid for the reference's cardinality or the
minimum cardinality property value cannot be coerced into a numerical value, then the minimum
cardinality property must be ignored.

SCR must support the minimum cardinality property for all components even those with compo-
nent descriptions in older namespaces.

112.7 Deployment
A component description contains default information to select target services for each reference.
However, when a component is deployed, it is often necessary to influence the target service selec-
tion in a way that suits the needs of the deployer. Therefore, SCR uses Configurat ion objects from

Deployment Declarative Services Specification Version 1.3

Page 278 OSGi Residential Release 6

Configuration Admin to replace and extend the component properties for a component configura-
tion. That is, through Configuration Admin, a deployer can configure component properties.

A component's configuration PIDs are used as keys for obtaining additional component properties
from Configuration Admin. When matching a configuration PID to a Configurat ion object, SCR must
use the Configurat ion object with the best matching PID for the component's bundle. See Targeted
PIDs on page 105 for more information on targeted PIDs and Extenders and Targeted PIDs on page 106
for more information on selecting the Configurat ion object with the best matching PID.

The following situations can arise when looking for Configurat ion objects:

• No Configuration - If the component's configurat ion-pol icy is set to ignore or there are no Config-
urations with a PID or factory PID matching any of the configuration PIDs, then component con-
figurations will not obtain component properties from Configuration Admin. Only component
properties specified in the component description or via the ComponentFactory.newInstance
method will be used.

• Not Satisfied - If the component's configurat ion-pol icy is set to require and, for each configuration
PID, there is no Configuration with a matching PID or factory PID, then the component configu-
ration is not satisfied and will not be activated.

• Single Configurations - If none of the configuration PIDs matches a factory PID, then component
configurations will obtain additional component properties from Configuration Admin.

• Factory Configuration - If one of the configuration PIDs matches a factory PID, with zero or more
Configurations, then for each Configuration of the factory PID, a component configuration must
be created that will obtain additional component properties from Configuration Admin.

It is a configuration error if more than one of the configuration PIDs match a factory PID and
SCR must log an error message with the Log Service, if present. If the configurat ion-pol icy is set
to optional , the component configuration must be satisfied without the configurations PIDs
which match a factory PID. If the configurat ion-pol icy is set to require , the component configu-
ration is not satisfied and will not be activated.

A factory configuration must not be used if the component is a factory component. This is be-
cause SCR is not free to create component configurations as necessary to support multiple Con-
figurations. When SCR detects this condition, it must log an error message with the Log Service,
if present, and ignore the component description.

SCR must obtain the Configurat ion objects from the Configuration Admin service using the Bundle
Context of the bundle containing the component.

For example, there is a component named com.acme.cl ient with a reference named HTTP that re-
quires an Http Service which must be bound to a component com.acme.httpserver which provides
an Http Service. A deployer can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

112.7.1 Configuration Changes
SCR must track changes in the Configurat ion objects matching the configuration PIDs of a com-
ponent description. Changes include the creating, updating and deleting of Configurat ion objects
matching the configuration PIDs. The actions SCR must take when a configuration change for a
component configuration occurs are based upon how the configurat ion-pol icy and modified attrib-
utes are specified in the component description, whether a component configuration becomes satis-
fied, remains satisfied or becomes unsatisfied and the type and number of matching Configurat ion
objects.

With targeted PIDs, multiple Configurat ion objects can exist which can match a configuration PID.
Creation of a Configurat ion object with a better matching PID than a Configurat ion object current-
ly being used by a component configuration results in a configuration change for the component

Declarative Services Specification Version 1.3 Deployment

OSGi Residential Release 6 Page 279

configuration with the new Configurat ion object replacing the currently used Configurat ion ob-
ject. Deletion of a Configurat ion object currently being used by a component configuration when
there is another Configurat ion object matching the configuration PID also results in a configuration
change for the component configuration with the Configurat ion object having the best matching
PID replacing the currently used, and now deleted, Configurat ion object.

112.7.1.1 Ignore Configuration Policy

For configurat ion-pol icy of ignore , component configurations are unaffected by configuration
changes since the component properties do not include properties from Configurat ion objects.

112.7.1.2 Require Configuration Policy

For configurat ion-pol icy of require , component configurations require a Configurat ion object for
each specified configuration PID. With a factory configuration, there can be zero or more matching
Configurat ion objects which will result in a component configuration for each Configurat ion object
of the factory configuration. With a factory component, multiple component configurations can be
created all using the matching Configurat ion objects.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• Each configuration PID of the component description does not have a matching Configurat ion
object.

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

112.7.1.3 Optional Configuration Policy

For configurat ion-pol icy of optional , component configurations do not require Configurat ion ob-
jects. Since matching Configurat ion objects are optional, component configurations can be satis-
fied with zero or more matched configuration PIDs. If a Configurat ion object is then created which
matches a configuration PID, this is a configuration change for the component configurations that
are not using the created Configurat ion object. If a Configurat ion object is deleted which matches a
configuration PID, this is a configuration change for the component configurations using the delet-
ed Configurat ion object.

Furthermore, with a factory configuration matching a configuration PID, the factory configuration
can provide zero or more Configurat ion objects which will result in a component configuration for
each Configurat ion object or a single component configuration when zero matching Configurat ion
objects are provided. With a factory component, multiple component configurations can be created
all using the Configurat ion objects matching the configuration PIDs.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

Annotations Declarative Services Specification Version 1.3

Page 280 OSGi Residential Release 6

112.7.1.4 Configuration Change Actions

If a component configuration becomes unsatisfied:

• SCR must deactivate the component configuration.
• If the component configuration was not created from a factory component, SCR must attempt to

satisfy the component configuration with the current configuration state.

If a component configuration remains satisfied:

• If the component configuration has been activated, the modified method is called to provide the
updated component properties. See Modification on page 272 for more information.

• If the component configuration is registered as a service, SCR must modify the service properties.

112.8 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. The Component Annotations are intended to be
used during build time to generate the component description XML.

Component Property Types, which are user defined annotations, can be used to describe component
properties in the component description XML and to access those component properties at runtime
in a type safe manner.

112.8.1 Component Annotations
The Component Annotations provide a convenient way to create the component description XML
during build time. Since annotations are placed in the source file and can use types, fields, and
methods, they can significantly simplify the use of Declarative Services.

The Component Annotations are build time annotations because one of the key aspects of Declar-
ative Services is its laziness. SCR can easily read the component description XML from the bundle,
preprocess it, and cache the results between framework invocations. This way it is unnecessary
to load a class from the bundle when the bundle is started and/or scan the classes for annotations.
Component Annotations are not recognized by SCR at runtime.

The Component Annotations are not inherited, they can only be used on a given class, annotations
on its super class hierarchy or interfaces are not taken into account.

The primary annotation is the Component annotation. It indicates that a class is a component. Its
defaults create the easiest to use component:

• Its name is the class name
• It registers all of the class's directly implemented interfaces as services
• The instance will be shared by all bundles
• It is enabled
• It is immediate if it has no services, otherwise it is delayed
• It has an optional configuration policy
• The configuration PID is the class name

For example, the following class registers a Speech service that can run on a Macintosh:

pubic interface Speech {
 void say(String what) throws Exception;
}

@Component

Declarative Services Specification Version 1.3 Annotations

OSGi Residential Release 6 Page 281

public class MacSpeech implements Speech {
 ScriptEngine engine =
 new ScriptEngineManager().getEngineByName("AppleScript");

 public void say(String message) throws Exception {
 engine.eval("say \"" + message.replace('"','\'' + "\"");
 }
}

The previous example would be processed at build time into a component description similar to the
following XML:

<scr:component name="com.example.MacSpeech"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.MacSpeech"/>
 <service>
 <provide interface="com.acme.service.speech.Speech"/>
 </service>
</scr:component>

It is possible to add activate and deactivate methods on the component with the Activate and Deac-
t ivate annotations. If the component wants to be updated for changes in the configuration proper-
ties than it can also indicated the modified method with the Modified annotation. For example:

@Activate
void open(Map<String,?> properties) { ... }

@Deactivate
void close() { ... }

@Modified
void modified(Map<String,?> properties) { ... }

If a component has dependencies on other services then they can be referenced with the Reference
annotation that can be applied to a bind method or a field. For a bind method, the defaults for the
Reference annotation are:

• The name of the bind method or field is used for the name of the reference.
• 1:1 cardinality.
• Static reluctant policy.
• The requested service is the type of the first argument of the bind method.
• It will infer a default unset method and updated method based on the name of the bind method.

For example:

@Reference(cardinality=MULTIPLE, policy=DYNAMIC)
void setLogService(LogService log, Map<String,?> props) { ... }
void unsetLogService(LogService log) { ... }
void updatedLogService(Map<String,?> map) { ...}

For a field, the defaults for the Reference annotation are:

• The name of the bind method or field is used for the name of the reference.
• 1:1 cardinality if the field is not a collection. 0..n cardinality if the field is a collection.
• Static reluctant policy if the field is not declared volatile. Dynamic reluctant policy if the field is

declared volatile.

Annotations Declarative Services Specification Version 1.3

Page 282 OSGi Residential Release 6

• The requested service is the type of the field.

For example:

@Reference
volatile Collection<LogService> log;

112.8.2 Component Property Types
Component properties can be defined and accessed through a user defined annotation type, called
a component property type, containing the property names, property types and default values. A com-
ponent property type allows properties to be defined and accessed in a type safe manner. The follow-
ing example shows the definition of a component property type called Config which defines three
properties where the name of the property is the name of the method, the type of the property is the
return type of the method and the default value for the property is the default value of the method.

@interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Component property types can be referenced as argument types in the component's life cycle meth-
ods, activate, deactivate, and modified, and used in the method implementation to access compo-
nent property values in a type safe manner. The following example shows the activate method tak-
ing the example Config component property type as an argument type and the method implementa-
tion accesses component property values by invoking methods on the component property type ar-
gument.

@Component
public class MyComponent {
 void activate(Config config) {
 if (config.enabled()) {
 // do something
 }
 for (String name:config.names()) {
 // do something with each name
 }
 }
}

If a component implementation needs to access component properties which are not represented
by a component property type, it can use a life cycle method signature which also receives the prop-
erties map in addition to component property types. For example:

@Component
public class MyComponent {
 void activate(Config config, Map<String, ?> allProperties) {
 if (config.enabled()) {
 // do something
 }
 if (allProperties.get("other.prop") != null) {
 // do something
 }
 }
}

Declarative Services Specification Version 1.3 Annotations

OSGi Residential Release 6 Page 283

Component property types must be defined as annotation types even though they are not applied
as annotations but are rather used as life cycle method argument types. This is done for two reasons.
First, the limitations on annotation type definitions make them well suited for component prop-
erty types. The methods must have no arguments and the return types supported are limited to a
set which is well suited for component properties. Second, annotation types support default values
which is useful for defining the default value of a component property.

At build time, the component property types must be processed to potentially generate property ele-
ments in the component description. See Ordering of Generated Properties on page 284.

At runtime, when SCR needs to call a lifecycle method on a component instance which takes an ar-
gument whose type is a component property type, SCR must construct an instance of the compo-
nent property type whose methods are backed by the values of the component properties for the
component instance. This object is then passed to the life cycle method which can use the object to
obtain the property values in a type safe manner.

112.8.2.1 Component Property Mapping

Each method of a configuration property type is mapped to a component property. The property
name is derived from the method name. Certain common property name characters, such as full
stop ('.' \u002E) are not valid in Java identifiers. So the name of a method must be converted to its
corresponding property name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by another dollar sign in which
case the two consecutive dollar signs ("$$") are converted to a single dollar sign.

• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.

Table 112.9 contains some name mapping examples.

Table 112.9 Component Property Name Mapping Examples

Component Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop

The property type can be directly derived from the type of the method. All types supported for anno-
tation elements can be used except for annotation types. Method types of an annotation type or ar-
ray thereof are not supported. A tool processing the component property types must declare an er-
ror during processing in this case.

If the method type is Class or Class[] , then the property type must be Str ing or Str ing[] , respectively,
whose values are fully qualified class names in the form returned by the Class.getName() method.

If the method type is an enumeration type or an array thereof, then the property type must be Str ing
or Str ing[] , respectively, whose values are the names of the enum constants in the form returned by
the Enum.name() method.

Annotations Declarative Services Specification Version 1.3

Page 284 OSGi Residential Release 6

112.8.2.2 Coercing Component Property Values

When a component property type is used as an argument for a life cycle method, SCR must create
an object that implements the component property type and maps the methods of the component
property type to component properties. The name of the method is converted to the property name
as described in Component Property Mapping on page 283. The property value may need to be co-
erced to the type of the method. In Table 112.10, the columns are source types, that is, the type of the
component property value, and the rows are target types, that is, the method types. The property
value is v; number is a primitive numerical type and Number is a wrapper numerical type. An invalid
coercion is represented by throw . Such a coercion attempt must result in throwing a Component Ex-
ception when the component property type method is called. Any other coercion error, such as pars-
ing a non-numerical string to a number or the inability to coerce a string into a Class or enum ob-
ject, must be wrapped in a Component Exception and thrown when the component property type
method is called.

Table 112.10 Coercion From Property Value to Method Type

target \ source String Boolean Character Number Collection/array
String v v. toString() v. toString() v. toString() If v has no elements, nul l ; other-

wise the first element of v is co-
erced.

boolean Boolean. parse-
Boolean(v)

v. booleanVal-
ue()

v. charValue() !
= 0

v. numberVal-
ue() != 0

If v has no elements, fa lse ; other-
wise the first element of v is co-
erced.

char v. length() > 0 ?
v. charAt(0) : 0

v. booleanVal-
ue() ? 1 : 0

v. charValue() (char) v. num-
berValue()

If v has no elements, 0; otherwise
the first element of v is coerced.

number Number.
parseNumber(
v)

v. booleanVal-
ue() ? 1 : 0

(number) v.
charValue()

v. numberVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

Class Bundle. load-
Class(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

EnumType EnumType. val-
ueOf(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

annotation type throw throw throw throw throw
array A single element array is created and v is coerced into the single el-

ement of the new array.
An array the size of v is created
and each element of v is coerced
into the corresponding element
of the new array.

Component properties whose names do not map to component property type methods are ignored.
If there is no corresponding component property for a component property type method, the com-
ponent property type method must:

• Return 0 for numerical and char method types.
• Return fa lse for boolean method type.
• Return nul l for String, Class, enum and array method types.
• Throw a ComponentException for annotation method types.

112.8.3 Ordering of Generated Properties
The Component annotation contains two ways to define component properties via the property
and propert ies elements. See Property and Properties Elements on page 261. If Component Anno-
tations are used to describe the component, then any component property types referenced in the
signatures of the component's life cycle methods must also be processed since component prop-

Declarative Services Specification Version 1.3 Service Component Runtime

OSGi Residential Release 6 Page 285

erty types can be used to define component property values as well. See Component Property Types
on page 282. A tool processing the Component Annotations and the component property types
must write the defined component properties into the generated component description in the fol-
lowing order.

1. Properties defined through component property types used in the signatures of the life cycle
methods.

If any of the referenced component property types have methods with defaults, then the gener-
ated component description must include a property element for each such method with the
property name mapped from the method name, the property type mapped from the method
type, and the property value set to the method's default value. See Component Property Mapping
on page 283. The generated property elements must be added to the component description
by processing the component property types in the following order. First, the component prop-
erty types used as arguments to the activate method, followed by the component property types
used as arguments to the modified method and finally the component property types used as ar-
guments to the deactivate method. If a method has more than one component property type ar-
gument, the component property types are processed in the order of the method arguments.

For component property type methods without a default value, a property element must not be
generated.

2. property element of the Component annotation.
3. propert ies element of the Component annotation.

This means that the properties defined through component property types are declared first in the
generated component description, followed by all properties defined through the property element
of the Component annotation and finally the properties entries defined through the propert ies ele-
ment of the Component annotation.

Since property values defined later in the component description override property values defined
earlier in the component description, this means that property values defined in propert ies element
of the Component annotation can override property values defined in property element of the Com-
ponent annotation which can override values defined by default values in the component property
types used in life cycle method signatures.

112.9 Service Component Runtime
Service Component Runtime (SCR) is the actor that manages the components and their life cycle
and allows introspection of the components.

112.9.1 Relationship to OSGi Framework
SCR must have access to the Bundle Context of any bundle that contains a component. SCR needs
access to the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with components.
• To interact with the Configuration Admin on behalf of a bundle with components.
• To provide a component its Bundle Context when the Component Context getBundleContext

method is called.

SCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

112.9.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations activated by SCR must be
deactivated when the SCR bundle is stopped. When the SCR bundle is started, it must process any

Service Component Runtime Declarative Services Specification Version 1.3

Page 286 OSGi Residential Release 6

components that are declared in bundles that are started. This includes bundles which are started
and are awaiting lazy activation.

112.9.3 Logging Error Messages
When SCR must log an error message to the Log Service, it must use a Log Service obtained using
the component's Bundle Context so that the resulting Log Entry is associated with the component's
bundle.

If SCR is unable to obtain, or use, a Log Service using the component's Bundle Context, then SCR
must log the error message to a Log Service obtained using SCR's bundle context to ensure the error
message is logged.

112.9.4 Locating Component Methods and Fields
SCR will need to locate activate, deactivate, modified, bind, updated, and unbind methods as well
as fields in a component instance. These members will be located, and called or modified, using re-
flection. The declared members of each class in the component implementation class's hierarchy are
examined for a suitable member. If a suitable member is found in a class, and it is accessible to the
component implementation class, then that member must be used. If suitable members are found
in a class but none of the suitable members are accessible by the component implementation class,
then the search for suitable members terminates with no suitable member having been located. If
no suitable members are found in a class, the search continues in the superclass.

Only members that are accessible to the component implementation class will be used. If the mem-
ber has the publ ic or protected access modifier, then access is permitted. Otherwise, if the member
has the private access modifier, then access is permitted only if the member is declared in the com-
ponent implementation class. Otherwise, if the member has default access, also known as pack-
age private access, then access is permitted only if the member is declared in the component imple-
mentation class or if the member is declared in a superclass and all classes in the hierarchy from the
component implementation class to the superclass, inclusive, are in the same package and loaded
by the same class loader.

It is recommended that these members should not be declared with the publ ic access modifier so
that they do not appear as public members on the component instance when it is used as a service
object. Having these members declared publ ic allows any code to call or access the members with
reflection, even if a Security Manager is installed. These members are generally intended to only be
called or modified by SCR.

112.9.5 Bundle Activator Interaction
A bundle containing components may also declare a Bundle Activator. Such a bundle may also be
marked for lazy activation. Since components are activated by SCR and Bundle Activators are called
by the OSGi Framework, a bundle using both components and a Bundle Activator must take care.
The Bundle Activator's start method must not rely upon SCR having activated any of the bundle's
components. However, the components can rely upon the Bundle Activator's start method hav-
ing been called. That is, there is a happens-before relationship between the Bundle Activator's start
method being run and the components being activated.

112.9.6 Introspection
SCR provides an introspection API for examining the runtime state of the components in bundles
processed by SCR. SCR must register a ServiceComponentRuntime service upon startup. The Service
Component Runtime service provides methods to inspect the component descriptions and compo-
nent configurations as well as inspect and modify the enabled state of components. The service uses
Data Transfer Objects (DTO) as arguments and return values. The rules for Data Transfer Objects are
specified in OSGi Core Release 6.

The Service Component Runtime service provides the following methods.

Declarative Services Specification Version 1.3 Service Component Runtime

OSGi Residential Release 6 Page 287

• getComponentDescr ipt ionDTOs(Bundle. . .) - For each specified bundle, if the bundle is active
and processed by SCR, the returned collection will contain a ComponentDescr ipt ionDTO for
each valid component description in the bundle.

• getComponentDescr ipt ionDTO(Bundle,Str ing) - If the specified bundle is active and processed
by SCR, and the specified bundle contains a valid component description with the specified
name, the method will return a ComponentDescr ipt ionDTO for the component description.

• getComponentConfigurat ionDTOs(ComponentDescr ipt ionDTO) - If the specified Component-
Descr ipt ionDTO represents a valid component description from an active bundle processed by
SCR, the returned collection will contain a ComponentConfigurat ionDTO for each component
configuration of the component.

• isComponentEnabled(ComponentDescr ipt ionDTO) - Returns true if the specified Component
Description DTO represents a valid component description from an active bundle processed by
SCR, and the component is enabled. Otherwise, the method returns fa lse .

• enableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is enabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

• disableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is disabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

The runtime state of the components can change at any time. So any information returned by these
methods only provides a snapshot of the state at the time of the method call.

There are a number of DTOs available via the Service Component Runtime service.

Service Component Runtime Declarative Services Specification Version 1.3

Page 288 OSGi Residential Release 6

Figure 112.6 Service Component Runtime DTOs

<<service>>
Service Component
Runtime

Component
Description DTO

Component
Configuration DTO

Reference DTO
Satisfied
Reference DTO

Service Reference
DTO

0..* 0..*

0..*
0..*

0..*

1

1

Unsatisfied
Reference DTO

0..*

1 0..*

The two main DTOs are ComponentDescr ipt ionDTO , which represents a component description,
and ComponentConfigurat ionDTO , which represents a component configuration. The Component
Description DTO contains an array of ReferenceDTO objects which represent each declared refer-
ence in the component description. The Component Configuration DTO contains an array of Satis-
fiedReferenceDTO objects and an array of UnsatisfiedReferenceDTO objects. A Satisfied Reference
DTO represents a satisfied reference of the component configuration and an Unsatisfied Reference
DTO represents an unsatisfied reference of the component configuration. The Component Config-
uration DTO for a satisfied component configuration must contain no Unsatisfied Reference DTOs.
The Component Configuration DTO for an unsatisfied component configuration may contain some
Satisfied Reference DTOs and some Unsatisfied Reference DTOs. This information can be used to di-
agnose why the component configuration is not satisfied.

112.9.7 Capabilities
SCR must provide the following capabilities.

• A capability in the osgi .extender namespace declaring an extender with the name
COMPONENT_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.component package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 version:Version="1.3";
 uses:="org.osgi.service.component"

This capability must follow the rules defined for the osgi.extender Namespace on page 497.

A bundle that contains service components should require the osgi .extender capability from
SCR. This requirement will wire the bundle to the SCR implementation and ensure that SCR is
using the same org.osgi .service.component package as the bundle if the bundle uses that pack-
age.

Declarative Services Specification Version 1.3 Security

OSGi Residential Release 6 Page 289

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

SCR must only process a bundle's service components if one of the following is true:
• The bundle's wiring has a required wire for at least one osgi .extender capability with the

name osgi .component and the first of these required wires is wired to SCR.
• The bundle's wiring has no required wire for an osgi .extender capability with the name

osgi .component .

Otherwise, SCR must not process the bundle's service components.
• A capability in the osgi .service namespace representing the ServiceComponentRuntime service.

This capability must also declare a uses constraint for the org.osgi .service.component.runtime
package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.component.runtime.ServiceComponentRuntime";
 uses:="org.osgi.service.component.runtime"

This capability must follow the rules defined for the osgi.service Namespace on page 501.

112.10 Security
When Java permissions are enabled, SCR must perform the following security procedures.

112.10.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, then component configurations for the component cannot be sat-
isfied unless the component's bundle has ServicePermission[<provides>, REGISTER] for each pro-
vided interface specified for the service.

If a component's reference does not specify optional cardinality, the reference cannot be satisfied
unless the component's bundle has ServicePermission[<interface>, GET] for the specified interface
in the reference. If the reference specifies optional cardinality but the component's bundle does not
have ServicePermission[<interface>, GET] for the specified interface in the reference, no service
must be bound for this reference.

If a component is a factory component, then the above Service Permission checks still apply. But the
component's bundle is not required to have ServicePermission[ComponentFactory, REGISTER] as
the Component Factory service is registered by SCR.

SCR must have ServicePermission[ServiceComponentRuntime, REGISTER] permission to register
the ServiceComponentRuntime service. Administrative bundles wishing to use the ServiceCompo-
nentRuntime service must have ServicePermission[ServiceComponentRuntime, GET] permission.
In general, this permission should only be granted to administrative bundles to limit access to the
potentially intrusive methods provided by this service.

112.10.2 Required Admin Permission
SCR requires AdminPermission[*,CONTEXT] because it needs access to the bundle's Bundle Context
object with the Bundle.getBundleContext() method.

Component Description Schema Declarative Services Specification Version 1.3

Page 290 OSGi Residential Release 6

112.10.3 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the component using the Bun-
dle Context of the component's bundle. This means that normal stack-based permission checks
will check SCR and not the component's bundle. Since SCR is registering and getting services on be-
half of a component's bundle, SCR must call the Bundle.hasPermission method to validate that a
component's bundle has the necessary permission to register or get a service.

112.10.4 Configuration Multi-Locations and Regions
SCR must ensure a bundle has the proper Configurat ionPermission for a Configuration used by its
components when the Configuration has a multi-location. See Using Multi-Locations on page 119 for
more information on multi-locations and Regions on page 119 for more information on regions. If a
bundle does not have the necessary permission for a multi-location Configuration, then SCR must
act as if the Configuration does not exist for the bundle.

112.11 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0"
 targetNamespace="http://www.osgi.org/xmlns/scr/v1.3.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.3.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for component descriptions used by
 the Service Component Runtime (SCR). Component description
 documents may be embedded in other XML documents. SCR will
 process all XML documents listed in the Service-Component
 manifest header of a bundle. XML documents containing
 component descriptions may contain a single, root component
 element or one or more component elements embedded in a
 larger document. Use of the namespace for component
 descriptions is mandatory. The attributes and subelements
 of a component element are always unqualified.
 </documentation>
 </annotation>
 <element name="component" type="scr:Tcomponent" />
 <complexType name="Tcomponent">
 <sequence>
 <annotation>
 <documentation xml:lang="en">
 Implementations of SCR must not require component
 descriptions to specify the subelements of the component
 element in the order as required by the schema. SCR
 implementations must allow other orderings since
 arbitrary orderings do not affect the meaning of the
 component description. Only the relative ordering of
 property and properties element have meaning.
 </documentation>
 </annotation>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="property" type="scr:Tproperty" />
 <element name="properties" type="scr:Tproperties" />
 </choice>
 <element name="service" type="scr:Tservice" minOccurs="0"
 maxOccurs="1" />
 <element name="reference" type="scr:Treference"
 minOccurs="0" maxOccurs="unbounded" />
 <element name="implementation" type="scr:Timplementation" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="enabled" type="boolean" default="true"

Declarative Services Specification Version 1.3 Component Description Schema

OSGi Residential Release 6 Page 291

 use="optional" />
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the class attribute of the nested implementation
 element. If multiple component elements use the same
 value for the class attribute of their nested
 implementation element, then using the default value
 for this attribute will result in duplicate names.
 In this case, this attribute must be specified with
 a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="factory" type="string" use="optional" />
 <attribute name="immediate" type="boolean" use="optional" />
 <attribute name="configuration-policy"
 type="scr:Tconfiguration-policy" default="optional" use="optional" />
 <attribute name="activate" type="token" use="optional"
 default="activate" />
 <attribute name="deactivate" type="token" use="optional"
 default="deactivate" />
 <attribute name="modified" type="token" use="optional" />
 <attribute name="configuration-pid" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the name attribute of this element.
 </documentation>
 </annotation>
 <simpleType>
 <restriction>
 <simpleType>
 <list itemType="token" />
 </simpleType>
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Timplementation">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="class" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tproperty">
 <simpleContent>
 <extension base="string">
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="type" type="scr:Tproperty_type"
 default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="Tproperties">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="entry" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tservice">
 <sequence>
 <element name="provide" type="scr:Tprovide" minOccurs="1"
 maxOccurs="unbounded" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig

Component Description Schema Declarative Services Specification Version 1.3

Page 292 OSGi Residential Release 6

 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="scope" type="scr:Tservice_scope" default="singleton"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tprovide">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="interface" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Treference">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the interface attribute of this element. If multiple
 instances of this element within a component element
 use the same value for the interface attribute, then
 using the default value for this attribute will result
 in duplicate names. In this case, this attribute
 must be specified with a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="interface" type="token" use="required" />
 <attribute name="cardinality" type="scr:Tcardinality"
 default="1..1" use="optional" />
 <attribute name="policy" type="scr:Tpolicy" default="static"
 use="optional" />
 <attribute name="policy-option" type="scr:Tpolicy-option"
 default="reluctant" use="optional" />
 <attribute name="target" type="string" use="optional" />
 <attribute name="bind" type="token" use="optional" />
 <attribute name="unbind" type="token" use="optional" />
 <attribute name="updated" type="token" use="optional" />
 <attribute name="scope" type="scr:Treference_scope" default="bundle"
 use="optional" />
 <attribute name="field" type="token" use="optional" />
 <attribute name="field-option" type="scr:Tfield-option" default="replace"
 use="optional" />
 <attribute name="field-collection-type" type="scr:Tfield-collection-type"
 default="service" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <simpleType name="Tproperty_type">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>
 <simpleType name="Tcardinality">
 <restriction base="string">
 <enumeration value="0..1" />
 <enumeration value="0..n" />
 <enumeration value="1..1" />
 <enumeration value="1..n" />
 </restriction>
 </simpleType>

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Residential Release 6 Page 293

 <simpleType name="Tpolicy">
 <restriction base="string">
 <enumeration value="static" />
 <enumeration value="dynamic" />
 </restriction>
 </simpleType>
 <simpleType name="Tpolicy-option">
 <restriction base="string">
 <enumeration value="reluctant" />
 <enumeration value="greedy" />
 </restriction>
 </simpleType>
 <simpleType name="Tconfiguration-policy">
 <restriction base="string">
 <enumeration value="optional" />
 <enumeration value="require" />
 <enumeration value="ignore" />
 </restriction>
 </simpleType>
 <simpleType name="Tservice_scope">
 <restriction base="string">
 <enumeration value="singleton" />
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 </restriction>
 </simpleType>
 <simpleType name="Treference_scope">
 <restriction base="string">
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 <enumeration value="prototype_required" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-option">
 <restriction base="string">
 <enumeration value="replace" />
 <enumeration value="update" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-collection-type">
 <restriction base="string">
 <enumeration value="service" />
 <enumeration value="properties" />
 <enumeration value="reference" />
 <enumeration value="serviceobjects" />
 <enumeration value="tuple" />
 </restriction>
 </simpleType>
 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension. This attribute must be qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

SCR must not require component descriptions to specify the elements in the order required by the
schema. SCR must allow other orderings since arbitrary orderings of these elements do not affect
the meaning of the component description. Only the relative ordering of property , propert ies and
reference elements have meaning for overriding previously set property values.

The schema is also available in digital form from [5] OSGi XML Schemas.

112.12 org.osgi.service.component

Service Component Package Version 1.3.

org.osgi.service.component Declarative Services Specification Version 1.3

Page 294 OSGi Residential Release 6

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.3,1 .4)"

112.12.1 Summary

• ComponentConstants - Defines standard names for Service Component constants.
• ComponentContext - A Component Context object is used by a component instance to interact

with its execution context including locating services by reference name.
• ComponentException - Unchecked exception which may be thrown by Service Component

Runtime.
• ComponentFactory - When a component is declared with the factory attribute on its compo-

nent element, Service Component Runtime will register a Component Factory service to allow
new component configurations to be created and activated rather than automatically creating
and activating component configuration as necessary.

• ComponentInstance - A ComponentInstance encapsulates a component instance of an activat-
ed component configuration.

• ComponentServiceObjects - Allows multiple service objects for a service to be obtained.

112.12.2 public interface ComponentConstants
Defines standard names for Service Component constants.

Provider Type Consumers of this API must not implement this type

112.12.2.1 public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"

Capability name for Service Component Runtime.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Since 1.3

112.12.2.2 public static final String COMPONENT_FACTORY = "component.factory"

A service registration property for a Component Factory that contains the value of the factory at-
tribute. The value of this property must be of type Str ing .

112.12.2.3 public static final String COMPONENT_ID = "component.id"

A component property that contains the generated id for a component configuration. The value of
this property must be of type Long .

The value of this property is assigned by Service Component Runtime when a component config-
uration is created. Service Component Runtime assigns a unique value that is larger than all previ-
ously assigned values since Service Component Runtime was started. These values are NOT persis-
tent across restarts of Service Component Runtime.

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Residential Release 6 Page 295

112.12.2.4 public static final String COMPONENT_NAME = "component.name"

A component property for a component configuration that contains the name of the component
as specified in the name attribute of the component element. The value of this property must be of
type Str ing .

112.12.2.5 public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6

The component configuration was deactivated because the bundle was stopped.

Since 1.1

112.12.2.6 public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4

The component configuration was deactivated because its configuration was deleted.

Since 1.1

112.12.2.7 public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3

The component configuration was deactivated because its configuration was changed.

Since 1.1

112.12.2.8 public static final int DEACTIVATION_REASON_DISABLED = 1

The component configuration was deactivated because the component was disabled.

Since 1.1

112.12.2.9 public static final int DEACTIVATION_REASON_DISPOSED = 5

The component configuration was deactivated because the component was disposed.

Since 1.1

112.12.2.10 public static final int DEACTIVATION_REASON_REFERENCE = 2

The component configuration was deactivated because a reference became unsatisfied.

Since 1.1

112.12.2.11 public static final int DEACTIVATION_REASON_UNSPECIFIED = 0

The reason the component configuration was deactivated is unspecified.

Since 1.1

112.12.2.12 public static final String REFERENCE_TARGET_SUFFIX = ".target"

The suffix for reference target properties. These properties contain the filter to select the target ser-
vices for a reference. The value of this property must be of type Str ing .

112.12.2.13 public static final String SERVICE_COMPONENT = "Service-Component"

Manifest header specifying the XML documents within a bundle that contain the bundle's Service
Component descriptions.

The attribute value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

112.12.3 public interface ComponentContext
A Component Context object is used by a component instance to interact with its execution context
including locating services by reference name. Each component instance has a unique Component
Context.

org.osgi.service.component Declarative Services Specification Version 1.3

Page 296 OSGi Residential Release 6

A component instance may obtain its Component Context object through its activate, modified, and
deactivate methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.3.1 public void disableComponent(String name)

name The name of a component.

□ Disables the specified component name. The specified component name must be in the same bun-
dle as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.3.2 public void enableComponent(String name)

name The name of a component or nul l to indicate all components in the bundle.

□ Enables the specified component name. The specified component name must be in the same bundle
as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.3.3 public BundleContext getBundleContext()

□ Returns the BundleContext of the bundle which contains this component.

Returns The BundleContext of the bundle containing this component.

112.12.3.4 public ComponentInstance getComponentInstance()

□ Returns the Component Instance object for the component instance associated with this Compo-
nent Context.

Returns The Component Instance object for the component instance.

112.12.3.5 public Dictionary<String,Object> getProperties()

□ Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and cannot be modified.

112.12.3.6 public ServiceReference<?> getServiceReference()

□ If the component instance is registered as a service using the service element, then this method re-
turns the service reference of the service provided by this component instance.

This method will return nul l if the component instance is not registered as a service.

Returns The ServiceReference object for the component instance or nul l if the component instance is not
registered as a service.

112.12.3.7 public Bundle getUsingBundle()

□ If the component instance is registered as a service using the servicescope="bundle" or
servicescope="prototype" attribute, then this method returns the bundle using the service provided
by the component instance.

This method will return nul l if:

• The component instance is not a service, then no bundle can be using it as a service.

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Residential Release 6 Page 297

• The component instance is a service but did not specify the servicescope="bundle" or
servicescope="prototype" attribute, then all bundles using the service provided by the compo-
nent instance will share the same component instance.

• The service provided by the component instance is not currently being used by any bundle.

Returns The bundle using the component instance as a service or nul l .

112.12.3.8 public Object locateService(String name)

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service object for the specified reference name.

If the cardinality of the reference is 0..n or 1. .n and multiple services are bound to the reference,
the service with the highest ranking (as specified in its Constants.SERVICE_RANKING property)
is returned. If there is a tie in ranking, the service with the lowest service id (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.3.9 public S locateService(String name,ServiceReference<S> reference)

Type Arguments <S>

<S> Type of Service.

name The name of a reference as specified in a reference element in this component's description.

reference The ServiceReference to a bound service. This must be a ServiceReference provided to the compo-
nent via the bind or unbind method for the specified reference name.

□ Returns the service object for the specified reference name and ServiceReference .

Returns A service object for the referenced service or nul l if the specified ServiceReference is not a bound ser-
vice for the specified reference name.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.3.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or nul l if the reference cardinality is 0..1 or 0..n
and no bound service is available. If the reference cardinality is 0..1 or 1. .1 and a bound service is
available, the array will have exactly one element.

Throws ComponentException– If Service Component Runtime catches an exception while activating a
bound service.

112.12.4 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by Service Component Runtime.

112.12.4.1 public ComponentException(String message,Throwable cause)

message The message for the exception.

cause The cause of the exception. May be nul l .

org.osgi.service.component Declarative Services Specification Version 1.3

Page 298 OSGi Residential Release 6

□ Construct a new ComponentException with the specified message and cause.

112.12.4.2 public ComponentException(String message)

message The message for the exception.

□ Construct a new ComponentException with the specified message.

112.12.4.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be nul l .

□ Construct a new ComponentException with the specified cause.

112.12.4.4 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

112.12.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

112.12.5 public interface ComponentFactory
When a component is declared with the factory attribute on its component element, Service Com-
ponent Runtime will register a Component Factory service to allow new component configurations
to be created and activated rather than automatically creating and activating component configura-
tion as necessary.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.5.1 public ComponentInstance newInstance(Dictionary<String,?> properties)

properties Additional properties for the component configuration or nul l if there are no additional properties.

□ Create and activate a new component configuration. Additional properties may be provided for the
component configuration.

Returns A ComponentInstance object encapsulating the component instance of the component configura-
tion. The component configuration has been activated and, if the component specifies a service ele-
ment, the component instance has been registered as a service.

Throws ComponentException– If Service Component Runtime is unable to activate the component configu-
ration.

112.12.6 public interface ComponentInstance
A ComponentInstance encapsulates a component instance of an activated component configura-
tion. ComponentInstances are created whenever a component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object will be created when the
component configuration is activated again.

Concurrency Thread-safe

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Residential Release 6 Page 299

Provider Type Consumers of this API must not implement this type

112.12.6.1 public void dispose()

□ Dispose of the component configuration for this component instance. The component configura-
tion will be deactivated. If the component configuration has already been deactivated, this method
does nothing.

112.12.6.2 public Object getInstance()

□ Returns the component instance of the activated component configuration.

Returns The component instance or nul l if the component configuration has been deactivated.

112.12.7 public interface ComponentServiceObjects<S>
<S> Type of Service

Allows multiple service objects for a service to be obtained.

A component instance can receive a ComponentServiceObjects object via a reference that is typed
ComponentServiceObjects .

For services with prototype scope, multiple service objects for the service can be obtained. For ser-
vices with singleton or bundle scope, only one, use-counted service object is available.

Any unreleased service objects obtained from this ComponentServiceObjects object are automati-
cally released by Service Component Runtime when the service becomes unbound.

See Also ServiceObjects

Since 1.3

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.7.1 public S getService()

□ Returns a service object for the associated service.

This method will always return nul l when the associated service has been become unbound.

Returns A service object for the associated service or nul l if the service is unbound, the customized service
object returned by a ServiceFactory does not implement the classes under which it was registered or
the ServiceFactory threw an exception.

Throws I l legalStateException– If the associated service has been become unbound.

See Also ungetService(Object)

112.12.7.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this ComponentServiceObjects object.

Returns The ServiceReference for the service associated with this ComponentServiceObjects object.

112.12.7.3 public void ungetService(S service)

service A service object previously provided by this ComponentServiceObjects object.

□ Releases a service object for the associated service.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method.

Throws I l legalStateException– If the associated service has been become unbound.

I l legalArgumentException– If the specified service object was not provided by this ComponentSer-
viceObjects object.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 300 OSGi Residential Release 6

See Also getService()

112.13 org.osgi.service.component.annotations

Service Component Annotations Package Version 1.3.

This package is not used at runtime. Annotated classes are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

112.13.1 Summary

• Activate - Identify the annotated method as the activate method of a Service Component.
• Component - Identify the annotated class as a Service Component.
• Configurat ionPol icy - Configuration Policy for the Component annotation.
• Deactivate - Identify the annotated method as the deactivate method of a Service Component.
• FieldOption - Field options for the Reference annotation.
• Modified - Identify the annotated method as the modified method of a Service Component.
• Reference - Identify the annotated member as a reference of a Service Component.
• ReferenceCardinal ity - Cardinality for the Reference annotation.
• ReferencePol icy - Policy for the Reference annotation.
• ReferencePol icyOption - Policy option for the Reference annotation.
• ReferenceScope - Reference scope for the Reference annotation.
• ServiceScope - Service scope for the Component annotation.

112.13.2 @Activate
Identify the annotated method as the activate method of a Service Component.

The annotated method is the activate method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The act ivate attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.3 @Component
Identify the annotated class as a Service Component.

The annotated class is the implementation class of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The component element of a Component Descr ipt ion.

Retention CLASS

Target TYPE

112.13.3.1 String name default ""

□ The name of this Component.

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Residential Release 6 Page 301

If not specified, the name of this Component is the fully qualified type name of the class being anno-
tated.

See Also The name attr ibute of the component element of a Component Descr ipt ion.

112.13.3.2 Class<?>[] service default {}

□ The types under which to register this Component as a service.

If no service should be registered, the empty value {} must be specified.

If not specified, the service types for this Component are all the directly implemented interfaces of
the class being annotated.

See Also The service element of a Component Descr ipt ion.

112.13.3.3 String factory default ""

□ The factory identifier of this Component. Specifying a factory identifier makes this Component a
Factory Component.

If not specified, the default is that this Component is not a Factory Component.

See Also The factory attr ibute of the component element of a Component Descr ipt ion.

112.13.3.4 boolean servicefactory default false

□ Declares whether this Component uses the OSGi ServiceFactory concept and each bundle using this
Component's service will receive a different component instance.

This element is ignored when the scope() element does not have the default value. If true , this Com-
ponent uses bundle service scope. If fa lse or not specified, this Component uses singleton service
scope. If the factory() element is specified or the immediate() element is specified with true , this ele-
ment can only be specified with fa lse .

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Deprecated Since 1.3. Replaced by scope().

112.13.3.5 boolean enabled default true

□ Declares whether this Component is enabled when the bundle containing it is started.

If true or not specified, this Component is enabled. If fa lse , this Component is disabled.

See Also The enabled attr ibute of the component element of a Component Descr ipt ion.

112.13.3.6 boolean immediate default false

□ Declares whether this Component must be immediately activated upon becoming satisfied or
whether activation should be delayed.

If true , this Component must be immediately activated upon becoming satisfied. If fa lse , activa-
tion of this Component is delayed. If this property is specified, its value must be fa lse if the factory()
property is also specified or must be true if the service() property is specified with an empty value.

If not specified, the default is fa lse if the factory() property is specified or the service() property is
not specified or specified with a non-empty value and true otherwise.

See Also The immediate attr ibute of the component element of a Component Descr ipt ion.

112.13.3.7 String[] property default {}

□ Properties for this Component.

Each property string is specified as "name=value" . The type of the property value can be specified in
the name as name:type=value . The type must be one of the property types supported by the type at-
tribute of the property element of a Component Description.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 302 OSGi Residential Release 6

To specify a property with multiple values, use multiple name, value pairs. For example, " foo=bar",
" foo=baz" .

See Also The property element of a Component Descr ipt ion.

112.13.3.8 String[] properties default {}

□ Property entries for this Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the properties and their values.

See Also The propert ies element of a Component Descr ipt ion.

112.13.3.9 String xmlns default ""

□ The XML name space of the Component Description for this Component.

If not specified, the XML name space of the Component Description for this Component should be
the lowest Declarative Services XML name space which supports all the specification features used
by this Component.

See Also The XML name space specif ied for a Component Descr ipt ion.

112.13.3.10 ConfigurationPolicy configurationPolicy default OPTIONAL

□ The configuration policy of this Component.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID equals the name of the component.

If not specified, the configuration policy is based upon whether the component is also annotated
with the Meta Type Designate annotation.

• Not annotated with Designate - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=false) - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=true) - The configuration policy is REQUIRE.

See Also The configurat ion-pol icy attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

112.13.3.11 String[] configurationPid default "$"

□ The configuration PIDs for the configuration of this Component.

Each value specifies a configuration PID for this Component.

If no value is specified, the name of this Component is used as the configuration PID of this Compo-
nent.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
NAME constant holds this special string. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

See Also The configurat ion-pid attr ibute of the component element of a Component Descr ipt ion.

Since 1.2

112.13.3.12 ServiceScope scope default DEFAULT

□ The service scope for the service of this Component.

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Residential Release 6 Page 303

If not specified (and the deprecated servicefactory() element is not specified), the singleton service
scope is used. If the factory() element is specified or the immediate() element is specified with true ,
this element can only be specified with the singleton service scope.

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Since 1.3

112.13.3.13 Reference[] reference default {}

□ The lookup strategy references of this Component.

To access references using the lookup strategy, Reference annotations are specified naming the refer-
ence and declaring the type of the referenced service. The referenced service can be accessed using
one of the locateService methods of ComponentContext .

To access references using the event strategy, bind methods are annotated with Reference. To access
references using the field strategy, fields are annotated with Reference.

See Also The reference element of a Component Descr ipt ion.

Since 1.3

112.13.3.14 String NAME = "$"

Special string representing the name of this Component.

This string can be used in configurationPid() to specify the name of the component as a configura-
tion PID. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

Since 1.3

112.13.4 enum ConfigurationPolicy
Configuration Policy for the Component annotation.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID is the name of the component.

Since 1.1

112.13.4.1 OPTIONAL

Use the corresponding Configuration object if present but allow the component to be satisfied even
if the corresponding Configuration object is not present.

112.13.4.2 REQUIRE

There must be a corresponding Configuration object for the component configuration to become
satisfied.

112.13.4.3 IGNORE

Always allow the component configuration to be satisfied and do not use the corresponding Config-
uration object even if it is present.

112.13.5 @Deactivate
Identify the annotated method as the deactivate method of a Service Component.

The annotated method is the deactivate method of the Component.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 304 OSGi Residential Release 6

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The deactivate attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.6 enum FieldOption
Field options for the Reference annotation.

Since 1.3

112.13.6.1 UPDATE

The update field option is used to update the collection referenced by the field when there are
changes to the bound services.

This field option can only be used when the field reference has dynamic policy and multiple cardi-
nality.

112.13.6.2 REPLACE

The replace field option is used to replace the field value with a new value when there are changes
to the bound services.

112.13.7 @Modified
Identify the annotated method as the modified method of a Service Component.

The annotated method is the modified method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The modified attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.8 @Reference
Identify the annotated member as a reference of a Service Component.

When the annotation is applied to a method, the method is the bind method of the reference. When
the annotation is applied to a field, the field will contain the bound service(s) of the reference.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

In the generated Component Description for a component, the references must be ordered in as-
cending lexicographical order (using Str ing.compareTo) of the reference names.

See Also The reference element of a Component Descr ipt ion.

Retention CLASS

Target METHOD , FIELD

112.13.8.1 String name default ""

□ The name of this reference.

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Residential Release 6 Page 305

The name of this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the name can be
determined. If not specified, the name of this reference is based upon how this annotation is used:

• Annotated method - If the method name begins with bind , set or add , that prefix is removed to
create the name of the reference. Otherwise, the name of the reference is the method name.

• Annotated field - The name of the reference is the field name.

See Also The name attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.2 Class<?> service default Object.class

□ The type of the service for this reference.

The type of the service for this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the type of the ser-
vice can be determined.

If not specified, the type of the service for this reference is based upon how this annotation is used:

• Annotated method - The type of the service is the type of the first argument of the method.
• Annotated field - The type of the service is based upon the type of the field being annotated and

the cardinality of the reference. If the cardinality is either 0..n, or 1..n, the type of the field must
be one of java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion so the type of the
service is the generic type of the collection. Otherwise, the type of the service is the type of the
field.

See Also The interface attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.3 ReferenceCardinality cardinality default MANDATORY

□ The cardinality of this reference.

If not specified, the cardinality of this reference is based upon how this annotation is used:

• Annotated method - The cardinality is 1..1.
• Annotated field - The cardinality is based on the type of the field. If the type is either

java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion , the cardinality is 0..n. Oth-
erwise the cardinality is 1..1.

• Component.reference() element - The cardinality is 1..1.

See Also The cardinal ity attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.4 ReferencePolicy policy default STATIC

□ The policy for this reference.

If not specified, the policy of this reference is based upon how this annotation is used:

• Annotated method - The policy is STATIC.
• Annotated field - The policy is based on the modifiers of the field. If the field is declared volat i le ,

the policy is ReferencePolicy.DYNAMIC. Otherwise the policy is STATIC.
• Component.reference() element - The policy is STATIC.

See Also The pol icy attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.5 String target default ""

□ The target property for this reference.

If not specified, no target property is set.

See Also The target attr ibute of the reference element of a Component Descr ipt ion.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 306 OSGi Residential Release 6

112.13.8.6 ReferencePolicyOption policyOption default RELUCTANT

□ The policy option for this reference.

If not specified, the RELUCTANT reference policy option is used.

See Also The pol icy-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.8.7 ReferenceScope scope default BUNDLE

□ The reference scope for this reference.

If not specified, the bundle reference scope is used.

See Also The scope attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.8.8 String bind default ""

□ The name of the bind method for this reference.

If specified and this reference annotates a method, the specified name must match the name of the
annotated method.

If not specified, the name of the bind method is based upon how this annotation is used:

• Annotated method - The name of the annotated method is the name of the bind method.
• Annotated field - There is no bind method name.
• Component.reference() element - There is no bind method name.

If there is a bind method name, the component must contain a method with that name.

See Also The bind attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.8.9 String updated default ""

□ The name of the updated method for this reference.

If not specified, the name of the updated method is based upon how this annotation is used:

• Annotated method - The name of the updated method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with updated to create the name candidate for the updated method. Otherwise, updated is pre-
fixed to the name of the annotated method to create the name candidate for the updated method.
If the component type contains a method with the candidate name, the candidate name is used
as the name of the updated method. To declare no updated method when the component type
contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no updated method name.
• Component.reference() element - There is no updated method name.

If there is an updated method name, the component must contain a method with that name.

See Also The updated attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.8.10 String unbind default ""

□ The name of the unbind method for this reference.

If not specified, the name of the unbind method is based upon how this annotation is used:

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Residential Release 6 Page 307

• Annotated method - The name of the unbind method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with unbind , unset or remove , respectively, to create the name candidate for the unbind method.
Otherwise, un is prefixed to the name of the annotated method to create the name candidate for
the unbind method. If the component type contains a method with the candidate name, the can-
didate name is used as the name of the unbind method. To declare no unbind method when the
component type contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no unbind method name.
• Component.reference() element - There is no unbind method name.

If there is an unbind method name, the component must contain a method with that name.

See Also The unbind attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.11 String field default ""

□ The name of the field for this reference.

If specified and this reference annotates a field, the specified name must match the name of the an-
notated field.

If not specified, the name of the field is based upon how this annotation is used:

• Annotated method - There is no field name.
• Annotated field - The name of the annotated field is the name of the field.
• Component.reference() element - There is no field name.

If there is a field name, the component must contain a field with that name.

See Also The fie ld attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.8.12 FieldOption fieldOption default REPLACE

□ The field option for this reference.

If not specified, the field option is based upon how this annotation is used:

• Annotated method - There is no field option.
• Annotated field - The field option is based upon the policy and cardinality of the reference and

the modifiers of the field. If the policy is ReferencePolicy.DYNAMIC, the cardinality is 0..n or 1..n,
and the field is declared f inal , the field option is FieldOption.UPDATE. Otherwise, the field op-
tion is FieldOption.REPLACE

• Component.reference() element - There is no field option.

See Also The fie ld-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.9 enum ReferenceCardinality
Cardinality for the Reference annotation.

Specifies if the reference is optional and if the component implementation support a single bound
service or multiple bound services.

112.13.9.1 OPTIONAL

The reference is optional and unary. That is, the reference has a cardinality of 0..1 .

112.13.9.2 MANDATORY

The reference is mandatory and unary. That is, the reference has a cardinality of 1. .1 .

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 308 OSGi Residential Release 6

112.13.9.3 MULTIPLE

The reference is optional and multiple. That is, the reference has a cardinality of 0..n .

112.13.9.4 AT_LEAST_ONE

The reference is mandatory and multiple. That is, the reference has a cardinality of 1. .n .

112.13.10 enum ReferencePolicy
Policy for the Reference annotation.

112.13.10.1 STATIC

The static policy is the most simple policy and is the default policy. A component instance never
sees any of the dynamics. Component configurations are deactivated before any bound service for
a reference having a static policy becomes unavailable. If a target service is available to replace the
bound service which became unavailable, the component configuration must be reactivated and
bound to the replacement service.

112.13.10.2 DYNAMIC

The dynamic policy is slightly more complex since the component implementation must proper-
ly handle changes in the set of bound services. With the dynamic policy, SCR can change the set of
bound services without deactivating a component configuration. If the component uses the event
strategy to access services, then the component instance will be notified of changes in the set of
bound services by calls to the bind and unbind methods.

112.13.11 enum ReferencePolicyOption
Policy option for the Reference annotation.

Since 1.2

112.13.11.1 RELUCTANT

The reluctant policy option is the default policy option for both static and dynamic reference poli-
cies. When a new target service for a reference becomes available, references having the reluctant
policy option for the static policy or the dynamic policy with a unary cardinality will ignore the
new target service. References having the dynamic policy with a multiple cardinality will bind the
new target service.

112.13.11.2 GREEDY

The greedy policy option is a valid policy option for both static and dynamic reference policies.
When a new target service for a reference becomes available, references having the greedy policy
option will bind the new target service.

112.13.12 enum ReferenceScope
Reference scope for the Reference annotation.

Since 1.3

112.13.12.1 BUNDLE

A single service object is used for all references to the service in this bundle.

112.13.12.2 PROTOTYPE

If the bound service has prototype service scope, then each instance of the component with this ref-
erence can receive a unique instance of the service. If the bound service does not have prototype ser-
vice scope, then this reference scope behaves the same as BUNDLE.

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime

OSGi Residential Release 6 Page 309

112.13.12.3 PROTOTYPE_REQUIRED

Bound services must have prototype service scope. Each instance of the component with this refer-
ence can receive a unique instance of the service.

112.13.13 enum ServiceScope
Service scope for the Component annotation.

Since 1.3

112.13.13.1 SINGLETON

When the component is registered as a service, it must be registered as a bundle scope service but
only a single instance of the component must be used for all bundles using the service.

112.13.13.2 BUNDLE

When the component is registered as a service, it must be registered as a bundle scope service and
an instance of the component must be created for each bundle using the service.

112.13.13.3 PROTOTYPE

When the component is registered as a service, it must be registered as a prototype scope service and
an instance of the component must be created for each distinct request for the service.

112.13.13.4 DEFAULT

Default element value for annotation. This is used to distinguish the default value for an element
and should not otherwise be used.

112.14 org.osgi.service.component.runtime

Service Component Runtime Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.3,1 .4)"

112.14.1 Summary

• ServiceComponentRuntime - The ServiceComponentRuntime service represents the Declara-
tive Services actor, known as Service Component Runtime (SCR), that manages the service com-
ponents and their life cycle.

112.14.2 public interface ServiceComponentRuntime
The ServiceComponentRuntime service represents the Declarative Services actor, known as Service
Component Runtime (SCR), that manages the service components and their life cycle. The Service-
ComponentRuntime service allows introspection of the components managed by Service Compo-
nent Runtime.

This service differentiates between a ComponentDescriptionDTO and a ComponentConfigura-
tionDTO. A ComponentDescriptionDTO is a representation of a declared component description. A

org.osgi.service.component.runtime Declarative Services Specification Version 1.3

Page 310 OSGi Residential Release 6

ComponentConfigurationDTO is a representation of an actual instance of a declared component de-
scription parameterized by component properties.

Access to this service requires the ServicePermission[ServiceComponentRuntime, GET] permis-
sion. It is intended that only administrative bundles should be granted this permission to limit ac-
cess to the potentially intrusive methods provided by this service.

Since 1.3

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.14.2.1 public Promise<Void> disableComponent(ComponentDescriptionDTO description)

description The component description to disable. Must not be nul l .

□ Disables the specified component description.

If the specified component description is currently disabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.2 public Promise<Void> enableComponent(ComponentDescriptionDTO description)

description The component description to enable. Must not be nul l .

□ Enables the specified component description.

If the specified component description is currently enabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.3 public Collection<ComponentConfigurationDTO>
getComponentConfigurationDTOs(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns the component configurations for the specified component description.

Returns A collection containing a snapshot of the current component configurations for the specified com-
ponent description. An empty collection is returned if there are none.

112.14.2.4 public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle,String name)

bundle The bundle declaring the component description. Must not be nul l .

name The name of the component description. Must not be nul l .

□ Returns the ComponentDescriptionDTO declared with the specified name by the specified bundle.

Only component descriptions from active bundles are returned. nul l if no such component is de-
clared by the given bundle or the bundle is not active.

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime.dto

OSGi Residential Release 6 Page 311

Returns The declared component description or nul l if the specified bundle is not active or does not declare a
component description with the specified name.

112.14.2.5 public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle ... bundles)

bundles The bundles whose declared component descriptions are to be returned. Specifying no bundles, or
the equivalent of an empty Bundle array, will return the declared component descriptions from all
active bundles.

□ Returns the component descriptions declared by the specified active bundles.

Only component descriptions from active bundles are returned. If the specified bundles have no de-
clared components or are not active, an empty collection is returned.

Returns The declared component descriptions of the specified active bundles . An empty collection is re-
turned if there are no component descriptions for the specified active bundles.

112.14.2.6 public boolean isComponentEnabled(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns whether the specified component description is currently enabled.

The enabled state of a component description is initially set by the enabled attribute of the compo-
nent description.

Returns true if the specified component description is currently enabled. Otherwise, fa lse .

See Also enableComponent(ComponentDescriptionDTO), disableComponent(ComponentDescriptionDTO),
ComponentContext.disableComponent(String), ComponentContext.enableComponent(String)

112.15 org.osgi.service.component.runtime.dto

Service Component Runtime Data Transfer Objects Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.3,1 .4)"

112.15.1 Summary

• ComponentConfigurat ionDTO - A representation of an actual instance of a declared component
description parameterized by component properties.

• ComponentDescr ipt ionDTO - A representation of a declared component description.
• ReferenceDTO - A representation of a declared reference to a service.
• SatisfiedReferenceDTO - A representation of a satisfied reference.
• UnsatisfiedReferenceDTO - A representation of an unsatisfied reference.

112.15.2 public class ComponentConfigurationDTO
extends DTO
A representation of an actual instance of a declared component description parameterized by com-
ponent properties.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.3

Page 312 OSGi Residential Release 6

Since 1.3

Concurrency Not Thread-safe

112.15.2.1 public static final int ACTIVE = 8

The component configuration is active.

This is the normal operational state of a component configuration.

112.15.2.2 public ComponentDescriptionDTO description

The representation of the component configuration's component description.

112.15.2.3 public long id

The id of the component configuration.

The id is a non-persistent, unique value assigned at runtime. The id is also available as the
component. id component property. The value of this field is unspecified if the state of this compo-
nent configuration is unsatisfied.

112.15.2.4 public Map<String,Object> properties

The component properties for the component configuration.

See Also ComponentContext.getProperties()

112.15.2.5 public static final int SATISFIED = 4

The component configuration is satisfied.

Any services declared by the component description are registered.

112.15.2.6 public SatisfiedReferenceDTO[] satisfiedReferences

The satisfied references.

Each SatisfiedReferenceDTO in the array represents a satisfied reference of the component configu-
ration. The array must be empty if the component configuration has no satisfied references.

112.15.2.7 public int state

The current state of the component configuration.

This is one of UNSATISFIED_CONFIGURATION, UNSATISFIED_REFERENCE, SATISFIED or AC-
TIVE.

112.15.2.8 public static final int UNSATISFIED_CONFIGURATION = 1

The component configuration is unsatisfied due to a missing required configuration.

112.15.2.9 public static final int UNSATISFIED_REFERENCE = 2

The component configuration is unsatisfied due to an unsatisfied reference.

112.15.2.10 public UnsatisfiedReferenceDTO[] unsatisfiedReferences

The unsatisfied references.

Each UnsatisfiedReferenceDTO in the array represents an unsatisfied reference of the component
configuration. The array must be empty if the component configuration has no unsatisfied refer-
ences.

112.15.2.11 public ComponentConfigurationDTO()

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime.dto

OSGi Residential Release 6 Page 313

112.15.3 public class ComponentDescriptionDTO
extends DTO
A representation of a declared component description.

Since 1.3

Concurrency Not Thread-safe

112.15.3.1 public String activate

The name of the activate method.

This is declared in the activate attribute of the component element. This must be nul l if the compo-
nent description does not declare an activate method name.

112.15.3.2 public BundleDTO bundle

The bundle declaring the component description.

112.15.3.3 public String[] configurationPid

The configuration pids.

These are declared in the configurat ion-pid attribute of the component element. This must contain
the default configuration pid if the component description does not declare a configuration pid.

112.15.3.4 public String configurationPolicy

The configuration policy.

This is declared in the configurat ion-pol icy attribute of the component element. This must be the
default configuration policy if the component description does not declare a configuration policy.

112.15.3.5 public String deactivate

The name of the deactivate method.

This is declared in the deactivate attribute of the component element. This must be nul l if the com-
ponent description does not declare a deactivate method name.

112.15.3.6 public boolean defaultEnabled

The initial enabled state.

This is declared in the enabled attribute of the component element.

112.15.3.7 public String factory

The component factory name.

This is declared in the factory attribute of the component element. This must be nul l if the compo-
nent description is not declared as a component factory.

112.15.3.8 public boolean immediate

The immediate state.

This is declared in the immediate attribute of the component element.

112.15.3.9 public String implementationClass

The fully qualified name of the implementation class.

This is declared in the class attribute of the implementation element.

112.15.3.10 public String modified

The name of the modified method.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.3

Page 314 OSGi Residential Release 6

This is declared in the modified attribute of the component element. This must be nul l if the compo-
nent description does not declare a modified method name.

112.15.3.11 public String name

The name of the component.

This is declared in the name attribute of the component element. This must be the default name if
the component description does not declare a name.

112.15.3.12 public Map<String,Object> properties

The declared component properties.

These are declared in the property and propert ies elements.

112.15.3.13 public ReferenceDTO[] references

The referenced services.

These are declared in the reference elements. The array must be empty if the component descrip-
tion does not declare references to any services.

112.15.3.14 public String scope

The service scope.

This is declared in the scope attribute of the service element. This must be nul l if the component de-
scription does not declare any service interfaces.

112.15.3.15 public String[] serviceInterfaces

The fully qualified names of the service interfaces.

These are declared in the interface attribute of the provide elements. The array must be empty if the
component description does not declare any service interfaces.

112.15.3.16 public ComponentDescriptionDTO()

112.15.4 public class ReferenceDTO
extends DTO
A representation of a declared reference to a service.

Since 1.3

Concurrency Not Thread-safe

112.15.4.1 public String bind

The name of the bind method of the reference.

This is declared in the bind attribute of the reference element. This must be nul l if the component
description does not declare a bind method for the reference.

112.15.4.2 public String cardinality

The cardinality of the reference.

This is declared in the cardinal ity attribute of the reference element. This must be the default cardi-
nality if the component description does not declare a cardinality for the reference.

112.15.4.3 public String field

The name of the field of the reference.

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime.dto

OSGi Residential Release 6 Page 315

This is declared in the f ie ld attribute of the reference element. This must be nul l if the component
description does not declare a field for the reference.

112.15.4.4 public String fieldOption

The field option of the reference.

This is declared in the f ie ld-option attribute of the reference element. This must be nul l if the com-
ponent description does not declare a field for the reference.

112.15.4.5 public String interfaceName

The service interface of the reference.

This is declared in the interface attribute of the reference element.

112.15.4.6 public String name

The name of the reference.

This is declared in the name attribute of the reference element. This must be the default name if the
component description does not declare a name for the reference.

112.15.4.7 public String policy

The policy of the reference.

This is declared in the pol icy attribute of the reference element. This must be the default policy if
the component description does not declare a policy for the reference.

112.15.4.8 public String policyOption

The policy option of the reference.

This is declared in the pol icy-option attribute of the reference element. This must be the default
policy option if the component description does not declare a policy option for the reference.

112.15.4.9 public String scope

The scope of the reference.

This is declared in the scope attribute of the reference element. This must be the default scope if the
component description does not declare a scope for the reference.

112.15.4.10 public String target

The target of the reference.

This is declared in the target attribute of the reference element. This must be nul l if the component
description does not declare a target for the reference.

112.15.4.11 public String unbind

The name of the unbind method of the reference.

This is declared in the unbind attribute of the reference element. This must be nul l if the component
description does not declare an unbind method for the reference.

112.15.4.12 public String updated

The name of the updated method of the reference.

This is declared in the updated attribute of the reference element. This must be nul l if the compo-
nent description does not declare an updated method for the reference.

112.15.4.13 public ReferenceDTO()

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.3

Page 316 OSGi Residential Release 6

112.15.5 public class SatisfiedReferenceDTO
extends DTO
A representation of a satisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.5.1 public ServiceReferenceDTO[] boundServices

The bound services.

Each ServiceReferenceDTO in the array represents a service bound to the satisfied reference. The ar-
ray must be empty if there are no bound services.

112.15.5.2 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.5.3 public String target

The target property of the satisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.5.4 public SatisfiedReferenceDTO()

112.15.6 public class UnsatisfiedReferenceDTO
extends DTO
A representation of an unsatisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.6.1 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.6.2 public String target

The target property of the unsatisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.6.3 public ServiceReferenceDTO[] targetServices

The target services.

Each ServiceReferenceDTO in the array represents a target service for the reference. The array must
be empty if there are no target services. The upper bound on the number of target services in the ar-
ray is the upper bound on the cardinality of the reference.

112.15.6.4 public UnsatisfiedReferenceDTO()

Declarative Services Specification Version 1.3 References

OSGi Residential Release 6 Page 317

112.16 References

[1] Automating Service Dependency Management in a Service-Oriented Component Model
Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-Based Software Engi-
neering Workshop, May 2003, pp. 91-96
http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

[2] Service Binder
Humberto Cervantes, Richard S. Hall
http://gravity.sourceforge.net/servicebinder

[3] Java Properties File
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

[4] Extensible Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml/

[5] OSGi XML Schemas
http://www.osgi.org/Specifications

112.17 Changes
• Configuration Changes on page 278 has been rewritten to more accurately state the effects of

configuration changes on component configurations.
• New introspection API. See Introspection on page 286.
• Defined capabilities SCR must provide. See Capabilities on page 288.
• Expanded the allowed signatures and argument types for Event Methods. See Event Methods on

page 247.
• New scope attribute for the service element. See Service Element on page 263.
• New scope attribute for the reference element. See Reference Scope on page 253.
• New reference element for Component annotation. See Reference Element on page 264.
• New minimum cardinality property. See Minimum Cardinality Property on page 277.
• Added support for a component using multiple configuration PIDs. See Component Element on

page 259, Component Properties on page 276, and Deployment on page 277.
• service.pid property values are aggregated across configuration sources. See Component Properties

on page 276.
• SCR must check ConfigurationPermission for multi-location Configurations. See Configuration

Multi-Locations and Regions on page 290.
• Added support for targeted PIDs for Configurations. See Deployment on page 277.
• New component property types can be used for type safe component property definition and ac-

cess. See Component Property Types on page 282.
• Specified the ordering of property information component descriptions generated from annota-

tions. See Ordering of Generated Properties on page 284.
• Maps of service properties must also implement Comparable. See Event Methods on page 247.
• Support for field strategy is added. See Field Strategy on page 250. This change affects many ar-

eas of this specification.

Changes Declarative Services Specification Version 1.3

Page 318 OSGi Residential Release 6

Event Admin Service Specification Version 1.3 Introduction

OSGi Residential Release 6 Page 319

113 Event Admin Service Specification

Version 1.3

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either as an event publisher or
as an event handler. So far, the preferred mechanism to disperse those events have been the service
interface mechanism.

Dispatching events for a design related to X, usually involves a service of type XListener . Howev-
er, this model does not scale well for fine grained events that must be dispatched to many different
handlers. Additionally, the dynamic nature of the OSGi environment introduces several complexi-
ties because both event publishers and event handlers can appear and disappear at any time.

The Event Admin service provides an inter-bundle communication mechanism. It is based on a
event publish and subscribe model, popular in many message based systems.

This specification defines the details for the participants in this event model.

113.1.1 Essentials

• Simplifications - The model must significantly simplify the process of programming an event
source and an event handler.

• Dependencies - Handle the myriad of dependencies between event sources and event handlers for
proper cleanup.

• Synchronicity - It must be possible to deliver events asynchronously or synchronously with the
caller.

• Event Window - Only event handlers that are active when an event is published must receive this
event, handlers that register later must not see the event.

• Performance - The event mechanism must impose minimal overhead in delivering events.
• Selectivity - Event listeners must only receive notifications for the event types for which they are

interested
• Reliability - The Event Admin must ensure that events continue to be delivered regardless the

quality of the event handlers.
• Security - Publishing and receiving events are sensitive operations that must be protected per

event type.
• Extensibility - It must be possible to define new event types with their own data types.
• Native Code - Events must be able to be passed to native code or come from native code.
• OSGi Events - The OSGi Framework, as well as a number of OSGi services, already have number of

its own events defined. For uniformity of processing, these have to be mapped into generic event
types.

113.1.2 Entities

• Event - An Event object has a topic and a Dictionary object that contains the event properties. It is
an immutable object.

• Event Admin - The service that provides the publish and subscribe model to Event Handlers and
Event Publishers.

Event Admin Architecture Event Admin Service Specification Version 1.3

Page 320 OSGi Residential Release 6

• Event Handler - A service that receives and handles Event objects.
• Event Publisher - A bundle that sends event through the Event Admin service.
• Event Subscriber - Another name for an Event Handler.
• Topic - The name of an Event type.
• Event Properties - The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

Event Publisher
Impl

an Event
Consumer Impl

receive
event

send
event

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Event

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events, regardless of their destina-
tion. It is also used by Event Handlers to subscribe to specific types of events.

Events are published under a topic, together with a number of event properties. Event Handlers can
specify a filter to control the Events they receive on a very fine grained basis.

113.1.4 What To Read

• Architects - The Event Admin Architecture on page 320 provides an overview of the Event Admin
service.

• Event Publishers - The Event Publisher on page 323 provides an introduction of how to write an
Event Publisher. The Event Admin Architecture on page 320 provides a good overview of the de-
sign.

• Event Subscribers/Handlers - The Event Handler on page 322 provides the rules on how to sub-
scribe and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern decouples sources from their
handlers by interposing an event channel between them. The publisher posts events to the channel,
which identifies which handlers need to be notified and then takes care of the notification process.
This model is depicted in Figure 113.2.

Event Admin Service Specification Version 1.3 The Event

OSGi Residential Release 6 Page 321

Figure 113.2 Channel Pattern

Publisher <<service>>
Event Handler

1
0..n

<<service>>
Event Admin

1
0..n

handleEventsendEvent
postEvent

In this model, the event source and event handler are completely decoupled because neither has any
direct knowledge of the other. The complicated logic of monitoring changes in the event publishers
and event handlers is completely contained within the event channel. This is highly advantageous
in an OSGi environment because it simplifies the process of both sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic - A topic that defines what happened. For example, when a bundle is started an event is
published that has a topic of org/osgi/framework/BundleEvent/STARTED .

• Properties - Zero or more properties that contain additional information about the event. For
example, the previous example event has a property of bundle. id which is set to a Long object,
among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in order to give handlers the
opportunity to register for just the events they are interested in. When a topic is designed, its name
should not include any other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which handlers should receive
the event. Event Admin service implementations use the structure of the topic to optimize the dis-
patching of the events to the handlers.

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by solidi (' / ' \u002F). More precisely, the topic must conform to the following grammar:

 topic ::= token ('/' token) * // See General Syntax Definitions in Core

Topics should be designed to become more specific when going from left to right. Handlers can pro-
vide a prefix that matches a topic, using the preferred order allows a handler to minimize the num-
ber of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be a solidus (' / ' \u002F) instead
of the full stop ('.' \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property name is a case-sensitive
string and the value can be any object. Although any Java object can be used as a property value, on-
ly Str ing objects and the eight primitive types (plus their wrappers) should be used. Other types can-
not be passed to handlers that reside external from the Java VM.

Event Handler Event Admin Service Specification Version 1.3

Page 322 OSGi Residential Release 6

Another reason that arbitrary classes should not be used is the mutability of objects. If the values are
not immutable, then any handler that receives the event could change the value. Any handlers that
received the event subsequently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC . This allows filters to in-
clude the topic as a condition if necessary.

113.3.3 High Performance
An event processing system can become a bottleneck in large systems. One expensive aspect of the
Event object is its properties and its immutability. This combination requires the Event object to cre-
ate a copy of the properties for each object. There are many situations where the same properties are
dispatched through Event Admin, the topic is then used to signal the information. Creating the copy
of the properties can therefore take unnecessary CPU time and memory. However, the immutability
of the Event object requires the properties to be immutable.

For this reason, this specification also provides an immutable Map with the Event Properties class.
This class implements an immutable map that is recognized and trusted by the Event object to not
mutate. Using an Event Properties object allows a client to create many different Event objects with
different topics but sharing the same properties object.

The following example shows how an event poster can limit the copying of the properties.

void foo(EventAdmin eventAdmin) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("foo", 1);
 EventProperties eventProps = new EventProperties(props);

 for (int i=0; i<1000; i++)
 eventAdmin.postEvent(new Event("my/topic/" + i, eventProps));
}

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework under the object class
org.osgi .service.event.EventHandler .

Event handlers should be registered with a property (constant from the EventConstants class)
EVENT_TOPIC . The value being a Str ing , Str ing[] or Collect ion<Str ing> object that describes which
topics the handler is interested in. A wildcard asterisk ('* ' \u002A) may be used as the last token of a
topic name, for example com/action/* . This matches any topic that shares the same first tokens. For
example, com/action/* matches com/action/l isten .

Event Handlers which have not specified the EVENT_TOPIC service property must not receive
events.

The value of each entry in the EVENT_TOPIC service registration property must conform to the fol-
lowing grammar:

topic-scope ::= '*' | (topic '/*'?)

Event handlers can also be registered with a service property named EVENT_FILTER . The value of
this property must be a string containing a Framework filter specification. Any of the event's prop-
erties can be used in the filter expression.

event-filter ::= filter // See Filter Syntax in Core

Event Admin Service Specification Version 1.3 Event Publisher

OSGi Residential Release 6 Page 323

Each Event Handler is notified for any event which belongs to the topics the handler has expressed
an interest in. If the handler has defined a EVENT_FILTER service property then the event properties
must also match the filter expression. If the filter is an error, then the Event Admin service should
log a warning and further ignore the Event Handler.

For example, a bundle wants to see all Log Service events with a level of WARNING or ERROR , but it
must ignore the INFO and DEBUG events. Additionally, the only events of interest are when the bun-
dle symbolic name starts with com.acme .

public AcmeWatchDog implements BundleActivator,
 EventHandler {
 final static String [] topics = new String[] {
 "org/osgi/service/log/LogEntry/LOG_WARNING",
 "org/osgi/service/log/LogEntry/LOG_ERROR" };

 public void start(BundleContext context) {
 Dictionary d = new Hashtable();
 d.put(EventConstants.EVENT_TOPIC, topics);
 d.put(EventConstants.EVENT_FILTER,
 "(bundle.symbolicName=com.acme.*)");
 context.registerService(EventHandler.class.getName(),
 this, d);
 }
 public void stop(BundleContext context) {}

 public void handleEvent(Event event) {
 //...
 }
}

If there are multiple Event Admin services registered with the Framework then all Event Admin ser-
vices must send their published events to all registered Event Handlers.

113.4.1 Ordering
In the default case, an Event Handler will receive posted (asynchronous) events from a single thread
in the same order as they were posted. Maintaining this ordering guarantee requires the Event Ad-
min to serialize the delivery of events instead of, for example, delivering the events on different
worker threads. There are many scenarios where this ordering is not really required. For this reason,
an Event Handler can signal to the Event Admin that events can be delivered out of order. This is no-
tified with the EVENT_DELIVERY service property. This service property can be used in the following
way:

• Not set or set to both - The Event Admin must deliver the events in the proper order.
• DELIVERY_ASYNC_ORDERED - Events must be delivered in order.
• DELIVERY_ASYNC_UNORDERED - Allow the events to be delivered in any order.

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service from the OSGi service reg-
istry. Then it creates the event object and calls one of the Event Admin service's methods to fire the
event either synchronously or asynchronously.

The following example is a class that publishes a time event every 60 seconds.

public class TimerEvent extends Thread

Event Publisher Event Admin Service Specification Version 1.3

Page 324 OSGi Residential Release 6

 implements BundleActivator {
 Hashtable time = new Hashtable();
 ServiceTracker tracker;

 public TimerEvent() { super("TimerEvent"); }

 public void start(BundleContext context) {
 tracker = new ServiceTracker(context,
 EventAdmin.class.getName(), null);
 tracker.open();
 start();
 }

 public void stop(BundleContext context) {
 interrupt();
 tracker.close();
 }

 public void run() {
 while (! Thread.interrupted()) try {
 Calendar c = Calendar.getInstance();
 set(c,Calendar.MINUTE,"minutes");
 set(c,Calendar.HOUR,"hours");
 set(c,Calendar.DAY_OF_MONTH,"day");
 set(c,Calendar.MONTH,"month");
 set(c,Calendar.YEAR,"year");

 EventAdmin ea =
 (EventAdmin) tracker.getService();
 if (ea != null)
 ea.sendEvent(new Event("com/acme/timer",
 time));
 Thread.sleep(60000-c.get(Calendar.SECOND)*1000);
 } catch(InterruptedException e) {
 return;
 }
 }

 void set(Calendar c, int field, String key) {
 time.put(key, new Integer(c.get(field)));
 }
}

Event Admin Service Specification Version 1.3 Specific Events

OSGi Residential Release 6 Page 325

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than what actually happened.
For example, a handler wants to be notified whenever an Exception is thrown anywhere in the sys-
tem. Both Framework Events and Log Entry events may contain an exception that would be of inter-
est to this hypothetical handler. If both Framework Events and Log Entries use the same property
names then the handler can access the Exception in exactly the same way. If some future event type
follows the same conventions then the handler can receive and process the new event type even
though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event types are defined they
should use these names with the corresponding types and values where appropriate. These values
should be set only if they are not nul l

A list of these property names can be found in the following table.

Table 113.1 General property names for events

Name Type Notes
BUNDLE_SIGNER Str ing |

Col lect ion
<Str ing>

A bundle's signers DN

BUNDLE_VERSION Version A bundle's version
BUNDLE_SYMBOLICNAME Str ing A bundle's symbolic name
EVENT Object The actual event object. Used when rebroadcasting an

event that was sent via some other event mechanism
EXCEPTION Throwable An exception or error
EXCEPTION_MESSAGE Str ing Must be equal to exception.getMessage() .
EXCEPTION_CLASS Str ing Must be equal to the name of the Exception class.
MESSAGE Str ing A human-readable message that is usually not localized.
SERVICE Service Ref-

erence
A Service Reference

SERVICE_ID Long A service's id
SERVICE_OBJECTCLASS Str ing[] A service's objectClass
SERVICE_PID Str ing |

Col lect ion
<Str ing>

A service's persistent identity. A PID that is spec-
ified with a Str ing[] must be coerced into a
Collect ion<Str ing> .

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMil l is()

The topic of an OSGi event is constructed by taking the fully qualified name of the event class, sub-
stituting a solidus (' / ' \u002F)for every full stop, and appending a solidus followed by the name of
the constant that defines the event type. For example, the topic of

BundleEvent.STARTED

Event becomes

org/osgi/framework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

Specific Events Event Admin Service Specification Version 1.3

Page 326 OSGi Residential Release 6

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the system, the existing Frame-
work-level events are mapped to the Event Admin's publish-subscribe model. This allows event sub-
scribers to treat framework events exactly the same as other events.

It is the responsibility of the Event Admin service implementation to map these Framework events
to its queue.

The properties associated with the event depends on its class as outlined in the following sections.

113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<eventtype>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The following event properties
must be set for a Framework Event.

• event - (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the following fields must be set:

• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non-nul l value:

• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• exception - (Throwable) The Exception returned by the getThrowable method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED

Event Admin Service Specification Version 1.3 Event Admin Service

OSGi Residential Release 6 Page 327

UPDATED
UNINSTALLED
RESOLVED
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners require synchronous de-
livery then they should register a Synchronous Bundle Listener with the Framework.

• event - (BundleEvent) The original event object.
• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osgi/framework/ServiceEvent/<eventtype>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event - (ServiceEvent) The original Service Event object.
• service - (ServiceReference) The result of the getServiceReference method
• service. id - (Long) The service's ID.
• service.pid - (Str ing or Col lect ion<Str ing>) The service's persistent identity. Only set if not nul l .

If the PID is specified as a Str ing[] then it must be coerced into a Collect ion<Str ing> .
• service.objectClass - (Str ing[]) The service's object class.

113.6.6 Other Event Sources
Several OSGi service specifications define their own event model. It is the responsibility of these ser-
vices to map their events to Event Admin events. Event Admin is seen as a core service that will be
present in most devices. However, if there is no Event Admin service present, applications are not
mandated to buffer events.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object class
org.osgi .service.event.EventAdmin . Multiple Event Admin services can be registered. Pub-
lishers should publish their event on the Event Admin service with the highest value for the
SERVICE_RANKING service property. This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers, handling event notifica-
tions and providing at least one thread for asynchronous event delivery.

Event Admin Service Event Admin Service Specification Version 1.3

Page 328 OSGi Residential Release 6

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When this method is invoked,
the Event Admin service determines which handlers must be notified of the event and then notifies
each one in turn. The handlers can be notified in the caller's thread or in an event-delivery thread,
depending on the implementation. In either case, all notifications must be completely handled be-
fore the sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchronous delivery. All things
considered equal, the asynchronous delivery should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that synchronous event notifi-
cations could be handled in a separate thread. That entails that they must not be holding any moni-
tors when they invoke the sendEvent method. Otherwise they significantly increase the likelihood
of deadlocks because Java monitors are not reentrant from another thread by definition. Not hold-
ing monitors is good practice even when the event is dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When this method is invoked,
the Event Admin service must determine which handlers are interested in the event. By collecting
this list of handlers during the method invocation, the Event Admin service ensures that only han-
dlers that were registered at the time the event was posted will receive the event notification. This is
the same as described in Delivering Events of OSGi Core Release 6.

The Event Admin service can use more than one thread to deliver events. If it does then it must guar-
antee that each handler receives the events in the same order as the events were posted, unless this
handler allows unordered deliver, see Ordering on page 323. This ensures that handlers see events
in their expected order. For example, for some handlers it would be an error to see a destroyed event
before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that the handler is still regis-
tered in the service registry. If it has been unregistered then the handler must not be notified.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the event queue. Thus if two
events are posted by the same thread then they will be delivered in the same order (though other
events may come between them). However, if two or more events are posted by different threads
then the order in which they arrive in the queue (and therefore the order in which they are deliv-
ered) will depend very much on subtle timing issues. The event delivery system cannot make any
guarantees in this case. An Event Handler can indicate that the ordering is not relevant, allowing the
Event Admin to more aggressively parallelize the event deliver, see Ordering on page 323.

Synchronous events are delivered as soon as they are sent. If two events are sent by the same thread,
one after the other, then they must be guaranteed to be processed serially and in the same order.
However, if two events are sent by different threads then no guarantees can be made. The events can
be processed in parallel or serially, depending on whether or not the Event Admin service dispatches
synchronous events in the caller's thread or in a separate thread.

Note that if the actions of a handler trigger a synchronous event, then the delivery of the first event
will be paused and delivery of the second event will begin. Once delivery of the second event has
completed, delivery of the first event will resume. Thus some handlers may observe the second
event before they observe the first one.

Event Admin Service Specification Version 1.3 Reliability

OSGi Residential Release 6 Page 329

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be caught by the Event Admin
service and handled in some implementation specific way. If a Log Service is available the exception
should be logged. Once the exception has been caught and dealt with, the event delivery must con-
tinue with the next handlers to be notified, if any.

As the Log Service can also forward events through the Event Admin service there is a potential for a
loop when an event is reported to the Log Service.

113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method. Doing so will prevent other
handlers in the system from being notified. If a handler needs to do something that can take a while,
it should do it in a different thread.

An event admin implementation can attempt to detect stalled or deadlocked handlers and deal with
them appropriately. Exactly how it deals with this situation is left as implementation specific. One
allowed implementation is to mark the current event delivery thread as invalid and spawn a new
event delivery thread. Event delivery must resume with the next handler to be notified.

Implementations can choose to blacklist any handlers that they determine are misbehaving. Black-
listed handlers must not be notified of any events. If a handler is blacklisted, the event admin should
log a message that explains the reason for it.

113.9 Inter-operability with Native Applications
Implementations of the Event Admin service can support passing events to, and/or receiving events
from native applications.

If the implementation supports native inter-operability, it must be able to pass the topic of the event
and its properties to/from native code. Implementations must be able to support property values of
the following types:

• Str ing objects, including full Unicode support
• Integer, Long, Byte, Short , F loat, Double, Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int , long, byte, short , f loat , double,

boolean, char)

Implementations can support additional types. Property values of unsupported types must be silent-
ly discarded.

113.10 Security

113.10.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a giv-
en topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that solidi (' / ' \u002F) are used as

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 330 OSGi Residential Release 6

separators instead of full stop characters. For example, a name of a/b/* implies a/b/c but not x/y/z or
a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

113.10.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service.event.EventHandler , REGISTER]. In addition, handlers require
TopicPermission[<topic>, SUBSCRIBE] for each topic they want to be notified about.

Bundles that need to publish an event must be granted
ServicePermission[org.osgi .service.event.EventAdmin, GET] so that they may retrieve the Event
Admin service and use it. In addition, event sources require TopicPermission[<topic>, PUBLISH] for
each topic they want to send events to.

Bundles that need to iterate the handlers registered with the system must be granted
ServicePermission[org.osgi .service.event.EventHandler, GET] to retrieve the event handlers from
the service registry.

Only a bundle that contains an Event Admin service implementation should be granted
ServicePermission[org.osgi .service.event.EventAdmin, REGISTER] to register the event channel
admin service.

113.10.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain will be on the stack
above the handler's Protection Domain. In the case of a synchronous event, the event publisher's
protection domain can also be on the stack.

Therefore, if a handler needs to perform a secure operation using its own privileges, it must invoke
the doPriv i leged method to isolate its security context from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

113.11 org.osgi.service.event

Event Admin Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.3,1 .4)"

113.11.1 Summary

• Event - An event.
• EventAdmin - The Event Admin service.
• EventConstants - Defines standard names for EventHandler properties.
• EventHandler - Listener for Events.
• EventPropert ies - The properties for an Event.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Residential Release 6 Page 331

• TopicPermission - A bundle's authority to publish or subscribe to event on a topic.

113.11.2 public class Event
An event. Event objects are delivered to EventHandler services which subscribe to the topic of the
event.

Concurrency Immutable

113.11.2.1 public Event(String topic,Map<String,?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. If
the specified properties is an EventProperties object, then it will be directly used. Otherwise, a copy
of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

Since 1.2

113.11.2.2 public Event(String topic,Dictionary<String,?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. A
copy of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

113.11.2.3 public final boolean containsProperty(String name)

name The name of the property.

□ Indicate the presence of an event property. The event topic is present using the property name
"event.topics".

Returns true if a property with the specified name is in the event. This property may have a nul l value. fa lse
otherwise.

Since 1.3

113.11.2.4 public boolean equals(Object object)

object The Event object to be compared.

□ Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and the properties are equal.
The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a Event and is equal to this object; fa lse otherwise.

113.11.2.5 public final Object getProperty(String name)

name The name of the property to retrieve.

□ Retrieve the value of an event property. The event topic may be retrieved with the property name
"event.topics".

Returns The value of the property, or nul l if not found.

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 332 OSGi Residential Release 6

113.11.2.6 public final String[] getPropertyNames()

□ Returns a list of this event's property names. The list will include the event topic property name
"event.topics".

Returns A non-empty array with one element per property.

113.11.2.7 public final String getTopic()

□ Returns the topic of this event.

Returns The topic of this event.

113.11.2.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.11.2.9 public final boolean matches(Filter filter)

filter The filter to test.

□ Tests this event's properties against the given filter using a case sensitive match.

Returns true If this event's properties match the filter, false otherwise.

113.11.2.10 public String toString()

□ Returns the string representation of this event.

Returns The string representation of this event.

113.11.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain the Event Admin service
and call one of the event delivery methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

113.11.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.11.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate synchronous delivery of an event. This method does not return to the caller until delivery of
the event is completed.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.11.4 public interface EventConstants
Defines standard names for EventHandler properties.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Residential Release 6 Page 333

Provider Type Consumers of this API must not implement this type

113.11.4.1 public static final String BUNDLE = "bundle"

The Bundle object of the bundle relevant to the event. The type of the value for this event property
is Bundle.

Since 1.1

113.11.4.2 public static final String BUNDLE_ID = "bundle.id"

The Bundle id of the bundle relevant to the event. The type of the value for this event property is
Long .

Since 1.1

113.11.4.3 public static final String BUNDLE_SIGNER = "bundle.signer"

The Distinguished Names of the signers of the bundle relevant to the event. The type of the value
for this event property is Str ing or Collect ion of Str ing .

113.11.4.4 public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"

The Bundle Symbolic Name of the bundle relevant to the event. The type of the value for this event
property is Str ing .

113.11.4.5 public static final String BUNDLE_VERSION = "bundle.version"

The version of the bundle relevant to the event. The type of the value for this event property is Ver-
sion.

Since 1.2

113.11.4.6 public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"

Event Handler delivery quality value specifying the Event Handler requires asynchronously de-
livered events be delivered in order. Ordered delivery is the default for asynchronously delivered
events.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_UNORDERED. However,
if both this value and DELIVERY_ASYNC_UNORDERED are specified for an event handler, this val-
ue takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.11.4.7 public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"

Event Handler delivery quality value specifying the Event Handler does not require asynchronously
delivered events be delivered in order. This may allow an Event Admin implementation to optimize
asynchronous event delivery by relaxing ordering requirements.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_ORDERED. How-
ever, if both this value and DELIVERY_ASYNC_ORDERED are specified for an event handler,
DELIVERY_ASYNC_ORDERED takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.11.4.8 public static final String EVENT = "event"

The forwarded event object. Used when rebroadcasting an event that was sent via some other event
mechanism. The type of the value for this event property is Object .

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 334 OSGi Residential Release 6

113.11.4.9 public static final String EVENT_DELIVERY = "event.delivery"

Service Registration property specifying the delivery qualities requested by an Event Handler ser-
vice.

Event handlers MAY be registered with this property. Each value of this property is a string specify-
ing a delivery quality for the Event handler.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also DELIVERY_ASYNC_ORDERED, DELIVERY_ASYNC_UNORDERED

Since 1.3

113.11.4.10 public static final String EVENT_FILTER = "event.filter"

Service Registration property specifying a filter to further select Event s of interest to an Event Han-
dler service.

Event handlers MAY be registered with this property. The value of this property is a string contain-
ing an LDAP-style filter specification. Any of the event's properties may be used in the filter expres-
sion. Each event handler is notified for any event which belongs to the topics in which the handler
has expressed an interest. If the event handler is also registered with this service property, then the
properties of the event must also match the filter for the event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a warning should be
logged.

The value of this property must be of type Str ing .

See Also Event, Filter

113.11.4.11 public static final String EVENT_TOPIC = "event.topics"

Service registration property specifying the Event topics of interest to an Event Handler service.

Event handlers SHOULD be registered with this property. Each value of this property is a string that
describe the topics in which the handler is interested. An asterisk ('*') may be used as a trailing wild-
card. Event Handlers which do not have a value for this property must not receive events. More pre-
cisely, the value of each string must conform to the following grammar:

 topic-description := '*' | topic ('/*')?
 topic := token ('/' token)*

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Event

113.11.4.12 public static final String EXCEPTION = "exception"

An exception or error. The type of the value for this event property is Throwable .

113.11.4.13 public static final String EXCEPTION_CLASS = "exception.class"

The name of the exception type. Must be equal to the name of the class of the exception in the event
property EXCEPTION. The type of the value for this event property is Str ing .

Since 1.1

113.11.4.14 public static final String EXCEPTION_MESSAGE = "exception.message"

The exception message. Must be equal to the result of calling getMessage() on the exception in the
event property EXCEPTION. The type of the value for this event property is Str ing .

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Residential Release 6 Page 335

113.11.4.15 public static final String EXECPTION_CLASS = "exception.class"

This constant was released with an incorrectly spelled name. It has been replaced by
EXCEPTION_CLASS

Deprecated As of 1.1, replaced by EXCEPTION_CLASS

113.11.4.16 public static final String MESSAGE = "message"

A human-readable message that is usually not localized. The type of the value for this event proper-
ty is Str ing .

113.11.4.17 public static final String SERVICE = "service"

A service reference. The type of the value for this event property is ServiceReference.

113.11.4.18 public static final String SERVICE_ID = "service.id"

A service's id. The type of the value for this event property is Long .

113.11.4.19 public static final String SERVICE_OBJECTCLASS = "service.objectClass"

A service's objectClass. The type of the value for this event property is Str ing[] .

113.11.4.20 public static final String SERVICE_PID = "service.pid"

A service's persistent identity. The type of the value for this event property is Str ing or Collect ion of
Str ing .

113.11.4.21 public static final String TIMESTAMP = "timestamp"

The time when the event occurred, as reported by System.currentTimeMil l is() . The type of the val-
ue for this event property is Long .

113.11.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry and are notified with an
Event object when an event is sent or posted.

EventHandler objects can inspect the received Event object to determine its topic and properties.

EventHandler objects must be registered with a service property EventConstants.EVENT_TOPIC
whose value is the list of topics in which the event handler is interested.

For example:

 String[] topics = new String[] {"com/isv/*"};
 Hashtable ht = new Hashtable();
 ht.put(EventConstants.EVENT_TOPIC, topics);
 context.registerService(EventHandler.class.getName(), this, ht);

Event Handler services can also be registered with an EventConstants.EVENT_FILTER service prop-
erty to further filter the events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will require
ServicePermission[EventHandler,REGISTER] to register an EventHandler service. The bundle must
also have TopicPermission[topic,SUBSCRIBE] for the topic specified in the event in order to receive
the event.

See Also Event

Concurrency Thread-safe

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 336 OSGi Residential Release 6

113.11.5.1 public void handleEvent(Event event)

event The event that occurred.

□ Called by the EventAdmin service to notify the listener of an event.

113.11.6 public class EventProperties
implements Map<String,Object>
The properties for an Event. An event source can create an EventProperties object if it needs to reuse
the same event properties for multiple events.

The keys are all of type Str ing . The values are of type Object . The key "event.topics" is ignored as
event topics can only be set when an Event is constructed.

Once constructed, an EventProperties object is unmodifiable. However, the values of the map used
to construct an EventProperties object are still subject to modification as they are not deeply copied.

Since 1.3

Concurrency Immutable

113.11.6.1 public EventProperties(Map<String,?> properties)

properties The properties to use for this EventProperties object (may be nul l).

□ Create an EventProperties from the specified properties.

The specified properties will be copied into this EventProperties. Properties whose key is not of type
Str ing will be ignored. A property with the key "event.topics" will be ignored.

113.11.6.2 public void clear()

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.3 public boolean containsKey(Object name)

name The property name.

□ Indicates if the specified property is present.

Returns true If the property is present, fa lse otherwise.

113.11.6.4 public boolean containsValue(Object value)

value The property value.

□ Indicates if the specified value is present.

Returns true If the value is present, fa lse otherwise.

113.11.6.5 public Set<Map.Entry<String,Object>> entrySet()

□ Return the property entries.

Returns A set containing the property name/value pairs.

113.11.6.6 public boolean equals(Object object)

object The EventPropert ies object to be compared.

□ Compares this EventPropert ies object to another object.

The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a EventPropert ies and is equal to this object; fa lse otherwise.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Residential Release 6 Page 337

113.11.6.7 public Object get(Object name)

name The name of the specified property.

□ Return the value of the specified property.

Returns The value of the specified property.

113.11.6.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.11.6.9 public boolean isEmpty()

□ Indicate if this properties is empty.

Returns true If this properties is empty, fa lse otherwise.

113.11.6.10 public Set<String> keySet()

□ Return the names of the properties.

Returns The names of the properties.

113.11.6.11 public Object put(String key,Object value)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.12 public void putAll(Map<? extends String,? extends Object> map)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.13 public Object remove(Object key)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.14 public int size()

□ Return the number of properties.

Returns The number of properties.

113.11.6.15 public String toString()

□ Returns the string representation of this object.

Returns The string representation of this object.

113.11.6.16 public Collection<Object> values()

□ Return the properties values.

Returns The values of the properties.

113.11.7 public final class TopicPermission
extends Permission
A bundle's authority to publish or subscribe to event on a topic.

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 338 OSGi Residential Release 6

A topic is a slash-separated string that defines a topic.

For example:

 org/osgi/service/foo/FooEvent/ACTION

TopicPermission has two actions: publ ish and subscr ibe .

Concurrency Thread-safe

113.11.7.1 public static final String PUBLISH = "publish"

The action string publ ish .

113.11.7.2 public static final String SUBSCRIBE = "subscribe"

The action string subscr ibe .

113.11.7.3 public TopicPermission(String name,String actions)

name Topic name.

actions publ ish ,subscr ibe (canonical order).

□ Defines the authority to publish and/or subscribe to a topic within the EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used. For example:

 org/osgi/service/fooFooEvent/ACTION
 com/isv/*
 *

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate Top-
icPermssion for that topic.

113.11.7.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

□ Determines the equality of two TopicPermission objects. This method checks that specified Top-
icPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermission , and has the same topic name and actions as this TopicPermission ob-
ject; fa lse otherwise.

113.11.7.5 public String getActions()

□ Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermission actions.

113.11.7.6 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

113.11.7.7 public boolean implies(Permission p)

p The target permission to interrogate.

□ Determines if the specified permission is implied by this object.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Residential Release 6 Page 339

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermission actions must either match or allow for the list of the target object to imply
the target TopicPermission action.

 x/y/*,"publish" -> x/y/z,"publish" is true
 *,"subscribe" -> x/y,"subscribe" is true
 *,"publish" -> x/y,"subscribe" is false
 x/y,"publish" -> x/y/z,"publish" is false

Returns true if the specified TopicPermission action is implied by this object; fa lse otherwise.

113.11.7.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCol lect ion object.

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 340 OSGi Residential Release 6

Dmt Admin Service Specification Version 2.0 Introduction

OSGi Residential Release 6 Page 341

117 Dmt Admin Service Specification

Version 2.0

117.1 Introduction
There are a large number of Device Management standards available today. Starting with the ITU
X.700 series in the seventies, SNMP in the eighties and then an explosion of different protocols
when the use of the Internet expanded in the nineties. Many device management standards have
flourished, and some subsequently withered, over the last decades. Some examples:

• X.700 CMIP
• IETF SNMP
• IETF LDAP
• OMA DM
• Broadband Forum TR-069
• UPnP Forum's Device Management
• IETF NETCONF
• OASIS WS Distributed Management

This heterogeneity of the remote management for OSGi Framework based devices is a problem for
device manufacturers. Since there is often no dominant protocol these manufacturers have to devel-
op multiple solutions for different remote management protocols. It is also problematic for device
operators since they have to choose a specific protocol but by that choice could exclude a class of de-
vices that do not support that protocol. There is therefore a need to allow the use of multiple proto-
cols at minimal costs.

Almost all management standards are based on hierarchical object models and provide primitives
like:

• Get and replace values
• Add/Remove instances
• Discovery of value names and instance ids
• Provide notifications

A Device Management standard consists of a protocol stack and a number of object models. The pro-
tocol stack is generic and shared for all object types; the object model describes a specific device's
properties and methods. For example, the protocol stack can consist of a set of SOAP message for-
mats and an object model is a Deployment Unit . An object model consists of a data model and some-
times a set of functions.

The core problem is that the generic Device Management Tree must be mapped to device specific
functions. This specification therefore defines an API for managing a device using general device
management concepts but providing an effective plugin model to link the generic tree to the specif-
ic device functions.

The API is decomposed in the following packages/functionality:

• org.osgi .service.dmt - Main package that provides access to the local Device Management Tree.
Access is session based.

Introduction Dmt Admin Service Specification Version 2.0

Page 342 OSGi Residential Release 6

• org.osgi .service.dmt.noti f icat ion - The notification package provides the capability to send
alerts to a management server.

• org.osgi .service.dmt.spi - Provides the capability to register subtree handlers in the Device Man-
agement Tree.

• org.osgi .service.dmt.noti f icat ion.spi - The API to provide the possibility to extend the notifica-
tion system.

• org.osgi .service.dmt.security - Permission classes.

117.1.1 Entities

• Device Management Tree - The Device Management Tree (DMT) is the logical view of manageable
aspects of an OSGi Environment, implemented by plugins and structured in a tree with named
nodes.

• Dmt Admin - A service through which the DMT can be manipulated. It is used by Local Managers
or by Protocol Adapters that initiate DMT operations. The Dmt Admin service forwards selected
DMT operations to Data Plugins and execute operations to Exec Plugins; in certain cases the Dmt
Admin service handles the operations itself. The Dmt Admin service is a singleton.

• Dmt Session - A session groups a set of operations on a sub-tree with optional transactionality
and locking. Dmt Session objects are created by the Dmt Admin service and are given to a plugin
when they first join the session.

• Local Manager - A bundle which uses the Dmt Admin service directly to read or manipulate the
DMT. Local Managers usually do not have a principal associated with the session.

• Protocol Adapter - A bundle that communicates with a management server external to the device
and uses the Dmt Admin service to operate on the DMT. Protocol Adapters usually have a princi-
pal associated with their sessions.

• Meta Node - Information provided by the node implementer about a node for the purpose of per-
forming validation and providing assistance to users when these values are edited.

• Multi nodes - Interior nodes that have a homogeneous set of children. All these children share the
same meta node.

• Plugin - Services which take the responsibility over a given sub-tree of the DMT: Data Plugin ser-
vices and Exec Plugin services.

• Data Plugin - A Plugin that can create a Readable Data Session, Read Write Data Session, or Trans-
actional Data Session for data operations on a sub-tree for a Dmt Session.

• Exec Plugin - A Plugin that can handle execute operations.
• Readable Data Session - A plugin session that can only read.
• Read Write Data Session - A plugin session that can read and write.
• Transactional Data Session - A plugin session that is transactional.
• Principal - Represents the optional identity of an initiator of a Dmt Session. When a session has a

principal, the Dmt Admin must enforce ACLs and must ignore Dmt Permissions.
• ACL - An Access Control List is a set of principals that is associated with permitted operations.
• Dmt Event - Information about a modification of the DMT.
• Dmt Event Listener - Listeners to Dmt Events. These listeners are services according to the white

board pattern.
• Mount Point - A point in the DMT where a Plugin or the Dmt Admin service allows other Plugins

to have their root.

The overall service interaction diagram is depicted in Figure 117.1.

Dmt Admin Service Specification Version 2.0 Introduction

OSGi Residential Release 6 Page 343

Figure 117.1 Overall Service Diagram

Dmt Admin Impl
Dmt Admin

Notification
Service

Data
Plugin

Exec
Plugin

Remote Alert
Sender

Event Handler
(Event Admin)

Dmt Event
Listener

The entities used in the Dmt Admin operations and notifications are depicted in Figure 117.2.

Figure 117.2 Using Dmt Admin service, org.osgi.service.dmt and org.osgi.service.dmt.notification.* packages

<<service>>
Dmt Admin

administers

DMT Admin Impl

<<service>>
Notification
Service

Local Manager or
Protocol Adapter

sends alerts

<<class>>
Alert Item

<<class>>
Acl

<<interface>>
Meta Node

<<class>>
Dmt Data

<<interface>>
Dmt Session

Session Impl Alert Sender Impl

0..*

1

0..*

1

<<service>>
Remote Alert
Sender

Remote Alert
Sender Impl

0..*

1

<<service>>
Dmt Event
Listener

<<class>>
Dmt Event

0..*

1

Listener Impl

Extending the Dmt Admin service with Plugins is depicted in Figure 117.3.

The Device Management Model Dmt Admin Service Specification Version 2.0

Page 344 OSGi Residential Release 6

Figure 117.3 Extending the Dmt Admin service, org.osgi.service.dmt.spi package

Dmt Admin ImplSession Impl

<<service>>
Data Plugin

<<service>>
Exec Plugin

<<interface>>
Readable Data
Session

Data Plugin Impl Exec Plugin Impl

<<interface>>
Read Write
Data Session

<<interface>>
Transactional
Data Session

Session Impl

<<interface>>
Mount Plugin

Mount Point Impl

<<interface>>
Mount Point

117.2 The Device Management Model
The standard-based features of the DMT model are:

• The Device Management Tree consists of interior nodes and leaf nodes. Interior nodes can have
children and leaf nodes have primitive values.

• All nodes have a set of properties: Name, Title, Format, ACL, Version, Size, Type, Value, and
TimeStamp.

• The storage of the nodes is undefined. Nodes typically map to peripheral registers, settings, con-
figuration, databases, etc.

• A node's name must be unique among its siblings.
• Nodes can have Access Control Lists (ACLs), associating operations allowed on those nodes with

a particular principal.
• Nodes can have Meta Nodes that describe actual nodes and their siblings.
• Base value types (called formats in the standard) are

• integer
• long
• string
• boolean
• binary data (multiple types)
• datetime
• time

Dmt Admin Service Specification Version 2.0 The Device Management Model

OSGi Residential Release 6 Page 345

• float
• XML fragments

• Leaf nodes in the tree can have default values specified in the meta node.
• Meta Nodes define allowed access operations (Get , Add , Replace , Delete and Exec)

Figure 117.4 Device Management Tree example

root node.

Vendor Operator

ScreenSavers

OSGiOMA DM

RingSignals

Bach Popcorn Sinatra

interior node

leaf node

leaf node

interior node

117.2.1 Tree Terminology
In the following sections, the DMT is discussed frequently. Thus, well-defined terms for all the con-
cepts that the DMT introduces are needed. The different terms are shown in Figure 117.5.

Figure 117.5 DMT naming, relative to node F

.

E

G

F

f1 f2

A

DC

IH J

parent

self
siblings

ancestors

descendants
children sub-tree

K

All terms are defined relative to node F . For this node, the terminology is as follows:

• URI - The path consisting of node names that uniquely defines a node, see The DMT Addressing
URI on page 347.

• ancestors - All nodes that are above the given node ordered in proximity. The closest node must be
first in the list. In the example, this list is [./E , .]

• parent - The first ancestor, in this example this is . /E .
• children - A list of nodes that are directly beneath the given node without any preferred ordering.

For node F this list is { ./E/F/f1, . /E/F/f2, . /E/F/G } .
• siblings - An unordered list of nodes that have the same parent. All siblings must have different

names. For F , this is { ./E/K}
• descendants - A list of all nodes below the given node. For F this is { ./E/F/f1, . /E/F/G, . /E/F/f2, . /E/

F/G/H, . /E/F/G/I , . /E/F/G/J }
• sub-tree - The given node plus the list of all descendants. For node F this is { ./E/F, . /E/F/f1, . /E/F/

G, . /E/F/f2, . /E/F/G/H, . /E/F/G/I , . /E/F/G/J }

The Device Management Model Dmt Admin Service Specification Version 2.0

Page 346 OSGi Residential Release 6

• overlap - Two given URIs overlap if they share any node in their sub-trees. In the example, the
sub-tree . /E/F and . /E/F/G overlap.

• data root URI - A URI which represents the root of a Data Plugin.
• exec root URI - A URI which represents the root of an Exec Plugin.
• Parent Plugin - A Plugin A is a Parent Plugin of Plugin B if B 's root is a in A 's sub-tree, this requires a

Parent Plugin to at least have one mount point.
• Child Plugin - A Plugin A is a Child Plugin of Plugin B if A 's root is in B 's sub-tree.
• Scaffold Node - An ancestor node of a Plugin that is managed by the Dmt Admin service to ensure

that all nodes are discoverable by traversing from the root.

117.2.2 Actors
There are two typical users of the Dmt Admin service:

• Remote manager - The typical client of the Dmt Admin service is a Protocol Adapter. A manage-
ment server external to the device can issue DMT operations over some management protocol.
The protocol to be used is not specified by this specification. For example, OMA DM, TR-069,
or others could be used. The protocol operations reach the Framework through the Protocol
Adapter, which forwards the calls to the Dmt Admin service in a session. Protocol Adapters
should authenticate the remote manager and set the principal in the session. This association
will make the Dmt Admin service enforce the ACLs. This requires that the principal is equal to
the server name.

The Dmt Admin service provides a facility to send notifications to the remote manager with the
Notification Service.

• Local Manager - A bundle which uses the Dmt Admin service to operate on the DMT: for example,
a GUI application that allows the end user to change settings through the DMT.

Although it is possible to manage some aspects of the system through the DMT, it can be easi-
er for such applications to directly use the services that underlie the DMT; many of the manage-
ment features available through the DMT are also available as services. These services shield the
callers from the underlying details of the abstract, and sometimes hard to use DMT structure. As
an example, it is more straightforward to use the Monitor Admin service than to operate upon
the monitoring sub-tree. The local management application might listen to Dmt Events if it is in-
terested in updates in the tree made by other entities, however, these events do not necessarily
reflect the accurate state of the underlying services.

Figure 117.6 Actors

<<service>>
Dmt Admin

Protocol Adapter
Impl

remote management
protocol

<<interface>>
Dmt Session

Local Manager
Impl

Remote Server

principal

Dmt Admin Service Specification Version 2.0 The DMT Admin Service

OSGi Residential Release 6 Page 347

117.3 The DMT Admin Service
The Dmt Admin service operates on the Device Management Tree of an OSGi-based device. The Dmt
Admin API is loosely modeled after the OMA DM protocol: the operations for Get , Replace , Add ,
Delete and Exec are directly available. The Dmt Admin is a singleton service.

Access to the DMT is session-based to allow for locking and transactionality. The sessions are, in
principle, concurrent, but implementations that queue sessions can be compliant. The client indi-
cates to the Dmt Admin service what kind of session is needed:

• Exclusive Update Session - Two or more updating sessions cannot access the same part of the tree
simultaneously. An updating session must acquire an exclusive lock on the sub-tree which
blocks the creation of other sessions that want to operate on an overlapping sub-tree.

• Multiple Readers Session - Any number of read-only sessions can run concurrently, but ongoing
read-only sessions must block the creation of an updating session on an overlapping sub-tree.

• Atomic Session - An atomic session is the same as an exclusive update session, except that the ses-
sion can be rolled back at any moment, undoing all changes made so far in the session. The par-
ticipants must accept the outcome: rollback or commit. There is no prepare phase. The lack of
full two phase commit can lead to error situations which are described later in this document;
see Plugins and Transactions on page 360.

Although the DMT represents a persistent data store with transactional access and without size lim-
itations, the notion of the DMT should not be confused with a general purpose database. The in-
tended purpose of the DMT is to provide a dynamic view of the management state of the device; the
DMT model and the Dmt Admin service are designed for this purpose.

117.4 Manipulating the DMT

117.4.1 The DMT Addressing URI
The OMA DM limits URIs to the definition of a URI in [8] RFC 2396 Uniform Resource Identifiers (URI):
Generic Syntax. The Uri utility classes handles nearly all escaping issues with a number of static
methods. All URIs in any of the API methods can use the full Unicode character set. For example, the
following URIs as used in Java code are valid URIs for the Dmt Admin service.

"./ACME © 2000/A/x"
"./ACME/Address/Street/9C, Avenue St. Drézéry"

This strategy has a number of consequences.

• A solidus (' / ' \u002F) collides with the use of the solidus as separator of the node names. Soli-
di must therefore be escaped using a reverse solidus (' \ ' \u005C). The reverse solidus must be
escaped with a double reverse solidus sequence. The Dmt Admin service must ignore a reverse
solidus when it is not followed by a solidus or reverse solidus. The solidus and reverse solidus
must not be escaped using the %00 like escaping defined for URIs. For example, a node that has
the name of a MIME type could look like:

./OSGi/mime/application\/png

In Java, a reverse solidus must be escaped as well, therefore requiring double reverse solidi:

String a = "./OSGi/mime/application\\/png";

A literal reverse solidus would therefore require 4 reverse solidi in a Java string.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 348 OSGi Residential Release 6

• The length of a node name is defined to be the length of the byte array that results from UTF-8
encoding a string.

The Uri class provides an encode(Str ing) method to escape a string and a decode(Str ing) method to
unescape a string. Though in general the Dmt Admin service implementations should not impose
unnecessary constraints on the node name length, it is possible that an implementation runs out of
space. In that case it must throw a DmtException URI_TOO_LONG .

Nodes are addressed by presenting a relative or absolute URI for the requested node. The URI is de-
fined with the following grammar:

uri ::= relative-uri | absolute-uri
absolute-uri ::= './' relative-uri
relative-uri ::= segment ('/' segment)*
segment ::= (~['/'])*

The Uri isAbsoluteUri(Str ing) method makes it simple to find out if a URI is relative or absolute. Rel-
ative URIs require a base URI that is for example provided by the session, see Locking and Sessions on
page 348.

Each node name is appended to the previous ones using a solidus (' / ' \u002F) as the separating char-
acter. The first node of an absolute URI must be the full stop ('.' \u002E). For example, to access the
Bach leaf node in the RingTones interior node from Figure 117.4 on page 345, the URI must be:

./Vendor/RingSignals/Bach

The URI must be given with the root of the management tree as the starting point. URIs used in the
DMT must be treated and interpreted as case-sensitive. I.e.. /Vendor and . /vendor designate two differ-
ent nodes. The following mandatory restrictions on URI syntax are intended to simplify the parsing
of URIs.

The full stop has no special meaning in a node name. That is, sequences like. . do not imply parent
node. The isVal idUri(Str ing) method verifies that a URI fulfills all its obligations and is valid.

117.4.2 Locking and Sessions
The Dmt Admin service is the main entry point into the DMT, its usage is to create sessions. A
simple example is getting a session on a specific sub-tree. Such a session can be created with the
getSession(Str ing) method. This method creates an updating session with an exclusive lock on the
given sub-tree. The given sub-tree can be a single leaf node, if so desired.

Each session has an ID associated with it which is unique to the machine and is never reused. This
id is always greater than 0. The value -1 is reserved as place holder to indicate a situation has no ses-
sion associated with it, for example an event generated from an underlying service. The URI argu-
ment addresses the sub-tree root. If nul l , it addresses the root of the DMT. All nodes can be reached
from the root, so specifying a session root node is not strictly necessary but it permits certain opti-
mizations in the implementations.

If the default exclusive locking mode of a session is not adequate, it is possible to specify the locking
mode with the getSession(Str ing, int) and getSession(Str ing,Str ing, int) method. These methods
supports the following locking modes:

• LOCK_TYPE_SHARED - Creates a shared session. It is limited to read-only access to the given sub-
tree, which means that multiple sessions are allowed to read the given sub-tree at the same time.

• LOCK_TYPE_EXCLUSIVE - Creates an exclusive session. The lock guarantees full read-write access to
the tree. Such sessions, however, cannot share their sub-tree with any other session. This type of
lock requires that the underlying implementation supports Read Write Data Sessions.

• LOCK_TYPE_ATOMIC - Creates an atomic session with an exclusive lock on the sub-tree, but with
added transactionality. Operations on such a session must either succeed together or fail togeth-

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Residential Release 6 Page 349

er. This type of lock requires that the underlying implementation supports Transactional Data
Sessions. If the Dmt Admin service does not support transactions, then it must throw a Dmt Ex-
ception with the FEATURE_NOT_SUPPORTED code. If the session accesses data plugins that are
not transactional in write mode, then the Dmt Admin service must throw a Dmt Exception with
the TRANSACTION_ERROR code. That is, data plugins can participate in a atomic sessions as long
as they only perform read operations.

The Dmt Admin service must lock the sub-tree in the requested mode before any opera-
tions are performed. If the requested sub-tree is not accessible, the getSession(Str ing, int) ,
getSession(Str ing,Str ing, int) , or getSession(Str ing) method must block until the sub-tree becomes
available. The implementation can decide after an implementation-dependent period to throw a
Dmt Exception with the SESSION_CREATION_TIMEOUT code.

As a simplification, the Dmt Admin service is allowed to lock the entire tree irrespective of the giv-
en sub-tree. For performance reasons, implementations should provide more fine-grained locking
when possible.

Persisting the changes of a session works differently for exclusive and atomic sessions. Changes
to the sub-tree in an atomic session are not persisted until the commit() or close() method of the
session is called. Changes since the last transaction point can be rolled back with the rol lback()
method.

The commit() and rol lback() methods can be called multiple times in a session; they do not close the
session. The open , commit() , and rol lback() methods all establish a transaction point. The rollback op-
eration cannot roll back further than the last transaction point.

Once a fatal error is encountered (as defined by the DmtException isFatal() method), all successful
changes must be rolled back automatically to the last transaction point. Non-fatal errors do not roll-
back the session. Any error/exception in the commit or rol lback methods invalidates and closes the
session. This can happen if, for example, the mapping state of a plugin changes that has its plugin
root inside the session's sub-tree.

Changes in an exclusive session are persisted immediately after each separate operation. Errors do
not roll back any changes made in such a session.

Due to locking and transactional behavior, a session of any type must be closed once it is no longer
used. Locks must always be released, even if the close() method throws an exception.

Once a session is closed no further operations are allowed and manipulation methods must throw a
Dmt Illegal State Exception when called. Certain information methods like for example getState()
and getRootUri() can still be called for logging or diagnostic purposes. This is documented with the
Dmt Session methods.

The close() or commit() method can be expected to fail even if all or some of the individual opera-
tions were successful. This failure can occur due to multi-node constraints defined by a specific im-
plementation. The details of how an implementation specifies such constraints is outside the scope
of this specification.

Events in an atomic session must only be sent at commit time.

117.4.3 Associating a Principal
Protocol Adapters must use the getSession(Str ing,Str ing, int) method which features the principal
as the first parameter. The principal identifies the external entity on whose behalf the session is cre-
ated. This server identification string is determined during the authentication process in a way spe-
cific to the management protocol.

For example, the identity of the OMA DM server can be established during the handshake between
the OMA DM agent and the server. In the simpler case of OMA CP protocol, which is a one-way pro-
tocol based on WAP Push, the identity of the principal can be a fixed value.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 350 OSGi Residential Release 6

117.4.4 Relative Addressing
All DMT operation methods are found on the session object. Most of these methods accept a relative
or absolute URI as their first parameter: for example, the method isLeafNode(Str ing) . This URI is ab-
solute or relative to the sub-tree with which the session is associated. For example, if the session is
opened on:

./Vendor

then the following URIs address the Bach ring tone:

RingTones/Bach
./Vendor/RingTones/Bach

Opening the session with a nul l URI is identical to opening the session at the root. But the absolute
URI can be used to address the Bach ring tone as well as a relative URI.

./Vendor/RingTones/Bach
Vendor/RingTones/Bach

If the URI specified does not correspond to a legitimate node in the tree, a Dmt Exception must be
thrown. The only exception to this rule is the isNodeUri(Str ing) method that can verify if a node is
actually valid. The getMetaNode(Str ing) method must accept URIs to non-existing nodes if an ap-
plicable meta node is available; otherwise it must also throw a Dmt Exception.

117.4.5 Creating Nodes
The methods that create interior nodes are:

• createInter iorNode(Str ing) - Create a new interior node using the default meta data. If the prin-
cipal does not have Replace access rights on the parent of the new node then the session must au-
tomatically set the ACL of the new node so that the creating server has Add , Delete and Replace
rights on the new node.

• createInter iorNode(Str ing,Str ing) - Create a new interior node. The meta data for this new node
is identified by the second argument, which is a URI identifying an OMA DM Device Description
Framework (DDF) file, this does not have to be a valid location. It uses a format like org.osgi/1.0/
LogManagementObject . This meta node must be consistent with any meta information from the
parent node.

• createLeafNode(Str ing) - Create a new leaf node with a default value.
• createLeafNode(Str ing,DmtData) - Create a leaf node and assign a value to the leaf-node.
• createLeafNode(Str ing,DmtData,Str ing) - Create a leaf node and assign a value for the node. The

last argument is the MIME type, which can be nul l .

For a node to be created, the following conditions must be fulfilled:

• The URI of the new node has to be a valid URI.
• The principal of the Dmt Session, if present, must have ACL Add permission to add the node to

the parent. Otherwise, the caller must have the necessary permission.
• All constraints of the meta node must be verified, including value constraints, name constraints,

type constraints, and MIME type constraints. If any of the constraints fail, a Dmt Exception must
be thrown with an appropriate code.

117.4.6 Node Properties
A DMT node has a number of runtime properties that can be set through the session object. These
properties are:

• Title - (Str ing) A human readable title for the object. The title is distinct from the node name. The
title can be set with setNodeTit le(Str ing,Str ing) and read with getNodeTit le(Str ing) . This spec-

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Residential Release 6 Page 351

ification does not define how this information is localized. This property is optional depending
on the implementation that handles the node.

• Type -(Str ing) The MIME type, as defined in [9] MIME Media Types, of the node's value when it is
a leaf node. The type of an interior node is a string identifying a DDF type. These types can be set
with setNodeType(Str ing,Str ing) and read with getNodeType(Str ing) .

• Version - (int) Version number, which must start at 0, incremented after every modification (for
both a leaf and an interior node) modulo 0x10000. Changes to the value or any of the properties
(including ACLs), or adding/deleting nodes, are considered changes. The getNodeVersion(Str ing)
method returns this version; the value is read-only. In certain cases, the underlying data structure
does not support change notifications or makes it difficult to support versions. This property is
optional depending on the node's implementation.

• Size - (int) The size measured in bytes is read-only and can be read with getNodeSize(Str ing) . Not
all nodes can accurately provide this information.

• Time Stamp -(Date) Time of the last change in version. The getNodeTimestamp(Str ing) returns
the time stamp. The value is read only. This property is optional depending on the node's imple-
mentation.

• ACL - The Access Control List for this and descendant nodes. The property can be set with
setNodeAcl(Str ing,Acl) and obtained with getNodeAcl(Str ing) .

If a plugin that does not implement an optional property is accessed, a Dmt Exception with the code
FEATURE_NOT_SUPPORTED must be thrown.

117.4.7 Setting and Getting Data
Values are represented as DmtData objects, which are immutable. The are acquired with the
getNodeValue(Str ing) method and set with the setNodeValue(Str ing,DmtData) method.

DmtData objects are dynamically typed by an integer enumeration. In OMA DM, this integer is
called the format of the data value. The format of the DmtData class is similar to the type of a vari-
able in a programming language, but the word format is used here. The available data formats are
listed in the following table.

Table 117.1 Data Formats

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_BASE64 byte[] base64 DmtData(byte[] ,boolean) getBase64() Binary type that must be
encoded with base 64, see
[10] RFC 3548 The Base16,
Base32, and Base64 Data
Encodings.

FORMAT_BINARY byte[] binary DmtData(byte[])
DmtData(byte[] ,boolean)

getBinary() A byte array. The DmtData
object is created with the
constructor. The byte ar-
ray can only be acquired
with the method.

FORMAT_BOOLEAN boolean boolean DmtData(boolean) getBoolean() Boolean. There are two
constants for this type:

• FALSE_VALUE
• TRUE_VALUE

FORMAT_DATE Str ing date DmtData(Str ing, int) getStr ing()

getDate()

A Date (no time). Syn-
tax defined in [13] XML
Schema Part 2: Datatypes
Second Edition as the date
type.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 352 OSGi Residential Release 6

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_DATE_TIME Str ing date-
Time

DmtData(Date) getDateTime() A Date object representing
a point in time.

FORMAT_FLOAT float float DmtData(float) getFloat() Float
FORMAT_INTEGER int integer DmtData(int) getInt() Integer
FORMAT_LONG long long DmtData(long) getLong() Long
FORMAT_NODE Object NODE DmtData(Object) getNode() A DmtData object

can have a format of
FORMAT_NODE . This
value is returned from a
MetaNode getFormat()
method if the node is an
interior node or for a da-
ta value when the Plugin
supports complex values.

FORMAT_NULL No valid data is avail-
able. DmtData objects
with this format cannot
be constructed; the only
instance is the DmtData
NULL_VALUE constant.

FORMAT_RAW_BINARY byte[] <cus-
tom>

DmtData(Str ing,byte[]) getRawBinary() A raw binary format is al-
ways created with a for-
mat name. This format
name allows the creator
to define a proprietary for-
mat. The format name is
available from the get-
FormatName() method,
which has predefined val-
ues for the standard for-
mats.

FORMAT_RAW_STRING Str ing <cus-
tom>

DmtData(Str ing,Str ing) getRawStr ing() A raw string format is al-
ways created with a for-
mat name. This format
name allows the creator
to define a proprietary for-
mat. The format name is
available from the get-
FormatName() method,
which has predefined val-
ues for the standard for-
mats.

FORMAT_STRING Str ing str ing DmtData(Str ing) getStr ing() String
FORMAT_TIME Str ing time DmtData(Str ing, int) getStr ing() Time of Day. Syntax de-

fined in [13] XML Schema
Part 2: Datatypes Second
Edition as the t ime type.

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Residential Release 6 Page 353

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_XML Str ing xml DmtData(Str ing, int) getXml() A string containing an
XML fragment. It can be
obtained with. The valid-
ity of the XML must not
be verified by the Dmt Ad-
min service.

117.4.8 Complex Values
The OMA DM model prescribes that only leaf nodes have primitive values. This model maps very
well to remote managers. However, when a manager is written in Java and uses the Dmt Admin API
to access the tree, there are often unnecessary conversions from a complex object, to leaf nodes, and
back to a complex object. For example, an interior node could hold the current GPS position as an
OSGi Posit ion object, which consists of a longitude, latitude, altitude, speed, and direction. All these
objects are Measurement objects which consist of value, error, and unit. Reading such a Posit ion ob-
ject through its leaf nodes only to make a new Posit ion object is wasting resources. It is therefore
that the Dmt Admin service also supports complex values as a supplementary facility.

If a complex value is used then the leaves must also be accessible and represent the same semantics
as the complex value. A manager unaware of complex values must work correctly by only using the
leaf nodes. Setting or getting the complex value of an interior node must be identical to setting or
getting the leaf nodes.

Accessing a complex value requires Get access to the node and all its descendants. Setting a complex
value requires Replace access to the interior node. Replacing a complex value must only generate a
single Replace event.

Trying to set or get a complex value on an interior node that does not support complex values must
throw a Dmt Exception with the code FEATURE_NOT_SUPPORTED .

117.4.9 Nodes and Types
The node's type can be set with the setNodeType(Str ing,Str ing) method and acquired with
getNodeType(Str ing) . The namespaces for the types differ for interior and leaf nodes. A leaf node is
typed with a MIME type and an interior node is typed with a DDF Document URI. However, in both
cases the Dmt Admin service must not verify the syntax of the type name.

The createLeafNode(Str ing,DmtData,Str ing) method takes a MIME type as last argument that will
type the leaf node. The MIME type reflects how the data of the node should be interpreted. For exam-
ple, it is possible to store a GIF and a JPEG image in a DmtData object with a FORMAT_BINARY for-
mat. Both the GIF and the JPEG object share the same format, but will have MIME types of image/jpg
and image/gif respectively. The Meta Node provides a list of possible MIME types.

The createInter iorNode(Str ing,Str ing) method takes a DDF Document URI as the last argument
that will type the interior node. This specification defines the DDF Document URIs listed in the fol-
lowing table for interior nodes that have a particular meaning in this specification.

Table 117.2 Standard Interior Node Types

Interior Node Type Description
DDF_SCAFFOLD Scaffold nodes are automatically generated nodes by the

Dmt Admin service to provide the children node names so
that Plugins are reachable from the root. See Scaffold Nodes
on page 361.

DDF_MAP MAP nodes define a key -> value mapping construct using
the node name (key) and the node value (value). See MAP
Nodes on page 389.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 354 OSGi Residential Release 6

Interior Node Type Description
DDF_LIST LIST nodes use the node name to maintain an index in a

list. See LIST Nodes on page 387.

117.4.10 Deleting Nodes
The deleteNode(Str ing) method on the session represents the Delete operation. It deletes the sub-
tree of that node. This method is applicable to both leaf and interior nodes. Nodes can be deleted by
the Dmt Admin service in any order. The root node of the session cannot be deleted.

For example, given Figure 117.7, deleting node P must delete the nodes . /P , . /P/ M , . /P/M/X , . /P/M/n2
and . /P/M/n3 in any order.

Figure 117.7 DMT node and deletion

.

P

X

M

n2 n3

117.4.11 Copying Nodes
The copy(Str ing,Str ing,boolean) method on the DmtSession object represents the Copy operation.
A node is completely copied to a new URI. It can be specified with a boolean if the whole sub-tree
(true) or just the indicated node is copied.

The ACLs must not be copied; the new access rights must be the same as if the caller had created the
new nodes individually. This restriction means that the copied nodes inherit the access rights from
the parent of the destination node, unless the calling principal does not have Replace rights for the
parent. See Creating Nodes on page 350 for details.

117.4.12 Renaming Nodes
The renameNode(Str ing,Str ing) method on the DmtSession object represents the Rename opera-
tion, which replaces the node name. It requires permission for the Replace operation. The root node
for the current session can not be renamed.

117.4.13 Execute
The execute(Str ing,Str ing) and execute(Str ing,Str ing,Str ing) methods can execute a node. Execut-
ing a node is intended to be used when a problem is hard to model as a set of leaf nodes. This can be
related to synchronization issues or data manipulation. The execute methods can provide a correla-
tor for a notification and an opaque string that is forwarded to the implementer of the node.

Execute operations can not take place in a read only session because simultaneous execution could
make conflicting changes to the tree.

117.4.14 Closing
When all the changes have been made, the session must be closed by calling the close() method on
the session. The Dmt Admin service must then finalize, clean up, and release any locks. For atomic
sessions, the Dmt Admin service must automatically commit any changes that were made since the
last transaction point.

Dmt Admin Service Specification Version 2.0 Meta Data

OSGi Residential Release 6 Page 355

A session times out and is invalidated after an extended period of inactivity. The exact length of this
period is not specified, but is recommended to be at least 1 minute and at most 24 hours. All meth-
ods of an invalidated session must throw an Dmt Illegal State Exception after the session is invali-
dated.

A session's state is one of the following: STATE_CLOSED , STATE_INVALID or STATE_OPEN , as can be
queried by the getState() call. The invalid state is reached either after a fatal error case is encoun-
tered or after the session is timed out. When an atomic session is invalidated, it is automatically
rolled back to the last transaction point of the session.

117.5 Meta Data
The getMetaNode(Str ing) method returns a MetaNode object for a given URI. This node is called
the meta node. A meta node provides information about nodes.

Any node can optionally have a meta node associated with it. The one or more nodes that are de-
scribed by the meta nodes are called the meta node's related instances. A meta node can describe a sin-
gleton-related instance, or it can describe all the children of a given parent if it is a multi-node. That is
to say, meta nodes can exist without an actual instance being present. In order to retrieve the meta
node of a multi-node any name can be used.

For example, if a new ring tone, Grieg , was created in Figure 117.8 it would be possible to get the
Meta Node for. /Vendor/RingSignals/Grieg before the node was created. This is usually the case for
multi nodes. The model is depicted in Figure 117.8.

Figure 117.8 Nodes and meta nodes

meta node

Vendor

RingSignals

Bach Popcorn ...

./Vendor/RingSingals

<>

related instance

A URI is generally associated with the same Meta Node. The getMetaNode(Str ing) should return
the same meta node for the same URI except in the case of Scaffold Nodes on page 361. As the own-
ership of scaffold nodes can change from the Dmt Admin service to the Parent Plugin service, or
from a Parent Plugin to a Child Plugin, the Meta Node can change as well.

The last segment of the URI to get a Meta Node can be any valid node name, for example, instead of
Grieg it would have been possible to retrieve the same Meta Node with the name . /Vendor/RingSig-
nals/0 , . /Vendor/RingSignals/anyName , . /Vendor/RingSignals/<> , etc.

The actual meta data can come from two sources:

• Dmt Admin - Each Dmt Admin service likely has a private meta data repository. This meta data is
placed in the device in a proprietary way.

• Plugins - Plugins can carry meta nodes and provide these to the Dmt Admin service by imple-
menting the getMetaNode(Str ing[]) method. If a plugin returns a non-null value, the Dmt Ad-
min service must use that value, possibly complemented by its own metadata for elements not
provided by the plugin.

Meta Data Dmt Admin Service Specification Version 2.0

Page 356 OSGi Residential Release 6

The MetaNode interface supports methods to retrieve read-only meta data. The following sections
describes this meta-data in more detail.

117.5.1 Operations
The can(int) method provide information as to whether the associated node can perform the given
operation. This information is only about the capability; it can still be restricted in runtime by ACLs
and permissions.

For example, if the can(MetaNode.CMD_EXECUTE) method returns true , the target object supports
the Execute operation. That is, calling the execute(Str ing,Str ing) method with the target URI is pos-
sible.

The can(int) method can take the following constants as parameters:

• CMD_ADD
• CMD_DELETE
• CMD_EXECUTE
• CMD_GET
• CMD_REPLACE

For example:

void foo(DmtSession session, String nodeUri) {
 MetaNode meta = session.getMetaNode(nodeUri);
 if (meta !=null && meta.can(MetaNode.CMD_EXECUTE))
 session.execute(nodeUri,"foo");
}

117.5.2 Scope
The scope is part of the meta information of a node. It provides information about what the life cy-
cle role is of the node. The getScope() method on the Meta Node provides this information. The val-
ue of the scope can be one of the following:

• DYNAMIC - Dynamic nodes are intended to be created and deleted by a management system or
an other controlling source. This does not imply that it actually is possible to add new nodes
and delete nodes, the actions can still allow or deny this. However, in principle nodes that can be
added or deleted have the DYNAMIC scope. The LIST and MAP nodes, see OSGi Object Modeling on
page 383, always have DYNAMIC scope.

• PERMANENT - Permanent nodes represent an entity in the system. This can be a network inter-
face, a device description, etc. Permanent nodes in general map to an object in an object orient-
ed language. Despite their name, PERMANENT nodes can appear and disappear, for example the
plugging in of a USB device might create a new PERMANENT node. Generally, the Plugin roots
map to PERMANENT nodes.

• AUTOMATIC - Automatic nodes map in general to nodes that are closely tied to the parent. They
are similar to fields of an object in an object oriented language. They cannot be deleted or added.

For example, a node representing the Battery can never be deleted because it is an intrinsic part of
the device; it will therefore be PERMANENT . The Level and number of ChargeCycle nodes will be AU-
TOMATIC . A new ring tone is dynamically created by a manager and is therefore DYNAMIC .

117.5.3 Description and Default

• getDescr ipt ion() - (Str ing) A description of the node. Descriptions can be used in dialogs with
end users: for example, a GUI application that allows the user to set the value of a node. Localiza-
tion of these values is not defined.

Dmt Admin Service Specification Version 2.0 Meta Data

OSGi Residential Release 6 Page 357

• getDefault() - (DmtData) A default data value.

117.5.4 Validation
The validation information allows the runtime system to verify constraints on the values; it also al-
lows user interfaces to provide guidance.

A node does not have to exist in the DMT in order to have meta data associated with it. Nodes may
exist that have only partial meta data, or no metadata, associated with them. For each type of meta-
data, the default value to assume when it is omitted is described in MetaNode .

117.5.5 Data Types
A leaf node can be constrained to a certain format and one of a set of MIME types.

• getFormat() - (int) The required type. This type is a logical OR of the supported formats.
• getRawFormatNames() - Return an array of possible raw format names. This is only applicable

when the getFormat() returns the FORMAT_RAW_BINARY or FORMAT_RAW_STRING formats. The
method must return nul l otherwise.

• getMimeTypes() - (Str ing[]) A list of MIME types for leaf nodes or DDF types for interior nodes.
The Dmt Admin service must verify that the actual type of the node is part of this set.

117.5.6 Cardinality
A meta node can constrain the number of siblings (i.e., not the number of children) of an interior
or leaf node. This constraint can be used to verify that a node must not be deleted, because there
should be at least one node left on that level (isZeroOccurrenceAl lowed()), or to verify that a node
cannot be created, because there are already too many siblings (getMaxOccurrence()).

If the cardinality of a meta node is more than one, all siblings must share the same meta node to
prevent an invalid situation. For example, if a node has two children that are described by different
meta nodes, and any of the meta nodes has a cardinality >1, that situation is invalid.

For example, the . /Vendor/RingSignals/<> meta node (where <> stands for any name) could specify
that there should be between 0 and 12 ring signals.

• getMaxOccurrence() - (int) A value greater than 0 that specifies the maximum number of in-
stances for this node.

• isZeroOccurrenceAl lowed() - (boolean) Returns true if zero instances are allowed. If not, the last
instance must not be deleted.

117.5.7 Matching
The following methods provide validation capabilities for leaf nodes.

• isVal idValue(DmtData) - (DmtData) Verify that the given value is valid for this meta node.
• getVal idValues() - (DmtData[]) A set of possible values for a node, or nul l otherwise. This can for

example be used to give a user a set of options to choose from.

117.5.8 Numeric Ranges
Numeric leaf nodes (format must be FORMAT_INTEGER , FORMAT_LONG , or FORMAT_FLOAT) can be
checked for a minimum and maximum value.

Minimum and maximum values are inclusive. That is, the range is [getMin() ,getMax()] . For exam-
ple, if the maximum value is 5 and the minimum value is -5, then the range is [-5,5]. This means that
valid values are -5,-4,-3,-2... 4, 5.

• getMax() - (double) The value of the node must be less than or equal to this maximum value.

Plugins Dmt Admin Service Specification Version 2.0

Page 358 OSGi Residential Release 6

• getMin() - (double) The value of the node must be greater than or equal to this minimum value.

If no meta data is provided for the minimum and maximum values, the meta node must return the
Double.MIN_VALUE , and Double.MAX_VALUE respectively.

117.5.9 Name Validation
The meta node provides the following name validation facilities for both leaf and interior nodes:

• isVal idName(Str ing) - (Str ing) Verifies that the given name matches the rules for this meta node.
• getVal idNames() - (Str ing[]) An array of possible names. A valid name for this node must appear

in this list.

117.5.10 User Extensions
The Meta Node provides an extension mechanism; each meta node can be associated with a number
of properties. These properties are then interpreted in a proprietary way. The following methods are
used for user extensions:

• getExtensionPropertyKeys() - Returns an array of key names that can be provided by this meta
node.

• getExtensionProperty(Str ing) - Returns the value of an extension property.

For example, a manufacturer could use a regular expression to validate the node names with the
isVal idName(Str ing) method. In a web based user interface it is interesting to provide validity
checking in the browser, however, in such a case the regular expression string is required. This
string could then be provided as a user extension under the key x-acme-regex-javascr ipt .

117.6 Plugins
The Plugins take the responsibility of handling DMT operations within certain sub-trees of the
DMT. It is the responsibility of the Dmt Admin service to forward the operation requests to the ap-
propriate plugin. The only exceptions are the ACL manipulation commands. ACLs must be enforced
by the Dmt Admin service and never by the plugin. The model is depicted in Figure 117.9.

Figure 117.9 Device Management Tree example

Device Operator

ScreenSavers

OSGiOMA DM

Battery

Level Temp Cycles

<<service>>
Data Pluginhandled by

Battery Handler
Impl

.
Plugin root node

Plugins are OSGi services. The Dmt Admin service must dynamically map and unmap the plugins,
acting as node handler, as they are registered and unregistered. Service properties are used to speci-
fy the sub-tree that the plugin can manage as well as mount points that it provides to Child Plugins;
plugins that manage part of the Plugin's sub-tree.

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Residential Release 6 Page 359

For example, a plugin related to Configuration Admin handles the sub-tree which stores configu-
ration data. This sub-tree could start at . /OSGi/Configurat ion . When the client wants to add a new
configuration object to the DMT, it must issue an Add operation to the . /OSGi/Configurat ion node.
The Dmt Admin service then forwards this operation to the configuration plugin. The plugin maps
the request to one or more method calls on the Configuration Admin service. Such a plugin can be a
simple proxy to the Configuration Admin service, so it can provide a DMT view of the configuration
data store.

There are two types of Dmt plugins: data plugins and exec plugins. A data plugin is responsible for
handling the sub-tree retrieval, addition and deletion operations, and handling of meta data, while
an exec plugin handles a node execution operation.

117.6.1 Data Sessions
Data Plugins must participate in the Dmt Admin service sessions. A Data Plugin provider must
therefore register a Data Plugin service. Such a service can create a session for the Dmt Admin ser-
vice when the given sub-tree is accessed by a Dmt Session. If the associated Dmt Session is later
closed, the Data Session will also be closed. Three types of sessions provide different capabilities.
Data Plugins do not have to implement all session types; if they choose not to implement a session
type they can return nul l .

• Readable Data Session - Must always be supported. It provides the basic read-only access to the
nodes and the close() method. The Dmt Admin service uses this session type when the lock
mode is LOCK_TYPE_SHARED for the Dmt Session. Such a session is created with the plugin's
openReadOnlySession(Str ing[] ,DmtSession) , method which returns a ReadableDataSession
object.

• Read Write Data Session - Extends the Readable Data Session with capabilities to modify the DMT.
This is used for Dmt Sessions that are opened with LOCK_TYPE_EXCLUSIVE . Such a session is cre-
ated with the plugin's openReadWriteSession(Str ing[] ,DmtSession) method, which returns a
ReadWriteDataSession object.

• Transactional Data Session - Extends the Read Write Data Session with commit and rollback
methods so that this session can be used with transactions. It is used when the Dmt Session
is opened with lock mode LOCK_TYPE_ATOMIC . Such a session is created with the plugin's
openAtomicSession(Str ing[] ,DmtSession) method, which returns a TransactionalDataSession
object.

117.6.2 URIs and Plugins
The plugin Data Sessions do not use a simple string to identify a node as the Dmt Session does. In-
stead the URI parameter is a Str ing[] . The members of this Str ing[] are the different segments. The
first node after the root is the second segment and the node name is the last segment. The different
segments require escaping of the solidus (' / ' \u002F) and reverse solidus (' \ ' \u005C).

The reason to use Str ing[] objects instead of the original string is to reduce the number times that
the URI is parsed. The entry String objects, however, are still escaped. For example, the URI . /A/B/ im-
age\/ jpg gives the following Str ing[] :

{ ".", "A", "B", "image\/jpg" }

A plugin can assume that the path is validated and can be used directly.

117.6.3 Associating a sub-tree
Each plugin is associated with one or more DMT sub-trees. The top node of a sub-tree is called the
plugin root. The plugin root is defined by a service registration property. This property is different for
exec plugins and data plugins:

• DATA_ROOT_URIS - (Str ing+) A sequence of data URI, defining a plugin root for data plugins.

Plugins Dmt Admin Service Specification Version 2.0

Page 360 OSGi Residential Release 6

• EXEC_ROOT_URIS - (Str ing+) A sequence of exec URI, defining a plugin root for exec plugins.

If the Plugin modifies these service properties then the Dmt Admin service must reflect these
changes as soon as possible. The reason for the different properties is to allow a single service to reg-
ister both as a Data Plugin service as well as an Exec Plugin service.

Data and Exec Plugins live in independent trees and can fully overlap. However, an Exec Plugin can
only execute a node when the there exists a valid node at the corresponding node in the Data tree.
That is, to be able to execute a node it is necessary that isNodeUri(Str ing) would return true .

For example, a data plugin can register itself in its activator to handle the sub-tree . /Dev/Battery :

public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(Constants.SERVICE_PID, "com.acme.data.plugin");
 ht.put(DataPlugin.DATA_ROOT_URIS, "./Dev/Battery");
 context.registerService(
 DataPlugin.class.getName(),
 new BatteryHandler(context);
 ht);
}

If this activator was executed, an access to . /Dev/Battery must be forwarded by the Dmt Admin ser-
vice to this plugin via one of the data session.

117.6.4 Synchronization with Dmt Admin Service
The Dmt Admin service can, in certain cases, detect that a node was changed without the plugin
knowing about this change. For example, if the ACL is changed, the version and timestamp must be
updated; these properties are maintained by the plugin. In these cases, the Dmt Admin service must
open a ReadableDataSession and call nodeChanged(Str ing[]) method with the changed URI.

117.6.5 Plugin Meta Data
Plugins can provide meta data; meta data from the Plugin must take precedence over the meta data
of the Dmt Admin service. If a plugin provides meta information, the Dmt Admin service must veri-
fy that an operation is compatible with the meta data of the given node.

For example if the plugin reports in its meta data that the . /A leaf node can only have the text/plain
MIME type, the createLeafNode(Str ing) calls must not be forwarded to the Plugin if the third argu-
ment specifies any other MIME type. If this contract between the Dmt Admin service and the plugin
is violated, the plugin should throw a Dmt Exception METADATA_MISMATCH .

117.6.6 Plugins and Transactions
For the Dmt Admin service to be transactional, transactions must be supported by the data plug-
ins. This support is not mandatory in this specification, and therefore the Dmt Admin service has
no transactional guarantees for atomicity, consistency, isolation or durability. The DmtAdmin inter-
face and the DataPlugin (or more specifically the data session) interfaces, however, are designed to
support Data Plugin services that are transactional. Exec plugins need not be transaction-aware be-
cause the execute method does not provide transactional semantics, although it can be executed in
an atomic transaction.

Data Plugins do not have to support atomic sessions. When the Dmt Admin service creates a Trans-
actional Data Session by calling openAtomicSession(Str ing[] ,DmtSession) the Data Plugin is al-
lowed to return nul l . In that case, the plugin does not support atomic sessions. The caller receives a
Dmt Exception.

Plugins must persist any changes immediately for Read Write Data Sessions. Transactional Data Ses-
sions must delay changes until the commit() method is called, which can happen multiple times

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Residential Release 6 Page 361

during a session. The opening of an atomic session and the commit() and rol lback() methods all es-
tablish a transaction point. Rollback can never go further back than the last transaction point.

• commit() - Commit any changes that were made to the DMT but not yet persisted. This method
should not throw an Exception because other Plugins already could have persisted their data and
can no longer roll it back. The commit method can be called multiple times in an open session,
and if so, the commit must make persistent the changes since the last transaction point.

• rol lback() - Undo any changes made to the sub-tree since the last transaction point.
• close() - Clean up and release any locks. The Dmt Admin service must call the commit methods

before the close method is called. A Plugin must not perform any persistency operations in the
close method.

The commit() , rol lback() , and close() plugin data session methods must all be called in reverse order
of that in which Plugins joined the session.

If a Plugin throws a fatal exception during an operation, the Dmt Session must be rolled back imme-
diately, automatically rolling back all data plugins, as well as the plugins that threw the fatal Dmt
Exception. The fatality of an Exception can be checked with the Dmt Exception isFatal() method.

If a plugin throws a non-fatal exception in any method accessing the DMT, the current operation
fails, but the session remains open for further commands. All errors due to invalid parameters (e.g.
non-existing nodes, unrecognized values), all temporary errors, etc. should fall into this category.

A rollback of the transaction can take place due to any irregularity during the session. For example:

• A necessary Plugin is unregistered or unmapped
• A fatal exception is thrown while calling a plugin
• Critical data is not available
• An attempt is made to breach the security

Any Exception thrown during the course of a commit() or rol lback() method call is considered fa-
tal, because the session can be in a half-committed state and is not safe for further use. The opera-
tion in progress should be continued with the remaining Plugins to achieve a best-effort solution in
this limited transactional model. Once all plugins have been committed or rolled back, the Dmt Ad-
min service must throw an exception, specifying the cause exception(s) thrown by the plugin(s),
and should log an error.

117.6.7 Side Effects
Changing a node's value will have a side effect of changing the system. A plugin can also, however,
cause state changes with a get operation. Sometimes the pattern to use a get operation to perform
a state changing action can be quite convenient. The get operation, however, is defined to have no
side effects. This definition is reflected in the session model, which allows the DMT to be shared
among readers. Therefore, plugins should refrain from causing side effects for read-only operations.

117.6.8 Copying
Plugins do not have to support the copy operation. They can throw a Dmt Exception with a code
FEATURE_NOT_SUPPORTED . In this case, the Dmt Admin service must do the copying node by
node. For the clients of the Dmt Admin service, it therefore appears that the copy method is always
supported.

117.6.9 Scaffold Nodes
As Plugins can be mapped anywhere into the DMT it is possible that a part of the URI has no corre-
sponding Plugin, such a plugin would not be reachable unless the intermediate nodes were provid-
ed. A program that would try to discover the DMT would not be able to find the registered Plugins as
the intermediate nodes would not be discoverable.

Plugins Dmt Admin Service Specification Version 2.0

Page 362 OSGi Residential Release 6

These intermediate nodes that will make all plugins reachable must therefore be provided by the
Dmt Admin service, they are called the scaffold nodes. The only purpose of the scaffold nodes is to al-
low every node to be discovered when the DMT is traversed from the root down. Scaffold nodes are
provided both for Data Plugins as well as Exec Plugins as well as for Child Plugins that are mounted
inside a Parent Plugin, see Sharing the DMT on page 364. In Figure 117.10 the Device node is a scaf-
fold node because there is no plugin associated with it. The Dmt Admin service must, however, pro-
vide the Battery node as child node of the Device node.

Figure 117.10 Scaffold Nodes

Device

Battery

Level Temp Cycles

.

Scaffold node

Plugin Root Node for
plugin with root ./Device/Battery

Scaffold node

A scaffold node is always an interior node and has limited functionality, it must have a type of
DDF_SCAFFOLD . It has no value, it is impossible to add or delete nodes to it, and the methods that
are allowed for a scaffold node are specified in the following table.

Table 117.3 Supported Scaffold Node Methods

Method Description
getNodeAcl(Str ing) Must inherit from the root node.
getChi ldNodeNames(Str ing) Answer the child node names such that plugin's in the sub-tree

are reachable.
getMetaNode(Str ing) Provides the Meta Node defined in Table 117.4
getNodeSize(Str ing) Must throw a DmtException COMMAND_NOT_ALLOWED
getNodeTit le(Str ing) nul l
getNodeTimestamp(Str ing) Time first created
getNodeType(Str ing) DDF_SCAFFOLD
isNodeUri(Str ing) true
isLeafNode(Str ing) false
getNodeVersion(Str ing) Away returns 0
copy(Str ing,Str ing,boolean) Not allowed for a single scaffold node as nodeUri ,

if the recurse parameter is fa lse the DmtException
COMMAND_NOT_ALLOWED

Any other operations must throw a DmtException with error code COMMAND_NOT_ALLOWED .
The scope of a scaffold node is always PERMANENT . Scaffold nodes must have a Meta Node provided
by the Dmt Admin service. This Meta Node must act as defined in the following table.

Table 117.4 Scaffold Meta Node Supported Methods

Method Description
can(int) CMD_GET
getDefault() nul l

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Residential Release 6 Page 363

Method Description
getDescr ipt ion() nul l
getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() 1
getMimeTypes() DDF_SCAFFOLD
getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() PERMANENT
getVal idNames() nul l
getVal idValues() nul l
isLeaf() false
isVal idName(Str ing) true
isVal idValue(DmtData) false
isZeroOccurrenceAl lowed() true

If a Plugin is registered then it is possible that a scaffold node becomes a Data Plugin root node. In
that case the node and the Meta Node must subsequently be provided by the Data Plugin and can
thus become different. Scaffold nodes are virtual, there are therefore no events associated with the
life cycle of a scaffold node.

For example, there are three plugins registered:

URI Plugin Children
./A/B P1 ba
./A/C P2 ca
./A/X/Y P3 ya,yb

In this example, node B , C , and Y are the plugin roots of the different plugins. As there is no plugin
the manage node A and X these must be provided by the Dmt Admin service. In this example, the
child names returned from each node are summarized as follows:

Node Children Provided by
. { A } Dmt Admin (scaffold node)
A { X, C, B } Dmt Admin (scaffold node)
B { ba } P1
C { ca } P2
X { Y } Dmt Admin (scaffold node)
Y { ya, yb } P3

Figure 117.11 Example Scaffold Nodes

.
.

BC

Y

.

P1

A

X P2

P3

ya yb

ca ba

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 364 OSGi Residential Release 6

117.7 Sharing the DMT
The Dmt Admin service provides a model to integrate the management of the myriad of compo-
nents that make up an OSGi device. This integration is achieved by sharing a single namespace: the
DMT. Sharing a single namespace requires rules to prevent conflicts and to resolve any conflicts
when Plugins register with plugin roots that overlap. It also requires rules for the Dmt Admin ser-
vice when nodes are accessed for which there is no Plugin available.

This section defines the management of overlapping plugins through the mount points, places where
a Parent Plugin can allow a Child Plugin to take over.

117.7.1 Mount Points
With multiple plugins the DMT is a shared namespace. Sharing requires rules to ensure that conflicts
are avoided and when they occur, can be resolved in a consistent way. The most powerful and flexi-
ble model is to allow general overlapping. However, in practice this flexibility comes at the cost of
ordering issues and therefore timing dependent results. A best practice is therefore to strictly con-
trol the points where the DMT can be extended for both Data and Exec Plugins.

A mount point is such a place. A Dmt Admin service at start up provides virtual mount points any-
where in the DMT and provides scaffold nodes for any intermediate nodes between the root of the
DMT and the Plugin's root URI. Once a Plugin is mounted it is free to use its sub-tree (the plugin root
and any ancestors) as it sees fit. However, this implies that the Plugin must implement the full sub-
tree. In reality, many object models use a pattern where the different levels in the object model map
to different domains.

For example, an Internet Gateway could have an object model where the general information, like
the name, vendor, etc. is stored in the first level but any attached interfaces are stored in the sub-tree.
However, It is highly unlikely that the code that handles the first level with the general information
is actually capable of handling the details of, for example, the different network interfaces. It is actu-
ally likely that these network interfaces are dynamic. A Virtual Private Network (VPN) can add vir-
tual network interfaces on demand. Such a could have the object model depicted in Figure 117.12.

Figure 117.12 Data Modeling

.
..

Gateway

Name Interface

WANLAN

VPN

Forcing these different levels to be implemented by the same plugin violates one of the primary
rules of modularity: cohesion. Plugins forced to handle all aspects become complex and hard to main-
tain. A Plugin like the one managing the Gateway node could provide its own Plugin mechanism
but that would force a lot of replication and is error prone. For this reason, the Dmt Admin service
allows a Plugin to provide mount points inside its sub-tree. A Plugin can specify that it has mount
points by registering a MOUNT_POINTS service property (the constant is defined both in DataPlug-
in and ExecPlugin but have the same constant value). The type of this property must be Str ing+ , each
string specifies a mount point. Each mount point is specified as a URI that is relative from the plug-

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Residential Release 6 Page 365

in root. That is, when the plugin root is . /A/B and the mount point is specified as C then the absolute
URI of the mount point is . /A/B/C .

A Plugin that has mount points acts as a Parent Plugin to a number of Child Plugins. In the previ-
ous example, the LAN, VPN, and WAN nodes, can then be provided by separate Child Plugins even
though the Gateway/Name node is provided by the Parent Plugin. In this case, the mount points are
children of the Interface node.

A mount point can be used by a number of child plugins. In the previous example, there was a Child
Plugin for the LAN node, the VPN node, and the WAN node. This model has the implicit problem
that it requires coordination to ensure that their names are unique. Such a coordination between in-
dependent parties is complicated and error prone. Its is therefore possible to force the Dmt Admin
service to provide unique names for these nodes, see Shared Mount Points on page 366.

A Parent Plugin is not responsible for any scaffolding nodes to make its Child Plugins reachable.
However, Dmt Admin may assume that a Plugin Root node always exists and may not provide a scaf-
fold node on the Plugin Root. A Plugin is recommended to always provide the Plugin Root node to
make its Child Plugins reachable. When a Parent Plugin provides the nodes to its mount points, the
nodes should be the correct interior nodes to make its Child Plugins reachable.

For example, the following setup of plugins:

Plugin Plugin Root Mount Points
P1 ./A X/B
P2 ./A/X/B

This setup is depicted in Figure 117.13.

Figure 117.13 Example Scaffold Nodes For Child Plugin

..

A

B

.

P1

X

P2

g

g

mount
point

f

If the child node names are requested for the . /A node then the plugin P1 is asked for the child node
names and must return the names [f,g] . However, if plugin P2 is mapped then the Dmt Admin ser-
vice must add the scaffold node name that makes this plugin reachable from that level, the returned
set must therefore be [f, g, X] .

117.7.2 Parent Plugin
If a Plugin is registered with mount points then it is a Parent Plugin. A Parent Plugin must register
with a single plugin root URI, that is the DATA_ROOT_URIS or EXEC_ROOT_URIS service properties
must contain only one element. A Parent Plugin is allowed to be a Data and Exec Plugin at the same
time. If a Parent Plugin is registered with multiple plugin root URIs then the Dmt Admin service
must log an error and ignore the registration of such a Parent Plugin. A Parent Plugin can in itself al-
so be a Child Plugin.

For example, a Plugin P1 that has a plugin root of . /A/B and provides a mount point at . /A/B/C and . /
A/B/E/F. as depicted in Figure 117.14.

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 366 OSGi Residential Release 6

Figure 117.14 Example Mount Points

.
.

B

.

A

P1

C

Mount point

E

F

Registering such a Plugin would have to register the following service properties to allow the exam-
ple configuration of the DMT:

dataRootUris ./A/B
mountPoints [C, E/F]

117.7.3 Shared Mount Points
Mount points can be shared between different Plugins. In the earlier example about the Gateway
the Interface node contained a sub-tree of network interfaces. It is very likely in such an example
that the Plugins for the VPN interface will be provided by a different organization than the WAN
and LAN network interfaces. However, all these network interface plugins must share a single par-
ent node, the Interface node, under which they would have to mount. Sharing therefore requires a
prior agreement and a naming scheme.

The naming scheme is defined by using the number sign ('# ' \u0023) to specify a shared mount point.
A plugin root that ends with the number sign, for example . /A/B/# , indicates that it is willing to
get any node under node B , leaving the naming of that node up to the Dmt Admin service. Shared
mount points cannot overlap with normal mount points, the first one will become mapped and
subsequent ones are in error, they are incompatible with each other. A Parent Plugin must specify a
mount point explicitly as a shared mount point by using the number sign at the end of the mount
point's relative URI.

A plugin is compatible with other plugins if all other plugins specify a shared mount point to the
same URI. It is compatible with its Parent Plugin if the child's plugin root and the mount point are
either shared or not.

The Dmt Admin service must provide a name for a plugin root that identifies a shared mount
point such that every Plugin on that mount point has a unique integer name for that node lev-
el. The integer name must be >= 1. The name must be convertible to an int with the static Integer
parseInt(Str ing) method.

A management system in general requires permanent links to nodes. It is therefore necessary to
choose the same integer every time a plugin is mapped to a shared mount point. A Child Plugin on
a shared mount point must therefore get a permanent integer node name when it registers with a
Persistent ID (PID). That is, it registers with the service property service.pid . The permanent link is
then coupled to the PID and the bundle id since different bundles must be able to use the same PID.
If a Plugin is registered with multiple PIDs then the first one must be used. Since permanent links
can stay around for a long time implementations must strive to not reuse these integer names.

If no PID is provided then the Dmt Admin service must choose a new number that has not been used
yet nor matches any persistently stored names that are currently not registered.

The Gateway example would require the following Plugin registrations:

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Residential Release 6 Page 367

Root URI Mount Points Plugin Role
./Gateway [Interface/#] Gateway Parent
./Gateway/Interface/# [] WAN If. Child
./Gateway/Interface/# [] LAN If. Child
./Gateway/Interface/# [] VPN.1 Child

This setup is depicted in Figure 117.15.

Figure 117.15 Mount Point Sharing

.
..

Gateway

Name Interface

WAN
If.

LAN
If.

VPN
.1

12 33 42 Assigned by Dmt Admin

The Meta Node for a Node on the level of the Mount Point can specify either an existing Plugin or it
can refer to a non-existing node. If the node exists, the corresponding Plugin must provide the Meta
Node. If the node does not exist, the Dmt Admin service must provide the Meta Node. Such a Meta
Node must provide the responses as specified in Table 117.4.

Table 117.5 Shared Mount Point Meta Node Supported Methods

Method Description
can(int) CMD_GET
getDefault() nul l
getDescr ipt ion() nul l
getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() Integer.MAX_VALUE
getMimeTypes() nul l
getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() The scope will depend on the Parent
getVal idNames() nul l
getVal idValues() nul l
isLeaf() false
isVal idName(Str ing) name >=1 && name < Integer.MAX_VALUE
isVal idValue(DmtData) false
isZeroOccurrenceAl lowed() true

A URI can cross multiple mount points, shared and unshared. For example, if a network interface
could be associated with a number of firewall rules then it is possible to register a URI on the desig-
nated network interface that refers to the Firewall rules. For the previous example, a Plugin could
register a Firewall if the following registrations were done:

Root URI Mount Points Plugin Parent Name

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 368 OSGi Residential Release 6

./Gateway [Interface/#] Gw

./Gateway/Interface/# [Fw/#] WAN If. Gw 11

./Gateway/Interface/# [] LAN If. Gw 33

./Gateway/Interface/# [] VPN.1 Gw 42

./Gateway/Interface/11/Fw/# [] Fw.1 WAN If. 97

This example DMT is depicted in Figure 117.16.

Figure 117.16 Mount Point Multiple Sharing

.
..

Name Interface

WAN
LAN

VPN

11 33 42 Assigned by Dmt Admin

Fw

97Fw#1

Gateway

117.7.4 Mount Points are Excluded
Mount nodes are logically not included in the sub-tree of a Plugin. The Dmt Admin service must
never ask any information from/about a Mount Point node to its Parent Plugin. A Parent Plugin
must also not return the name of a mount point in the list of child node names, the Mount Point
and its subtree is logically excluded from the sub-tree. For the Dmt Admin service an unoccupied
mount point is a node that does not exist. Its name, must only be discoverable if a Plugin has actual-
ly mounted the node. The Dmt Admin service must ensure that the names of the mounted Plugins
are included for that level.

In the case of shared mount points the Dmt Admin service must provide the children names of all
registered Child Plugins that share that node level.

For example, a Plugin P1 registered with the plugin root of . /A/B , having two leaf nodes E , and a
mount point C must not return the name C when the child node names for node B are requested.
This is depicted in Figure 117.17. The Dmt Admin service must ensure that C is returned in the list of
names when a Plugin is mounted on that node.

Figure 117.17 Example Exclusion

.
.

B

.

A

P1

CE
not returned in getChildNodeNames
method of the Plugin

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Residential Release 6 Page 369

117.7.5 Mapping a Plugin
A Plugin is not stand alone, its validity can depend on other Plugins. Invalid states make it possible
that a Plugin is either mapped or unmapped. When a Plugin is mapped it is available in the DMT and
when it is unmapped it is not available. Any registration, unregistration, or modification of its ser-
vices properties of a Plugin can potentially alter the mapped state of any related Plugin. A plugin be-
comes eligible for mapping when it is registered.

A plugin can have multiple roots. However, the mapping is described as if there is a single plugin
root. Plugins with multiple roots must be treated as multiple plugins that can each independently
be mapped or unmapped depending on the context.

If no Parent Plugin is available, the Dmt Admin service must act as a virtual Parent Plugin that al-
lows mount points anywhere in the tree where there is no mapped plugin yet.

When a Plugin becomes eligible then the following assertions must be valid for that Plugin to be-
come mapped:

• If it has one or more mount points then
• It must have at most one Data and/or Exec Root URI.
• None of its mount points must overlap.
• Any already mapped Child Plugins must be compatible with its mount points.

• If no mount points are specified then there must be no Child Plugins already registered.
• The plugin root must be compatible with the corresponding parent's mount point. When a Par-

ent Plugin is available, the plugin root must match exactly to the absolute URI of the parent's
mount point.

• The plugin root must be compatible with any other plugins on that mount point.

If either of these assertions fail then the Dmt Admin service must log an error and ignore the
registered Plugin, it must not become mapped. If, through the unregistration or modification of
the service properties, the assertions can become valid then the Dmt Admin service must retry
mapping the Plugin so that it can become available in the DMT. Any mappings and unmap-
pings that affect nodes that are in the sub-tree of an active session must abort that session with a
CONCURRENT_ACCESS exception.

When there are errors in the configuration then the ordering will define which plugins are mapped
or not. Since this is an error situation no ordering is defined between conflicting plugins.

For example, a number of Plugins are registered in the given order:

Plugin Root Children Mount Points Plugin
./A/B E C P1
./A/B/C P2
./A/B/D P3

The first Plugin P1 will be registered immediately without problems. It has only a single plugin root
as required by the fact that it is a Parent Plugin (it has a mount point). There are no Child Plugins yet
so it is impossible to have a violation of the mount points. As there is no Parent Plugin registered,
the Dmt Admin service will map plugin P1 and automatically provide the scaffold node A .

When Plugin P2 is registered its plugin root maps to a mount point in Plugin P1 . As P2 is not a Parent
Plugin it is only necessary that it has no Child Plugins. As it has no Child Plugins, the mapping will
succeed.

Plugin P3 cannot be mapped because the Parent Plugin is P1 but P1 does not provide a mount point
for P3 's plugin root . /A/B/D .

If, at a later time P1 is unregistered then the Dmt Admin service must map plugin P3 and leave plug-
in P2 mapped. This sequence of action is depicted in Figure 117.18.

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 370 OSGi Residential Release 6

If plugin P1 becomes registered again at a later time it can then in its turn not be mapped as there
would be a child plugin (P3) that would not map to its mount point.

Figure 117.18 Plugin Activation

.

B

.

A

P1

CE

.

B

.

A

P1

CE

.

B

.

A

P1

CEP2

D

P2

P3

P1 Registered
and mapped

P2 registered
and mapped

P3 is registered
but cannot be mapped

??

..

A

CDP3 C P2

B

P1 is unregistered
mapping P3

117.7.6 Mount Plugins
In Mapping a Plugin on page 369 it is specified that a Plugin can be mapped or not. The mapped
state of a Plugin can change depending on other plugins that are registered and unregistered. Plug-
ins require in certain cases to know:

• What is the name of their root node if they mount on a shared mount point.
• What is the mapping state of the Plugin.

To find out these details a Plugin can implement the MountPlugin interface; this is a mixin inter-
face, it is not necessary to register it as MountPlugin service. The Dmt Admin service must do an in-
stanceof operation on Data Plugin services and Exec Plugin services to detect if they are interested
in the mount point information.

The Mount Point interface is used by the Dmt Admin service to notify the Plugin when it becomes
mapped and when it becomes unmapped. The Plugin will be informed about each plugin root sepa-
rately.

The Mount Plugin specifies the following methods that are called synchronously:

• mountPointAdded(MountPoint) - The Dmt Admin service must call this method after it has
mapped a plugin root. From this point on the given mount point provides the actual path until
the mountPointRemoved(MountPoint) is called with an equal object. The given Mount Point can
be used to post events.

• mountPointRemoved(MountPoint) - The Dmt Admin service must call this method after it has
unmapped the given mount point. This method must always be called when a plugin root is un-
mapped, even if this is caused by the unregistration of the plugin.

As the mapping and unmapping of a plugin root can happen any moment in time a Plugin that im-
plements the Mount Plugin interface must be prepared to handle these events at any time on any
thread.

The MountPoint interface has two separate responsibilities:

• Path - The path that this Mount Point is associated with. This path is a plugin root of the plugin.
This path is identical to the Plugin's root except when it is mounted on a shared mount point;
in that case the URI ends in the name chosen by the Dmt Admin service. The getMountPath()
method provides the path.

Dmt Admin Service Specification Version 2.0 Access Control Lists

OSGi Residential Release 6 Page 371

• Events - Post events about the given sub-tree that signal internal changes that occur outside
a Dmt Session. The Dmt Admin service must treat these events as they were originated from
modifications to the DMT. That is, they need to be forwarded to the Event Admin as well as
the Dmt Listeners. For this purpose there are the postEvent(Str ing,Str ing[] ,Dict ionary) and
postEvent(Str ing,Str ing[] ,Str ing[] ,Dict ionary) methods.

For example, a Data Plugin monitoring one of the batteries registers with the following service prop-
erties:

dataRootURIs "./Device/Battery/#"

The Device node is from a Parent Plugin that provided the shared mount point. The Battery Plugin
implements the MountPlugin interface so it gets called back when it is mapped. This will cause the
Dmt Admin service to call the mountPointAdded(MountPoint) method on the plugin. In this case, it
will get just one mount point, the mount point for its plugin root. If the Dmt Admin service would
have assigned the Battery Plugin number 101 then the getMountPath() would return:

[".", "Device", "Battery", "101"]

As the Plugin monitors the charge state of the battery it can detect a significant change. In that case
it must send an event to notify any observers. The following code shows how this could be done:

@Component(properties="dataRootURIs=./Device/Battery/#",
 provide=DataPlugin.class)
public class Battery implements DataPlugin, MountPlugin {
 Timer timer;
 volatile float charge;
 TimerTask task;

 public void mountPointsAdded(final MountPoint[] mountPoints){
 task = new TimerTask() {
 public void run() {
 float next = measure();
 if (Math.abs(charge - next) > 0.2) {
 charge = next;
 mountPoints[0].postEvent(DmtConstants.EVENT_TOPIC_REPLACED,
 new String[] { "Charge" }, null);
 }
 }
 };
 timer.schedule(task, 1000);
 }

 public void mountPointsRemoved(MountPoint[] mountPoints){
 task.cancel();
 task = null;
 }
 ... // Other methods
}

117.8 Access Control Lists
Each node in the DMT can be protected with an access control list, or ACL. An ACL is a list of associa-
tions between Principal and Operation:

Access Control Lists Dmt Admin Service Specification Version 2.0

Page 372 OSGi Residential Release 6

• Principal - The identity that is authorized to use the associated operations. Special principal is the
wildcard ('* ' \u002A); the operations granted to this principal are called the global permissions.
The global permissions are available to all principals.

• Operation - A list of operations: ADD, DELETE, GET, REPLACE, EXECUTE .

DMT ACLs are defined as strings with an internal syntax in [1] OMA DM-TND v1.2 draft. Instances of
the ACL class can be created by supplying a valid OMA DM ACL string as its parameter. The syntax
of the ACL is presented here in shortened form for convenience:

acl ::= (acl-entry ('&' acl-entry)*)
acl-entry ::= command '=' (principals | '*')
principals ::= principal ('+' principal)*
principal ::= ~['=' '&' '*' '+' '\t' '\n' '\r']+

The principal name should only use printable characters according to the OMA DM specification.

command ::= 'Add' | 'Delete' | 'Exec'| 'Get' | 'Replace'

White space between tokens is not allowed.

Examples:

Add=*&Replace=*&Get=*

Add=www.sonera.fi-8765&Delete=www.sonera.fi-8765& «
Replace=www.sonera.fi-8765+321_ibm.com&Get=*

The Acl(Str ing) constructor can be used to construct an ACL from an ACL string. The toStr ing()
method returns a Str ing object that is formatted in the specified form, also called the canonical
form. In this form, the principals must be sorted alphabetically and the order of the commands is:

 ADD, DELETE, EXEC, GET, REPLACE

The Acl class is immutable, meaning that a Acl object can be treated like a string, and that the object
cannot be changed after it has been created.

ACLs must only be verified by the Dmt Admin service when the session has an associated principal.

ACLs are properties of nodes. If an ACL is not set (i.e. contains no commands nor principals), the ef-
fective ACL of that node must be the ACL of its first ancestor that has a non-empty ACL. This effec-
tive ACL can be acquired with the getEffect iveNodeAcl(Str ing) method. The root node of DMT
must always have an ACL associated with it. If this ACL is not explicitly set, it should be set to
Add=*&Get=*&Replace=* .

This effect is shown in Figure 117.19. This diagram shows the ACLs set on a node and their effect
(which is shown by the shaded rectangles). Any principal can get the value of p , q and r , but they
cannot replace, add or delete the node. Node t can only be read and replaced by principal S1 .

Node X is fully accessible to any authenticated principal because the root node specifies that all prin-
cipals have Get , Add and Replace access (*->G,A,R).

Dmt Admin Service Specification Version 2.0 Access Control Lists

OSGi Residential Release 6 Page 373

Figure 117.19 ACL inheritance

.

X

B

p q r

A

* -> Get,Add,Replace

S1 -> Get,Replace

* -> Get
t

The definition and example demonstrate the access rights to the properties of a node, which in-
cludes the value.

Changing the ACL property itself has different rules. If a principal has Replace access to an interi-
or node, the principal is permitted to change its own ACL property and the ACL properties of all its
child nodes. Replace access on a leaf node does not allow changing the ACL property itself.

In the previous example, only principal S1 is authorized to change the ACL of node B because it has
Replace permission on node B 's parent node A .

Figure 117.20 ACLs for the ACL property

.

B

t

A

* -> Get,Add,Replace

S1 -> Get,Replace

S1 -> Get

S1 -> Get,Replace

Figure 117.20 demonstrates the effect of this rule with an example. Server S1 can change the ACL
properties of all interior nodes. A more detailed analysis:

• Root - The root allows all authenticated principals to access it. The root is an interior node so the
Replace permission permits the change of the ACL property.

• Node A - Server S1 has Replace permission and node A is an interior node so principal S1 can
modify the ACL.

• Node B - Server S1 has no Replace permission for node B, but the parent node A of node B grants
principal S1 Replace permission, and S1 is therefore permitted to change the ACL.

• Node t - Server S1 must not be allowed to change the ACL of node t , despite the fact that it has Re-
place permission on node t . For leaf nodes, permission to change an ACL is defined by the Re-
place permission in the parent node's ACL. This parent, node B, has no such permission set and
thus, access is denied.

Access Control Lists Dmt Admin Service Specification Version 2.0

Page 374 OSGi Residential Release 6

The following methods provide access to the ACL property of the node.

• getNodeAcl(Str ing) - Return the ACL for the given node, this method must not take any ACL in-
heritance into account. The ACL may be nul l if no ACL is set.

• getEffect iveNodeAcl(Str ing) - Return the effective ACL for the given node, taking any inheri-
tance into account.

• setNodeAcl(Str ing,Acl) - Set the node's ACL. The ACL can be nul l , in which case the ef-
fective permission must be derived from an ancestor. The Dmt Admin service must call
nodeChanged(Str ing[]) on the data session with the given plugin to let the plugin update any
timestamps and versions.

The Acl class maintains the permissions for a given principal in a bit mask. The following permis-
sion masks are defined as constants in the Acl class:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

The class features methods for getting permissions for given principals. A number of methods allow
an existing ACL to be modified while creating a new ACL.

• addPermission(Str ing, int) - Return a new Acl object where the given permissions have been
added to permissions of the given principal.

• deletePermission(Str ing, int) - Return a new Acl object where the given permissions have been re-
moved from the permissions of the given principal.

• setPermission(Str ing, int) - Return a new Acl object where the permissions of the given principal
are overwritten with the given permissions.

Information from a given ACL can be retrieved with:

• getPermissions(Str ing) - (int) Return the combined permission mask for this principal.
• getPr incipals() - (Str ing[]) Return a list of principals (Str ing objects) that have been granted per-

missions for this node.

Additionally, the isPermitted(Str ing, int) method verifies if the given ACL authorizes the given per-
mission mask. The method returns true if all commands in the mask are allowed by the ACL.

For example:

 Acl acl = new Acl("Get=S1&Replace=S1");

 if (acl.isPermitted("S1", Acl.GET+Acl.REPLACE))
 ... // will execute

 if (acl.isPermitted(
 "S1", Acl.GET+Acl.REPLACE+Acl.ADD))
 ... // will NOT execute

117.8.1 Global Permissions
Global permissions are indicated with the '* ' and the given permissions apply to all principals. Pro-
cessing the global permissions, however, has a number of non-obvious side effects:

• Global permissions can be retrieved and manipulated using the special '*' principal: all methods
of the Acl class that have a principal parameter also accept this principal.

Dmt Admin Service Specification Version 2.0 Notifications

OSGi Residential Release 6 Page 375

• Global permissions are automatically granted to all specific principals. That is, the result of the
getPermissions or isPermitted methods will be based on the OR of the global permissions and
the principal-specific permissions.

• If a global permission is revoked, it is revoked from all specific principals, even if the specific
principals already had that permission before it was made global.

• None of the global permissions can be revoked from a specific principal. The OMA DM ACL for-
mat does not handle exceptions, which must be enforced by the deletePermission and setPer-
mission methods.

117.8.2 Ghost ACLs
The ACLs are fully maintained by the Dmt Admin service and enforced when the session has an
associated principal. A plugin must be completely unaware of any ACLs. The Dmt Admin service
must synchronize the ACLs with any change in the DMT that is made through its service interface.
For example, if a node is deleted through the Dmt Admin service, it must also delete an associated
ACL.

The DMT nodes, however, are mapped to plugins, and plugins can delete nodes outside the scope of
the Dmt Admin service.

As an example, consider a configuration record which is mapped to a DMT node that has an ACL. If
the configuration record is deleted using the Configuration Admin service, the data disappears, but
the ACL entry in the Dmt Admin service remains. If the configuration dictionary is recreated with
the same PID, it will get the old ACL, which is likely not the intended behavior.

This specification does not specify a solution to solve this problem. Suggestions to solve this prob-
lem are:

• Use a proprietary callback mechanism from the underlying representation to notify the Dmt Ad-
min service to clean up the related ACLs.

• Implement the services on top of the DMT. For example, the Configuration Admin service could
use a plugin that provides general data storage service.

117.9 Notifications
In certain cases it is necessary for some code on the device to alert a remote management server or to
initiate a session; this process is called sending a notification or an alert. Some examples:

• A Plugin that must send the result of an asynchronous EXEC operation.
• Sending a request to the server to start a management session.
• Notifying the server of completion of a software update operation.

Notifications can be sent to a management server using the
sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method on the Notification Service. This method is
on the Notification Service and not on the session, because the session can already be closed when
the need for an alert arises. If an alert is related to a session, the session can provide the required
principal, even after it is closed.

The remote server is alerted with one or more Alert Item objects. The Alert Item class describes de-
tails of the alert. An alert code is an alert type identifier, usually requiring specifically formatted
Alert Item objects.

The data syntax and semantics vary widely between various alerts, and so does the optionality of
particular parameters of an alert item. If an item, such as source or type, is not defined, the corre-
sponding getter method must return nul l .

Notifications Dmt Admin Service Specification Version 2.0

Page 376 OSGi Residential Release 6

The Alert Item class contains the following items. The value of these items must be defined in an
alert definition:

• source - (Str ing) The URI of a node that is related to this request. This parameter can be nul l .
• type - (Str ing) The type of the item. For example, x-oma-appl icat ion:syncml.samplealert in the

Generic Alert example.
• mark - (Str ing) Mark field of an alert. Contents depend on the alert type.
• data - (DmtData) The payload of the alert with its type.

An Alert Item object can be constructed with two different constructors:

• Alert Item(Str ing,Str ing,Str ing,DmtData) - This method takes all the previously defined fields.
• Alert Item(Str ing[] ,Str ing,Str ing,DmtData) - Same as previous but with a convenience parame-

ter for a segmented URI.

The Notification Service provides the following method to send Alert Item objects to the manage-
ment server:

• sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) - Send the alert to the server that is associated
with the session. The first argument is the name of the principal (identifying the remote man-
agement system) or nul l for implementation defined routing. The int argument is the alert type.
The alert types are defined by managed object types. The third argument (Str ing) can be used for
the correlation id of a previous execute operation that triggered the alert. The Alert Item objects
contain the data of the alert. The method will run asynchronously from the caller. The Notifica-
tion Service must provide a reliable delivery method for these alerts. Alerts must therefore not be
re-transmitted.

When this method is called with nul l correlator, nul l or empty Alert Item array, and a 0 code as
values, it should send a protocol specific notification that must initiate a new management ses-
sion.

Implementers should base the routing on the session or server information provided as a parame-
ter in the sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method. Routing might even be possible
without any routing information if there is a well known remote server for the device.

If the request cannot be routed, the Alert Sender service must immediately throw a Dmt Exception
with a code of ALERT_NOT_ROUTED . The caller should not attempt to retry the sending of the noti-
fication. It is the responsibility of the Notification Service to deliver the notification to the remote
management system.

117.9.1 Routing Alerts
The Notification Service allows external parties to route alerts to their destination. This mechanism
enables Protocol Adapters to receive any alerts for systems with which they can communicate.

Such a Protocol Adapter should register a Remote Alert Sender service. It should provide the follow-
ing service property:

• principals - (Str ing+) The array of principals to which this Remote Alert Sender service can route
alerts. If this property is not registered, the Remote Alert Sender service will be treated as the de-
fault sender. The default alert sender is only used when a more specific alert sender cannot be
found.

If multiple Remote Alert Sender services register for the same principals highest ranking service is
taken as defined in the OSGi Core.

Dmt Admin Service Specification Version 2.0 Exceptions

OSGi Residential Release 6 Page 377

117.10 Exceptions
Most of the methods of this Dmt Admin service API throw Dmt Exceptions whenever an operation
fails. The DmtException class contains numeric error codes which describe the cause of the error.
Some of the error codes correspond to the codes described by the OMA DM spec, while some are in-
troduced by the OSGi Alliance. The documentation of each method describes what codes could po-
tentially be used for that method.

The fatality of the exception decides if a thrown Exception rolls back an atomic session or not. If the
isFatal() method returns true , the Exception is fatal and the session must be rolled back.

All possible error codes are constants in the DmtException class.

117.11 Events
There are the following mechanisms to work with events when using the Dmt Admin service.

• Event Admin service - Standard asynchronous notifications
• Dmt Event Listener service - A white board model for listener. A registered DmtEventListener ser-

vice can use service properties to filter the received events

In both cases events are delivered asynchronously and ordered per listener unless otherwise speci-
fied. Events to the DMT can occur because of modifications made in a session or they can occur be-
cause a Plugin changes its internal state and notifies the Dmt Admin service through the Mount-
Point interface.

Changes made through a session always start with a SESSION_OPENED event directly after the ses-
sion is opened. This event must contain the properties defined in Life Cycle Event Properties on page
380.

If events originate from an atomic session then these events must be queued until the sessions is
successfully committed, which can happen multiple times over the life time of a session. If the ses-
sion is rolled back or runs into an error then none of the queued events must be sent.

When a session is closed, which can happen automatically when the session fails, then the
SESSION_CLOSED event must be sent. This event must happen after any queued events. This closed
event must contain the properties defined in Life Cycle Event Properties on page 380.

An event must only be sent when that type of event actually occurred.

117.11.1 Event Admin
Event Admin, when present, must be used to deliver the Dmt Admin events asynchronously. The
event types are specified in Table 117.7 on page 378, the Topic column defines the Event Admin
topic. The Table 117.10 on page 380 and Table 117.9 on page 380 define the Life Cycle and Ses-
sion properties that must be passed as the event properties of Event Admin.

117.11.2 Dmt Event Listeners
To receive the Dmt Admin events it is necessary to register a Dmt Event Listener service. It is possi-
ble to filter the events by registering a combination of the service properties defined in the follow-
ing table.

Events Dmt Admin Service Specification Version 2.0

Page 378 OSGi Residential Release 6

Table 117.6 Service Properties for the Dmt Event Listener

Service Property Data Type Default Description
FILTER_EVENT Integer All Events A bitmap of DmtEvent types: SESSION_OPENED ,

ADDED , COPIED , DELETED , RENAMED , REPLACED , and
SESSION_CLOSED . A Dmt Event's type must occur in the
bitmap to be delivered.

FILTER_PRINCIPAL Str ing+ Any node Only deliver Dmt Events for which at least one of the giv-
en principals has the right to Get that node.

FILTER_SUBTREE Str ing+ Any node This property defines a number of sub-trees by specifying
the URI of the top nodes of these sub-trees. Only events
that occur in one of the sub-trees must be delivered.

A Dmt Event must only be delivered to a Dmt Event Listener if the Bundle that registers the Dmt
Event Listener service has the GET Dmt Permission for each of the nodes used in the nodes and
newNodes properties as tested with the Bundle hasPermission method.

The Dmt Admin service must track Dmt Event Listener services and deliver matching events as long
as a Dmt Event Listener service is registered. Any changes in the service properties must be expedi-
ently handled.

A Dmt Event Listener must implement the changeOccurred(DmtEvent) method. This method is
called asynchronously from the actual event occurrence but each listener must receive the events in
order.

Events are delivered with a DmtEvent object. This object provides access to the properties of
the event. Some properties are available as methods others must be retrieved through the
getProperty(Str ing) method. The methods that provide property information are listed in the prop-
erty tables, see Table 117.10 on page 380.

117.11.3 Atomic Sessions and Events
The intent of the events is that a listener can follow the modifications to the DMT from the events
alone. However, from an efficiency point of view certain events should be coalesced to minimize the
number of events that a listener need to handle. For this reason, the Dmt Admin service must coa-
lesce events if possible.

Two consecutive events can be coalesced when they are of the same type. In that case the nodes and,
if present, the newNodes of the second event can be concatenated with the first event and the t ime-
stamp must be derived from the first event. It is not necessary to remove duplicates from the nodes
and newNodes . This guarantees that the order of the nodes is in the order of the events.

117.11.4 Event Types
This section describes the events that can be generated by the Dmt Admin service. Table 117.7 enu-
merates all the events and provides the name of the topic of Event Admin and the Dmt Event type
for the listener model.

There are two kinds of events:

• Life Cycle Events - The events for session open and closed are the session events.
• Session Events - ADDED , DELETED , REPLACED , RENAMED , and COPIED .

Session and life cycle events have different properties.

Table 117.7 Event Types

Event Topic Dmt Event Type Description
SESSION OPENED org/osgi/service/dmt/DmtEvent/

SESSION_OPENED
SESSION_OPENED A new session was opened. The event

must the properties defined in Table
117.9 on page 380.

Dmt Admin Service Specification Version 2.0 Events

OSGi Residential Release 6 Page 379

Event Topic Dmt Event Type Description
ADDED org/osgi/service/dmt/DmtEvent/

ADDED
ADDED One or more nodes were added.

DELETED org/osgi/service/dmt/DmtEvent/
DELETED

DELETED One or more existing nodes were
deleted.

REPLACED org/osgi/service/dmt/DmtEvent/RE-
PLACED

REPLACED Values of nodes were replaced.

RENAMED org/osgi/service/dmt/DmtEvent/RE-
NAMED

RENAMED Existing nodes were renamed.

COPIED org/osgi/service/dmt/DmtEvent/
COPIED

COPIED Existing nodes were copied. A copy
operation does not trigger an ADDED
event (in addition to the COPIED
event), even though new node(s) are
created. For efficiency reasons, recur-
sive copy and delete operations must
only generate a single COPIED and
DELETED event for the root of the af-
fected sub-tree.

SESSION CLOSED org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED

SESSION_CLOSED A session was closed either because it
was closed explicitly or because there
was an error detected. The event must
the properties defined in Table 117.9
on page 380.

117.11.5 General Event Properties
The following properties must be available as the event properties in Event Admin service and the
properties in the Dmt Event for Dmt Event Listener services.

Table 117.8 General Event

Property Name Type Dmt Event Description
event.topics Str ing Event topic, required by Event Admin but must al-

so be present in the Dmt Events.
session. id Integer getSessionId() A unique identifier for the session that triggered

the event. This property has the same value as
getSessionId() of the associated DMT session. If
this event is generated outside a session then the
session id must be -1, otherwise it must be >=1.

timestamp Long The time the event was started as defined by
System.currentTimeMil l is()

bundle Bundle The initiating Bundle, this is the bundle that
caused the event. This is either the Bundle that
opened the associated session or the Plugin's bun-
dle when there is no session (i.e. the session id is
-1).

bundle.signer String+ The signer of the initiating Bundle
bundle.symbolicName String The Bundle Symbolic name of the initiating Bun-

dle
bundle.version Version The Bundle version of the initiating Bundle.
bundle.id Long The Bundle Id of the initiating Bundle.

Events Dmt Admin Service Specification Version 2.0

Page 380 OSGi Residential Release 6

117.11.6 Session Event Properties
All session events must have the properties defined in the following table.

Table 117.9 Event Properties For Session Events

Property Name Type Dmt Session Description
session.rooturi Str ing getRootUri() The root URI of the session that triggered the

event.
session.pr incipal Str ing getPr incipal() The principal of the session, or absent if no prin-

cipal is associated with this session. In the latter
case the method returns nul l .

session. locktype Integer getLockType() The lock type of the session. The number is
mapped as follows:

• LOCK_TYPE_SHARED - 0
• LOCK_TYPE_EXCLUSIVE - 1
• LOCK_TYPE_ATOMIC - 2

session.t imeout Boolean If the session timed out then this property must
be set to true . If it did not time out this property
must be fa lse .

exception Throwable The name of the actual exception class if the ses-
sion had a fatal exception.

exception.message String Must describe the exception if the session had a
fatal exception.

exception.class String The name of the actual exception class if the ses-
sion had a fatal exception.

117.11.7 Life Cycle Event Properties
All Life Cycle events must have the properties defined in the following table.

Table 117.10 Event Properties for Life Cycle Events

Property Name Type Dmt Event Description
nodes Str ing[] getNodes() The absolute URIs of each affected node. This is

the nodeUri parameter of the Dmt API methods.
The order of the URIs in the array corresponds to
the chronological order of the operations. In case
of a recursive delete or copy, only the session root
URI is present in the array.

newnodes Str ing[] getNewNodes() The absolute URIs of new renamed or copied
nodes. Only the RENAMED and COPIED events
have this property.

The newnodes array runs parallel to the nodes ar-
ray. In case of a rename, newnodes[i] must con-
tains the new name of nodes[i] , and in case of a
copy, newnodes[i] is the URI to which nodes[i]
was copied.

117.11.8 Example Event Delivery
The example in this section shows the change of a non-trivial tree and the events that these changes
will cause.

Dmt Admin Service Specification Version 2.0 Events

OSGi Residential Release 6 Page 381

Figure 117.21 Example DMT before

.

Q

z

P X

YB

A M

n1

R

s1 s2

value=1

For example, in a given session, when the DMT in Figure 117.21 is modified with the following oper-
ations:

• Open atomic session 42 on the root URI
• Add node . /A/B/C
• Add node . /A/B/C/D
• Rename . /M/n1 to./M/n2
• Copy . /M/n2 to . /M/n3
• Delete node . /P/Q
• Add node . /P/Q
• Delete node . /P/Q
• Replace . /X/Y/z with 3
• Commit
• Close

Figure 117.22 Example DMT after

.

P X

YB

A M

n2

C

D

n3

z value=3

When the Dmt Session is opened, the following event is published:

SESSION_OPENED {
 session.id = 42
 session.rooturi=.
 session.principal=null
 session.locktype=2

Events Dmt Admin Service Specification Version 2.0

Page 382 OSGi Residential Release 6

 timestamp=1313411544752
 bundle =<Bundle>
 bundle.signer=[]
 bundle.symbolicname"com.acme.bundle"
 bundle.version=1.2.4711
 bundle.id=442
 ...
}

When the Dmt Session is closed (assuming it is atomic), the following events are published:

ADDED {
 nodes = [./A/B/C, ./A/B/C/D] # note the coalescing
 session.id = 42
 ...
}
RENAMED {
 nodes = [./M/n1]
 newnodes = [./M/n2]
 session.id = 42
 ...
}
COPIED {
 nodes = [./M/n2]
 newnodes = [./M/n3]
 session.id = 42
 ...
}
DELETED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
ADDED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
DELETED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
REPLACED {
 nodes = [./X/Y/z]
 session.id = 42
 ...
}
SESSION_CLOSED {
 session.id = 42
 session.rooturi=.
 session.principal=null
 session.locktype=2
 ...
}

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Residential Release 6 Page 383

117.12 OSGi Object Modeling

117.12.1 Object Models
Management protocols define only half the picture; the object models associated with a particular
protocol are the other half. Object models are always closely associated with a remote management
protocol since they are based on the data types and actions that are defined in the protocol. Even
small differences between the data types of a protocol and its differences make accurate mapping
between protocols virtually impossible. It is therefore necessary to make the distinction between na-
tive and foreign protocols for an object model.

A native protocol for an object model originates from the same specification organization. For ex-
ample, OMA DM consists of a protocol based on SyncML and a number of object models that define
the structure and behavior of the nodes of the DMT. The FOMA specification defines an OMA DM
native object model, it defines how firmware management is done. This is depicted in Figure 117.23.

Figure 117.23 Device Management Architecture

Remote
Manager

Protocol
Adapter

Dmt Admin

Plugin

protocol
object models

Dmt Admin object models

Dmt Admin object model

If an object implements a standardized data model it must be visible through its native Protocol
Adapter, that is the Protocol Adapter that belongs to the object model's standard. For example, an Ex-
ecutionUnit node defined in UPnP Device Management could be implemented as a bundle, exposed
through a Data Plugin for the Dmt Admin service, and then translated by its native UPnP Protocol
Adapter.

If an object is present in the Dmt Admin service it is also available to foreign Protocol Adapters. A for-
eign Protocol Adapter is any Protocol Adapter except its native Protocol Adapter. For example, the
Broadband Forum's ExecutionUnit could be browsed on the foreign OMA DM protocol.

In a foreign Protocol Adapter the object model should be browsable but it would not map to one of
its native object models. Browsable means that the information is available to the Protocol Adapter's
remote manager but not recognized as a standard model for the manager. Browse can include, po-
tentially limited, manipulation.

In a native Protocol Adapter it is paramount that the mapping from the DMT to the native object is
fully correct. It is the purpose of this part of the Dmt Admin service specification to allow the native
Protocol Adapter to map the intentions of the Plugin without requiring knowledge of the specific
native object model. That is, a TR-069 Plugin implementing a WAN interface must be available over

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 384 OSGi Residential Release 6

the TR-069 protocol without the Protocol Adapter having explicit knowledge about the WAN inter-
faces object models from Broadband Forum.

Therefore, the following use cases are recognized:

• Foreign Mapping - Foreign mapping can is best-effort as there is no object model to follow. Each
Protocol Adapter must define how the Dmt Admin model is mapped for this browse mode.

• Native Mapping - Native mapping must be 100% correct. As it is impossible automatically map
DMTs to arbitrary protocols this specification provides the concept of a mapping model that al-
lows a Plugin to instruct its native Protocol Adapter using Meta Nodes.

117.12.2 Protocol Mapping
The OSGi Alliance specifies an Execution Environment that can be used as a basis for residential
gateways, mobiles, or other devices. This raises the issue how to expose the manageability of an OS-
Gi device and the objects, the units of manageability, that are implemented through Plugins. Ideally,
an object should be able to expose its management interface once and then Protocol Adapters con-
vert the management interface to specific device management stacks. For example, an object can be
exposed through the Dmt Admin service where then a TR-069 Protocol Adapter maps the DMT to
the TR-069 Remote Procedure Calls (RPC).

Figure 117.24 shows an example of a TR-069 Protocol Adapter and an OMA DM Protocol Adapter.
The TR-069 Protocol Adapter should be able to map native TR-069 objects in the DMT (the Software
Modules Impl in the figure) to Broadband Forum's object models. It should also be able to browse the
foreign DMT and other objects that are not defined in Broadband forum but can be accessed with
the TR-069 RPCs.

Figure 117.24 Implementing & Browsing

TR-157a3
Software
Module Impl

OSGi RMT Impl

Dmt Admin

TR-069
Protocol Adapter

OMA DM
Protocol Adapter

ACS OMA DM
ManagerOMA DM

Manager

nativenative

foreign

A Protocol Mapping is a document that describes the default mapping and the native mechanism for
exact mapping.

The following sections specify how Plugins must implement an object model that is exposed
through the Dmt Admin service. This model is limited from the full Dmt Admin service capabilities
so that for each protocol it is possible to specify a default mapping for browsing as well as a mecha-
nism to ensure that special conversion requirements can be communicated from a Plugin to its na-
tive Protocol Adapter.

117.12.3 Hierarchy
The Dmt Admin model provides an hierarchy of nodes. Each node has a type that is reflected by its
Meta Node. A node is addressed with a URI. The flexibility of the Dmt Admin service allows a large

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Residential Release 6 Page 385

number of constructs, for example, the name of the node can be used as a value, a feature that some
management standards support. To simplify mapping to foreign Protocol Adapters, some of the fun-
damental constructs have been defined in the following sections.

117.12.4 General Restriction Guidelines
The Dmt Admin service provides a very rich tool to model complex object structures. Many choic-
es can be made that would make it very hard to browse DMTs on non-OMA DM protocols or make
the DMT hard to use through the Dmt Admin service. As Plugins can always signal special case han-
dling to their native Protocol Adapter, any object model design should strive to be easy to use for the
developers and managers. Therefore, this section provides a number of guidelines for the design of
such object models that will improve the browsing experience for many Protocol Adapters.

• Reading of a node must not change the state of a device - Management systems must be able to browse
a tree without causing any side effects. If reading modified the DMT, a management system
would have no way to warn the user that the system is modified. There are a number of technical
reasons as well (race conditions, security holes, and eventing) but the most important reason is
the browseability of the device.

• No use of recursive structures - The Dmt Admin service provides a very rich tree model that has no
problem with recursion. However, this does not have to be true for other models. To increase the
changes that a model is browsable on another device it is strongly recommended to prevent re-
cursive models. For example, TR-069 cannot handle recursive models.

• Only a single format per meta node - Handling different types in different nodes simplifies the da-
ta conversion for both foreign and native protocols. Having a single choice from the Meta Node
makes the conversion straightforward and does not require guessing.

• All nodes must provide a Meta Node - Conversion without a Meta Node makes the conversion very
hard since object model schemas are often not available in the Protocol Adapter.

• Naming - Structured node members must have names only consisting of [a-zA-Z0-9] and must
always start with a character [a-zA-z] . Member names must be different regardless of the case,
that is Abc and ABC must not both be members of the same structured node. The reason for this
restriction is that it makes it more likely that the chosen names are compatible with the support-
ed protocols and do not require escaping.

• Typing - Restrict the used formats to formats that maximize both the interoperability as the ease
of use for Java developers. The following type are widely supported and are easy to use from Java:
• FORMAT_STRING
• FORMAT_BOOLEAN
• FORMAT_INTEGER
• FORMAT_LONG
• FORMAT_FLOAT
• FORMAT_DATE_TIME
• FORMAT_BINARY

117.12.5 DDF
The Data Description Format is part of OMA DM; it provides a description language for the object
model. The following table provides an example of the Data Description Format as used in the OSGi
specifications.

Name Actions Type Card. S Description
FaultType Get integer 1 P ...

The columns have the following meanings:

• Name - The name of the node

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 386 OSGi Residential Release 6

• Actions - The set of actions that can be executed on the node, see Operations on page 356.
• Type - The type of the node. All lower case are primitives, a name starting with an upper case is

an interior node type. MAP, LIST, and SCAFFOLD are the special types. The NODE type is like
an ANY type. Other type names are then further specified in the document. See Types on page
386.

• Cardinality - The number of occurrences of the node, see Cardinality on page 357.
• Scope - The scope of the node, see Scope on page 356.
• Description - A description of the node.

117.12.6 Types
Each node is considered to have a type. The Dmt Admin service has a number of constructs that have
typing like behavior. There are therefore the following kind of types:

• Primitives - Primitives are data types like integers and strings; they include all the Dmt Admin da-
ta formats. See Primitives on page 387. Primitive type names are always lower case to distin-
guish them from the interior node type names.

• Structured Types - A structured type types a structured node. See Structured Nodes on page 387.
A structured type has a type name that starts with an uppercase. Object models generally consist
of defining these types.

• NODE - A general unqualified Dmt Admin node.
• LIST - A node that represents a homogeneous collection of child nodes; the name of the child

nodes is the index in the collection. See LIST Nodes on page 387.
• MAP - A node that represents a mapping from a key, the name of the child node, and a value, the

value of the child node. All values have the same type. See MAP Nodes on page 389.
• SCAFFOLD - A node provided by the Dmt Admin service or a Parent Plugin to make it possible to

discover a DMT, see Scaffold Nodes on page 361.

Nodes are treated as if there is a single type system. However, the Dmt Admin type system has the
following mechanisms to type a node:

• Format - The Dmt Admin primitive types used for leaf nodes, as defined on Dmt Data.
• MIME - A MIME type on a leaf node which is available through getNodeType(Str ing) .
• DDF Document URI - A Data Description Format URI that provides a type name for an interior

node. The URI provides a similar role as the MIME type for the leaf node and is also available
through getNodeType(Str ing) .

The Dmt Admin service provides the MIME type for leaf nodes and the DDF Document URI for inte-
rior nodes through the getNodeType(Str ing) method. As both are strings they can both be used as
type identifiers. The different types are depicted in Figure 117.25.

Figure 117.25 Type inheritance and structure

Type

Structured
Type

PrimitiveLIST MAP NODE

value type

1

index type

1

n

members

SCAFFOLD

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Residential Release 6 Page 387

117.12.7 Primitives
A primitive is a value stored in a leaf node. In the Dmt Admin service, the type of the primitive is
called the format. The Dmt Admin service supports a large number of types that have semantic over-
lap. A Protocol Mapping must provide a unique mapping from each Dmt Admin format to the corre-
sponding protocol type and provide conversion from a protocol type to the corresponding Dmt Ad-
min types defined in a Meta Node.

Primitives are documented in OSGi object models with a lower case name that is the last part of
their format definition. For example, for FORMAT_STRING the DDF type name is str ing . A primitive
DDF for an integer leaf node therefore looks like:

Name Act Type Card. S Description
FaultType Get integer 1 P ...

117.12.8 Structured Nodes
A structured node is like a struct in C or a class in an object oriented languages. A structured node is
an interior node with a set of members (child nodes) with fixed names, it is never possible to add
or remove such members dynamically. The meaning of each named node and its type is usually de-
fined in a management specification. For example, a node representing the OSGi Bundle could have
a BundleId child-node that maps to the getBundleId() method on the Bundle interface.

It is an error to add or delete members to a Structured node, this must be reflected in the correspond-
ing Meta Node, that is, Structured nodes must never have the Add or Delete action.

A structured node is defined in a structured type to allow the reuse of the same information in differ-
ent places in an object model. A structured type defines the members and their behaviors. A struc-
tured type can be referred by its name. The name of the type is often, but not required, the name of
the member.

For example, a Unit structured type could look like:

Name Act Type Card. S Description
Id Get long 1 P ...
URL Get Set str ing 1 P ...
Name Get str ing 1 P ...
Cert i f icate Get LIST 1 P
 [index] Get Cert i f icate 1 D Note the use of a structured

type.

117.12.9 LIST Nodes
A LIST node is an interior node representing a collection of elements. The elements are stored in the
child nodes of the LIST node, they are called the index nodes. All index nodes must have the same
type. The names of the index nodes are synthesized and represent the index of the index node. The
first node is always named 0 and the sibling is 1, 2, etc. The sequence must be continuous and must
have no missing indexes. A node name is always a string, it is therefore the responsibility of the plu-
gin to provide the proper names. The index is assumed to be a signed positive integer limiting the
LIST nodes size to Integer.MAX_VALUE elements.

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 388 OSGi Residential Release 6

Figure 117.26 LIST Nodes

1

LIST node
(org.osgi/1.0/.LIST)

1

0..n 0..n
index nodes

(name is int >= 0 and cont.)

structured LIST primitive LIST

Index nodes should only be used for types where the value of the index node is the identity. For ex-
ample, a network interface has an identity; a manager will expect that a node representing such as
a network interface node will always have the same URI even if other interfaces are added and delet-
ed. Since LIST nodes renumber the index node names when an element is deleted or added, the URI
would fail if a network interface was added or removed. If such a case, a MAP node should be used,
see MAP Nodes on page 389, as they allow the key to be managed by the remote manager.

LIST nodes can be mutable if the Meta Node of its index nodes support the Add or Delete action. A
LIST node is modeled after a java.ut i l .L ist that can automatically accommodate new elements. Get
and Replace operations use the node name to index in this list.

To rearrange the list the local manager can Add and Delete nodes or rename them as it sees fit.
At any moment in time the underlying implementation must maintain a list that runs from 0 to
max(index) (inclusive), where index is the name of the LIST child nodes. Inserting a node requires re-
naming all subsequent nodes. Any missing indexes must automatically be provided by the plugin
when the child node names are retrieved.

For example, a LIST node named L contains the following nodes:

L/0 A
L/1 B
L/2 C

To insert a node after B , L/2 must be renamed to L/3 . This will automatically extend the LIST node to
4 elements. That is, even though L/2 is renamed, the implementation must automatically provide a
new L/2 node. The value of this node depends on the underlying implementation. The value of the
list will therefore then be: [A,B,?,C] . If node 1 is deleted, then the list will be [A,?,C] . If a node L/5 is
added then the list will be [A,?,C,?,?,?] . It is usually easiest to use the LIST node as a complex value,
this is discussed in the next section.

117.12.9.1 Complex Collections

An implementation of a LIST node must support a complex node value if its members are primi-
tive; the interior node must then have a value of a Java object implementing the Collect ion interface
from java.ut i l . The elements in this map must be converted according to the following table.

Table 117.11 Conversion for Collections

Format Associated Java Type
FORMAT_STRING Str ing
FORMAT_BOOLEAN Boolean
FORMAT_INTEGER Integer
FORMAT_LONG Long
FORMAT_FLOAT Float
FORMAT_DATE_TIME Date
FORMAT_BINARY byte[]

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Residential Release 6 Page 389

Alternatively, the Collection may contain Dmt Data objects but the collection must be homoge-
neous. The collection must always be a copy and changes made to the collection must not affect the
DMT.

For example, a LIST type for a list of URIs could look like:

Name Act Type Card. S Description
URIs Get LIST 1 P A List of URIs
 [index] Get Set

Add Del
str ing 0. .n D A primitive index node

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for the LIST node.

117.12.10 MAP Nodes
A MAP node represents a mapping from a key to a value. The key is the name of the node and the val-
ue is the node's value. A MAP node performs the same functions as a Java Map. See Figure 117.27.

Figure 117.27 MAP Nodes

1

MAP node
(org.osgi/1.0/MAP)

1

0..n 0..n
key nodes

(name is anything)

structured MAP primitive MAP

A MAP node has key nodes as children. A key node is an association between the name of the key
node (which is the key) and the value of the key node. Key nodes are depicted with [<type>] , where
the <type> indicates the type used for the string name. For example, a long type will have node
names that can be converted to a long . A key type must always be one of the primitive types. For ex-
ample, a list of Bundle locations can be handled with a MAP with [str ing] key nodes that have a val-
ue type of string. Since the key is used in URIs it must always be escaped, see The DMT Addressing
URI on page 347.

For example:

Name Act Type Card. S Description
Location Get MAP 1 P A MAP of location where

the index node is the Bun-
dle Id.

 [long] Get Set
Add Del

str ing 0. .n D Name is the Bundle Id and
the value is the location.

117.12.10.1 Complex Value

An implementation of a MAP node must support an interior node value if its child nodes are prim-
itive; the interior node must then be associated with a Java object implementing the Map inter-
face from java.ut i l . The values in this Map must homogeneous and be converted according to Table
117.11 or the given values must of type DmtData . The Map object must a copy and does not track
changes in the DMT or vice-versa.

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for that node.

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 390 OSGi Residential Release 6

117.12.11 Instance Id
Some protocols cannot handle arbitrary names in the access URI, they need a well defined instance
id to index in a table or put severe restrictions on the node name's character set, length, or other as-
pects. For example, TR-069 can access an object with the following URI:

Device.VOIP.12.Name

The more natural model for the DMT is to use:

Device.VOIP.<Name>...

To provide assistance to these protocols this section defines a mechanism that can be used by Proto-
col Adapters to simplify access.

An Object Model can define a child node InstanceId . The InstanceId node, if present, holds a long
value that has the following qualities:

• Its value must be between 1 and Long.MAX_VALUE .
• No other index/key node on the same level must have the same value for the InstanceId node
• The value must be persistent between sessions and restarts of the plugin
• A value must not be reused when a node is deleted until the number space is exhausted

Protocol Adapters can use this information to provide alternative access paths for the DMT.

117.12.12 Conversions
Each Protocol Mapping document should define a default conversion from the Dmt Admin data for-
mats to the protocol types and vice versa, including the LIST and MAP nodes. However, this default
mapping is likely to be too constraining in real world models since different protocols support dif-
ferent data types and a 1:1 mapping is likely to be impossible.

For this reason, the Protocol Mapping document should define a number of protocol specific MIME
types for each unique data type that they support. A Data Plugin can associate such a MIME type
with a node. The Protocol Adapter can then look for this MIME type. If none of the Protocol Adapter
specific MIME types are available in a node the default conversion is used.

For example, in the TR-069 Protocol Adapter specification there is a MIME type for each TR-069 da-
ta type. If for a given leaf node the Meta Node's type specifies TR069_MIME_UNSIGNED_INTand the
node specifies the format FORMAT_INTEGER then the Protocol Adapter must convert the integer to
an unsigned integer and encode the value as such in the response message. The Protocol Adapter
there does not have to have specific knowledge of the object model, the Plugin drives the Protocol
Adapter by providing the protocol specific MIME types on the leaf node Meta Nodes. This model is
depicted in Figure 117.28.

Figure 117.28 Conversions

Dmt Admin
FORMAT_INTEGER

TR-069
unsignedInteger

Meta Node
MIME type
UNSIGNED_INT

Since a Meta Node can contain multiple MIME types, there is no restrictions on the number of Pro-
tocol Adapters; a Plugin can specify the MIME types of multiple Protocol Adapters.

Dmt Admin Service Specification Version 2.0 Security

OSGi Residential Release 6 Page 391

117.12.13 Extensions
All interior nodes in this specification can have a node named Ext . These nodes are the extension
nodes. If an implementation needs to expose additional details about an interior node then they
should expose these extensions under the corresponding Ext node. To reduce name conflicts, it is
recommended to group together implementation specific extensions under a unique name, rec-
ommended is to use the reverse domain name. For example, the following DDF defines an Ext node
with extensions for the ACME provider.

Name Act Type Card. S Description
Framework Get Framework 1 P ...
 Ext Get 1 P Extension node
 com.acme Get AcmeFrameworkExt 1 P The node for the ACME ex-

tensions
 Transact ional Get boolean 1 P ...

117.13 Security
A key aspect of the Dmt Admin service model is the separation from DMT clients and plugins. The
Dmt Admin service receives all the operation requests and, after verification of authority, forwards
the requests to the plugins.

Figure 117.29 Separation of clients and plugins

<<service>>
Dmt Admin

<<service>>
Data Plugin

<<service>>
Exec Plugin

Client

Data Plugin Impl

Exec Plugin Impl

forward

request
<<service>>
Dmt Session

This architecture makes it straightforward to use the OSGi security architecture to protect the dif-
ferent actors.

117.13.1 Principals
The caller of the getSession(Str ing,Str ing, int) method must have the Dmt Principal Permission
with a target that matches the given principal. This Dmt Principal Permission is used to enforce that
only trusted entities can act on behalf of remote managers.

The Dmt Admin service must verify that all operations from a session with a principal can be exe-
cuted on the given nodes using the available ACLs.

The other two forms of the getSession method are meant for local management applications where
no principal is available. No special permission is defined to restrict the usage of these methods. The
callers that want to execute device management commands, however, need to have the appropriate
Dmt Permissions.

Security Dmt Admin Service Specification Version 2.0

Page 392 OSGi Residential Release 6

117.13.2 Operational Permissions
The operational security of a Local Manager and a remote manager is distinctly different. The dis-
tinction is made on the principal. Protocol Adapters should use the getSession method that takes an
authenticated principal. Local Managers should not specify a principal.

Figure 117.30 Access control context, for Local Manager and Protocol Adapter operation

Local Manager

Protocol Adapter

Dmt Admin
Dmt Admin

Plugin

Proxied Service

Plugin

Proxied Service

Principal

Some caller

security
check

doPrivileged

security
check

Protocol AdapterLocal Manager

117.13.3 Protocol Adapters
A Protocol Adapter must provide a principal to the Dmt Admin service when it gets a session. It
must use the getSession(Str ing,Str ing, int) method. The Protocol Adapter must have Dmt Princi-
pal Permission for the given principal. The Dmt Admin service must then use this principal to deter-
mine the security scope of the given principal. This security scope is a set of permissions. How these
permissions are found is not defined in this specification; they are usually in the management tree
of a device. For example, the Mobile Specification stores these under the $/Pol icy/ Java/DmtPrinci-
palPermission sub-tree.

Additionally, a Dmt Session with a principal implies that the Dmt Admin service must verify the
ACLs on the node for all operations.

Any operation that is requested by a Protocol Adapter must be executed in a doPriv i leged block that
takes the principal's security scope. The doPriv i leged block effectively hides the permissions of the
Protocol Adapter; all operations must be performed under the security scope of the principal.

The security check for a Protocol Adapter is therefore as follows:

• The operation method calls doPriv i leged with the security scope of the principal.
• The operation is forwarded to the appropriate plugin. The underlying service must perform its

normal security checks. For example, the Configuration Admin service must check for the appro-
priate Configuration Permission.

The Access Control context is shown in Figure 117.30 within the Protocol Adapter column.

This principal-based security model allows for minimal permissions on the Protocol Adapter, be-
cause the Dmt Admin service performs a doPriv i leged on behalf of the principal, inserting the per-
missions for the principal on the call stack. This model does not guard against malicious Protocol
Adapters, though the Protocol Adapter must have the appropriate Dmt Principal Permission.

The Protocol Adapter is responsible for the authentication of the principal. The Dmt Admin service
must trust that the Protocol Adapter has correctly verified the identity of the other party. This spec-
ification does not address the type of authentication mechanisms that can be used. Once it has per-
mission to use that principal, it can use any DMT command that is permitted for that principal at
any time.

117.13.4 Local Manager
A Local Manager does not specify a principal. Security checks are therefore performed against the
security scope of the Local Manager bundle, as shown in Figure 117.30 with the Local Manager
stack. An operation is checked only with a Dmt Permission for the given node URI and operation. A

Dmt Admin Service Specification Version 2.0 Security

OSGi Residential Release 6 Page 393

thrown Security Exception must be passed unmodified to the caller of the operation method. The
Dmt Admin service must not check the ACLs when no principal is set.

A Local Manager, and all its callers, must therefore have sufficient permission to handle the DMT
operations as well as the permissions required by the plugins when they proxy other services
(which is likely an extensive set of Permissions).

117.13.5 Plugin Security
Plugins are required to hold the maximum security scope for any services they proxy. For exam-
ple, the plugin that manages the Configuration Admin service must have Configurat ionPermis-
sion("*","*") to be effective.

Plugins should not make doPriv i leged calls, but should use the caller's context on the stack for per-
mission checks.

117.13.6 Events and Permissions
Dmt Event Listener services must have the appropriate Dmt Permission to receive the event since
this must be verified with the hasPermission() method on Bundle.

The Dmt Event Listener services registered with a FILTER_PRINCIPAL service property requires Dmt
Principal Permission for the given principal. In this case, the principal must have Get access to see
the nodes for the event. Any nodes that the listener does not have access to must be removed from
the event.

Plugins are not required to have access to the Event Admin service. If they send an event through
the MountPoint interface then the Dmt Admin service must use a doPriv i leged block to send the
event to the Event Admin service.

117.13.7 Dmt Principal Permission
Execution of the getSession methods of the Dmt Admin service featuring an explicit principal
name is guarded by the Dmt Principal Permission. This permission must be granted only to Protocol
Adapters that open Dmt Sessions on behalf of remote management servers.

The DmtPrincipalPermission class does not have defined actions; it must always be created with a *
to allow future extensions. The target is the principal name. A wildcard character is allowed at the
end of the string to match a prefix.

Example:

new DmtPrincipalPermission("com.acme.dep*","*")

117.13.8 Dmt Permission
The Dmt Permission controls access to management objects in the DMT. It is intended to control on-
ly the local access to the DMT. The Dmt Permission target string identifies the target node's URI (ab-
solute path is required, starting with the '. / ' prefix) and the action field lists the management com-
mands that are permitted on the node.

The URI can end in a wildcard character * to indicate it is a prefix that must be matched. This com-
parison is string based so that node boundaries can be ignored.

The following actions are defined:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

Security Dmt Admin Service Specification Version 2.0

Page 394 OSGi Residential Release 6

For example, the following code creates a Dmt Permission for a bundle to add and replace nodes in
any URI that starts with . /D .

new DmtPermission("./D*", "Add,Replace")

This permission must imply the following permission:

new DmtPermission("./Dev/Operator/Name", "Replace")

117.13.9 Alert Permission
The Alert Permission permits the holder of this permission to send a notification to a specific target
principal. The target is identical to Dmt Principal Permission on page 393. No actions are defined for
Alert Permission.

117.13.10 Security Summary

117.13.10.1 Dmt Admin Service and Notification Service

The Dmt Admin service is likely to require All Permission. This requirement is caused by the plug-
in model. Any permission required by any of the plugins must be granted to the Dmt Admin service.
This set of permissions is large and hard to define. The following list shows the minimum permis-
sions required if the plugin permissions are left out.

ServicePermission ..DmtAdmin REGISTER
ServicePermission ..NotificationService REGISTER
ServicePermission ..DataPlugin GET
ServicePermission ..ExecPlugin GET
ServicePermission ..EventAdmin GET
ServicePermission ..RemoteAlertSender GET
ServicePermission ..DmtEventListener GET
DmtPermission * *
DmtPrincipalPermission * *
PackagePermission org.osgi.service.dmt EXPORTONLY
PackagePermission org.osgi.service.dmt.spi EXPORTONLY
PackagePermission org.osgi.service.dmt.notification EXPORTONLY
PackagePermission org.osgi.service.dmt.notification.spi EXPORTONLY
PackagePermission org.osgi.service.dmt.registry EXPORTONLY
PackagePermission org.osgi.service.dmt.security EXPORTONLY

117.13.10.2 Dmt Event Listener Service

ServicePermission ..DmtEventListener REGISTER
PackagePermission org.osgi.service.dmt IMPORT

Dmt Event Listeners must have the appropriate DmtPermission to see the nodes in the events. If
they are registered with a principal then they also need DmtPrincipalPermission for the given prin-
cipals.

117.13.10.3 Data and Exec Plugin

ServicePermission ..NotificationService GET
ServicePermission ..DataPlugin REGISTER
ServicePermission ..ExecPlugin REGISTER
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.notification IMPORT
PackagePermission org.osgi.service.dmt.spi IMPORT
PackagePermission org.osgi.service.dmt.security IMPORT

The plugin is also required to have any permissions to call its underlying services.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 395

117.13.10.4 Local Manager

ServicePermission ..DmtAdmin GET
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.security IMPORT
DmtPermission <scope> ...

Additionally, the Local Manager requires all permissions that are needed by the plugins it addresses.

117.13.10.5 Protocol Adapter

The Protocol Adapter only requires Dmt Principal Permission for the instances that it is permitted to
manage. The other permissions are taken from the security scope of the principal.

ServicePermission ..DmtAdmin GET
ServicePermission ..RemoteAlertSender REGISTER
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.notification.spi IMPORT
PackagePermission org.osgi.service.dmt.notification IMPORT
DmtPrincipalPermission <scope>

117.14 org.osgi.service.dmt

Device Management Tree Package Version 2.0.

This package contains the public API for the Device Management Tree manipulations. Permission
classes are provided by the org.osgi .service.dmt.security package, and DMT plugin interfaces can
be found in the org.osgi .service.dmt.spi package. Asynchronous notifications to remote manage-
ment servers can be sent using the interfaces in the org.osgi .service.dmt.noti f icat ion package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt; vers ion="[2.0,2.1)"

117.14.1 Summary

• Acl - Acl is an immutable class representing structured access to DMT ACLs.
• DmtAdmin - An interface providing methods to open sessions and register listeners.
• DmtConstants - Defines standard names for DmtAdmin .
• DmtData - An immutable data structure representing the contents of a leaf or interior node.
• DmtEvent - Event class storing the details of a change in the tree.
• DmtEventListener - Registered implementations of this class are notified via DmtEvent objects

about important changes in the tree.
• DmtException - Checked exception received when a DMT operation fails.
• DmtI l legalStateException - Unchecked illegal state exception.
• DmtSession - DmtSession provides concurrent access to the DMT.
• MetaNode - The MetaNode contains meta data as standardized by OMA DM but extends it

(without breaking the compatibility) to provide for better DMT data quality in an environment
where many software components manipulate this data.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 396 OSGi Residential Release 6

• Uri - This class contains static utility methods to manipulate DMT URIs.

117.14.2 public final class Acl
Acl is an immutable class representing structured access to DMT ACLs. Under OMA DM the ACLs
are defined as strings with an internal syntax.

The methods of this class taking a principal as parameter accept remote server IDs (as passed to
DmtAdmin.getSession), as well as " * " indicating any principal.

The syntax for valid remote server IDs:

<server-identifier> ::= All printable characters except '= ' , '& ' , '* ' , '+ ' or white-space characters.

117.14.2.1 public static final int ADD = 2

Principals holding this permission can issue ADD commands on the node having this ACL.

117.14.2.2 public static final int ALL_PERMISSION = 31

Principals holding this permission can issue any command on the node having this ACL. This per-
mission is the logical OR of ADD, DELETE, EXEC, GET and REPLACE permissions.

117.14.2.3 public static final int DELETE = 8

Principals holding this permission can issue DELETE commands on the node having this ACL.

117.14.2.4 public static final int EXEC = 16

Principals holding this permission can issue EXEC commands on the node having this ACL.

117.14.2.5 public static final int GET = 1

Principals holding this permission can issue GET command on the node having this ACL.

117.14.2.6 public static final int REPLACE = 4

Principals holding this permission can issue REPLACE commands on the node having this ACL.

117.14.2.7 public Acl(String acl)

acl The string representation of the ACL as defined in OMA DM. If nul l or empty then it represents an
empty list of principals with no permissions.

□ Create an instance of the ACL from its canonical string representation.

Throws I l legalArgumentException– if acl is not a valid OMA DM ACL string

117.14.2.8 public Acl(String[] principals,int[] permissions)

principals The array of principals

permissions The array of permissions

□ Creates an instance with a specified list of principals and the permissions they hold. The two arrays
run in parallel, that is principals[i] will hold permissions[i] in the ACL.

A principal name may not appear multiple times in the 'principals' argument. If the "*" principal
appears in the array, the corresponding permissions will be granted to all principals (regardless of
whether they appear in the array or not).

Throws I l legalArgumentException– if the length of the two arrays are not the same, if any array element is
invalid, or if a principal appears multiple times in the principals array

117.14.2.9 public synchronized Acl addPermission(String principal,int permissions)

principal The entity to which permissions should be granted, or "*" to grant permissions to all principals.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 397

permissions The permissions to be given. The parameter can be a logical or of more permission constants defined
in this class.

□ Create a new Acl instance from this Acl with the given permission added for the given principal. The
already existing permissions of the principal are not affected.

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class

117.14.2.10 public synchronized Acl deletePermission(String principal,int permissions)

principal The entity from which permissions should be revoked, or "*" to revoke permissions from all princi-
pals.

permissions The permissions to be revoked. The parameter can be a logical or of more permission constants de-
fined in this class.

□ Create a new Acl instance from this Acl with the given permission revoked from the given principal.
Other permissions of the principal are not affected.

Note, that it is not valid to revoke a permission from a specific principal if that permission is granted
globally to all principals.

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal

117.14.2.11 public boolean equals(Object obj)

obj the object to compare with this Acl instance

□ Checks whether the given object is equal to this Acl instance. Two Acl instances are equal if they al-
low the same set of permissions for the same set of principals.

Returns true if the parameter represents the same ACL as this instance

117.14.2.12 public synchronized int getPermissions(String principal)

principal The entity whose permissions to query, or "*" to query the permissions that are granted globally, to
all principals

□ Get the permissions associated to a given principal.

Returns The permissions of the given principal. The returned int is a bitmask of the permission constants de-
fined in this class

Throws I l legalArgumentException– if principal is not a valid principal name

117.14.2.13 public String[] getPrincipals()

□ Get the list of principals who have any kind of permissions on this node. The list only includes
those principals that have been explicitly assigned permissions (so "*" is never returned), globally
set permissions naturally apply to all other principals as well.

Returns The array of principals having permissions on this node.

117.14.2.14 public int hashCode()

□ Returns the hash code for this ACL instance. If two Acl instances are equal according to the
equals(Object) method, then calling this method on each of them must produce the same integer re-
sult.

Returns hash code for this ACL

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 398 OSGi Residential Release 6

117.14.2.15 public synchronized boolean isPermitted(String principal,int permissions)

principal The entity to check, or "*" to check whether the given permissions are granted to all principals glob-
ally

permissions The permissions to check

□ Check whether the given permissions are granted to a certain principal. The requested permissions
are specified as a bitfield, for example (Acl .ADD | Acl .DELETE | Acl .GET) .

Returns true if the principal holds all the given permissions

Throws I l legalArgumentException– if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class

117.14.2.16 public synchronized Acl setPermission(String principal,int permissions)

principal The entity to which permissions should be granted, or "*" to globally grant permissions to all princi-
pals.

permissions The set of permissions to be given. The parameter is a bitmask of the permission constants defined
in this class.

□ Create a new Acl instance from this Acl where all permissions for the given principal are overwritten
with the given permissions.

Note, that when changing the permissions of a specific principal, it is not allowed to specify a set of
permissions stricter than the global set of permissions (that apply to all principals).

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal

117.14.2.17 public synchronized String toString()

□ Give the canonical string representation of this ACL. The operations are in the following order:
{Add, Delete, Exec, Get, Replace}, principal names are sorted alphabetically.

Returns The string representation as defined in OMA DM.

117.14.3 public interface DmtAdmin
An interface providing methods to open sessions and register listeners. The implementation of Dm-
tAdmin should register itself in the OSGi service registry as a service. DmtAdmin is the entry point
for applications to use the DMT API.

The getSession methods are used to open a session on a specified subtree of the DMT. A typical way
of usage:

 serviceRef = context.getServiceReference(DmtAdmin.class.getName());
 DmtAdmin admin = (DmtAdmin) context.getService(serviceRef);
 DmtSession session = admin.getSession("./OSGi/Configuration");
 session.createInteriorNode("./OSGi/Configuration/my.table");

The methods for opening a session take a node URI (the session root) as a parameter. All segments of
the given URI must be within the segment length limit of the implementation, and the special char-
acters '/' and '\' must be escaped (preceded by a '\').

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

It is possible to specify a lock mode when opening the session (see lock type constants in DmtSes-
sion). This determines whether the session can run in parallel with other sessions, and the kinds of
operations that can be performed in the session. All Management Objects constituting the device

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 399

management tree must support read operations on their nodes, while support for write operations
depends on the Management Object. Management Objects supporting write access may support
transactional write, non-transactional write or both. Users of DmtAdmin should consult the Manage-
ment Object specification and implementation for the supported update modes. If Management Ob-
ject definition permits, implementations are encouraged to support both update modes.

117.14.3.1 public DmtSession getSession(String subtreeUri) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

□ Opens a DmtSession for local usage on a given subtree of the DMT with non transac-
tional write lock. This call is equivalent to the following: getSession(nul l , subtreeUri ,
DmtSession.LOCK_TYPE_EXCLUSIVE)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
• COMMAND_FAILED if subtreeUri specifies a relative URI, or some unspecified error is encoun-

tered while attempting to complete the command

SecurityException– if the caller does not have DmtPermission for the given root node with the Get
action present

117.14.3.2 public DmtSession getSession(String subtreeUri,int lockMode) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

□ Opens a DmtSession for local usage on a specific DMT subtree with a given lock mode. This call is
equivalent to the following: getSession(nul l , subtreeUri , lockMode)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and

lockMode requests an atomic session
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 400 OSGi Residential Release 6

• COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some un-
specified error is encountered while attempting to complete the command

SecurityException– if the caller does not have DmtPermission for the given root node with the Get
action present

117.14.3.3 public DmtSession getSession(String principal,String subtreeUri,int lockMode) throws DmtException

principal the identifier of the remote server on whose behalf the data manipulation is performed, or nul l for
local sessions

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

□ Opens a DmtSession on a specific DMT subtree using a specific lock mode on behalf of a remote
principal. If local management applications are using this method then they should provide nul l as
the first parameter. Alternatively they can use other forms of this method without providing a prin-
cipal string.

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

This method is guarded by DmtPrincipalPermission in case of remote sessions. In addition, the caller
must have Get access rights (ACL in case of remote sessions, DmtPermission in case of local sessions)
on the subtreeUri node to perform this operation.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• PERMISSION_DENIED if principal is not nul l and the ACL of the node does not allow the Get oper-

ation for the principal on the given root node
• FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and

lockMode requests an atomic session
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
• COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some un-

specified error is encountered while attempting to complete the command

SecurityException– in case of remote sessions, if the caller does not have the required DmtPrin-
cipalPermission with a target matching the principal parameter, or in case of local sessions, if the
caller does not have DmtPermission for the given root node with the Get action present

117.14.4 public class DmtConstants
Defines standard names for DmtAdmin .

Since 2.0

117.14.4.1 public static final String DDF_LIST = "org.osgi/1.0/LIST"

A string defining a DDF URI, indicating that the node is a LIST node.

117.14.4.2 public static final String DDF_MAP = "org.osgi/1.0/MAP"

A string defining a DDF URI, indicating that the node is a MAP node.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 401

117.14.4.3 public static final String DDF_SCAFFOLD = "org.osgi/1.0/SCAFFOLD"

A string defining a DDF URI, indicating that the node is a SCAFFOLD node.

117.14.4.4 public static final String EVENT_PROPERTY_NEW_NODES = "newnodes"

A string defining the property key for the newnodes property in node related events.

117.14.4.5 public static final String EVENT_PROPERTY_NODES = "nodes"

A string defining the property key for the @{code nodes} property in node related events.

117.14.4.6 public static final String EVENT_PROPERTY_SESSION_ID = "session.id"

A string defining the property key for the session. id property in node related events.

117.14.4.7 public static final String EVENT_TOPIC_ADDED = "org/osgi/service/dmt/DmtEvent/ADDED"

A string defining the topic for the event that is sent for added nodes.

117.14.4.8 public static final String EVENT_TOPIC_COPIED = "org/osgi/service/dmt/DmtEvent/COPIED"

A string defining the topic for the event that is sent for copied nodes.

117.14.4.9 public static final String EVENT_TOPIC_DELETED = "org/osgi/service/dmt/DmtEvent/DELETED"

A string defining the topic for the event that is sent for deleted nodes.

117.14.4.10 public static final String EVENT_TOPIC_RENAMED = "org/osgi/service/dmt/DmtEvent/RENAMED"

A string defining the topic for the event that is sent for renamed nodes.

117.14.4.11 public static final String EVENT_TOPIC_REPLACED = "org/osgi/service/dmt/DmtEvent/REPLACED"

A string defining the topic for the event that is sent for replaced nodes.

117.14.4.12 public static final String EVENT_TOPIC_SESSION_CLOSED = "org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED"

A string defining the topic for the event that is sent for a closed session.

117.14.4.13 public static final String EVENT_TOPIC_SESSION_OPENED = "org/osgi/service/dmt/DmtEvent/
SESSION_OPENED"

A string defining the topic for the event that is sent for a newly opened session.

117.14.5 public final class DmtData
An immutable data structure representing the contents of a leaf or interior node. This structure rep-
resents only the value and the format property of the node, all other properties (like MIME type) can
be set and read using the DmtSession interface.

Different constructors are available to create nodes with different formats. Nodes of nul l format can
be created using the static NULL_VALUE constant instance of this class.

FORMAT_RAW_BINARY and FORMAT_RAW_STRING enable the support of future data formats.
When using these formats, the actual format name is specified as a Str ing . The application is re-
sponsible for the proper encoding of the data according to the specified format.

Concurrency Immutable

117.14.5.1 public static final DmtData FALSE_VALUE

Constant instance representing a boolean fa lse value.

Since 2.0

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 402 OSGi Residential Release 6

117.14.5.2 public static final int FORMAT_BASE64 = 128

The node holds an OMA DM b64 value. Like FORMAT_BINARY, this format is also represented by
the Java byte[] type, the difference is only in the corresponding OMA DM format. This format does
not affect the internal storage format of the data as byte[] . It is intended as a hint for the external
representation of this data. Protocol Adapters can use this hint for their further processing.

117.14.5.3 public static final int FORMAT_BINARY = 64

The node holds an OMA DM bin value. The value of the node corresponds to the Java byte[] type.

117.14.5.4 public static final int FORMAT_BOOLEAN = 8

The node holds an OMA DM bool value.

117.14.5.5 public static final int FORMAT_DATE = 16

The node holds an OMA DM date value.

117.14.5.6 public static final int FORMAT_DATE_TIME = 16384

The node holds a Date object. If the getTime() equals zero then the date time is not known. If the get-
Time() is negative it must be interpreted as a relative number of milliseconds.

Since 2.0

117.14.5.7 public static final int FORMAT_FLOAT = 2

The node holds an OMA DM f loat value.

117.14.5.8 public static final int FORMAT_INTEGER = 1

The node holds an OMA DM int value.

117.14.5.9 public static final int FORMAT_LONG = 8192

The node holds a long value. The getFormatName() method can be used to get the actual format
name.

Since 2.0

117.14.5.10 public static final int FORMAT_NODE = 1024

Format specifier of an internal node. An interior node can hold a Java object as value (see
DmtData.DmtData(Object) and DmtData.getNode()). This value can be used by Java programs that
know a specific URI understands the associated Java type. This type is further used as a return value
of the MetaNode.getFormat() method for interior nodes.

117.14.5.11 public static final int FORMAT_NULL = 512

The node holds an OMA DM nul l value. This corresponds to the Java nul l type.

117.14.5.12 public static final int FORMAT_RAW_BINARY = 4096

The node holds raw protocol data encoded in binary format. The getFormatName() method can be
used to get the actual format name.

117.14.5.13 public static final int FORMAT_RAW_STRING = 2048

The node holds raw protocol data encoded as Str ing . The getFormatName() method can be used to
get the actual format name.

117.14.5.14 public static final int FORMAT_STRING = 4

The node holds an OMA DM chr value.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 403

117.14.5.15 public static final int FORMAT_TIME = 32

The node holds an OMA DM t ime value.

117.14.5.16 public static final int FORMAT_XML = 256

The node holds an OMA DM xml value.

117.14.5.17 public static final DmtData NULL_VALUE

Constant instance representing a leaf node of nul l format.

117.14.5.18 public static final DmtData TRUE_VALUE

Constant instance representing a boolean true value.

Since 2.0

117.14.5.19 public DmtData(String string)

string the string value to set

□ Create a DmtData instance of chr format with the given string value. The nul l string argument is
valid.

117.14.5.20 public DmtData(Date date)

date the Date object to set

□ Create a DmtData instance of dateTime format with the given Date value. The given Date value
must be a non-null Date object.

117.14.5.21 public DmtData(Object complex)

complex the complex data object to set

□ Create a DmtData instance of node format with the given object value. The value represents com-
plex data associated with an interior node.

Certain interior nodes can support access to their subtrees through such complex values, making it
simpler to retrieve or update all leaf nodes in a subtree.

The given value must be a non-nul l immutable object.

117.14.5.22 public DmtData(String value,int format)

value the string, XML, date, or time value to set

format the format of the DmtData instance to be created, must be one of the formats specified above

□ Create a DmtData instance of the specified format and set its value based on the given string. Only
the following string-based formats can be created using this constructor:

• FORMAT_STRING - value can be any string
• FORMAT_XML - value must contain an XML fragment (the validity is not checked by this con-

structor)
• FORMAT_DATE - value must be parsable to an ISO 8601 calendar date in complete representa-

tion, basic format (pattern CCYYMMDD)
• FORMAT_TIME - value must be parsable to an ISO 8601 time of day in either local time, com-

plete representation, basic format (pattern hhmmss) or Coordinated Universal Time, basic for-
mat (pattern hhmmssZ)

* The nul l string argument is only valid if the format is string or XML.

Throws I l legalArgumentException– if format is not one of the allowed formats, or value is not a valid string
for the given format

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 404 OSGi Residential Release 6

NullPointerException– if a string, XML, date, or time is constructed and value is nul l

117.14.5.23 public DmtData(int integer)

integer the integer value to set

□ Create a DmtData instance of int format and set its value.

117.14.5.24 public DmtData(float flt)

flt the float value to set

□ Create a DmtData instance of f loat format and set its value.

117.14.5.25 public DmtData(long lng)

lng the long value to set

□ Create a DmtData instance of long format and set its value.

Since 2.0

117.14.5.26 public DmtData(boolean bool)

bool the boolean value to set

□ Create a DmtData instance of bool format and set its value.

117.14.5.27 public DmtData(byte[] bytes)

bytes the byte array to set, must not be nul l

□ Create a DmtData instance of bin format and set its value.

Throws NullPointerException– if bytes is nul l

117.14.5.28 public DmtData(byte[] bytes,boolean base64)

bytes the byte array to set, must not be nul l

base64 if true , the new instance will have b64 format, if fa lse , it will have bin format

□ Create a DmtData instance of bin or b64 format and set its value. The chosen format is specified by
the base64 parameter.

Throws NullPointerException– if bytes is nul l

117.14.5.29 public DmtData(byte[] bytes,int format)

bytes the byte array to set, must not be nul l

format the format of the DmtData instance to be created, must be one of the formats specified above

□ Create a DmtData instance of the specified format and set its value based on the given byte[] . Only
the following byte[] based formats can be created using this constructor:

• FORMAT_BINARY
• FORMAT_BASE64

Throws I l legalArgumentException– if format is not one of the allowed formats

NullPointerException– if bytes is nul l

117.14.5.30 public DmtData(String formatName,String data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 405

□ Create a DmtData instance in FORMAT_RAW_STRING format. The data is provided encoded as a
Str ing . The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException– if formatName or data is nul l

117.14.5.31 public DmtData(String formatName,byte[] data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

□ Create a DmtData instance in FORMAT_RAW_BINARY format. The data is provided encoded as bi-
nary. The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException– if formatName or data is nul l

117.14.5.32 public boolean equals(Object obj)

obj the object to compare with this DmtData

□ Compares the specified object with this DmtData instance. Two DmtData objects are considered
equal if their format is the same, and their data (selected by the format) is equal.

In case of FORMAT_RAW_BINARY and FORMAT_RAW_STRING the textual name of the data for-
mat - as returned by getFormatName() - must be equal as well.

Returns true if the argument represents the same DmtData as this object

117.14.5.33 public byte[] getBase64()

□ Gets the value of a node with base 64 (b64) format.

Returns the binary value

Throws DmtI l legalStateException– if the format of the node is not base 64.

117.14.5.34 public byte[] getBinary()

□ Gets the value of a node with binary (bin) format.

Returns the binary value

Throws DmtI l legalStateException– if the format of the node is not binary

117.14.5.35 public boolean getBoolean()

□ Gets the value of a node with boolean (bool) format.

Returns the boolean value

Throws DmtI l legalStateException– if the format of the node is not boolean

117.14.5.36 public String getDate()

□ Gets the value of a node with date format. The returned date string is formatted according to the ISO
8601 definition of a calendar date in complete representation, basic format (pattern CCYYMMDD).

Returns the date value

Throws DmtI l legalStateException– if the format of the node is not date

117.14.5.37 public Date getDateTime()

□ Gets the value of a node with dateTime format.

Returns the Date value

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 406 OSGi Residential Release 6

Throws DmtI l legalStateException– if the format of the node is not time

Since 2.0

117.14.5.38 public float getFloat()

□ Gets the value of a node with f loat format.

Returns the float value

Throws DmtI l legalStateException– if the format of the node is not f loat

117.14.5.39 public int getFormat()

□ Get the node's format, expressed in terms of type constants defined in this class. Note that the 'for-
mat' term is a legacy from OMA DM, it is more customary to think of this as 'type'.

Returns the format of the node

117.14.5.40 public String getFormatName()

□ Returns the format of this DmtData as Str ing . For the predefined data formats this is the OMA DM
defined name of the format. For FORMAT_RAW_STRING and FORMAT_RAW_BINARY this is the
format specified when the object was created.

Returns the format name as Str ing

117.14.5.41 public int getInt()

□ Gets the value of a node with integer (int) format.

Returns the integer value

Throws DmtI l legalStateException– if the format of the node is not integer

117.14.5.42 public long getLong()

□ Gets the value of a node with long format.

Returns the long value

Throws DmtI l legalStateException– if the format of the node is not long

Since 2.0

117.14.5.43 public Object getNode()

□ Gets the complex data associated with an interior node (node format).

Certain interior nodes can support access to their subtrees through complex values, making it sim-
pler to retrieve or update all leaf nodes in the subtree.

Returns the data object associated with an interior node

Throws DmtI l legalStateException– if the format of the data is not node

117.14.5.44 public byte[] getRawBinary()

□ Gets the value of a node in raw binary (FORMAT_RAW_BINARY) format.

Returns the data value in raw binary format

Throws DmtI l legalStateException– if the format of the node is not raw binary

117.14.5.45 public String getRawString()

□ Gets the value of a node in raw Str ing (FORMAT_RAW_STRING) format.

Returns the data value in raw Str ing format

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 407

Throws DmtI l legalStateException– if the format of the node is not raw Str ing

117.14.5.46 public int getSize()

□ Get the size of the data. The returned value depends on the format of data in the node:

• FORMAT_STRING, FORMAT_XML, FORMAT_BINARY, FORMAT_BASE64,
FORMAT_RAW_STRING, and FORMAT_RAW_BINARY: the length of the stored data, or 0 if the
data is nul l

• FORMAT_INTEGER and FORMAT_FLOAT: 4
• FORMAT_LONG and FORMAT_DATE_TIME: 8
• FORMAT_DATE and FORMAT_TIME: the length of the date or time in its string representation
• FORMAT_BOOLEAN: 1
• FORMAT_NODE: -1 (unknown)
• FORMAT_NULL: 0

Returns the size of the data stored by this object

117.14.5.47 public String getString()

□ Gets the value of a node with string (chr) format.

Returns the string value

Throws DmtI l legalStateException– if the format of the node is not string

117.14.5.48 public String getTime()

□ Gets the value of a node with time format. The returned time string is formatted according to the
ISO 8601 definition of the time of day. The exact format depends on the value the object was initial-
ized with: either local time, complete representation, basic format (pattern hhmmss) or Coordinated
Universal Time, basic format (pattern hhmmssZ).

Returns the time value

Throws DmtI l legalStateException– if the format of the node is not time

117.14.5.49 public String getXml()

□ Gets the value of a node with xml format.

Returns the XML value

Throws DmtI l legalStateException– if the format of the node is not xml

117.14.5.50 public int hashCode()

□ Returns the hash code value for this DmtData instance. The hash code is calculated based on the da-
ta (selected by the format) of this object.

Returns the hash code value for this object

117.14.5.51 public String toString()

□ Gets the string representation of the DmtData . This method works for all formats.

For string format data - including FORMAT_RAW_STRING - the string value itself is returned, while
for XML, date, time, integer, float, boolean, long and node formats the string form of the value is re-
turned. Binary - including FORMAT_RAW_BINARY - base64 data is represented by two-digit hexa-
decimal numbers for each byte separated by spaces. The NULL_VALUE data has the string form of "
nul l". Data of string or XML format containing the Java nul l value is represented by an empty string.
DateTime data is formatted as yyyy-MM-dd'T'HH:mm:SS'Z').

Returns the string representation of this DmtData instance

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 408 OSGi Residential Release 6

117.14.6 public interface DmtEvent
Event class storing the details of a change in the tree. DmtEvent is used by DmtAdmin to notify reg-
istered EventListeners services about important changes. Events are generated after every success-
ful DMT change, and also when sessions are opened or closed. If a DmtSession is opened in atomic
mode, DMT events are only sent when the session is committed, when the changes are actually per-
formed.

The type of the event describes the change that triggered the event delivery. Each event carries the
unique identifier of the session in which the described change happened or -1 when the change
originated outside a session. The events describing changes in the DMT carry the list of affected
nodes. In case of COPIED or RENAMED events, the event carries the list of new nodes as well.

117.14.6.1 public static final int ADDED = 1

Event type indicating nodes that were added.

117.14.6.2 public static final int COPIED = 2

Event type indicating nodes that were copied.

117.14.6.3 public static final int DELETED = 4

Event type indicating nodes that were deleted.

117.14.6.4 public static final int RENAMED = 8

Event type indicating nodes that were renamed.

117.14.6.5 public static final int REPLACED = 16

Event type indicating nodes that were replaced.

117.14.6.6 public static final int SESSION_CLOSED = 64

Event type indicating that a session was closed. This type of event is sent when the session is closed
by the client or becomes inactive for any other reason (session timeout, fatal errors in business
methods, etc.).

117.14.6.7 public static final int SESSION_OPENED = 32

Event type indicating that a new session was opened.

117.14.6.8 public String[] getNewNodes()

□ This method can be used to query the new nodes, when the type of the event is COPIED or RE-
NAMED. For all other event types this method returns nul l .

The array returned by this method runs parallel to the array returned by getNodes(), the elements in
the two arrays contain the source and destination URIs for the renamed or copied nodes in the same
order. All returned URIs are absolute.

This method returns only those nodes where the caller has the GET permission for the source or
destination node of the operation. Therefore, it is possible that the method returns an empty array.

Returns the array of newly created nodes

117.14.6.9 public String[] getNodes()

□ This method can be used to query the subject nodes of this event. The method returns nul l for
SESSION_OPENED and SESSION_CLOSED.

The method returns only those affected nodes that the caller has the GET permission for (or in case
of COPIED or RENAMED events, where the caller has GET permissions for either the source or the

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 409

destination nodes). Therefore, it is possible that the method returns an empty array. All returned
URIs are absolute.

Returns the array of affected nodes

See Also getNewNodes()

117.14.6.10 public Object getProperty(String key)

key the name of the requested property

□ This method can be used to get the value of a single event property.

Returns the requested property value or null, if the key is not contained in the properties

See Also getPropertyNames()

Since 2.0

117.14.6.11 public String[] getPropertyNames()

□ This method can be used to query the names of all properties of this event.

The returned names can be used as key value in subsequent calls to getProperty(String).

Returns the array of property names

See Also getProperty(String)

Since 2.0

117.14.6.12 public int getSessionId()

□ This method returns the identifier of the session in which this event took place. The ID is guaran-
teed to be unique on a machine.

For events that do not result from a session, the session id is -1.

The availability of a session.id can also be check by using getProperty() with "session.id" as key.

Returns the unique identifier of the session that triggered the event or -1 if there is no session associated

117.14.6.13 public int getType()

□ This method returns the type of this event.

Returns the type of this event.

117.14.7 public interface DmtEventListener
Registered implementations of this class are notified via DmtEvent objects about important changes
in the tree. Events are generated after every successful DMT change, and also when sessions are
opened or closed. If a DmtSession is opened in atomic mode, DMT events are only sent when the
session is committed, when the changes are actually performed.

Dmt Event Listener services must have permission DmtPermission.GET for the nodes in the nodes
and newNodes property in the Dmt Event.

117.14.7.1 public static final String FILTER_EVENT = "osgi.filter.event"

A number of event types packed in a bitmap. If this service property is provided with a Dmt Event
Listener service registration than that listener must only receive events where one of the Dmt Event
types occur in the bitmap. The type of this service property must be Integer .

117.14.7.2 public static final String FILTER_PRINCIPAL = "osgi.filter.principal"

A number of names of principals. If this service property is provided with a Dmt Event Listener ser-
vice registration than that listener must only receive events for which at least one of the given prin-
cipals has Get rights. The type of this service property is Str ing+ .

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 410 OSGi Residential Release 6

117.14.7.3 public static final String FILTER_SUBTREE = "osgi.filter.subtree"

A number of sub-tree top nodes that define the scope of the Dmt Event Listener. If this service prop-
erty is registered then the service must only receive events for nodes that are part of one of the sub-
trees. The type of this service property is Str ing+ .

117.14.7.4 public void changeOccurred(DmtEvent event)

event the DmtEvent describing the change in detail

□ DmtAdmin uses this method to notify the registered listeners about the change. This method is
called asynchronously from the actual event occurrence.

117.14.8 public class DmtException
extends Exception
Checked exception received when a DMT operation fails. Beside the exception message, a DmtEx-
ception always contains an error code (one of the constants specified in this class), and may option-
ally contain the URI of the related node, and information about the cause of the exception.

Some of the error codes defined in this class have a corresponding error code defined in OMA DM, in
these cases the name and numerical value from OMA DM is used. Error codes without counterparts
in OMA DM were given numbers from a different range, starting from 1.

The cause of the exception (if specified) can either be a single Throwable instance, or a list of such
instances if several problems occurred during the execution of a method. An example for the latter
is the close method of DmtSession that tries to close multiple plugins, and has to report the excep-
tions of all failures.

Each constructor has two variants, one accepts a Str ing node URI, the other accepts a Str ing[] node
path. The former is used by the DmtAdmin implementation, the latter by the plugins, who receive
the node URI as an array of segment names. The constructors are otherwise identical.

Getter methods are provided to retrieve the values of the additional parameters, and the
printStackTrace(Pr intWriter) method is extended to print the stack trace of all causing throwables
as well.

117.14.8.1 public static final int ALERT_NOT_ROUTED = 5

An alert can not be sent from the device to the given principal. This can happen if there is no Re-
mote Alert Sender willing to forward the alert to the given principal, or if no principal was given
and the DmtAdmin did not find an appropriate default destination.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.2 public static final int COMMAND_FAILED = 500

The recipient encountered an error which prevented it from fulfilling the request.

This error code is only used in situations not covered by any of the other error codes that a method
may use. Some methods specify more specific error situations for this code, but it can generally be
used for any unexpected condition that causes the command to fail.

This error code corresponds to the OMA DM response status code 500 "Command Failed".

117.14.8.3 public static final int COMMAND_NOT_ALLOWED = 405

The requested command is not allowed on the target node. This includes the following situations:

• an interior node operation is requested for a leaf node, or vice versa (e.g. trying to retrieve the
children of a leaf node)

• an attempt is made to create a node where the parent is a leaf node

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 411

• an attempt is made to rename or delete the root node of the tree
• an attempt is made to rename or delete the root node of the session
• a write operation (other than setting the ACL) is performed in a non-atomic write session on a

node provided by a plugin that is read-only or does not support non-atomic writing
• a node is copied to its descendant
• the ACL of the root node is changed not to include Add rights for all principals

This error code corresponds to the OMA DM response status code 405 "Command not allowed".

117.14.8.4 public static final int CONCURRENT_ACCESS = 4

An error occurred related to concurrent access of nodes. This can happen for example if a configu-
ration node was deleted directly through the Configuration Admin service, while the node was ma-
nipulated via the tree.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.5 public static final int DATA_STORE_FAILURE = 510

An error related to the recipient data store occurred while processing the request. This error code
may be thrown by any of the methods accessing the tree, but whether it is really used depends on
the implementation, and the data store it uses.

This error code corresponds to the OMA DM response status code 510 "Data store failure".

117.14.8.6 public static final int FEATURE_NOT_SUPPORTED = 406

The requested command failed because an optional feature required by the command is not sup-
ported. For example, opening an atomic session might return this error code if the DmtAdmin im-
plementation does not support transactions. Similarly, accessing the optional node properties (Title,
Timestamp, Version, Size) might not succeed if either the DmtAdmin implementation or the under-
lying plugin does not support the property.

When getting or setting values for interior nodes (an optional optimization feature), a plugin can
use this error code to indicate that the given interior node does not support values.

This error code corresponds to the OMA DM response status code 406 "Optional feature not support-
ed".

117.14.8.7 public static final int INVALID_URI = 3

The requested command failed because the target URI or node name is nul l or syntactically invalid.
This covers the following cases:

• the URI or node name ends with the '\' or '/' character
• the URI is an empty string (only invalid if the method does not accept relative URIs)
• the URI contains the segment "." at a position other than the beginning of the URI
• the node name is ". ." or the URI contains such a segment
• the node name contains an unescaped '/' character

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

This code is only used if the URI or node name does not match any of the criteria for
URI_TOO_LONG. This error code does not correspond to any OMA DM response status code. It
should be translated to the code 404 "Not Found" when transferring over OMA DM.

117.14.8.8 public static final int LIMIT_EXCEEDED = 413

The requested operation failed because a specific limit was exceeded, e.g. if a requested resource ex-
ceeds a size limit.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 412 OSGi Residential Release 6

This error code corresponds to the OMA DM response status code 413 "Request entity too large".

Since 2.0

117.14.8.9 public static final int METADATA_MISMATCH = 2

Operation failed because of meta data restrictions. This covers any attempted deviation from the pa-
rameters defined by the MetaNode objects of the affected nodes, for example in the following situa-
tions:

• creating, deleting or renaming a permanent node, or modifying its type
• creating an interior node where the meta-node defines it as a leaf, or vice versa
• any operation on a node which does not have the required access type (e.g. executing a node that

lacks the MetaNode.CMD_EXECUTE access type)
• any node creation or deletion that would violate the cardinality constraints
• any leaf node value setting that would violate the allowed formats, values, mime types, etc.
• any node creation that would violate the allowed node names

This error code can also be used to indicate any other meta data violation, even if it cannot be de-
scribed by the MetaNode class. For example, detecting a multi-node constraint violation while com-
mitting an atomic session should result in this error.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 405 "Command not allowed" when transferring over OMA DM.

117.14.8.10 public static final int NODE_ALREADY_EXISTS = 418

The requested node creation operation failed because the target already exists. This can occur if the
node is created directly (with one of the create. . . methods), or indirectly (during a copy operation).

This error code corresponds to the OMA DM response status code 418 "Already exists".

117.14.8.11 public static final int NODE_NOT_FOUND = 404

The requested target node was not found. No indication is given as to whether this is a temporary or
permanent condition, unless otherwise noted.

This is only used when the requested node name is valid, otherwise the more specific error codes
URI_TOO_LONG or INVALID_URI are used. This error code corresponds to the OMA DM response
status code 404 "Not Found".

117.14.8.12 public static final int PERMISSION_DENIED = 425

The requested command failed because the principal associated with the session does not have ad-
equate access control permissions (ACL) on the target. This can only appear in case of remote ses-
sions, i.e. if the session is associated with an authenticated principal.

This error code corresponds to the OMA DM response status code 425 "Permission denied".

117.14.8.13 public static final int REMOTE_ERROR = 1

A device initiated remote operation failed. This is used when the protocol adapter fails to send an
alert for any reason.

Alert routing errors (that occur while looking for the proper protocol adapter to use) are indicated
by ALERT_NOT_ROUTED, this code is only for errors encountered while sending the routed alert.
This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.14 public static final int ROLLBACK_FAILED = 516

The rollback command was not completed successfully. The tree might be in an inconsistent state
after this error.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 413

This error code corresponds to the OMA DM response status code 516 "Atomic roll back failed".

117.14.8.15 public static final int SESSION_CREATION_TIMEOUT = 7

Creation of a session timed out because of another ongoing session. The length of time while the
DmtAdmin waits for the blocking session(s) to finish is implementation dependent.

This error code does not correspond to any OMA DM response status code. OMA has several status
codes related to timeout, but these are meant to be used when a request times out, not if a session
can not be established. This error code should be translated to the code 500 "Command Failed" when
transferring over OMA DM.

117.14.8.16 public static final int TRANSACTION_ERROR = 6

A transaction-related error occurred in an atomic session. This error is caused by one of the follow-
ing situations:

• an updating method within an atomic session can not be executed because the underlying plug-
in is read-only or does not support atomic writing

• a commit operation at the end of an atomic session failed because one of the underlying plugins
failed to close

The latter case may leave the tree in an inconsistent state due to the lack of a two-phase commit sys-
tem, see DmtSession.commit() for details.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.17 public static final int UNAUTHORIZED = 401

The originator's authentication credentials specify a principal with insufficient rights to complete
the command.

This status code is used as response to device originated sessions if the remote management server
cannot authorize the device to perform the requested operation.

This error code corresponds to the OMA DM response status code 401 "Unauthorized".

117.14.8.18 public static final int URI_TOO_LONG = 414

The requested command failed because the target URI is too long for what the recipient is able or
willing to process.

This error code corresponds to the OMA DM response status code 414 "URI too long".

See Also OSGi Service Platform, Mobi le Specif icat ion Release 4

117.14.8.19 public DmtException(String uri,int code,String message)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

□ Create an instance of the exception. The uri and message parameters are optional. No originating ex-
ception is specified.

117.14.8.20 public DmtException(String uri,int code,String message,Throwable cause)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 414 OSGi Residential Release 6

cause the originating exception, or nul l if there is no originating exception

□ Create an instance of the exception, specifying the cause exception. The uri , message and cause pa-
rameters are optional.

117.14.8.21 public DmtException(String uri,int code,String message,Vector causes,boolean fatal)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

fatal whether the exception is fatal

□ Create an instance of the exception, specifying the list of cause exceptions and whether the excep-
tion is a fatal one. This constructor is meant to be used by plugins wishing to indicate that a serious
error occurred which should invalidate the ongoing atomic session. The uri , message and causes pa-
rameters are optional.

If a fatal exception is thrown, no further business methods will be called on the originator plugin. In
case of atomic sessions, all other open plugins will be rolled back automatically, except if the fatal
exception was thrown during commit.

117.14.8.22 public DmtException(String[] path,int code,String message)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

□ Create an instance of the exception, specifying the target node as an array of path segments. This
method behaves in exactly the same way as if the path was given as a URI string.

See Also DmtException(String, int, String)

117.14.8.23 public DmtException(String[] path,int code,String message,Throwable cause)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

cause the originating exception, or nul l if there is no originating exception

□ Create an instance of the exception, specifying the target node as an array of path segments, and
specifying the cause exception. This method behaves in exactly the same way as if the path was giv-
en as a URI string.

See Also DmtException(String, int, String, Throwable)

117.14.8.24 public DmtException(String[] path,int code,String message,Vector causes,boolean fatal)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 415

fatal whether the exception is fatal

□ Create an instance of the exception, specifying the target node as an array of path segments, the list
of cause exceptions, and whether the exception is a fatal one. This method behaves in exactly the
same way as if the path was given as a URI string.

See Also DmtException(String, int, String, Vector, boolean)

117.14.8.25 public Throwable getCause()

□ Get the cause of this exception. Returns non-nul l , if this exception is caused by one or more other ex-
ceptions (like a NullPointerException in a DmtPlugin). If there are more than one cause exceptions,
the first one is returned.

Returns the cause of this exception, or nul l if no cause was given

117.14.8.26 public Throwable[] getCauses()

□ Get all causes of this exception. Returns the causing exceptions in an array. If no cause was specified,
an empty array is returned.

Returns the list of causes of this exception

117.14.8.27 public int getCode()

□ Get the error code associated with this exception. Most of the error codes within this exception cor-
respond to OMA DM error codes.

Returns the error code

117.14.8.28 public String getMessage()

□ Get the message associated with this exception. The returned string also contains the associated
URI (if any) and the exception code. The resulting message has the following format (parts in square
brackets are only included if the field inside them is not nul l):

 <exception_code>[: '<uri>'][: <error_message>]

Returns the error message in the format described above

117.14.8.29 public String getURI()

□ Get the node on which the failed DMT operation was issued. Some operations like
DmtSession.close() don't require an URI, in this case this method returns nul l .

Returns the URI of the node, or nul l

117.14.8.30 public boolean isFatal()

□ Check whether this exception is marked as fatal in the session. Fatal exceptions trigger an automat-
ic rollback of atomic sessions.

Returns whether the exception is marked as fatal

117.14.8.31 public void printStackTrace(PrintStream s)

s PrintStream to use for output

□ Prints the exception and its stacktrace to the specified print stream. Any causes that were specified
for this exception are also printed, together with their stacktraces.

117.14.9 public class DmtIllegalStateException
extends RuntimeException
Unchecked illegal state exception. This class is used in DMT because java.lang.IllegalStateException
does not exist in CLDC.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 416 OSGi Residential Release 6

117.14.9.1 public DmtIllegalStateException()

□ Create an instance of the exception with no message.

117.14.9.2 public DmtIllegalStateException(String message)

message the reason for the exception

□ Create an instance of the exception with the specified message.

117.14.9.3 public DmtIllegalStateException(Throwable cause)

cause the cause of the exception

□ Create an instance of the exception with the specified cause exception and no message.

117.14.9.4 public DmtIllegalStateException(String message,Throwable cause)

message the reason for the exception

cause the cause of the exception

□ Create an instance of the exception with the specified message and cause exception.

117.14.10 public interface DmtSession
DmtSession provides concurrent access to the DMT. All DMT manipulation commands for manage-
ment applications are available on the DmtSession interface. The session is associated with a root
node which limits the subtree in which the operations can be executed within this session.

Most of the operations take a node URI as parameter, which can be either an absolute URI (starting
with "./") or a URI relative to the root node of the session. The empty string as relative URI means
the root URI the session was opened with. All segments of a URI must be within the segment length
limit of the implementation, and the special characters '/' and '\' must be escaped (preceded by a '\').

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

If the URI specified does not correspond to a legitimate node in the tree an exception is thrown. The
only exception is the isNodeUri(String) method which returns fa lse in case of an invalid URI.

Each method of DmtSession that accesses the tree in any way can throw DmtI l legalStateException
if the session has been closed or invalidated (due to timeout, fatal exceptions, or unexpectedly un-
registered plugins).

117.14.10.1 public static final int LOCK_TYPE_ATOMIC = 2

LOCK_TYPE_ATOMIC is an exclusive lock with transactional functionality. Commands of an atomic
session will either fail or succeed together, if a single command fails then the whole session will be
rolled back.

117.14.10.2 public static final int LOCK_TYPE_EXCLUSIVE = 1

LOCK_TYPE_EXCLUSIVE lock guarantees full access to the tree, but can not be shared with any other
locks.

117.14.10.3 public static final int LOCK_TYPE_SHARED = 0

Sessions created with LOCK_TYPE_SHARED lock allows read-only access to the tree, but can be
shared between multiple readers.

117.14.10.4 public static final int STATE_CLOSED = 1

The session is closed, DMT manipulation operations are not available, they throw DmtI l legalState-
Exception if tried.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 417

117.14.10.5 public static final int STATE_INVALID = 2

The session is invalid because a fatal error happened. Fatal errors include the timeout of the session,
any DmtException with the 'fatal' flag set, or the case when a plugin service is unregistered while in
use by the session. DMT manipulation operations are not available, they throw DmtI l legalStateEx-
ception if tried.

117.14.10.6 public static final int STATE_OPEN = 0

The session is open, all session operations are available.

117.14.10.7 public void close() throws DmtException

□ Closes a session. If the session was opened with atomic lock mode, the DmtSession must first persist
the changes made to the DMT by calling commit() on all (transactional) plugins participating in the
session. See the documentation of the commit() method for details and possible errors during this
operation.

The state of the session changes to DmtSession.STATE_CLOSED if the close operation completed
successfully, otherwise it becomes DmtSession.STATE_INVALID .

Throws DmtException– with the following possible error codes:

• METADATA_MISMATCH in case of atomic sessions, if the commit operation failed because of
meta-data restrictions

• CONCURRENT_ACCESS in case of atomic sessions, if the commit operation failed because of
some modification outside the scope of the DMT to the nodes affected in the session

• TRANSACTION_ERROR in case of atomic sessions, if an underlying plugin failed to commit
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if an underlying plugin failed to close, or if some unspecified error is en-

countered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.8 public void commit() throws DmtException

□ Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

An error situation can arise due to the lack of a two phase commit mechanism in the underlying
plugins. As an example, if plugin A has committed successfully but plugin B failed, the whole ses-
sion must fail, but there is no way to undo the commit performed by A. To provide predictable be-
havior, the commit operation should continue with the remaining plugins even after detecting a
failure. All exceptions received from failed commits are aggregated into one TRANSACTION_ERROR
exception thrown by this method.

In many cases the tree is not the only way to manage a given part of the system. It may happen
that while modifying some nodes in an atomic session, the underlying settings are modified in par-
allel outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException– with the following possible error codes:

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 418 OSGi Residential Release 6

• METADATA_MISMATCH if the operation failed because of meta-data restrictions
• CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope

of the DMT to the nodes affected in the session's operations
• TRANSACTION_ERROR if an error occurred during the commit of any of the underlying plugins
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

DmtI l legalStateException– if the session was not opened using the LOCK_TYPE_ATOMIC lock type,
or if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.9 public void copy(String nodeUri,String newNodeUri,boolean recursive) throws DmtException

nodeUri the node or root of a subtree to be copied

newNodeUri the URI of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

□ Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most prop-
erties are also copied, with the exception of the ACL (Access Control List), Timestamp and Version
properties.

The copy method is essentially a convenience method that could be substituted with a sequence of
retrieval and update operations. This determines the permissions required for copying. However,
some optimization can be possible if the source and target nodes are all handled by DmtAdmin or
by the same plugin. In this case, the handler might be able to perform the underlying management
operation more efficiently: for example, a configuration table can be copied at once instead of read-
ing each node for each entry and creating it in the new tree.

This method may result in any of the errors possible for the contributing operations. Most of
these are collected in the exception descriptions below, but for the full list also consult the
documentation of getChildNodeNames(String), isLeafNode(String), getNodeValue(String),
getNodeType(String), getNodeTitle(String), setNodeTitle(String, String), createLeafNode(String,
DmtData, String) and createInteriorNode(String, String).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri or newNodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node, or if newNodeUri points to a node

that cannot exist in the tree according to the meta-data (see getMetaNode(String))
• NODE_ALREADY_EXISTS if newNodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the copied

node(s) does not allow the Get operation, or the ACL of the parent of the target node does not al-
low the Add operation for the associated principal

• COMMAND_NOT_ALLOWED if nodeUri is an ancestor of newNodeUri , or if any of the implied re-
trieval or update operations are not allowed

• METADATA_MISMATCH if any of the meta-data constraints of the implied retrieval or update op-
erations are violated

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 419

• COMMAND_FAILED if either URI is not within the current session's subtree, or if some unspeci-
fied error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the copied node(s) with the Get action present, or for the parent of the target node with the Add ac-
tion

117.14.10.10 public void createInteriorNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

□ Create an interior node. If the parent node does not exist, it is created automatically, as if this
method were called for the parent URI. This way all missing ancestor nodes leading to the specified
node are created. Any exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

117.14.10.11 public void createInteriorNode(String nodeUri,String type) throws DmtException

nodeUri the URI of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 420 OSGi Residential Release 6

□ Create an interior node with a given type. The type of interior node, if specified, is a URI iden-
tifying a DDF document. If the parent node does not exist, it is created automatically, as if
createInteriorNode(String) were called for the parent URI. This way all missing ancestor nodes lead-
ing to the specified node are created. Any exceptions encountered while creating the ancestors are
propagated to the caller of this method, these are not explicitly listed in the error descriptions be-
low.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Interior node type identifiers must follow the format defined in section 7.7.7.2 of the OMA Device
Management Tree and Description document. Checking the validity of the type string does not have
to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid un-
necessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if the type string is in-

valid (see above), or if some unspecified error is encountered while attempting to complete the
command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createInteriorNode(String), OMA Device Management Tree and Description v1.2 draft [http://
member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-
TND-V1_2-20050615-C.zip]

117.14.10.12 public void createLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

□ Create a leaf node with default value and MIME type. If a node does not have a default value or
MIME type, this method will throw a DmtException with error code METADATA_MISMATCH . Note

http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 421

that a node might have a default value or MIME type even if there is no meta-data for the node or its
meta-data does not specify the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, and the creation of the new node must not cause the maximum
occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createLeafNode(String, DmtData)

117.14.10.13 public void createLeafNode(String nodeUri,DmtData value) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

□ Create a leaf node with a given value and the default MIME type. If the specified value is nul l , the de-
fault value is taken. If the node does not have a default MIME type or value (if needed), this method
will throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a
default value or MIME type even if there is no meta-data for the node or its meta-data does not speci-
fy the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 422 OSGi Residential Release 6

ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, and the
creation of the new node must not cause the maximum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

117.14.10.14 public void createLeafNode(String nodeUri,DmtData value,String mimeType) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

□ Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l ,
their default values are taken. If the node does not have the necessary defaults, this method will
throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a de-
fault value or MIME type even if there is no meta-data for the node or its meta-data does not specify
the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 423

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, the MIME
type must be among the listed types, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

The MIME type string must conform to the definition in RFC 2045. Checking its validity does not
have to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid
unnecessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if mimeType is not a

proper MIME type string (see above), or if some unspecified error is encountered while attempt-
ing to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createLeafNode(String, DmtData), RFC 2045 [http://www.ietf.org/rfc/rfc2045.txt]

117.14.10.15 public void deleteNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node
is deleted. It is not allowed to delete the root node of the session.

If meta-data is available for a node, several checks are made before deleting it. The node must be
non-permanent, it must have the MetaNode.CMD_DELETE access type, and if zero occurrences of
the node are not allowed, it must not be the last one.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 424 OSGi Residential Release 6

• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-
ly on systems with limited resources)

• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Delete operation for the associated principal
• COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic ses-

sions if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Delete action present

117.14.10.16 public void execute(String nodeUri,String data) throws DmtException

nodeUri the node on which the execute operation is issued

data the parameter of the execute operation, can be nul l

□ Executes a node. This corresponds to the EXEC operation in OMA DM. This method cannot be
called in a read-only session.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if the node does not exist
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Execute operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is a scaffold node
• METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have

MetaNode.CMD_EXECUTE access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if no DmtExecPlugin is

associated with the node and the DmtAdmin can not execute the node, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Exec action present

See Also execute(String, String, String)

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 425

117.14.10.17 public void execute(String nodeUri,String correlator,String data) throws DmtException

nodeUri the node on which the execute operation is issued

correlator an identifier to associate this operation with any notifications sent in response to it, can be nul l if
not needed

data the parameter of the execute operation, can be nul l

□ Executes a node, also specifying a correlation ID for use in response notifications. This operation
corresponds to the EXEC command in OMA DM. This method cannot be called in a read-only ses-
sion.

The semantics of an execute operation and the data parameter it takes depends on the definition
of the managed object on which the command is issued. If a correlation ID is specified, it should be
used as the correlator parameter for notifications sent in response to this execute operation.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if the node does not exist
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Execute operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is a scaffold node
• METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have

MetaNode.CMD_EXECUTE access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if no DmtExecPlugin is

associated with the node, or if some unspecified error is encountered while attempting to com-
plete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Exec action present

See Also execute(String, String)

117.14.10.18 public String[] getChildNodeNames(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the list of children names of a node. The returned array contains the names - not the URIs - of
the immediate children nodes of the given node. The elements are in no particular order. The re-
turned array must not contain nul l entries.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 426 OSGi Residential Release 6

• COMMAND_NOT_ALLOWED if the specified node is not an interior node
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.19 public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Gives the Access Control List in effect for a given node. The returned Acl takes inheritance into ac-
count, that is if there is no ACL defined for the node, it will be derived from the closest ancestor hav-
ing an ACL defined.

Returns the Access Control List belonging to the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the

node does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
with the Get action present

See Also getNodeAcl(String)

117.14.10.20 public int getLockType()

□ Gives the type of lock the session has.

Returns the lock type of the session, one of LOCK_TYPE_SHARED, LOCK_TYPE_EXCLUSIVE and
LOCK_TYPE_ATOMIC

117.14.10.21 public MetaNode getMetaNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the meta data which describes a given node. Meta data can only be inspected, it can not be
changed.

The MetaNode object returned to the client is the combination of the meta data returned by the data
plugin (if any) plus the meta data returned by the DmtAdmin. If there are differences in the meta da-
ta elements known by the plugin and the DmtAdmin then the plugin specific elements take prece-
dence.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 427

Note, that a node does not have to exist for having meta-data associated with it. This method
may provide meta-data for any node that can possibly exist in the tree (any node defined in the
specification). For nodes that are not defined, it may throw DmtException with the error code
NODE_NOT_FOUND . To allow easier implementation of plugins that do not provide meta-data, it is
allowed to return nul l for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.22 public Acl getNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the Access Control List associated with a given node. The returned Acl object does not take in-
heritance into account, it gives the ACL specifically given to the node.

Returns the Access Control List belonging to the node or nul l if none defined

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the

node does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
with the Get action present

See Also getEffectiveNodeAcl(String)

117.14.10.23 public int getNodeSize(String nodeUri) throws DmtException

nodeUri the URI of the leaf node

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 428 OSGi Residential Release 6

□ Get the size of the data in a leaf node. The returned value depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is not a leaf node
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Size property is not supported by the DmtAdmin implementa-

tion or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

See Also DmtData.getSize()

117.14.10.24 public Date getNodeTimestamp(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the timestamp when the node was created or last modified.

Returns the timestamp of the last modification

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the DmtAdmin im-

plementation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 429

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.25 public String getNodeTitle(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implemen-

tation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.26 public String getNodeType(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of
an interior node is a URI identifying a DDF document; a nul l type means that there is no DDF docu-
ment overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 430 OSGi Residential Release 6

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.27 public DmtData getNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node to retrieve

□ Get the data contained in a leaf or interior node. When retrieving the value associated with an inte-
rior node, the caller must have rights to read all nodes in the subtree under the given node.

Returns the data of the node, can not be nul l

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node (and

the ACLs of all its descendants in case of interior nodes) do not allow the Get operation for the as-
sociated principal

• METADATA_MISMATCH if the node value cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node (and all its descendants in case of interior nodes) with the Get action present

117.14.10.28 public int getNodeVersion(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Version property is not supported by the DmtAdmin imple-

mentation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 431

• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified
error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.29 public String getPrincipal()

□ Gives the name of the principal on whose behalf the session was created. Local sessions do not have
an associated principal, in this case nul l is returned.

Returns the identifier of the remote server that initiated the session, or nul l for local sessions

117.14.10.30 public String getRootUri()

□ Get the root URI associated with this session. Gives "." if the session was created without specifying
a root, which means that the target of this session is the whole DMT.

Returns the root URI

117.14.10.31 public int getSessionId()

□ The unique identifier of the session. The ID is generated automatically, and it is guaranteed to be
unique on a machine for a specific Dmt Admin. A session id must be larger than 0.

Returns the session identification number

117.14.10.32 public int getState()

□ Get the current state of this session.

Returns the state of the session, one of STATE_OPEN, STATE_CLOSED and STATE_INVALID

117.14.10.33 public boolean isLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 432 OSGi Residential Release 6

117.14.10.34 public boolean isNodeUri(String nodeUri)

nodeUri the URI to check

□ Check whether the specified URI corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

Throws DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.35 public void renameNode(String nodeUri,String newName) throws DmtException

nodeUri the URI of the node to rename

newName the new name property of the node

□ Rename a node. This operation only changes the name of the node (updating the timestamp and
version properties if they are supported), the value and the other properties are not changed. The
new name of the node must be provided, the new URI is constructed from the base of the old URI
and the given name. It is not allowed to rename the root node of the session.

If available, the meta-data of the original and the new nodes are checked before performing the re-
name operation. Neither node can be permanent, their leaf/interior property must match, and the
name change must not violate any of the cardinality constraints. The original node must have the
MetaNode.CMD_REPLACE access type, and the name of the new node must conform to the valid
names.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri or newName is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node, or if the new node is not defined in

the tree according to the meta-data (see getMetaNode(String))
• NODE_ALREADY_EXISTS if there already exists a sibling of nodeUri with the name newName
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic ses-

sions if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 433

117.14.10.36 public void rollback() throws DmtException

□ Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

Throws DmtException– with the error code ROLLBACK_FAILED in case the rollback did not succeed

DmtI l legalStateException– if the session was not opened using the LOCK_TYPE_ATOMIC lock type,
or if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.37 public void setDefaultNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Set the value of a leaf or interior node to its default. The default can be defined by the node's MetaN-
ode . The method throws a METADATA_MISMATCH exception if the node does not have a default val-
ue.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-

data (does not have the MetaNode.CMD_REPLACE access type), or if there is no default value de-
fined for this node

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

See Also setNodeValue(String, DmtData)

117.14.10.38 public void setNodeAcl(String nodeUri,Acl acl) throws DmtException

nodeUri the URI of the node

acl the Access Control List to be set on the node, can be nul l

□ Set the Access Control List associated with a given node. To perform this operation, the caller needs
to have replace rights (Acl .REPLACE or the corresponding Java permission depending on the session
type) as described below:

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 434 OSGi Residential Release 6

• if nodeUri specifies a leaf node, replace rights are needed on the parent of the node
• if nodeUri specifies an interior node, replace rights on either the node or its parent are sufficient

If the given acl is nul l or an empty ACL (not specifying any permissions for any principals), then the
ACL of the node is deleted, and the node will inherit the ACL from its parent node.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node or its

parent (see above) does not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the command attempts to set the ACL of the root node not to in-

clude Add rights for all principals
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
or its parent (see above) with the Replace action present

117.14.10.39 public void setNodeTitle(String nodeUri,String title) throws DmtException

nodeUri the URI of the node

title the title text of the node, can be nul l

□ Set the title property of a node. The length of the title string in UTF-8 encoding must not exceed 255
bytes.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node cannot be modified according to the meta-data (does not have

the MetaNode.CMD_REPLACE access type)
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implemen-

tation or the underlying plugin
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the title string is too long, if the URI is not within the current session's sub-

tree, or if some unspecified error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 435

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.10.40 public void setNodeType(String nodeUri,String type) throws DmtException

nodeUri the URI of the node

type the type of the node, can be nul l

□ Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, a nul l type string means that there is no DDF document overriding the tree struc-
ture defined by the ancestors. For leaf nodes, it requests that the default MIME type is used for the
given node. If the node does not have a default MIME type this method will throw a DmtException
with error code METADATA_MISMATCH . Note that a node might have a default MIME type even if
there is no meta-data for the node or its meta-data does not specify the default.

MIME types must conform to the definition in RFC 2045. Interior node type identifiers must follow
the format defined in section 7.7.7.2 of the OMA Device Management Tree and Description docu-
ment. Checking the validity of the type string does not have to be done by the DmtAdmin, this can
be left to the plugin handling the node (if any), to avoid unnecessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-

data (does not have the MetaNode.CMD_REPLACE access type), and in case of leaf nodes, if nul l is
given and there is no default MIME type, or the given MIME type is not allowed

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if the type string is in-

valid (see above), or if some unspecified error is encountered while attempting to complete the
command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

See Also RFC 2045 [http://www.ietf.org/rfc/rfc2045.txt], OMA Device Management Tree and Description v1.2
draft [http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/
OMA-TS-DM-TND-V1_2-20050615-C.zip]

117.14.10.41 public void setNodeValue(String nodeUri,DmtData data) throws DmtException

nodeUri the URI of the node

data the data to be set, can be nul l

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 436 OSGi Residential Release 6

□ Set the value of a leaf or interior node. The format of the node is contained in the DmtData object.
For interior nodes, the format must be FORMAT_NODE , while for leaf nodes this format must not be
used.

If the specified value is nul l , the default value is taken. In this case, if the node does not have a de-
fault value, this method will throw a DmtException with error code METADATA_MISMATCH . Nodes
of nul l format can be set by using DmtData.NULL_VALUE as second argument.

An Event of type REPLACE is sent out for a leaf node. A replaced interior node sends out events for
each of its children in depth first order and node names sorted with Arrays.sort(String[]). When set-
ting a value on an interior node, the values of the leaf nodes under it can change, but the structure of
the subtree is not modified by the operation.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the given data has FORMAT_NODE format but the node is a leaf

node (or vice versa), or in non-atomic sessions if the underlying plugin is read-only or does not
support non-atomic writing

• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-
data (does not have the MetaNode.CMD_REPLACE access type), or if the given value does not con-
form to the meta-data value constraints

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.11 public interface MetaNode
The MetaNode contains meta data as standardized by OMA DM but extends it (without breaking the
compatibility) to provide for better DMT data quality in an environment where many software com-
ponents manipulate this data.

The interface has several types of functions to describe the nodes in the DMT. Some methods can be
used to retrieve standard OMA DM metadata such as access type, cardinality, default, etc., others are
for data extensions such as valid names and values. In some cases the standard behavior has been ex-
tended, for example it is possible to provide several valid MIME types, or to differentiate between
normal and automatic dynamic nodes.

Most methods in this interface receive no input, just return information about some aspect of
the node. However, there are two methods that behave differently, isValidName(String) and
isValidValue(DmtData). These validation methods are given a potential node name or value (respec-
tively), and can decide whether it is valid for the given node. Passing the validation methods is a nec-

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 437

essary condition for a name or value to be used, but it is not necessarily sufficient: the plugin may
carry out more thorough (more expensive) checks when the node is actually created or set.

If a MetaNode is available for a node, the DmtAdmin must use the information provided by it to fil-
ter out invalid requests on that node. However, not all methods on this interface are actually used
for this purpose, as many of them (e.g. getFormat() or getValidNames()) can be substituted with the
validating methods. For example, isValidValue(DmtData) can be expected to check the format, mini-
mum, maximum, etc. of a given value, making it unnecessary for the DmtAdmin to call getFormat(),
getMin(), getMax() etc. separately. It is indicated in the description of each method if the DmtAdmin
does not enforce the constraints defined by it - such methods are only for external use, for example
in user interfaces.

Most of the methods of this class return nul l if a certain piece of meta information is not defined for
the node or providing this information is not supported. Methods of this class do not throw excep-
tions.

117.14.11.1 public static final int AUTOMATIC = 2

Constant for representing an automatic node in the tree. This must be returned by getScope(). AU-
TOMATIC nodes are part of the life cycle of their parent node, they usually describe attributes/prop-
erties of the parent.

117.14.11.2 public static final int CMD_ADD = 0

Constant for the ADD access type. If can(int) returns true for this operation, this node can potential-
ly be added to its parent. Nodes with PERMANENT or AUTOMATIC scope typically do not have this
access type.

117.14.11.3 public static final int CMD_DELETE = 1

Constant for the DELETE access type. If can(int) returns true for this operation, the node can poten-
tially be deleted.

117.14.11.4 public static final int CMD_EXECUTE = 2

Constant for the EXECUTE access type. If can(int) returns true for this operation, the node can po-
tentially be executed.

117.14.11.5 public static final int CMD_GET = 4

Constant for the GET access type. If can(int) returns true for this operation, the value, the list of
child nodes (in case of interior nodes) and the properties of the node can potentially be retrieved.

117.14.11.6 public static final int CMD_REPLACE = 3

Constant for the REPLACE access type. If can(int) returns true for this operation, the value and other
properties of the node can potentially be modified.

117.14.11.7 public static final int DYNAMIC = 1

Constant for representing a dynamic node in the tree. This must be returned by getScope(). Dynam-
ic nodes can be added and deleted.

117.14.11.8 public static final int PERMANENT = 0

Constant for representing a PERMANENT node in the tree. This must be returned by getScope() if the
node cannot be added, deleted or modified in any way through tree operations. PERMANENT nodes
in general map to the roots of Plugins.

117.14.11.9 public boolean can(int operation)

operation One of the MetaNode.CMD_.. . constants.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 438 OSGi Residential Release 6

□ Check whether the given operation is valid for this node. If no meta-data is provided for a node, all
operations are valid.

Returns fa lse if the operation is not valid for this node or the operation code is not one of the allowed con-
stants

117.14.11.10 public DmtData getDefault()

□ Get the default value of this node if any.

Returns The default value or nul l if not defined

117.14.11.11 public String getDescription()

□ Get the explanation string associated with this node. Can be nul l if no description is provided for
this node.

Returns node description string or nul l for no description

117.14.11.12 public Object getExtensionProperty(String key)

key the key for the extension property

□ Returns the value for the specified extension property key. This method only works if the provider
of this MetaNode provides proprietary extensions to node meta data.

Returns the value of the requested property, cannot be nul l

Throws I l legalArgumentException– if the specified key is not supported by this MetaNode

117.14.11.13 public String[] getExtensionPropertyKeys()

□ Returns the list of extension property keys, if the provider of this MetaNode provides proprietary ex-
tensions to node meta data. The method returns nul l if the node doesn't provide such extensions.

Returns the array of supported extension property keys

117.14.11.14 public int getFormat()

□ Get the node's format, expressed in terms of type constants defined in DmtData. If there are mul-
tiple formats allowed for the node then the format constants are OR-ed. Interior nodes must have
DmtData.FORMAT_NODE format, and this code must not be returned for leaf nodes. If no meta-data
is provided for a node, all applicable formats are considered valid (with the above constraints regard-
ing interior and leaf nodes).

Note that the 'format' term is a legacy from OMA DM, it is more customary to think of this as 'type'.

The formats returned by this method are not checked by DmtAdmin, they are only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed format(s) of the node

117.14.11.15 public double getMax()

□ Get the maximum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no upper limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote all numeric limits with full precision. The actual maximum should be the
largest integer, float or long number that does not exceed the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed maximum, or Double.MAX_VALUE if there is no upper limit defined or the node's for-
mat is not one of the numeric formats integer, float, or long

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 439

117.14.11.16 public int getMaxOccurrence()

□ Get the number of maximum occurrences of this type of nodes on the same level in the DMT. Re-
turns Integer.MAX_VALUE if there is no upper limit. Note that if the occurrence is greater than 1
then this node can not have siblings with different metadata. In other words, if different types of
nodes coexist on the same level, their occurrence can not be greater than 1. If no meta-data is provid-
ed for a node, there is no upper limit on the number of occurrences.

Returns The maximum allowed occurrence of this node type

117.14.11.17 public String[] getMimeTypes()

□ Get the list of MIME types this node can hold. The first element of the returned list must be the de-
fault MIME type.

All MIME types are considered valid if no meta-data is provided for a node or if nul l is returned by
this method. In this case the default MIME type cannot be retrieved from the meta-data, but the
node may still have a default. This hidden default (if it exists) can be utilized by passing nul l as the
type parameter of DmtSession.setNodeType(String, String) or DmtSession.createLeafNode(String,
DmtData, String).

Returns the list of allowed MIME types for this node, starting with the default MIME type, or nul l if all types
are allowed

117.14.11.18 public double getMin()

□ Get the minimum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no lower limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote both integer and float limits with full precision. The actual minimum should
be the smallest integer, float or long value that is equal or larger than the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed minimum, or Double.MIN_VALUE if there is no lower limit defined or the node's format
is not one of the numeric formats integer, float, or long

117.14.11.19 public String[] getRawFormatNames()

□ Get the format names for any raw formats supported by the node. This method is only meaningful
if the list of supported formats returned by getFormat() contains DmtData.FORMAT_RAW_STRING
or DmtData.FORMAT_RAW_BINARY: it specifies precisely which raw format(s) are actually sup-
ported. If the node cannot contain data in one of the raw types, this method must return nul l .

The format names returned by this method are not checked by DmtAdmin, they are only for exter-
nal use, for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking
the value, its behavior should be consistent with this method.

Returns the allowed format name(s) of raw data stored by the node, or nul l if raw formats are not supported

117.14.11.20 public int getScope()

□ Return the scope of the node. Valid values are MetaNode.PERMANENT, MetaNode.DYNAMIC and
MetaNode.AUTOMATIC. Note that a permanent node is not the same as a node where the DELETE
operation is not allowed. Permanent nodes never can be deleted, whereas a non-deletable node can
disappear in a recursive DELETE operation issued on one of its parents. If no meta-data is provided
for a node, it can be assumed to be a dynamic node.

Returns PERMANENT for permanent nodes, AUTOMATIC for nodes that are automatically created, and DY-
NAMIC otherwise

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 440 OSGi Residential Release 6

117.14.11.21 public String[] getValidNames()

□ Return an array of Strings if valid names are defined for the node, or nul l if no valid name list is de-
fined or if this piece of meta info is not supported. If no meta-data is provided for a node, all names
are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidName(String) for checking the name, its
behavior should be consistent with this method.

Returns the valid values for this node name, or nul l if not defined

117.14.11.22 public DmtData[] getValidValues()

□ Return an array of DmtData objects if valid values are defined for the node, or nul l otherwise. If no
meta-data is provided for a node, all values are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the valid values for this node, or nul l if not defined

117.14.11.23 public boolean isLeaf()

□ Check whether the node is a leaf node or an internal one.

Returns true if the node is a leaf node

117.14.11.24 public boolean isValidName(String name)

name the node name to check for validity

□ Checks whether the given name is a valid name for this node. This method can be used for example
to ensure that the node name is always one of a predefined set of valid names, or that it matches a
specific pattern. This method should be consistent with the values returned by getValidNames() (if
any), the DmtAdmin only calls this method for name validation.

This method may return true even if not all aspects of the name have been checked, expensive op-
erations (for example those that require external resources) need not be performed here. The actual
node creation may still indicate that the node name is invalid.

Returns fa lse if the specified name is found to be invalid for the node described by this meta-node, true oth-
erwise

117.14.11.25 public boolean isValidValue(DmtData value)

value the value to check for validity

□ Checks whether the given value is valid for this node. This method can be used to ensure that the
value has the correct format and range, that it is well formed, etc. This method should be consistent
with the constraints defined by the getFormat(), getValidValues(), getMin() and getMax() methods (if
applicable), as the Dmt Admin only calls this method for value validation.

This method may return true even if not all aspects of the value have been checked, expensive op-
erations (for example those that require external resources) need not be performed here. The actual
value setting method may still indicate that the value is invalid.

Returns fa lse if the specified value is found to be invalid for the node described by this meta-node, true other-
wise

117.14.11.26 public boolean isZeroOccurrenceAllowed()

□ Check whether zero occurrence of this node is valid. If no meta-data is returned for a node, zero oc-
currences are allowed.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Residential Release 6 Page 441

Returns true if zero occurrence of this node is valid

117.14.12 public final class Uri
This class contains static utility methods to manipulate DMT URIs.

Syntax of valid DMT URIs:

• A slash (' / ' \u002F) is the separator of the node names. Slashes used in node name must therefore
be escaped using a backslash slash ("\/"). The backslash must be escaped with a double backslash
sequence. A backslash found must be ignored when it is not followed by a slash or backslash.

• The node name can be constructed using full Unicode character set (except the Supplementary
code, not being supported by CLDC/CDC). However, using the full Unicode character set for node
names is discouraged because the encoding in the underlying storage as well as the encoding
needed in communications can create significant performance and memory usage overhead.
Names that are restricted to the URI set [-a-zA-Z0-9_. !~*'()] are most efficient.

• URIs used in the DMT must be treated and interpreted as case sensitive.
• No End Slash: URI must not end with the delimiter slash (' / ' \u002F). This implies that the root

node must be denoted as "." and not ". /" .
• No parent denotation: URI must not be constructed using the character sequence ". . / " to traverse

the tree upwards.
• Single Root: The character sequence ". /" must not be used anywhere else but in the beginning of a

URI.

117.14.12.1 public static final String PATH_SEPARATOR = "/"

This constant stands for a string identifying the path separator in the DmTree ("/").

Since 2.0

117.14.12.2 public static final char PATH_SEPARATOR_CHAR = 47

This constant stands for a char identifying the path separator in the DmTree ('/').

Since 2.0

117.14.12.3 public static final String ROOT_NODE = "."

This constant stands for a string identifying the root of the DmTree (".").

Since 2.0

117.14.12.4 public static final char ROOT_NODE_CHAR = 46

This constant stands for a char identifying the root of the DmTree ('.').

Since 2.0

117.14.12.5 public static String decode(String nodeName)

nodeName the node name to be decoded

□ Decode the node name so that back slash and forward slash are unescaped from a back slash.

Returns the decoded node name

Since 2.0

117.14.12.6 public static String encode(String nodeName)

nodeName the node name to be encoded

□ Encode the node name so that back slash and forward slash are escaped with a back slash. This
method is the reverse of decode(String).

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 442 OSGi Residential Release 6

Returns the encoded node name

Since 2.0

117.14.12.7 public static boolean isAbsoluteUri(String uri)

uri the URI to be checked, must not be nul l and must contain a valid URI

□ Checks whether the specified URI is an absolute URI. An absolute URI contains the complete path
to a node in the DMT starting from the DMT root (".").

Returns whether the specified URI is absolute

Throws NullPointerException– if the specified URI is nul l

I l legalArgumentException– if the specified URI is malformed

117.14.12.8 public static boolean isValidUri(String uri)

uri the URI to be validated

□ Checks whether the specified URI is valid. A URI is considered valid if it meets the following con-
straints:

• the URI is not nul l ;
• the URI follows the syntax defined for valid DMT URIs;

The exact definition of the length of a URI and its segments is given in the descriptions of the get-
MaxUriLength() and getMaxSegmentNameLength() methods.

Returns whether the specified URI is valid

117.14.12.9 public static String mangle(String nodeName)

nodeName the node name to be mangled (if necessary), must not be nul l or empty

□ Returns a node name that is valid for the tree operation methods, based on the given node name.
This transformation is not idempotent, so it must not be called with a parameter that is the result of
a previous mangle method call.

Node name mangling is needed in the following cases:

• if the name contains '/' or '\' characters

A node name that does not suffer from either of these problems is guaranteed to remain unchanged
by this method. Therefore the client may skip the mangling if the node name is known to be valid
(though it is always safe to call this method).

The method returns the normalized nodeName as described below. Invalid node names are normal-
ized in different ways, depending on the cause. If the name contains '/' or '\' characters, then these
are simply escaped by inserting an additional '\' before each occurrence. If the length of the name
does exceed the limit, the following mechanism is used to normalize it:

• the SHA 1 digest of the name is calculated
• the digest is encoded with the base 64 algorithm
• all '/' characters in the encoded digest are replaced with '_'
• trailing '=' signs are removed

Returns the normalized node name that is valid for tree operations

Throws NullPointerException– if nodeName is nul l

I l legalArgumentException– if nodeName is empty

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 443

117.14.12.10 public static String[] toPath(String uri)

uri the URI to be split, must not be nul l

□ Split the specified URI along the path separator '/' characters and return an array of URI segments.
Special characters in the returned segments are escaped. The returned array may be empty if the
specified URI was empty.

Returns an array of URI segments created by splitting the specified URI

Throws NullPointerException– if the specified URI is nul l

I l legalArgumentException– if the specified URI is malformed

117.14.12.11 public static String toUri(String[] path)

path a possibly empty array of URI segments, must not be nul l

□ Construct a URI from the specified URI segments. The segments must already be mangled.

If the specified path is an empty array then an empty URI ("") is returned.

Returns the URI created from the specified segments

Throws NullPointerException– if the specified path or any of its segments are nul l

I l legalArgumentException– if the specified path contains too many or malformed segments or the
resulting URI is too long

117.15 org.osgi.service.dmt.spi

Device Management Tree SPI Package Version 2.0.

This package contains the interface classes that compose the Device Management SPI (Service
Provider Interface). These interfaces are implemented by DMT plugins; users of the DmtAdmin inter-
face do not interact directly with these.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.spi ; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.spi ; vers ion="[2.0,2.1)"

117.15.1 Summary

• DataPlugin - An implementation of this interface takes the responsibility of handling data re-
quests in a subtree of the DMT.

• ExecPlugin - An implementation of this interface takes the responsibility of handling node exe-
cute requests in a subtree of the DMT.

• MountPlugin - This interface can be optionally implemented by a DataPlugin or ExecPlugin in or-
der to get information about its absolute mount points in the overall DMT.

• MountPoint - This interface can be implemented to represent a single mount point.
• ReadableDataSession - Provides read-only access to the part of the tree handled by the plugin

that created this session.
• ReadWriteDataSession - Provides non-atomic read-write access to the part of the tree handled

by the plugin that created this session.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 444 OSGi Residential Release 6

• TransactionalDataSession - Provides atomic read-write access to the part of the tree handled by
the plugin that created this session.

117.15.2 public interface DataPlugin
An implementation of this interface takes the responsibility of handling data requests in a subtree
of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the data-
RootURIs registration parameter.

When the first reference in a session is made to a node handled by this plugin, the DmtAdmin calls
one of the open. . . methods to retrieve a plugin session object for processing the request. The called
method depends on the lock type of the current session. In case of openReadWriteSession(String[],
DmtSession) and openAtomicSession(String[], DmtSession), the plugin may return nul l to
indicate that the specified lock type is not supported. In this case the DmtAdmin may call
openReadOnlySession(String[], DmtSession) to start a read-only plugin session, which can be used as
long as there are no write operations on the nodes handled by this plugin.

The sessionRoot parameter of each method is a String array containing the segments of the URI
pointing to the root of the session. This is an absolute path, so the first segment is always ".". Special
characters appear escaped in the segments.

117.15.2.1 public static final String DATA_ROOT_URIS = "dataRootURIs"

The string to be used as key for the “dataRootURIs” property when an DataPlugin is registered.

Since 2.0

117.15.2.2 public static final String MOUNT_POINTS = "mountPoints"

The string to be used as key for the mount points property when a DataPlugin is registered with
mount points.

117.15.2.3 public TransactionalDataSession openAtomicSession(String[] sessionRoot,DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of an atomic read-write session when the first reference is
made within a DmtSession to a node which is handled by this plugin. Session information is given
as it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read-write operations in an atomic block, or nul l if the plugin
does not support atomic read-write sessions

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.2.4 public ReadableDataSession openReadOnlySession(String[] sessionRoot,DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is accessed in the current session, must not be nul l

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 445

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of a read-only session when the first reference is made with-
in a DmtSession to a node which is handled by this plugin. Session information is given as it is
needed for sending alerts back from the plugin.

The plugin can assume that there are no writing sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read operations

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.2.5 public ReadWriteDataSession openReadWriteSession(String[] sessionRoot,DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of a non-atomic read-write session when the first reference
is made within a DmtSession to a node which is handled by this plugin. Session information is giv-
en as it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read-write operations, or nul l if the plugin does not support
non-atomic read-write sessions

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.3 public interface ExecPlugin
An implementation of this interface takes the responsibility of handling node execute requests in a
subtree of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the exec-
RootURIs registration parameter.

117.15.3.1 public static final String EXEC_ROOT_URIS = "execRootURIs"

The string to be used as key for the “execRootURIs” property when an ExecPlugin is registered.

Since 2.0

117.15.3.2 public static final String MOUNT_POINTS = "mountPoints"

The string to be used as key for the mount points property when an Exec Plugin is registered with
mount points.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 446 OSGi Residential Release 6

117.15.3.3 public void execute(DmtSession session,String[] nodePath,String correlator,String data) throws
DmtException

session a reference to the session in which the operation was issued, must not be nul l

nodePath the absolute path of the node to be executed, must not be nul l

correlator an identifier to associate this operation with any alerts sent in response to it, can be nul l

data the parameter of the execute operation, can be nul l

□ Execute the given node with the given data. This operation corresponds to the EXEC command in
OMA DM.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued. Session information is given as it is needed for
sending alerts back from the plugin. If a correlation ID is specified, it should be used as the correla-
tor parameter for alerts sent in response to this execute operation.

The nodePath parameter contains an array of path segments identifying the node to be executed in
the subtree of this plugin. This is an absolute path, so the first segment is always ".". Special charac-
ters appear escaped in the segments.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if the node does not exist
• METADATA_MISMATCH if the command failed because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

See Also DmtSession.execute(String, String), DmtSession.execute(String, String, String)

117.15.4 public interface MountPlugin
This interface can be optionally implemented by a DataPlugin or ExecPlugin in order to get informa-
tion about its absolute mount points in the overall DMT.

This is especially interesting, if the plugin is mapped to the tree as part of a list. In such a case the id
for this particular data plugin is determined by the DmtAdmin after the registration of the plugin
and therefore unknown to the plugin in advance.

This is not a service interface, the Data or Exec Plugin does not also have to register this interface as
a service, the Dmt Admin should use an instanceof to detect that a Plugin is also a Mount Plugin.

Since 2.0

117.15.4.1 public void mountPointAdded(MountPoint mountPoint)

mountPoint the newly mapped mount point

□ Provides the MountPoint describing the path where the plugin is mapped in the overall DMT. The
given mountPoint is withdrawn with the mountPointRemoved(MountPoint) method. Correspond-
ing mount points must compare equal and have an appropriate hash code.

117.15.4.2 public void mountPointRemoved(MountPoint mountPoint)

mountPoint The unmapped mount point array of MountPoint objects that have been removed from the mapping

□ Informs the plugin that the provided MountPoint objects have been removed from the mapping.
The given mountPoint is withdrawn method. Mount points must compare equal and have an appro-
priate hash code with the given Mount Point in mountPointAdded(MountPoint).

NOTE: attempts to invoke the postEvent method on the provided MountPoint must be ignored.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 447

117.15.5 public interface MountPoint
This interface can be implemented to represent a single mount point.

It provides function to get the absolute mounted uri and a shortcut method to post events via the
DmtAdmin.

Since 2.0

117.15.5.1 public boolean equals(Object other)

□ This object must provide a suitable hash function such that a Mount Point given in
MountPlugin.mountPointAdded(MountPoint) is equal to the corresponding Mount Point in
MountPlugin.mountPointRemoved(MountPoint). Object.equals(Object)

117.15.5.2 public String[] getMountPath()

□ Provides the absolute mount path of this MountPoint

Returns the absolute mount path of this MountPoint

117.15.5.3 public int hashCode()

□ This object must provide a suitable hash function such that a Mount Point given in
MountPlugin.mountPointAdded(MountPoint) has the same hashCode as the corresponding Mount
Point in MountPlugin.mountPointRemoved(MountPoint). Object.hashCode()

117.15.5.4 public void postEvent(String topic,String[] relativeURIs,Dictionary properties)

topic the topic of the event to send. Valid values are:

• org/osgi/service/dmt/DmtEvent/ADDED if the change was caused by an add action
• org/osgi/service/dmt/DmtEvent/DELETED if the change was caused by a delete action
• org/osgi/service/dmt/DmtEvent/REPLACED if the change was caused by a replace action

Must not be nul l .

relativeURIs an array of affected node URI 's. All URI 's specified here are relative to the current MountPoint 's
mountPath. The value of this parameter determines the value of the event property
EVENT_PROPERTY_NODES . An empty array or nul l is permitted. In both cases the value of the
events EVENT_PROPERTY_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to be send
by the DMTAdmin. If the properties contain a key EVENT_PROPERTY_NODES , then the value of this
property is ignored and will be overwritten by relat iveURIs .

□ Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws I l legalArgumentException– if the topic has not one of the defined values

117.15.5.5 public void postEvent(String topic,String[] relativeURIs,String[] newRelativeURIs,Dictionary properties)

topic the topic of the event to send. Valid values are:

• org/osgi/service/dmt/DmtEvent/RENAMED if the change was caused by a rename action
• org/osgi/service/dmt/DmtEvent/COPIED if the change was caused by a copy action

Must not be nul l .

relativeURIs an array of affected node URI 's.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 448 OSGi Residential Release 6

All URI 's specified here are relative to the current MountPoint 's mountPath. The value of this para-
meter determines the value of the event property EVENT_PROPERTY_NODES . An empty array or
nul l is permitted. In both cases the value of the events EVENT_PROPERTY_NODES property will be
set to an empty array.

newRelativeURIs an array of affected node URI 's. The value of this parameter determines the value of the event prop-
erty EVENT_PROPERTY_NEW_NODES . An empty array or nul l is permitted. In both cases the value of
the events EVENT_PROPERTY_NEW_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to
be send by the DMTAdmin. If the properties contain the keys EVENT_PROPERTY_NODES or
EVENT_PROPERTY_NEW_NODES , then the values of these properties are ignored and will be over-
written by relat iveURIs and newRelat iveURIs .

□ Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws I l legalArgumentException– if the topic has not one of the defined values

117.15.6 public interface ReadableDataSession
Provides read-only access to the part of the tree handled by the plugin that created this session.

Since the ReadWriteDataSession and TransactionalDataSession interfaces inherit from this inter-
face, some of the method descriptions do not apply for an instance that is only a ReadableDataSes-
sion . For example, the close() method description also contains information about its behavior
when invoked as part of a transactional session.

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first
segment is always ".". Special characters appear escaped in the segments.

Error handling

When a tree access command is called on the DmtAdmin service, it must perform an exten-
sive set of checks on the parameters and the authority of the caller before delegating the call
to a plugin. Therefore plugins can take certain circumstances for granted: that the path is
valid and is within the subtree of the plugin and the session, the command can be applied to
the given node (e.g. the target of getChi ldNodeNames is an interior node), etc. All errors de-
scribed by the error codes DmtException.INVALID_URI, DmtException.URI_TOO_LONG,
DmtException.PERMISSION_DENIED, DmtException.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode. If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to in-
dicate such discrepancies.

The DmtAdmin does not check that the targeted node exists before calling the plugin. It is the re-
sponsibility of the plugin to perform this check and to throw a DmtException.NODE_NOT_FOUND
if needed. In this case the DmtAdmin must pass through this exception to the caller of the corre-
sponding DmtSession method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.

117.15.6.1 public void close() throws DmtException

□ Closes a session. This method is always called when the session ends for any reason: if the session is
closed, if a fatal error occurs in any method, or if any error occurs during commit or rollback. In case
the session was invalidated due to an exception during commit or rollback, it is guaranteed that no

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 449

methods are called on the plugin until it is closed. In case the session was invalidated due to a fatal
exception in one of the tree manipulation methods, only the rollback method is called before this
(and only in atomic sessions).

This method should not perform any data manipulation, only cleanup operations. In non-atom-
ic read-write sessions the data manipulation should be done instantly during each tree operation,
while in atomic sessions the DmtAdmin always calls TransactionalDataSession.commit() automati-
cally before the session is actually closed.

Throws DmtException– with the error code COMMAND_FAILED if the plugin failed to close for any reason

117.15.6.2 public String[] getChildNodeNames(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the list of children names of a node. The returned array contains the names - not the URIs - of
the immediate children nodes of the given node. The returned array may contain nul l entries, but
these are removed by the DmtAdmin before returning it to the client.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.3 public MetaNode getMetaNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the meta data which describes a given node. Meta data can be only inspected, it can not be
changed.

Meta data support by plugins is an optional feature. It can be used, for example, when a data plugin
is implemented on top of a data store or another API that has their own metadata, such as a relation-
al database, in order to avoid metadata duplication and inconsistency. The meta data specific to the
plugin returned by this method is complemented by meta data from the DmtAdmin before return-
ing it to the client. If there are differences in the meta data elements known by the plugin and the
DmtAdmin then the plugin specific elements take precedence.

Note, that a node does not have to exist for having meta-data associated with it. This method may
provide meta-data for any node that can possibly exist in the tree (any node defined by the Manage-
ment Object provided by the plugin). For nodes that are not defined, a DmtException may be thrown
with the NODE_NOT_FOUND error code. To allow easier implementation of plugins that do not pro-
vide meta-data, it is allowed to return nul l for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 450 OSGi Residential Release 6

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.4 public int getNodeSize(String[] nodePath) throws DmtException

nodePath the absolute path of the leaf node

□ Get the size of the data in a leaf node. The value to return depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Size property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtData.getSize()

117.15.6.5 public Date getNodeTimestamp(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the timestamp when the node was last modified.

Returns the timestamp of the last modification

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.6 public String getNodeTitle(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 451

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.7 public String getNodeType(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of
an interior node is a URI identifying a DDF document; a nul l type means that there is no DDF docu-
ment overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.8 public DmtData getNodeValue(String[] nodePath) throws DmtException

nodePath the absolute path of the node to retrieve

□ Get the data contained in a leaf or interior node.

Returns the data of the leaf node, must not be nul l

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java

object values
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.9 public int getNodeVersion(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException– with the following possible error codes:

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 452 OSGi Residential Release 6

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Version property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.10 public boolean isLeafNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.11 public boolean isNodeUri(String[] nodePath)

nodePath the absolute path to check

□ Check whether the specified path corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

117.15.6.12 public void nodeChanged(String[] nodePath) throws DmtException

nodePath the absolute path of the node that has changed

□ Notifies the plugin that the given node has changed outside the scope of the plugin, therefore the
Version and Timestamp properties must be updated (if supported). This method is needed because
the ACL property of a node is managed by the DmtAdmin instead of the plugin. The DmtAdmin
must call this method whenever the ACL property of a node changes.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

117.15.7 public interface ReadWriteDataSession
extends ReadableDataSession
Provides non-atomic read-write access to the part of the tree handled by the plugin that created this
session.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 453

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first
segment is always ".". Special characters appear escaped in the segments.

Error handling

When a tree manipulation command is called on the DmtAdmin service, it must perform
an extensive set of checks on the parameters and the authority of the caller before delegat-
ing the call to a plugin. Therefore plugins can take certain circumstances for granted: that
the path is valid and is within the subtree of the plugin and the session, the command can
be applied to the given node (e.g. the target of setNodeValue is a leaf node), etc. All errors de-
scribed by the error codes DmtException.INVALID_URI, DmtException.URI_TOO_LONG,
DmtException.PERMISSION_DENIED, DmtException.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode. If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to in-
dicate such discrepancies.

The DmtAdmin does not check that the targeted node exists (or that it does not exist, in case of a
node creation) before calling the plugin. It is the responsibility of the plugin to perform this check
and to throw a DmtException.NODE_NOT_FOUND or DmtException.NODE_ALREADY_EXISTS if
needed. In this case the DmtAdmin must pass through this exception to the caller of the correspond-
ing DmtSession method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.

117.15.7.1 public void copy(String[] nodePath,String[] newNodePath,boolean recursive) throws DmtException

nodePath an absolute path specifying the node or the root of a subtree to be copied

newNodePath the absolute path of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

□ Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most prop-
erties managed by the plugin must also be copied, with the exception of the Timestamp and Version
properties.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node, or if newNodePath points to a
node that cannot exist in the tree

• NODE_ALREADY_EXISTS if newNodePath points to a node that already exists
• METADATA_MISMATCH if the node could not be copied because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the copy operation is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.copy(String, String, boolean)

117.15.7.2 public void createInteriorNode(String[] nodePath,String type) throws DmtException

nodePath the absolute path of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 454 OSGi Residential Release 6

□ Create an interior node with a given type. The type of interior node, if specified, is a URI identifying
a DDF document.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createInteriorNode(String), DmtSession.createInteriorNode(String, String)

117.15.7.3 public void createLeafNode(String[] nodePath,DmtData value,String mimeType) throws DmtException

nodePath the absolute path of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

□ Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l ,
their default values must be taken.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
• NODE_ALREADY_EXISTS if nodePath points to a node that already exists
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createLeafNode(String), DmtSession.createLeafNode(String, DmtData),
DmtSession.createLeafNode(String, DmtData, String)

117.15.7.4 public void deleteNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node to delete

□ Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node
is deleted.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.deleteNode(String)

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Residential Release 6 Page 455

117.15.7.5 public void renameNode(String[] nodePath,String newName) throws DmtException

nodePath the absolute path of the node to rename

newName the new name property of the node

□ Rename a node. This operation only changes the name of the node (updating the timestamp and
version properties if they are supported), the value and the other properties are not changed. The
new name of the node must be provided, the new path is constructed from the base of the old path
and the given name.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node, or if the new node is not defined
in the tree

• NODE_ALREADY_EXISTS if there already exists a sibling of nodePath with the name newName
• METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.renameNode(String, String)

117.15.7.6 public void setNodeTitle(String[] nodePath,String title) throws DmtException

nodePath the absolute path of the node

title the title text of the node, can be nul l

□ Set the title property of a node. The length of the title is guaranteed not to exceed the limit of 255
bytes in UTF-8 encoding.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the title could not be set because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeTitle(String, String)

117.15.7.7 public void setNodeType(String[] nodePath,String type) throws DmtException

nodePath the absolute path of the node

type the type of the node, can be nul l

□ Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, the nul l type should remove the reference (if any) to a DDF document overriding
the tree structure defined by the ancestors. For leaf nodes, it requests that the default MIME type is
used for the given node.

Throws DmtException– with the following possible error codes:

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 456 OSGi Residential Release 6

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the type could not be set because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeType(String, String)

117.15.7.8 public void setNodeValue(String[] nodePath,DmtData data) throws DmtException

nodePath the absolute path of the node

data the data to be set, can be nul l

□ Set the value of a leaf or interior node. The format of the node is contained in the DmtData object.
For interior nodes, the format is FORMAT_NODE , while for leaf nodes this format is never used.

If the specified value is nul l , the default value must be taken; if there is no default value, a DmtEx-
ception with error code METADATA_MISMATCH must be thrown.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the value could not be set because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java

object values
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeValue(String, DmtData)

117.15.8 public interface TransactionalDataSession
extends ReadWriteDataSession
Provides atomic read-write access to the part of the tree handled by the plugin that created this ses-
sion.

117.15.8.1 public void commit() throws DmtException

□ Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

In many cases the tree is not the only way to manage a given part of the system. It may happen
that while modifying some nodes in an atomic session, the underlying settings are modified in par-
allel outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException– with the following possible error codes

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification

OSGi Residential Release 6 Page 457

• METADATA_MISMATCH if the operation failed because of meta-data restrictions
• CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope

of the DMT to the nodes affected in the session's operations
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.8.2 public void rollback() throws DmtException

□ Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit and rollback calls.

Throws DmtException– with the error code ROLLBACK_FAILED in case the rollback did not succeed

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.16 org.osgi.service.dmt.notification

Device Management Tree Notification Package Version 2.0.

This package contains the public API of the Notification service. This service enables the send-
ing of asynchronous notifications to management servers. Permission classes are provided by the
org.osgi .service.dmt.security package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion="[2.0,2.1)"

117.16.1 Summary

• Alert Item - Immutable data structure carried in an alert (client initiated notification).
• Notif icat ionService - NotificationService enables sending asynchronous notifications to a man-

agement server.

117.16.2 public class AlertItem
Immutable data structure carried in an alert (client initiated notification). The Alert Item describes
details of various notifications that can be sent by the client, for example as alerts in the OMA DM
protocol. The use cases include the client sending a session request to the server (alert 1201), the
client notifying the server of completion of a software update operation (alert 1226) or sending back
results in response to an asynchronous EXEC command.

The data syntax and semantics varies widely between various alerts, so does the optionality of par-
ticular parameters of an alert item. If an item, such as source or type, is not defined, the correspond-
ing getter method returns nul l . For example, for alert 1201 (client-initiated session) all elements will
be nul l .

org.osgi.service.dmt.notification Dmt Admin Service Specification Version 2.0

Page 458 OSGi Residential Release 6

The syntax used in Alert Item class corresponds to the OMA DM alert format. NotificationService
implementations on other management protocols should map these constructs to the underlying
protocol.

117.16.2.1 public AlertItem(String source,String type,String mark,DmtData data)

source the URI of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

□ Create an instance of the alert item. The constructor takes all possible data entries as parameters.
Any of these parameters can be nul l . The semantics of the parameters may be refined by the defini-
tion of a specific alert, identified by its alert code (see NotificationService.sendNotification(String,
int, String, AlertItem[])). In case of Generic Alerts for example (code 1226), the mark parameter con-
tains a severity string.

117.16.2.2 public AlertItem(String[] source,String type,String mark,DmtData data)

source the path of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

□ Create an instance of the alert item, specifying the source node URI as an array of path segments.
The constructor takes all possible data entries as parameters. Any of these parameters can be nul l .
The semantics of the parameters may be refined by the definition of a specific alert, identified by
its alert code (see NotificationService.sendNotification(String, int, String, AlertItem[])). In case of
Generic Alerts for example (code 1226), the mark parameter contains a severity string.

117.16.2.3 public DmtData getData()

□ Get the data associated with the alert item. The returned DmtData object contains the format and
the value of the data in the alert item. There might be no data associated with the alert item.

Returns the data associated with the alert item, or nul l if there is no data

117.16.2.4 public String getMark()

□ Get the mark parameter associated with the alert item. The interpretation of the
mark parameter depends on the alert being sent, as identified by the alert code in
NotificationService.sendNotification(String, int, String, AlertItem[]) . There might be no mark asso-
ciated with the alert item.

Returns the mark associated with the alert item, or nul l if there is no mark

117.16.2.5 public String getSource()

□ Get the node which is the source of the alert. There might be no source associated with the alert
item.

Returns the URI of the node which is the source of this alert, or nul l if there is no source

117.16.2.6 public String getType()

□ Get the type associated with the alert item. The type string is a MIME type or a URN that identifies
the type of the data in the alert item (returned by getData()). There might be no type associated with
the alert item.

Returns the type associated with the alert item, or nul l if there is no type

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification

OSGi Residential Release 6 Page 459

117.16.2.7 public String toString()

□ Returns the string representation of this alert item. The returned string includes all parameters of
the alert item, and has the following format:

 AlertItem(<source>, <type>, <mark>, <data>)

The last parameter is the string representation of the data value. The format of the data is not explic-
itly included.

Returns the string representation of this alert item

117.16.3 public interface NotificationService
NotificationService enables sending asynchronous notifications to a management server. The im-
plementation of Notif icat ionService should register itself in the OSGi service registry as a service.

117.16.3.1 public void sendNotification(String principal,int code,String correlator,AlertItem[] items) throws
DmtException

principal the principal name which is the recipient of this notification, can be nul l

code the alert code, can be 0 if not needed

correlator optional field that contains the correlation identifier of an associated exec command, can be nul l if
not needed

items the data of the alert items carried in this alert, can be nul l or empty if not needed

□ Sends a notification to a named principal. It is the responsibility of the Notif ica-
t ionService to route the notification to the given principal using the registered
org.osgi.service.dmt.notification.spi.RemoteAlertSender services.

In remotely initiated sessions the principal name identifies the remote server that created the ses-
sion, this can be obtained using the session's getPrincipal call.

The principal name may be omitted if the client does not know the principal name. Even in this
case the routing might be possible if the Notification Service finds an appropriate default destina-
tion (for example if it is only connected to one protocol adapter, which is only connected to one
management server).

Since sending the notification and receiving acknowledgment for it is potentially a very time-con-
suming operation, notifications are sent asynchronously. This method should attempt to ensure
that the notification can be sent successfully, and should throw an exception if it detects any prob-
lems. If the method returns without error, the notification is accepted for sending and the imple-
mentation must make a best-effort attempt to deliver it.

In case the notification is an asynchronous response to a previous execute command, a correlation
identifier can be specified to provide the association between the execute and the notification.

In order to send a notification using this method, the caller must have an AlertPermission with a
target string matching the specified principal name. If the principal parameter is nul l (the principal
name is not known), the target of the AlertPermission must be "*".

When this method is called with null correlator, null or empty AlertItem array, and a 0 code as val-
ues, it should send a protocol specific default notification to initiate a management session. For ex-
ample, in case of OMA DM this is alert 1201 "Client Initiated Session". The principal parameter can
be used to determine the recipient of the session initiation request.

Throws DmtException– with the following possible error codes:

• UNAUTHORIZED when the remote server rejected the request due to insufficient authorization
• ALERT_NOT_ROUTED when the alert can not be routed to the given principal
• REMOTE_ERROR in case of communication problems between the device and the destination

org.osgi.service.dmt.notification.spi Dmt Admin Service Specification Version 2.0

Page 460 OSGi Residential Release 6

• COMMAND_FAILED for unspecified errors encountered while attempting to complete the com-
mand

• FEATURE_NOT_SUPPORTED if the underlying management protocol doesn't support asynchro-
nous notifications

SecurityException– if the caller does not have the required AlertPermission with a target matching
the principal parameter, as described above

117.17 org.osgi.service.dmt.notification.spi

Device Management Tree Notification SPI Package Version 2.0.

This package contains the SPI (Service Provider Interface) of the Notification service. These inter-
faces are implemented by Protocol Adapters capable of delivering notifications to management
servers on a specific protocol. Users of the Notif icat ionService interface do not interact directly with
this package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion="[2.0,2.1)"

117.17.1 Summary

• RemoteAlertSender - The RemoteAlertSender can be used to send notifications to (remote) enti-
ties identified by principal names.

117.17.2 public interface RemoteAlertSender
The RemoteAlertSender can be used to send notifications to (remote) entities identi-
fied by principal names. This service is provided by Protocol Adapters, and is used by the
org.osgi.service.dmt.notification.NotificationService when sending alerts. Implementations of this
interface have to be able to connect and send alerts to one or more management servers in a proto-
col specific way.

The properties of the service registration should specify a list of destinations (principals) where the
service is capable of sending alerts. This can be done by providing a Str ing array of principal names
in the principals registration property. If this property is not registered, the service will be treated as
the default sender. The default alert sender is only used when a more specific alert sender cannot be
found.

The principals registration property is used when the
org.osgi.service.dmt.notification.NotificationService.sendNotification(String, int, String,
AlertItem[]) method is called, to find the proper RemoteAlertSender for the given destination. If
the caller does not specify a principal, the alert is only sent if the Notification Sender finds a default
alert sender, or if the choice is unambiguous for some other reason (for example if only one alert
sender is registered).

117.17.2.1 public void sendAlert(String principal,int code,String correlator,AlertItem[] items) throws Exception

principal the name identifying the server where the alert should be sent, can be nul l

code the alert code, can be 0 if not needed

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Residential Release 6 Page 461

correlator the correlation identifier of an associated EXEC command, or nul l if there is no associated EXEC

items the data of the alert items carried in this alert, can be empty or nul l if no alert items are needed

□ Sends an alert to a server identified by its principal name. In case the alert is sent in response to a
previous execute command, a correlation identifier can be specified to provide the association be-
tween the execute and the alert.

The principal parameter specifies which server the alert should be sent to. This parameter can be
nul l if the client does not know the name of the destination. The alert should still be delivered if pos-
sible; for example if the alert sender is only connected to one destination.

Any exception thrown on this method will be propagated to the original sender of the event,
wrapped in a DmtException with the code REMOTE_ERROR .

Since sending the alert and receiving acknowledgment for it is potentially a very time-consuming
operation, alerts are sent asynchronously. This method should attempt to ensure that the alert can
be sent successfully, and should throw an exception if it detects any problems. If the method returns
without error, the alert is accepted for sending and the implementation must make a best-effort at-
tempt to deliver it.

Throws Exception– if the alert can not be sent to the server

117.18 org.osgi.service.dmt.security

Device Management Tree Security Package Version 2.0.

This package contains the permission classes used by the Device Management API in environments
that support the Java 2 security model.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.security; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.security; vers ion="[2.0,2.1)"

117.18.1 Summary

• AlertPermission - Indicates the callers authority to send alerts to management servers, identified
by their principal names.

• DmtPermission - Controls access to management objects in the Device Management Tree
(DMT).

• DmtPrincipalPermission - Indicates the callers authority to create DMT sessions on behalf of a
remote management server.

117.18.2 public class AlertPermission
extends Permission
Indicates the callers authority to send alerts to management servers, identified by their principal
names.

AlertPermission has a target string which controls the principal names where alerts can be sent. A
wildcard is allowed at the end of the target string, to allow sending alerts to any principal with a
name matching the given prefix. The "*" target means that alerts can be sent to any destination.

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0

Page 462 OSGi Residential Release 6

117.18.2.1 public AlertPermission(String target)

target the name of a principal, can end with * to match any principal identifier with the given prefix

□ Creates a new AlertPermission object with its name set to the target string. Name must be non-null
and non-empty.

Throws NullPointerException– if name is nul l

I l legalArgumentException– if name is empty

117.18.2.2 public AlertPermission(String target,String actions)

target the name of the server, can end with * to match any server identifier with the given prefix

actions no actions defined, must be "*" for forward compatibility

□ Creates a new AlertPermission object using the 'canonical' two argument constructor. In this ver-
sion this class does not define any actions, the second argument of this constructor must be "*" so
that this class can later be extended in a backward compatible way.

Throws NullPointerException– if name or actions is nul l

I l legalArgumentException– if name is empty or actions is not "*"

117.18.2.3 public boolean equals(Object obj)

obj the object to compare to this AlertPermission instance

□ Checks whether the given object is equal to this AlertPermission instance. Two AlertPermission in-
stances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance

117.18.2.4 public String getActions()

□ Returns the action list (always * in the current version).

Returns the action string "*"

117.18.2.5 public int hashCode()

□ Returns the hash code for this permission object. If two AlertPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two AlertPermission objects
must produce the same integer result.

Returns hash code for this permission object

117.18.2.6 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this AlertPermission object implies the specified permission. Another AlertPermission in-
stance is implied by this permission either if the target strings are identical, or if this target can be
made identical to the other target by replacing a trailing "*" with any string.

Returns true if this AlertPermission instance implies the specified permission

117.18.2.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing AlertPermission objects.

Returns the new PermissionCollection

117.18.3 public class DmtPermission
extends Permission
Controls access to management objects in the Device Management Tree (DMT). It is intended to
control local access to the DMT. DmtPermission target string identifies the management object URI

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Residential Release 6 Page 463

and the action field lists the OMA DM commands that are permitted on the management object. Ex-
ample:

 DmtPermission("./OSGi/bundles", "Add,Replace,Get");

This means that owner of this permission can execute Add, Replace and Get commands on the ./
OSGi/bundles management object. It is possible to use wildcards in both the target and the actions
field. Wildcard in the target field means that the owner of the permission can access children nodes
of the target node. Example:

 DmtPermission("./OSGi/bundles/*", "Get");

This means that owner of this permission has Get access on every child node of ./OSGi/bundles. The
asterisk does not necessarily have to follow a '/' character. For example the ". /OSGi/a*" target match-
es the . /OSGi/appl icat ions subtree.

If wildcard is present in the actions field, all legal OMA DM commands are allowed on the designat-
ed nodes(s) by the owner of the permission. Action names are interpreted case-insensitively, but the
canonical action string returned by getActions() uses the forms defined by the action constants.

117.18.3.1 public static final String ADD = "Add"

Holders of DmtPermission with the Add action present can create new nodes in the DMT, that
is they are authorized to execute the createInteriorNode() and createLeafNode() methods of the
DmtSession. This action is also required for the copy() command, which needs to perform node cre-
ation operations (among others).

117.18.3.2 public static final String DELETE = "Delete"

Holders of DmtPermission with the Delete action present can delete nodes from the DMT, that is
they are authorized to execute the deleteNode() method of the DmtSession.

117.18.3.3 public static final String EXEC = "Exec"

Holders of DmtPermission with the Exec action present can execute nodes in the DMT, that is they
are authorized to call the execute() method of the DmtSession.

117.18.3.4 public static final String GET = "Get"

Holders of DmtPermission with the Get action present can query DMT node value or properties,
that is they are authorized to execute the isLeafNode(), getNodeAcl(), getEffectiveNodeAcl(), get-
MetaNode(), getNodeValue(), getChildNodeNames(), getNodeTitle(), getNodeVersion(), getNode-
TimeStamp(), getNodeSize() and getNodeType() methods of the DmtSession. This action is also re-
quired for the copy() command, which needs to perform node query operations (among others).

117.18.3.5 public static final String REPLACE = "Replace"

Holders of DmtPermission with the Replace action present can update DMT node value or proper-
ties, that is they are authorized to execute the setNodeAcl(), setNodeTitle(), setNodeValue(), setNode-
Type() and renameNode() methods of the DmtSession. This action is also be required for the copy()
command if the original node had a title property (which must be set in the new node).

117.18.3.6 public DmtPermission(String dmtUri,String actions)

dmtUri URI of the management object (or subtree)

actions OMA DM actions allowed

□ Creates a new DmtPermission object for the specified DMT URI with the specified actions. The giv-
en URI can be:

• "*" , which matches all valid (see Uri.isValidUri(String)) absolute URIs;

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0

Page 464 OSGi Residential Release 6

• the prefix of an absolute URI followed by the * character (for example ". /OSGi/L*"), which
matches all valid absolute URIs beginning with the given prefix;

• a valid absolute URI, which matches itself.

Since the * character is itself a valid URI character, it can appear as the last character of a valid ab-
solute URI. To distinguish this case from using * as a wildcard, the * character at the end of the URI
must be escaped with the \ character. For example the URI ". /a*" matches ". /a" , ". /aa" , ". /a/b" etc.
while ". /a*" matches ". /a*" only.

The actions string must either be "*" to allow all actions, or it must contain a non-empty subset of
the valid actions, defined as constants in this class.

Throws NullPointerException– if any of the parameters are nul l

I l legalArgumentException– if any of the parameters are invalid

117.18.3.7 public boolean equals(Object obj)

obj the object to compare to this DmtPermission instance

□ Checks whether the given object is equal to this DmtPermission instance. Two DmtPermission in-
stances are equal if they have the same target string and the same action mask. The "*" action mask
is considered equal to a mask containing all actions.

Returns true if the parameter represents the same permissions as this instance

117.18.3.8 public String getActions()

□ Returns the String representation of the action list. The allowed actions are listed in the following
order: Add, Delete, Exec, Get, Replace. The wildcard character is not used in the returned string, even
if the class was created using the "*" wildcard.

Returns canonical action list for this permission object

117.18.3.9 public int hashCode()

□ Returns the hash code for this permission object. If two DmtPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two DmtPermission objects
must produce the same integer result.

Returns hash code for this permission object

117.18.3.10 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this DmtPermission object "implies" the specified permission. This method returns fa lse if
and only if at least one of the following conditions are fulfilled for the specified permission:

• it is not a DmtPermission
• its set of actions contains an action not allowed by this permission
• the set of nodes defined by its path contains a node not defined by the path of this permission

Returns true if this DmtPermission instance implies the specified permission

117.18.3.11 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DmtPermission objects.

Returns the new PermissionCollection

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Residential Release 6 Page 465

117.18.4 public class DmtPrincipalPermission
extends Permission
Indicates the callers authority to create DMT sessions on behalf of a remote management server. On-
ly protocol adapters communicating with management servers should be granted this permission.

DmtPrincipalPermission has a target string which controls the name of the principal on whose be-
half the protocol adapter can act. A wildcard is allowed at the end of the target string, to allow using
any principal name with the given prefix. The "*" target means the adapter can create a session in
the name of any principal.

117.18.4.1 public DmtPrincipalPermission(String target)

target the name of the principal, can end with * to match any principal with the given prefix

□ Creates a new DmtPrincipalPermission object with its name set to the target string. Name must be
non-null and non-empty.

Throws NullPointerException– if name is nul l

I l legalArgumentException– if name is empty

117.18.4.2 public DmtPrincipalPermission(String target,String actions)

target the name of the principal, can end with * to match any principal with the given prefix

actions no actions defined, must be "*" for forward compatibility

□ Creates a new DmtPrincipalPermission object using the 'canonical' two argument constructor. In
this version this class does not define any actions, the second argument of this constructor must be
"*" so that this class can later be extended in a backward compatible way.

Throws NullPointerException– if name or actions is nul l

I l legalArgumentException– if name is empty or actions is not "*"

117.18.4.3 public boolean equals(Object obj)

obj the object to compare to this DmtPrincipalPermission instance

□ Checks whether the given object is equal to this DmtPrincipalPermission instance. Two DmtPrinci-
palPermission instances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance

117.18.4.4 public String getActions()

□ Returns the action list (always * in the current version).

Returns the action string "*"

117.18.4.5 public int hashCode()

□ Returns the hash code for this permission object. If two DmtPrincipalPermission objects are equal
according to the equals(Object) method, then calling this method on each of the two DmtPrinci-
palPermission objects must produce the same integer result.

Returns hash code for this permission object

117.18.4.6 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this DmtPrincipalPermission object implies the specified permission. Another DmtPrin-
cipalPermission instance is implied by this permission either if the target strings are identical, or if
this target can be made identical to the other target by replacing a trailing "*" with any string.

References Dmt Admin Service Specification Version 2.0

Page 466 OSGi Residential Release 6

Returns true if this DmtPrincipalPermission instance implies the specified permission

117.18.4.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DmtPrincipalPermission objects.

Returns the new PermissionCollection

117.19 References

[1] OMA DM-TND v1.2 draft
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
TS-DM-TND-V1_2-20050615-C.zip

[2] OMA DM-RepPro v1.2 draft:
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
DM-RepPro-V1_2_0-20050131-D.zip

[3] IETF RFC2578. Structure of Management Information
Version 2 (SMIv2)
http://www.ietf.org/rfc/rfc2578.txt

[4] Java™ Management Extensions Instrumentation and Agent Specification v1.2, October 2002,
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

[5] JSR 9 - Federated Management Architecture (FMA) Specification
Version 1.0, January 2000
http://www.jcp.org/en/jsr/detailid=9

[6] WBEM Profile Template, DSP1000
Status: Draft, Version 1.0 Preliminary, March 11, 2004
http://www.dmtf.org/standards/wbem

[7] SNMP
http://www.wtcs.org/snmp4tpc/snmp_rfc.htm#rfc

[8] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[9] MIME Media Types
http://www.iana.org/assignments/media-types/

[10] RFC 3548 The Base16, Base32, and Base64 Data Encodings
http://www.ietf.org/rfc/rfc3548.txt

[11] Secure Hash Algorithm 1
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[12] TR-069 CPE WAN Management Protocol (CWMP)
Customer Premises Equipment Wide Area Network Management Protocol (CWMP)
http://en.wikipedia.org/wiki/TR-069

[13] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/

TR069 Connector Service Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 467

131 TR069 Connector Service
Specification

Version 1.0

131.1 Introduction
This chapter provides a specification for the TR069 Connector, an assistant to a Protocol Adapter
based on [1] TR-069 Amendment 3. A TR069 Connector provides a mapping of TR-069 concepts to/
from the Dmt Admin Service Specification on page 341. It mainly handles the low level details of Ob-
ject/Parameter Name to Dmt Admin URI mapping, and vice versa. TR-069 Protocol Adapter develop-
ers can use this service to simplify the use the Dmt Admin service. The TR069 Connector service is
based on the definition of a Protocol Mapping in Protocol Mapping on page 384. It is assumed that the
reader understands TR-069 and has a basic understanding of the Dmt Admin service.

The examples in this specification are not from a Broadband Forum Technical Report and are purely
fictional.

131.1.1 Essentials

• Connector - Provide a TR-069 view on top of the Dmt Admin service.
• Simplify - Simplify the handling of data models implemented through the DMT through the

TR-069 protocol.
• Browse - Implement the constructs for MAP and LIST handling.
• Native - Provide a mechanism for Data Plugins to convey conversion information to the Protocol

Adapter so that native TR-069 object models can be implemented as Data Plugins.

131.1.2 Entities

• TR069ConnectorFactory - Provides a way to create a TR069Connector that is bound to an active
Dmt Session.

• TR069Connector - Created by TR069ConnectorFactory on a Dmt Session; provides methods that
helps in using the TR-069 namespace and RPCs on a Dmt Admin DMT.

• ParameterValue - The value of a parameter, maps to the TR-069 ParameterValueStruct .
• ParameterInfo - Information about the parameter, maps to the TR-069 ParameterInfoStruct .
• DMT - The Device Management Tree as available through the Dmt Admin service.

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0

Page 468 OSGi Residential Release 6

Figure 131.1 TR-069 Entities

TR069
Connector
Factory impl

TR-069 Protocol
Adapter Impl

TR069
Connector

Factory

Dmt Admin
Service Impl

Dmt
Admin

Remote Manager

131.1.3 Synopsis
A TR-069 Protocol Adapter first creates a Dmt Session on the node in the DMT that maps to an ob-
ject model that should be visible to the TR-069 Management Server. A Protocol Adapter can choose
to map a whole sub-tree or it can create a virtual object model based on different nodes, this depends
on the implementation of the Protocol Adapter.

When a TR-069 RPC arrives, the Protocol Adapter must parse the SOAP message and analyze the
request. In general, an RPC can request the update or retrieval of multiple values. The Protocol
Adapter must decompose these separate requests into single requests and execute them as a sin-
gle unit. If the request is a retrieval or update of a data model maintained in the Dmt Admin ser-
vice then the Protocol Adapter can use a TR069 Connector to simplify implementing this request.
The TR069 Connector Factory service can be used to create an instance of a TR069 Connector that is
based on a specific Dmt Session.

The TR069 Connector maps the Object or Parameter Name to a URI and perform the requested oper-
ation on the corresponding node. The name-to-URI conversion supports the LIST and MAP concepts
as defined in OSGi Object Modeling on page 383.

The TR069 Connector handles conversion from the Dmt Admin data types to the TR-069 data types.
There is a default mapping for the standard Dmt Admin formats including the comma separated list
supported by TR-069. However, Data Plugins that implement TR-069 aware object models can in-
struct the TR069 Connector by providing specific MIME types on the Meta Node.

Objects can be added and deleted but are, in general, not added immediately. These objects are lazily
created when they are accessed. The reason is that TR-069 does not support the concept of a session
with atomic semantics, a fact leveraged by certain object models in the DMT. Therefore, adding an
object will assign a instance id to an object but the creation of the object is delayed until the object is
used.

After all the requests in an RPC are properly handled the TR069 Connector must be closed, the Dmt
Session must be closed separately.

Errors are reported to the caller as they happen, if a Dmt Admin service error is fatal then the Dmt
Session will be closed and it will be necessary to create a new TR069 Connector.

131.2 TR-069 Protocol Primer
The [6] Broadband Forum is an organization for broadband wire-line solutions. They develop mul-
ti-service broadband packet networking specifications addressing inter-operability, architecture,
and management. Their specifications enable home, business and converged broadband services,
encompassing customer, access and backbone networks. One of the specifications of the Broadband
Forum is the Technical Report No 69, also called TR-069, a specification of a management model.

TR069 Connector Service Specification Version 1.0 TR-069 Protocol Primer

OSGi Residential Release 6 Page 469

131.2.1 Architecture
[1] TR-069 Amendment 3 is a technical report (Broadband Forum's specification model) that speci-
fies a management protocol based on [4] SOAP 1.1 over HTTP. The TR-069 technical report defines
a number of mandatory Remote Procedure Calls (RPCs) that allow a management system, the Au-
to-Configuration Server (ACS), to discover the capabilities of the Consumer Premises Equipment
(CPE) and do basic management. This model is depicted in Figure 131.2.

Figure 131.2 TR-069 Reference Architecture

ACS CPE
get/set/...

Inform

SOAP/HTTP

In TR-069, the CPE is always initiating the conversation with the ACS though the ACS can request a
session.

Inside the CPE there is a Protocol Adapter that implements the TR-069 RPCs. These RPCs read and
modify the objects models present in the CPE. There is usually a mechanism that allows the differ-
ent modules in the CPE to contribute a management object to the Protocol Adapter so that the Pro-
tocol Adapter does not require knowledge about highly specialized domains.

[2] TR-106 Amendment 3 specifies object model guidelines to be followed by all TR-069-enabled de-
vices as well as a formal model to document these object models.

131.2.2 Object Model
The object model of TR-069 consists of objects that contain parameters as well as tables that contain
objects. TR-106 says:

• Object - A named collection of parameters and/or other objects.
• Parameter - A name-value pair.
• Table - An enumeration of objects identified by an instance id.

Figure 131.3 Type Model TR-069

Object

Table

name

Parameter

instance id

0..n 1
1

111

1

1

1

Objects can also occur in tables, in that case the object name is suffixed with an instance id. An object
that has no instance id is a singleton, with an instance id they are referred to as tables. In the Broad-
band Forum technical reports tables end in the special suffix {i} , the instance id.

This provides the following structural definition for this specification:

named-value ::= NAME (object | table | parameter)

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0

Page 470 OSGi Residential Release 6

object ::= named-value +
table ::= (instance object)*
parameter ::=
instance ::= INTEGER > 0

TR-069 talks about partial paths and parameter names. In this specification, a name is reserved for
the short relative name used inside an object, also called the local name. The term path is reserved for
the combination of object names, table names, and instance ids that are separated by a full stop ('.'
\u002E) and used to traverse an instance model.

path ::= parameter-path | object-path| table-path
segment ::= NAME '.' (instance '.')?
object-path ::= segment+
table-path ::= segment* NAME '.' // expect INTEGER next
parameter-path ::= object-path NAME
instance-path ::= table-path instance '.'

In this specification the following terms are used consistently:

• Object - Refers to a named type defining a certain set of parameters, objects, and tables.
• Table - A list of instances for a given object.
• Instance - An object element in a table at a certain id.
• Instance Id - The integer id used to identify an instance in a table.
• Alias - A name chosen by the ACS that uniquely identifies an instance.
• Singleton - An object that is not in a table.
• Name - The name of an object, table, or parameter refers to the local name only and not the path.
• Segment - A component in a path that always ends in a full stop. A segment can contain instance

ids to identify an instance.
• Path - A string uniquely identifying a path in the tree to either a parameter, an object, or a table.
• Object Path - A path that uniquely identifies an instance or a singleton. An object path must al-

ways ends in a full stop. This maps to the TR-069 concept of an ObjectName .
• Parameter Path - The name of the parameter preceded by the owning object. A path that does not

end in a full stop is always a parameter path.
• Table Path - An object path that lacks the last instance id. In TR-069 this is also sometimes called a

partial path. The last segment is an object path that must be followed by an instance id to address
an instance.

• Instance Path - A path to an instance in a table

This provides a hierarchy as depicted in Figure 131.4.

Figure 131.4 TR-069 Object and Parameter naming relative to the parameter MemoryStatus

InternetGateWayDevice

DeviceInfo

Memory
Status siblings

ancestors

descendants
children sub-tree

parameter

Services

VendorConfigFile.{i}

object

Device
Log

Free

TR069 Connector Service Specification Version 1.0 TR-069 Protocol Primer

OSGi Residential Release 6 Page 471

131.2.3 Parameter Names
The grammars for parameter names and object names are as follows:

NAME ::= (Letter | '_')
 (Letter | Digit | '-' | '_' | CombiningChar| Extender)*

The productions Letter , Digit , CombiningChar , and Extender are defined in [5] Extensible Markup
Language (XML) 1.0 (Second Edition). The name basically supports the full unicode character set for
letters and digits (including digits for other languages), including sets for languages like Hebrew and
Chinese. Examples of different parameter names are:

name // simple name
Name // case sensitive
_
--_
ångstrom
þingsten
ΨΣΩΠ

131.2.4 Parameter Type
A parameter value can have one of the data types defined in [2] TR-106 Amendment 3, they are sum-
marized in Table 131.1.

Table 131.1 TR-106 Data types

TR-106 Type Description
object Represents a structured type
str ing A Unicode string, optionally restricted in length
int 32 bit integer
long 64 bit integer
unsignedInt 32 bit unsigned integer
unsignedLong 64 bit unsigned integer
boolean Can have values 0 or false (fa lse) or 1 or true (true)
dateTime TR-069 recognizes three different date times. These three cases are differ-

entiated in the following way:

• Unknown time - If the time is not known.
• Relative time - Relative time is the time since boot time.
• Absolute time - Normal date and time.

base64 An array of bytes
hexBinary An array of bytes

SOAP messages always provide a type for the parameter value. For example:

<ParameterValueStruct>
 <name>Parameter1</name>
 <value xsi:type="long">1234</value>
</ParameterValueStruct>

The xsi prefix refers to the http://www.w3.org/2001/XMLSchema-instance namespace. How-
ever, this makes not all TR-106 types well defined, for example in XML Schema base64 is called

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0

Page 472 OSGi Residential Release 6

base64Binary . This specification assumes that the names and definitions in Table 131.1 and pro-
vides appropriate constants for the Protocol Adapter.

Parameters can be read-only or read-write. All writable Parameters must also be readable although
security can cause certain parameters to be read as an empty string, for example passwords. Parame-
ters can reflect configuration as well as status of the device. External causes can cause parameters
to change at any time. The TR-069 protocol has the facility to call an Inform RPC to provide the ACS
with a notification of changed parameters.

131.2.5 Parameter Attributes
Parameter attributes provide the meta data for a parameter. In TR-069, the attributes are used to
manage notifications and access control. Each parameter in TR-069 can be watched by the ACS by
setting the corresponding parameter attribute to active or passive notifications. Passive notifications
are passed whenever the CPE communicates with the ACS and active notifications initiate a session.
Parameters that have a notification are said to be watched.

Access to the parameters can be managed by setting Access Control Lists via the corresponding para-
meter attribute.

131.2.6 Objects and Tables
TR-106 has the concept of an object stored in a table to allow multiple instances of the same type. It is
part of the object definition if it is stored in a table or not. An object cannot both appear as a table in-
stance and as a singleton.

Each instance in the table is addressed with an integer >= 1. This instance id is not chosen by the ACS
since it can be required to create a new instance due to an external event. For example the user plug-
ging in a USB device or starting a new VOIP session. The ACS must discover these instance ids by
asking the device for the instance ids in a table.

For example, the parameter path Device.LAN.DHCPOption.4.Request refers to a parameter on a
DHCPOption object that has the instance id 4. Instance ids are not sequential nor predictable. It is
the responsibility of the device to choose an instance id when an object is created. Instance ids are
assumed to be persistent so that the ACS can cache results from a discovery process.

Newer TR-069 objects have been given an Alias parameter. This alias uniquely identifies the table in-
stance.

TR-069 defines a convention for a parameter that contains the number of entries in a table. Any pa-
rameter name that ends with NumberOfEntr ies contains the number of entries in a table with the
name of the prefix in the same object. For example A.B.CNumberOfEntr ies provides the number of
entries in the table:

A.B.C.

131.2.7 RPCs
The object model implemented in a device is accessed and modified with RPCs. RPCs are remote pro-
cedure calls; a way to invoke a function remotely. TR-069 defines a number of mandatory RPCs and
provides a mechanism to extend and discover the set of RPCs implemented by a CPE. The mandato-
ry RPCs are listed in in the following table.

Table 131.2 TR-069 RPCs

RPC Description
GetRPCMethods Return a list of RPC methods
SetParameterValues Set one or more parameter values
GetParameterValues Get one or more parameter values

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Residential Release 6 Page 473

RPC Description
GetParameterNames Get the parameter information for a parameter, object, or table.
SetParameterAttr ibutes Set parameter attributes
GetParameterAttr ibutes Get parameter attributes
AddObject Add a new object to a table
DeleteObject Delete an object from a table
Download Download software/firmware
Reboot Reboot the device

131.2.8 Authentication
The security model of TR-069 is based around the authentication taking place during the setup of a
TLS (formerly SSL) connection. This authentication is then used to manage the access control lists
via the parameter attributes.

131.2.9 Sessions and Transactions
A session with the ACS is always initiated by the CPE. The ACS can request a session, but it is always
the CPE that starts a session by opening the connection to the ACS and then sending an Inform RPC.
The session ends when the connection is closed, which happens after the ACS has informed the CPE
it has no more requests.

During a session, a CPE has the requirements that parameters must not change due to other sources
than the session and that the parameters are consistent with the changes. However, there is no
transactionality over the session, atomicity is only guaranteed for one RPC. An RPC can consist of
multiple parameter modifications that should therefore be atomically applied.

131.2.10 Events and Notifications
TR-069 sessions always start with an Inform RPC from the CPE to the ACS. This RPC contains any
events and notifications for parameters that were watched. Events signal crucial state changes from
the CPE to the ACS. For example, if a device has rebooted it will inform the ACS. Notifications are
caused by parameter changes, the Inform RPC contains a list of events and parameters with changed
values.

131.2.11 Errors
Invoked RPCs can return a fault status if errors occur during the execution of the RPC. For ACS to
CPE RPCs these fault codes start at 9000, for the reverse direction they start at 8000. Each RPC de-
fines the fault codes that can occur and their semantics in that context.

131.3 TR069 Connector
A TR-069 Protocol Adapter must be able to browse foreign Data Plugins on the device and support
native TR069 objects models implemented by a Data Plugin. As Data Plugins are available through
the Dmt Admin service, the Protocol Adapter must provide a bi-directional mapping between Dmt
Admin nodes and TR-069 parameters, notifications, and error codes.The mapping must enable a Da-
ta Plugin to provide a native Broadband Forum object model that limits itself to the required RPCs.

131.3.1 Role
Developers implementing the TR-069 protocol are not likely to be also experts in the Dmt Admin
service. This specification therefore provides a TR069 Connector Factory service that provides an
object that can map from the TR-069 concepts to the Dmt Admin concepts, supporting all the con-
structs defined in the OSGi Object Modeling on page 383.

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 474 OSGi Residential Release 6

The TR069 Connector only specifies a number of primitive functions to manage the DMT. Parsing
the SOAP messages, handling the notifications, and splitting the requests for TR069 Connector is
the responsibility of the Protocol Adapter. The reason that the TR069 Connector does not work on a
higher level is that a Protocol Adapter for TR-069 will likely communicate with other subsystems in
the CPE than the OSGi framework alone. Though the Dmt Plugin model is an attractive approach to
implement object models, there is history. Existing code will likely not be rewritten just because it
can be done better as a Data Plugin.

For example, a Data Plugin could implement the Device.DeviceInfo. object. However, this object ac-
tually resides in the DMT at a node:

./TR-069/Device/DeviceInfo

A TR-069 Protocol Adapter will therefore be confronted with a number of data models that reside in
different places. Each place provides one or more consistent data models but it is the responsibili-
ty of the TR-069 Protocol Adapter to ensure the ACS gets a consistent and standardized view of the
whole. To create this consistent view it will be necessary to adapt the paths given in the RPCs. It is
expected that a Protocol Adapter is required to have a certain amount of domain knowledge, for ex-
ample a table, that maps TR-069 paths to their actual providers.

The basic model is depicted in Figure 131.5.

Figure 131.5 TR-069 Connector Context

TR-069
Protocol Adapter

ACS Dmt Admin
Impl

TR-069 Foreign
Data Plugin Impl

TR-069 Native
Data Plugin Impl

Dmt Admin

Dmt Event
Listener

Data Plugin

TR069 Connec-
torFactory Impl

TR069
Connector Factory

Other object
model providers

Notification
Service Impl

Notification
Service

Remote
Alert Sender

The Protocol Adapter can be implemented as an OSGi Bundle or it can be implemented in native
code in the device. Both architectures are viable. For certain aspects like the TR-157a3 Software Mod-
ules a certain amount of native code will be required to manage the OSGi Framework as an Execu-
tion Environment.

In an environment where the Protocol Adapter is implemented outside an OSGi Framework it will
be necessary to create a link to the Dmt Admin service. This can be achieved with a proxy bundle in-
side the OSGi framework that dispatches any requests from the native Protocol Adapter to the func-
tionality present in the OSGi Framework. In this specification, it is assumed that such proxies can
be present. However, the examples are all assuming that the Protocol Adapter is running as a Bun-
dle.

131.3.2 Obtaining a TR069 Connector
A TR069 Connector is associated with a Dmt Session, the TR069ConnectorFactory provides the
create(DmtSession) method that will return a TR069Connector object. This object remains associ-
ated with the Dmt Session until the Dmt Session is closed, which can happen because of a fatal error
or when the TR069 Connector Factory is unregistered or un-gotten/released. Creating a TR069 Con-

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Residential Release 6 Page 475

nector must not be expensive, Protocol Adapters should create and close them at will. Closing the
connector must not close the corresponding Dmt Session.

The TR069 Connector must use the root of the session as its base. That is, their URI mapping all para-
meters must start from the base. For example, if the session is opened at . /TR-069 then the parame-
ter IGD/DeviceInfo/Manufacturer must map to URI . /TR-069/IGD/DeviceInfo/Manufacturer .

If a Protocol Adapter will modify the tree then it should use an atomic session for all RPCs even if
the RPC indicates read-only. The reason for the atomicity is that in certain cases the lazy behavior
of the TR069 Connector requires the creation of objects during a read operation. If a non-atomic
session is used then the TR069 Connector must not attempt to lazily create objects and reject any
addObject(Str ing) and deleteObject(Str ing) methods. See also Lazy and Sessions on page 479.

131.3.3 Supported RPCs
The TR069 Connector supports a limited number of RPCs, and for those RPCs it only supports the
singleton case. The TR069 Connector provides support for the RPCs primitives listed in the follow-
ing table.

Table 131.3 Supported TR-069 RPCs

RPC Related Method Description
SetParameterValues setParameterValue(Str ing,Str ing, int) Set one or more parameter values. The connector sup-

ports setting a single value, ensuring the proper path
traversal and data type conversion

GetParameterValues getParameterValue(Str ing) Get one or more parameter values. The connector sup-
ports getting a single value, converting it to a Para-
meterValue object, which contains the value and the
type.

GetParameterNames getParameterNames(Str ing,boolean) Get the paths of objects and parameters from the sub-
tree or children that begins at the parameter path. The
TR-069 Connector supports the full traversal of the
given path and the next level option.

AddObject addObject(Str ing) Add a new object to a table. The fully supports the se-
mantics, taking the MAP and LIST nodes into account.
Node creation can be delayed until a node is really
needed.

DeleteObject deleteObject(Str ing) Delete an object from a table.

131.3.4 Name Escaping
An object or parameter path describes a traversal through a set of objects, this is almost the same
model that Dmt Admin provides. The difference is that the characters allowed in a TR-069 parame-
ter name are different from the Dmt Admin node names and that TR-069 does not support applica-
tion specific parameter/object names like the Dmt Admin service does.

A path consist of a number segments, where each segment identifies a name or instance id. TR-069
names can always be mapped to Dmt Admin node names as the character set of TR-069 parameter
names is restricted and falls within the character set of the Dmt Admin node names. The length of a
segment could be a problem but TR-069 paths are generally limited to have a length of less than 256
bytes. This specification therefore assumes that a segment of a TR-069 path is never too long to fit in
a Dmt Admin node name.

Mapping a Dmt Admin node name to a parameter name, needed for browsing, is more compli-
cated as Dmt Admin node names allow virtually every Unicode character except the solidus (' / '
\u002F). It is therefore necessary to escape Dmt Admin URIs into a path that is acceptable for
the TR-069 protocol. It is assumed that escaping is only used in a browsing mode since native

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 476 OSGi Residential Release 6

object models will never require escaping. The TR069 Connector must return names from the
getParameterNames(Str ing,boolean) call that the ACS can handle, optionally show to the user, and
then use to construct new paths for subsequent RPCs.

There is no obvious escape character defined in TR-069, like for example the reverse solidus (' \ '
\u005C) that the Dmt Admin uses for escaping. The character for escaping is the latin small letter
thorn ('þ ' \u00FE) because his character is highly unlikely to ever be used in a TR-069 path for a na-
tive object model, however, even if it is then it would be no problem for the escaping algorithm. The
thorn is a letter, allowing it to be used as the first character in a parameter name, this allows escap-
ing the first character.

A character in a segment that is not allowed must be escaped into the following sequence:

þ[0-9A-Z][0-9A-Z][0-9A-Z][0-9A-Z]

The 4 hexadecimal upper case digits form a hexadecimal number that is the Unicode for that charac-
ter. Each character that does not conform to the syntax specified in Parameter Names on page 471
or the thorn character itself must be replaced with the escape sequence. For example, the name
3ABCþ must be translated to:

þ0033ABCþ00FE

If the segment is an instance id then the segment must not be escaped. Otherwise, if the segment
does not start with a Letter or underscore, then the first character must be escaped with the thorn.

Unescaping must undo the escaping. Any sequence of þ[0-9A-Z][0-9A-Z][0-9A-Z][0-9A-Z]
must be replaced with the character with the corresponding Unicode. A thorn found without the
subsequent 4 hexadecimal upper case digits must be treated as a single thorn. For readability it is
best to minimize the escaping. However, any name given to the TR069 Connector that is escaped
must be properly interpreted even if the unescaped string did not require escaping. For example,
þ0031þ0032þ0033 must be usable as an object instance id as the unescaped form is 123, which is a
number.

A number of examples of the escaping are shown in the following table.

Table 131.4 Escaping Parameter Names

Segment Dmt Admin Escaped TR-069 Escaped Notes
DeviceInfo DeviceInfo DeviceInfo Most common case.
3x Hel lo World 3x Hel lo World þ0033xþ0020Hel loþ0020World The initial digit and the spaces must be

escaped in TR-069.
þorn þorn þornþ00FEorn A single thorn does not require escap-

ing as it is not followed by 4 hexadeci-
mal digits. So both forms are valid for
unescaping although escaping must de-
liver the þ00FE form.

appl icat ion/bin appl icat ion\/bin appl icat ionþ002Fbin The solidus must be escaped in both.
234 234 234 A numeral does not require escaping, it

is assumed to be an instance id.
234x 234x þ003234x A name that starts with a digit requires

the first digit to be escaped.
þ00FEorn þ00FEorn þ00FE00FEorn It is possible to encode even already es-

caped names.

The TR069 Connector only accepts escaped paths and returns escaped paths. When a method re-
turns a path it must be properly escaped and suitable as a TR-069 path.

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Residential Release 6 Page 477

131.3.5 Root
In general, the TR-069 Protocol Adapter is free to choose what parts of the DMT it wants to expose. A
simple mapping table containing path prefixes can be used to define the handler for the given data
model. However, since the intention is to allow TR-069 object models to be implemented in Dmt Ad-
min Data Plugins there is a need to know where those plugins should reside in the DMT. This root is
defined as:

./TR-069

Any Data Plugin that wants to provide an object model in the TR-069 family of object models should
provide a Data Plugin rooted at the TR-069 root. For example, a Data Plugin implementing the
InternetGatewayDevice.DeviceInfo. object should register its Data Plugin under the data Root URI
. /TR-069/ InternetGatewayDevice/DeviceInfo

131.3.6 DMT Traversal
A path must be mapped from the TR-069 hierarchy to the Dmt Admin nodes URI. The Protocol
Adapter decides the base in the DMT by opening the Dmt Session with a session root parameter. The
TR-069 Connector must then traverse the tree from this base based on the TR-069 path. The Protocol
Adapter must use the Instance Id on page 390 for MAP and LIST nodes to traverse the DMT.

Assume that the URI of a node is requested for a given path P . The path P must be traversed from the
root node. The root node can find the child, the first segment in P, and then use the same routine re-
cursively for the remainder. This recursive routine must perform the following actions on each cur-
rent node:

• If path P is empty, then this is the requested node.
• S = first segment of path P up to the first full stop.
• R = remainder of path P after the first full stop or empty if no full stop.
• If S is an alias (surrounded by ' [' and '] '), replace S with the alias inside the brackets. For Dmt Ad-

min nodes aliases are identical to normal node names.
• unescape S (replace the thorns)
• If the current node is a MAP or a LIST and S is an integer

• Get the list L of children of the current nodes
• If the nodes in L have an InstanceId node find the node where the InstanceId matches the seg-

ment S as integer, this becomes then the next level node N and the algorithm is repeated with
path R .

• If no next node N was found then make it the child node of the current node with the name S .
• Repeat the algorithm with N with path R

Since each node that is traversed this way knows the node name it corresponds to it is easy to create
an encoded URI for Dmt Admin.

For example, the TR-069 path:

Device.DeviceInfo.Interface.14.Connections.3.BytesSent

Assuming that Interface node is a MAP node and its children have an InstanceId node, where the
WAN_1 node has an InstanceId of 14.

The Connections node is a LIST and the children have no InstanceId , therefore the name is the in-
dex. The translated URI then looks like:

Device/DeviceInfo/Interface/WAN_1/Connections/3/BytesSent

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 478 OSGi Residential Release 6

The toURI(Str ing,boolean) method can take a TR-069 path and perform the substitutions. If the cre-
ate parameter is true then the TR069 Connector will create missing nodes if possible. Missing nodes
can only be created under a LIST or MAP node.

A missing node is a node that is addressed by a path but not present in the DMT. For example, the
root of the session is. /TR-069 and the parameter path is A.B.C . If the DMT contains . /TR-069/A but
not . /TR-069/A/B then node B is a missing node.

131.3.7 Synthetic Nodes
The Protocol Adapter must synthesize an Alias parameter and for any MAP or LIST node called X it
must provide a sibling XNumberOfEntr ies parameter that provides the number of entries in table X .

131.3.7.1 Alias

The Alias node is a read-write parameter that must map to the actual node name of its parent.
For example, . /A/B/C/Al ias must map to C . Reading it must provide the this parent's node name
and writing it must rename this parent's node name. The Alias must be automatically pro-
vided on any child of a MAP node. The Alias parameter must also be returned in the result of
getParameterNames(Str ing,boolean) if its parent's children are included. It is not possible to con-
vert an Alias parameter name to a URI as the Alias node is synthetic and does not exist in the DMT.
The model of aliases are depicted in Figure 131.6.

Figure 131.6 Aliases

Alias
(synthetic)

child
1

1
node
name

Aliases can be used by the ACS to set the key of a MAP . For example, if a set of properties is defined as
a MAP :

Name Act Type Card. S Description
Propert ies Get MAP 1 P A Properties map
 [str ing] Get Set

Add Del
str ing 0. .n A Key/Value

An ACS can first add an object to the table. This will create an entry with a calculated instance id.
However, the ACS can then rename the node with the Alias node. In pseudo code:

AddObject ..Properties. (returnsnode name = 3421)
SetParameterValue ..Properties.3421.Alias = MyKey

Alternatively, addressing with an alias in the parameter name would be simpler:

AddObject ..Properties.[MyKey]

131.3.7.2 Number Of Entries

TR-069 has the convention of parameters that end with NumberOfEntr ies . For example, the parame-
ter UserNumberOfEntr ies in the object InternetGatewayDevice object contains the number of en-
tries of the InternetGatewayDevice.User table.

The Protocol Adapter must synthesize these NumberOfEntr ies parameters for each MAP or LIST
node. The NumberOfEntr ies parameter must be a sibling of the MAP or LIST node. Any such parame-
ter must also be returned in the result of the getParameterNames(Str ing,boolean) method.

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Residential Release 6 Page 479

131.3.8 Lazy and Sessions
In the Dmt Admin service the session plays an important role in how the object model operates. Es-
pecially atomic sessions have a clear point to commit any changes so that many actions can be de-
ferred until all the information is available. In TR-069 there is no real session concept although one
RPC must be executed atomically even if it changes multiple parameters. As there are different RPCs
to create objects and set their parameters it is impossible to create and parameterize an object in a
single session. This creates problems with general DMT models.

It is recommended to operate all RPCs in an atomic session to allow these DMT models to leverage
the session commit phase. However, a TR-069 Connector must also accept a read only or exclusive
session. The session can then of course cause exceptions to be thrown at certain operations.

The connector must lazily create instances. An addObject(Str ing) method must not actually create
the object, it only has to create an instance id and ensure the uniqueness of this id over time. The id
must follow the rules from TR-069, it must not clash with an existing id even after such an id has
been used in the past.

This id is then returned to the ACS who will then use it in subsequent RPCs. When one of the sub-
sequent RPCs tries to access this not-yet existent node, for example a get or set, then the TR069 Con-
nector must create it before it sets or gets the value of this node. This lazy strategy allows the node
creation and the parameterization of that node to happen in a single session/RPC.

For example, in session 100 the addObject(Str ing) creates a new node. This node is not really cre-
ated but the unique instance id 4311 is assigned to it. After this RPC, the session is closed. The
ACS receives this instance and then prepares a GetParameterValues RPC to get the . . /4311/Foo
parameter. The management agent receives the RPC and opens a new session 200, it then calls
getParameterValue(Str ing) . The TR069 Connector will not find the appropriate entry 4311 in the
table. Instead of raising an error it creates this node and then gets the value for the . . /4311/Foo para-
meter.

A Data Plugin implementing a native TR-069 object model can override the lazy behavior by adding
a appl icat ion/x-tr-069-eager MIME type to the list of MIME types in the Meta Node. If this MIME
type is present then the node must be eagerly created during the addObject(Str ing) method.

The TR069 Connector must assign the unique id according to the TR-069 rules for instance ids.

131.3.9 Data Types
This specifications assume the [2] TR-106 Amendment 3 defined data types. TR-106 defines a num-
ber of data types, derived from XML Schema and creates a number of sub-types to discriminate be-
tween different use cases. A Protocol Adapter must be able to understand the types defined in Ta-
ble 131.5 to be able to faithfully define a data model based on [2] TR-106 Amendment 3. Discriminat-
ing between some of the sub-types requires inspection of the data. Each sub-type requires mapping
rules that are defined later. Each mapping is assigned a unique MIME sub-type in the appl icat ion
media type. That is, the TR-069 int type has a MIME type of appl icat ion/x-tr-069-int.

Table 131.5 TR-069 Types, MIME types

TR-069 Type MIME Type Notes
base64 x-tr-069-base64 Base 64 encoded
hexBinary x-tr-069-hexBinary Hex encoded
boolean x-tr-069-boolean
str ing x-tr-069-str ing General string type.
str ing (l ist) x-tr-069-l ist A comma separated string that acts as a list.
int x-tr-069-int Signed integer
unsignedInt x-tr-069-unsignedInt Unsigned integer
long x-tr-069-long Signed long

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 480 OSGi Residential Release 6

TR-069 Type MIME Type Notes
unsignedLong x-tr-069-unsignedLong Unsigned long
dateTime x-tr-069-dateTime Absolute UTC time, relative boot time, or

unknown time
 x-tr-069-eager Eager creation (not a data type, see Lazy

and Sessions on page 479).

It is the responsibility of the Protocol Adapter to properly clean up the parameter values, that is,
remove any unnecessary white space, etc. The TR069 Connector must accept any lexically correct
form of the value of a parameter. However, the connector must always return the value according to
the format of the data types specified by TR-069.

131.3.10 DMT to TR-069 Conversion
This section describes the conversion from a DMT node (a Dmt Data) to a TR-069 Parameter value.
The source is the DMT node retrieved from the DMT. The destination is the value and its type that
must be encoded in the TR-069 response. The meta node is the Meta Node associated with the source.
This model is depicted in Figure 131.7.

Figure 131.7 DMT to TR-069

Dmt Data Parameter Value

Meta Node

source

destination

meta node

TR069 Connector

value + type

The different conversions possible for the Dmt Data to the TR-069 Parameter value are shown in Ta-
ble 131.6. This table shows vertically the Dmt Admin formats and horizontally the TR-106 types de-
fined in Table 131.5. Each row has a default conversion type, indicated with a bold entry. For exam-
ple, the default conversion of a FORMAT_BOOLEAN to the boolean type is the default conversion.

This default conversion can be overridden by the Data Plugin by specifying an alternative MIME
type in the list of allowed MIME types in the Meta Node getMimeTypes() . If this list contains a
MIME type that has the prefix appl icat ion/x-tr-069- then the first entry in this list must be chosen
as the destination type instead of the default type. This way, a TR-069 Data Plugin can indicate the
exact type to a TR-069 Protocol Adapter.

For example, a Dmt Data has the format FORMAT_BASE64 . However, the Data Plugin for this node
has a Meta Node that contains

String[] { "application/x-tr-069-hexBinary"}

The resulting type must therefore be hexBinary in this example.

The Dmt Data nodes are leaf nodes, however, there is a special case for interior LIST nodes marked
with a appl icat ion/x-tr-069-l ist type in the Meta Node. These nodes must be converted to a comma
separated string as described in List on page 482.

Cells that are empty in the table indicate an impossible conversion that must be reported. Cells with
a name refer to one of the subsequent sections.

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Residential Release 6 Page 481

Table 131.6 Dmt Data Format to TR-069 Data

ba
se

64

bo
ol

ea
n

da
te

Ti
m

e

he
xB

in
ar

y

in
t

lo
ng

st
rin

g

un
sig

ne
dI

nt

un
sig

ne
dL

on
g

FORMAT_BASE64 binary binary
FORMAT_BINARY binary binary
FORMAT_BOOLEAN = true |

fa lse

FORMAT_DATE date =
FORMAT_DATE_TIME date date
FORMAT_FLOAT number number number number number
FORMAT_INTEGER number number number number number
FORMAT_LONG number number number number number
LIST list
FORMAT_NULL fa lse date 0 0 "nul l " 0 0
FORMAT_RAW_BINARY binary binary
FORMAT_RAW_STRING =
FORMAT_STRING =
FORMAT_TIME date =
FORMAT_XML =

131.3.10.1 Date

If the destination type is str ing then a date must be formatted according to the TR-069 dateTime for-
mat. FORMAT_DATE and FORMAT_TIME must be set to a TR069_DATETIME typed destination with
just the day or just the time respectively. That is, the FORMAT_TIME must be treated as a relative
time for TR-069.

The Date object of the Dmt Data object represents the three different TR069_DATETIME types with
the getTime() method. The value of getTime() indicates what type of date time it is:

• Unknown - The getTime() method must be 0
• Relative - The getTime() method must return a negative number
• Absolute - The getTime() method must return a positive number

If a FORMAT_DATE , FORMAT_TIME , or FORMAT_DATE_TIME is converted to a string the string repre-
sentation of TR069_DATETIME must be used, including the form of unknown, relative, or absolute.
A FORMAT_NULL stands for an unknown time.

131.3.10.2 Binary

The Dmt Admin service has several binary formats (FORMAT_BASE64, FORMAT_BINARY, and
FORMAT_RAW_BINARY) that can be converted to TR069_HEXBINARY and TR069_BASE64 . All bi-
nary formats maintain their data as a byte[] . Conversion is therefore straightforward encoding of
the byte[] into the proper encoding: hex or base 64.

131.3.10.3 Number

The TR-069 Connector must convert numeric values (FORMAT_INTEGER , FORMAT_LONG ,
and FORMAT_FLOAT) to TR069_INT , TR069_LONG , TR069_UNSIGNED_INT , and
TR069_UNSIGNED_LONG values. Float values must be rounded according to the standard Java
rounding rules when converted to an integer or long .

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 482 OSGi Residential Release 6

A conversion must not exceed the range of the destination type. That is, if an integer is converted
to an unsigned int then negative values must be treated as an error. If the destination type is str ing
then the numeric value must be calculated with the Dmt Data toStr ing method.

131.3.10.4 List

LIST nodes with primitive children must be converted to a comma separated list. If the children
nodes are interior nodes then an error must be raised. The values of the comma separated list must
come from the children of the value node. Each of these children must be converted to a string type
according to Table 131.6. These children must then be escaped and concatenated with a comma as
separator according to the rules of TR-106 comma separated lists. Nested lists are not allowed.

131.3.11 TR-069 to Dmt Data Conversion
A TR-069 Parameter value consists of a string and a type identifier from the set of TR-069 types, see
Data Types on page 479. The conversion is depicted in Figure 131.7.

Figure 131.8 TR-069 to DMT

TR-069 string Dmt Data

Meta Node

source

destination
Protocol Connector

TR-069 type

The destination type is obtained from the corresponding Meta Node. If multiple formats are spec-
ified in the result of the getFormat() method then the most applicable type must be used. The fol-
lowing table lists the applicability for each TR-106 data type.

base64 FORMAT_BASE64, FORMAT_BINARY, FORMAT_RAW_BINARY
boolean FORMAT_BOOLEAN, FORMAT_STRING
dateTime FORMAT_DATE_TIME, FORMAT_DATE, FORMAT_TIME
hexBinary FORMAT_BASE64, FORMAT_BINARY, FORMAT_RAW_BINARY
int FORMAT_INTEGER, FORMAT_LONG, FORMAT_FLOAT, FORMAT_STRING
long FORMAT_LONG, FORMAT_FLOAT, FORMAT_INTEGER, FORMAT_STRING
string FORMAT_STRING, FORMAT_BOOLEAN, FORMAT_INTEGER, FORMAT_LONG,
 FORMAT_FLOAT, FORMAT_RAW_STRING, FORMAT_XML
unsignedInt FORMAT_INTEGER, FORMAT_LONG, FORMAT_FLOAT, FORMAT_STRING
unsignedLong FORMAT_LONG, FORMAT_FLOAT, FORMAT_INTEGER, FORMAT_STRING

If the conversion fails and there are untried formats left then the other formats must be used.

There is a special case when the destination node is a LIST node with primitive children and the
source is a str ing type. In that case the string must be parsed according to TR-106 comma separated
lists and each element must be stored as a child node.

The conversion matrix is in the following table. The equal sign indicates identity taking into ac-
count any encoding. It is not necessary that the source type corresponds to a MIME type in the meta
node.

TR069 Connector Service Specification Version 1.0 RPCs

OSGi Residential Release 6 Page 483

Table 131.7 TR-069 Value to Dmt Data

FO
RM

AT
_B

AS
E6

4

FO
RM

AT
_B

IN
AR

Y

FO
RM

AT
_B

O
O

LE
AN

FO
RM

AT
_D

AT
E

FO
RM

AT
_D

AT
E_

TI
M

E

FO
RM

AT
_F

LO
AT

FO
RM

AT
_I

N
TE

G
ER

FO
RM

AT
_L

O
N

G

FO
RM

AT
_R

AW
_B

IN
AR

Y

FO
RM

AT
_R

AW
_S

TR
IN

G

FO
RM

AT
_S

TR
IN

G

FO
RM

AT
_T

IM
E

FO
RM

AT
_X

M
L

LI
ST

base64 binary binary binary
boolean bool true|

false

dateTime date date = date
hexBinary binary binary binary
int num num num =
long num num num =
str ing bool num num num = = = l ist
unsignedInt num num num =
unsignedLong num num num =

131.3.11.1 Date

A TR069_DATETIME can be converted to a FORMAT_DATE, FORMAT_TIME, and
FORMAT_DATE_TIME . A FORMAT_DATE must take the day part and a FORMAT_TIME must take the
time part.

131.3.11.2 Num

Source numbers must be converted to their destination counterpart. The conversion result must fail
if the result falls outside the range of the destination.

131.3.11.3 Bool

If the source is a str ing or boolean type and the destination FORMAT_BOOLEAN then the conversion
must parse the string ignoring the case. The strings true and fa lse map to their corresponding value.
The strings 0 must map to fa lse and 1 to true .

131.3.11.4 Binary

The source must be decoded according to its TR-069 type (TR069_BASE64 or TR069_HEXBINARY).
The resulting byte array can then be set with the DmtData(byte[] , int) with the destination format:
FORMAT_BINARY or FORMAT_BASE64 .

131.3.11.5 List

The source is a comma separated list and must be stored as children of the destination node.

131.4 RPCs
The following sections explain in more detail how the different RPCs are supported by the TR069
Connector operate.

RPCs TR069 Connector Service Specification Version 1.0

Page 484 OSGi Residential Release 6

131.4.1 Get Parameter Values
The GetParameterValues RPC retrieves the value from one or more parameters. Each request in the
RPC can request one parameter value or provides an object or table path, requesting multiple values
with one path.

The getParameterValue(Str ing) method retrieves the value of one parameter in the DMT. The
getParameterNames(Str ing,boolean) method can be used to retrieve the values of a table or object.

For the getParameterValue(Str ing) method the TR069 Connector must first check for synthesized
parameters, see Synthetic Nodes on page 478 (Alias and NumberOfEntr ies). Otherwise, the para-
meter name must be converted to a URI, this must be done according to the toURI(Str ing,boolean)
method with the boolean set to true , creating any missing nodes if possible. The Dmt Data for this
node must be converted according to DMT to TR-069 Conversion on page 480. The returned Para-
meterValue contains the type and value of the parameter.

For example:

ParameterValue v = connector.getParameterValue(
 "Device.DeviceInfo.Manufacturer");
String value = v.getValue();
int type = v.getType();

131.4.2 Set Parameter Values
The SetParameterValues RPC sets a number of values in one RPC. The
setParameterValue(Str ing,Str ing, int) method corresponds to setting a single parameter in the DMT.
It takes a parameter path, a value, and the type of this parameter.

The TR069 Connector must first check if the requested destination is the Alias node of a MAP child.
If the Alias node is set, the name of the parent node must be renamed to the given value. The value
of the Alias node must be a TR-069 string type, the Connector must ensure the value is escaped when
necessary. See Synthetic Nodes on page 478 for further information about aliases.

Otherwise, the parameter name must be converted to a URI, this must be done according to the
toURI(Str ing,boolean) method with the boolean set to true .

The given value must be converted to a Dmt Data according to the TR-069 to Dmt Data Conversion on
page 482. For example:

connector.setParameterValue("Starwars.R2D.2.Start",
 "20110805T10:15:20Z", TR069_DATETIME);

131.4.3 Get Parameter Names
The GetParameterNames RPC allows an ACS to discover the parameters accessible on a particular
CPE as well as verifying the existence of a parameter. There are modes for this RPC depending on the
path and next level arguments. See the following table.

Table 131.8 Modes based on type of path and NextLevel arguments

NextLevel Parameter Path Table or Object Path
true Invalid Argument Fault code 9003 since

this field must always be fa lse for a para-
meter path.

Include only the children of the object or
table.

fa lse A single ParameterInfo object is returned
that provides information about the giv-
en parameter.

The whole sub-tree rooted at the given
object or table path, this includes the ob-
ject at the path itself. All objects must be
included even if they are empty.

TR069 Connector Service Specification Version 1.0 RPCs

OSGi Residential Release 6 Page 485

The result must include only parameters, objects, and tables that are actually implemented by the
CPE. If a parameter is listed then a getParameterValue(Str ing) method called with this parameter's
path should succeed. As a convenience, the ParameterInfo class provides a getParameterValue()
method as a short cut to the value.

For example, assume the following instances:

IGD.LAN.1.Hosts.
IGD.LAN.1.Hosts.HostNumberOfEntries
IGD.LAN.1.Hosts.Host.
IGD.LAN.1.Hosts.Host.1.
IGD.LAN.1.Hosts.Host.1.Active
IGD.LAN.1.Hosts.Host.2.
IGD.LAN.1.Hosts.Host.2.Active
IGD.LAN.2.Hosts.
IGD.LAN.2.Hosts.HostNumberOfEntries

The following table demonstrates some of the different results based on these example instances.

Table 131.9 Example Get Parameter Names

Parameter Name Next level Results Comments
fa lse IGD.LAN.1.

IGD.LAN.1.Hosts.

IGD.LAN.1.Hosts.HostNumberOfEntr ies

IGD.LAN.1.Hosts.Host.

IGD.LAN.1.Hosts.Host.1 .

IGD.LAN.1.Hosts.Host.1 .Act ive

IGD.LAN.1.Hosts.Host.2.

IGD.LAN.1.Hosts.Host.2.Act ive

The path specifies an instance in at ta-
ble and since the Next Level is false
the whole sub-tree must be returned,
including the root of the sub-tree.

IGD.LAN.1.

true IGD.LAN.1.Hosts. The path is the same, an instance in a
table, but now only the children must
be returned for the source. There is on-
ly one child, Hosts . This must be re-
turned as an object path.

fa lse IGD.LAN.1.Hosts.Host.

 1 .Act ive

The path is a parameter path, there-
fore only the source is returned.

IGD.LAN.1.Hosts.«

 1.Act ive
true Fault 9003 Invalid Arguments, next level

must be false for a parameter path.
Next Level must not be set to true for a
parameter path

IGD.LAN.1 false or true Fault 9003 Invalid Arguments, it is not a
parameter path but an instance id

It is not allowed to specify a parame-
ter path that is actual pointing to an
instance.

For example:

Collection<ParameterInfo> pinfos = connector.getParameterNames("Device.");
for (ParameterInfo info : pinfos) {
 if (info.isParameter()) {
 System.out.println(
 connector.getParameterValue(info.getName()).getValue());
 }

Error and Fault Codes TR069 Connector Service Specification Version 1.0

Page 486 OSGi Residential Release 6

}

131.4.4 Add Object
The AddObject RPC creates a new instance in a table. There basic form for this RPC is to create an
object and return the name of this object. It is also possible to specify an alias (a name specified in
square brackets) after the table path. In that case, the alias is used as the node name. In either case,
the path must be a valid table path pointing to a an existing MAP or LIST node.

When an object is added without an alias then the TR069 Connector must assign a unique id.
TR-069 mandates that this id is unique for the table. The TR069 Connector must be able to create
and maintain such a persistent id range. The Connector must ensure that any id chosen is not actu-
ally already in use or has been handed out recently. How such an id is calculated and maintained is
implementation dependent.

If alias based addressing is used, a name between square brackets, then the alias is retrieved from the
square brackets. The DMT must then be verified that no node exists in the corresponding table. If
it does already exist, an INVALID_PARAMETER_NAME exception is thrown. Otherwise the alias is re-
turned as the selected name.

If the corresponding MAP or LIST node has a Meta Node with a MIME type of appl icat ion/x-tr-69-
eager then the alias or instance id must be used to create the node. Otherwise the alias or instance id
must be returned without creating the node. The purpose of this lazy creation is to allow a single Set
Parameter Values RPC to atomically create a number of nodes and set their values.

For example:

String id = connector.addObject("Starwars.CP.3.Obiwan.");
connector.setParameterValue("Starwars.CP.3.Obiwan." + id+ ".Name",
 "cp30", TR069_STRING);

The previous code gets an assigned id with the addObject(Str ing) method. The
setParameterValue(Str ing,Str ing, int) then assigns the string cp30 to the Name node. This will first
create the actual node since it was not created in the addObject(Str ing) method and then sets the
value of the DMT Starwars/CP/3/Obiwan/<id>/Name node.

The addObject(Str ing) method requires an atomic session. If a non-atomic session is used then
the addObject(Str ing) method must not attempt to create any objects and an exception must be
thrown.

131.4.5 Delete Object
The DeleteObject RPC deletes an object from the tree, it takes the instance path as argument. This
behavior is implemented in the deleteObject(Str ing) method. The corresponding node must be
deleted if it exists. No error must be raised if the node does not exist in the DMT.

For example, deleting the object created in Add Object on page 486:

connector.deleteObject("Starwars.CP.3.Obiwan.cp30.");

131.5 Error and Fault Codes
The TR069 Connector must translate any Dmt Admin codes into a TR-069 fault code. Since the
methods in the TR069Connector only relate to a single value it is possible to provide a mapping
from Dmt Exception codes to TR-069 fault codes. It is the responsibility of the Protocol Adapter to
aggregate these errors in the response to a SetParameterValues RPCs.

A TR069 Connector must prevent exceptions from happening and ensure that the different applic-
able error cases defined in the TR-069 RPCs are properly reported as a TR069 Exception with the in-

TR069 Connector Service Specification Version 1.0 Managing the RMT

OSGi Residential Release 6 Page 487

tended fault code. However, this section defines a list of default translations between Dmt Excep-
tions and TR-069 fault codes.

The following table contains the exceptions and the resulting fault codes. Any obligations that are
mandated by the TR-069 protocol are the responsibility of the TR-069 Protocol Adapter. The Dmt Ex-
ception is available from the TR-069 Exception for further inspection.

Table 131.10 Exceptions to TR-069 Fault code.

Exception Fault code Comments
ALERT_NOT_ROUTED INTERNAL_ERROR
COMMAND_FAILED INTERNAL_ERROR
COMMAND_NOT_ALLOWED REQUEST_DENIED
CONCURRENT_ACCESS INTERNAL_ERROR
DATA_STORE_FAILURE INTERNAL_ERROR
FEATURE_NOT_SUPPORTED REQUEST_DENIED
INVALID_URI INVALID_PARAMETER_NAME
LIMIT_EXCEEDED RESOURCES_EXCEEDED
METADATA_MISMATCH INVALID_PARAMETER_TYPE
NODE_ALREADY_EXISTS INTERNAL_ERROR
NODE_NOT_FOUND INVALID_PARAMETER_NAME
PERMISSION_DENIED NON_WRITABLE_PARAMETER
REMOTE_ERROR INTERNAL_ERROR
ROLLBACK_FAILED INTERNAL_ERROR
SESSION_CREATION_TIMEOUT REQUEST_DENIED
TRANSACTION_ERROR REQUEST_DENIED
UNAUTHORIZED REQUEST_DENIED
URI_TOO_LONG INVALID_PARAMETER_NAME
Dmt I l legal State Exception INTERNAL_ERROR
Security Exception REQUEST_DENIED
Other Exceptions REQUEST_DENIED

131.6 Managing the RMT
The RMT is not a native TR-069 model as it is not defined by BBF and it takes advantage of the Dmt
Admin features. This section therefore shows a number of examples how the RMT can be managed
from an ACS.

For example, on a specific CPE the following bundles are installed, the given name is the location

System Bundle
org-apache-felix-webconsole
org-apache-felix-configadmin
org-eclipse-equinox-scr
jp-co-ntt-admin
de-telekom-shell

The intention is to:

• Uninstall org-apache-fel ix-configadmin ,
• Install and start org-ecl ipse-equinox-cm ,

Native TR-069 Object Models TR069 Connector Service Specification Version 1.0

Page 488 OSGi Residential Release 6

• Update jp-co-ntt-admin .

After the successful reconfiguration, the framework must restart. As framework changes must hap-
pen in a atomic session, the following parameters must be set in a single RPC:

SetParameterValues {
 Framework.Bundle.org-apache-felix-configadmin.RequestedState = UNINSTALLED
 Framework.Bundle.jp-co-ntt-admin.URL = http://....
 Framework.Bundle.org-eclipse-equinox-cm.URL = http://....
 Framework.Bundle.org-eclipse-equinox-cm.RequestedState = ACTIVE
 Framework.Bundle.org-eclipse-equinox-cm.AutoStart = true
 Framework.Bundle.Systemþ0020Bundle.URL = ""
}

The Protocol Adapter must open an atomic session on the $ node as defined in the RMT. It will then
set all the parameters in the previous list. As the Framework/Bundle/org-ecl ipse-equinox-cm node
does not exist, the TR069 Connector will create it because it is below a writable MAP node. The Sys-
tem Bundle is updated with an empty string, signalling an update. A System Bundle update is a
framework restart.

Once the session is committed after all the SetParameterValues elements are executed the Data Plu-
gin will perform the actions and report success or failure. The handler must then restart the frame-
work after the commit has returned.

131.7 Native TR-069 Object Models
This section provides an example of a Data Plugin that provides a native TR-069 Object Model. As
example is chosen a naive implementation of the Configuration Admin service. The object model
implemented has the following definition:

Path Type Write Read Description
CM.{i} . Object
CM.{i} .P id str ing x x The PID
CM.{i} .Propert ies.{ i} . Object Property nodes
CM.{i} .Propert ies.{ i} .Key str ing x x The key
CM.{i} .Propert ies.{ i} .Value str ing x x Comma separated values

The corresponding DMT sub-tree is defined like:

Name Act Type Card. S Description
CM Get MAP 1 P Base node for the CM model
 [str ing] Get Set

Add Del
Configurat ion 0. .n D A MAP of the PID

 InstanceId Get int 1 P The persistent instance Id
 P id Get str ing 1 P The PID of the configuration
 Propert ies Get MAP 1 P The properties
 [str ing] Get Set

Add Del
LIST 0. .n D A property definitions; a property

consists of a list of strings. Single
values are just a list with one ele-
ment.

 [index] Get Set
Add Del

str ing 0. .n D An element in the list

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Residential Release 6 Page 489

The Protocol Adapter allows an ACS to access the data model implemented in the Dmt Plugin. It al-
so allows the creation of new configuration objects.

131.8 org.osgi.service.tr069todmt

TR069 Connector Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.tr069todmt; vers ion="[1.0,2.0)"

Example import for providers of the API in this package:

Import-Package: org.osgi .service.tr069todmt; vers ion="[1.0,1.1)"

131.8.1 Summary

• ParameterInfo - Maps to the TR-069 ParameterInfoStruct that is returned from the
TR069Connector.getParameterNames(String, boolean) method.

• ParameterValue - Maps to the TR-069 ParameterValueStruct
• TR069Connector - A TR-069 Connector is an assistant to a TR-069 Protocol Adapter developer.
• TR069ConnectorFactory - A service that can create TR069 Connector
• TR069Exception - This exception is defined in terms of applicable TR-069 fault codes.

131.8.2 public interface ParameterInfo
Maps to the TR-069 ParameterInfoStruct that is returned from the
TR069Connector.getParameterNames(String, boolean) method.

131.8.2.1 public ParameterValue getParameterValue() throws TR069Exception

□ Provide the value of the node. This method throws an exception if it is called for anything but a pa-
rameter

Returns The Parameter Value of the corresponding object

Throws TR069Exception– If there is a problem

131.8.2.2 public String getPath()

□ The path of the parameter, either a parameter path, an instance path, a table path, or an object path.

Returns The name of the parameter

131.8.2.3 public boolean isParameter()

□ Returns true of this is a parameter, if it returns fa lse it is an object or table.

Returns true for a parameter, fa lse otherwise

131.8.2.4 public boolean isWriteable()

□ Return true if this parameter is writeable, otherwise fa lse . A parameter is writeable if the SetPara-
materValue with the given name would be successful if an appropriate value was given. If this is a
table path, the method specifies whether or not AddObject would be successful. If the parameter
path points to a table instance, the method specifies whether or not DeleteObject would be success-
ful.

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0

Page 490 OSGi Residential Release 6

Returns If this parameter is writeable

131.8.3 public interface ParameterValue
Maps to the TR-069 ParameterValueStruct

131.8.3.1 public String getPath()

□ This is the path of a Parameter. In TR-069 this is called the Parameter Name.

Returns The path of the parameter

131.8.3.2 public int getType()

□ The type of the parameter. One of TR069Connector.TR069_INT,
TR069Connector.TR069_UNSIGNED_INT, TR069Connector.TR069_LONG,
TR069Connector.TR069_UNSIGNED_LONG, TR069Connector.TR069_STRING,
TR069Connector.TR069_DATETIME, TR069Connector.TR069_BASE64,
TR069Connector.TR069_HEXBINARY. This method is not part of the ParameterValueStruct but is
necessary to encode the type in the XML.

Returns The parameter type

131.8.3.3 public String getValue()

□ This is the value of the parameter. The returned value must be in a representation defined by the
TR-069 protocol.

Returns The value of the parameter

131.8.4 public interface TR069Connector
A TR-069 Connector is an assistant to a TR-069 Protocol Adapter developer. The connector manages
the low level details of converting the different TR-069 RPCs to a Device Management Tree managed
by Dmt Admin. The connector manages the conversions from the TR-069 Object Names to a node in
the DMT and vice versa.

The connector uses a Dmt Session from the caller, which is given when the connector is created. The
connector does not implement the exact RPCs but only provides the basic functions to set and get
the parameters of an object as well as adding and deleting an object in a table. A TR-069 developer
must still parse the XML, handle the relative and absolute path issues, open a Dmt Session etc.

The connector assumes that each parameter or object path is relative to the root of the Dmt Session.

This connector must convert the TR-069 paths to Dmt Admin URIs. This conversion must take into
account the LIST and MAP concepts defined in the specifications as well as the synthetic parameters
NumberOfEntr ies and Alias . These concepts define the use of an InstanceId node that must be used
by the connector to provide a TR-069 table view on the LIST and MAP nodes.

131.8.4.1 public static final String PREFIX = "application/x-tr-069-"

The MIME type prefix.

131.8.4.2 public static final int TR069_BASE64 = 64

Constant representing the TR-069 base64 type.

131.8.4.3 public static final int TR069_BOOLEAN = 32

Constant representing the TR-069 boolean type.

131.8.4.4 public static final int TR069_DATETIME = 256

Constant representing the TR-069 date time type.

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Residential Release 6 Page 491

131.8.4.5 public static final int TR069_DEFAULT = 0

Constant representing the default or unknown type. If this type is used a default conversion will
take place

131.8.4.6 public static final int TR069_HEXBINARY = 128

Constant representing the TR-069 hex binary type.

131.8.4.7 public static final int TR069_INT = 1

Constant representing the TR-069 integer type.

131.8.4.8 public static final int TR069_LONG = 4

Constant representing the TR-069 long type.

131.8.4.9 public static final String TR069_MIME_BASE64 = "application/x-tr-069-base64"

Constant representing the TR-069 base64 type.

131.8.4.10 public static final String TR069_MIME_BOOLEAN = "application/x-tr-069-boolean"

Constant representing the TR-069 boolean type.

131.8.4.11 public static final String TR069_MIME_DATETIME = "application/x-tr-069-dateTime"

Constant representing the TR-069 date time type.

131.8.4.12 public static final String TR069_MIME_DEFAULT = "application/x-tr-069-default"

Constant representing the default or unknown type. If this type is used a default conversion will
take place

131.8.4.13 public static final String TR069_MIME_EAGER = "application/x-tr-069-eager"

Constant representing the TR-069 eager type.

131.8.4.14 public static final String TR069_MIME_HEXBINARY = "application/x-tr-069-hexBinary"

Constant representing the TR-069 hex binary type.

131.8.4.15 public static final String TR069_MIME_INT = "application/x-tr-069-int"

Constant representing the TR-069 integer type.

131.8.4.16 public static final String TR069_MIME_LONG = "application/x-tr-069-long"

Constant representing the TR-069 long type.

131.8.4.17 public static final String TR069_MIME_STRING = "application/x-tr-069-string"

Constant representing the TR-069 string type.

131.8.4.18 public static final String TR069_MIME_STRING_LIST = "application/x-tr-069-string-list"

Constant representing the TR-069 string list type.

131.8.4.19 public static final String TR069_MIME_UNSIGNED_INT = "application/x-tr-069-unsignedInt"

Constant representing the TR-069 unsigned integer type.

131.8.4.20 public static final String TR069_MIME_UNSIGNED_LONG = "application/x-tr-069-unsignedLong"

Constant representing the TR-069 unsigned long type.

131.8.4.21 public static final int TR069_STRING = 16

Constant representing the TR-069 string type.

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0

Page 492 OSGi Residential Release 6

131.8.4.22 public static final int TR069_UNSIGNED_INT = 2

Constant representing the TR-069 unsigned integer type.

131.8.4.23 public static final int TR069_UNSIGNED_LONG = 8

Constant representing the TR-069 unsigned long type.

131.8.4.24 public String addObject(String path) throws TR069Exception

path A table path with an optional alias at the end

□ Add a new node to the Dmt Admin as defined by the AddObject RPC. The path must map to either a
LIST or MAP node as no other nodes can accept new children.

If the path ends in an alias ([ALIAS]) then the node name must be the alias, however, no new node
must be created. Otherwise, the Connector must calculate a unique instance id for the new node
name that follows the TR-069 rules for instance ids. That is, this id must not be reused and must not
be in use. That is, the id must be reserved persistently.

If the LIST or MAP node has a Meta Node with a MIME type application/x-tr-069-eager then the node
must be immediately created. Otherwise no new node must be created, this node must be created
when the node is accessed in a subsequent RPC.

The alias name or instance id must be returned as identifier for the ACS.

Returns The name of the new node.

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9004,
9005. If an AddObject request would result in exceeding the maximum number of such objects sup-
ported by the CPE, the CPE MUST return a fault response with the Resources Exceeded (9004) fault
code.

131.8.4.25 public void close()

□ Close this connector. This will not close the corresponding session.

131.8.4.26 public void deleteObject(String objectPath) throws TR069Exception

objectPath The path to an object in a table to be deleted.

□ Delete an object from a table. A missing node must be ignored.

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9005.
If the fault is caused by an invalid objectPath value, the Invalid Parameter Name fault code (9005)
must be used instead of the more general Invalid Arguments fault code (9003). A missing node for
objectPath must be ignored.

131.8.4.27 public Collection<ParameterInfo> getParameterNames(String objectOrTablePath,boolean nextLevel) throws
TR069Exception

objectOrTablePath A path to an object or table.

nextLevel If true consider only the children of the object or table addressed by path , otherwise include the
whole sub-tree, including the addressed object or table.

□ Getting the ParameterInfo objects addressed by path. This method is intended to be used to imple-
ment the GetParameterNames RPC.

The connector must attempt to create any missing nodes that are needed for the objectOrTablePath
by using the toURI(String, boolean) method with true .

This method must traverse the sub-tree addressed by the path and return the paths to all the objects,
tables, and parameters in that tree. If the nextLevel argument is true then only the children object,
table, and parameter information must be returned.

The returned ParameterInfo objects must be usable to discover the sub-tree.

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Residential Release 6 Page 493

If the child nodes have an InstanceId node then the returned names must include the InstanceId val-
ues instead of the node names.

If the parent node is a MAP , then the synthetic Alias parameter must be included.

Any MAP and LIST node must include a ParameterInfo for the corresponding NumberOfEntr ies para-
meter.

Returns A collection of ParameterInfo objects representing the resulting child parameter, objects, and tables
as defined by the TR-069 ParameterInfoStruct .

Throws TR069Exception– If the fault is caused by an invalid ParameterPath value, the Invalid Parameter
Name fault code (9005) MUST be used instead of the more general Invalid Arguments fault code
(9003). A ParameterPath value must be considered invalid if it is not an empty string and does not
exactly match a parameter or object name currently present in the data model. If nextLevel is true
and objectOrTablePath is a parameter path rather than an object/table path, the method must re-
turn a fault response with the Invalid Arguments fault code (9003). If the value cannot be gotten for
some reason, this method can generate the following fault codes::

• 9001 TR069Exception.REQUEST_DENIED
• 9002 TR069Exception.INTERNAL_ERROR
• 9003 TR069Exception.INVALID_ARGUMENTS
• 9005 TR069Exception.INVALID_PARAMETER_NAME

131.8.4.28 public ParameterValue getParameterValue(String parameterPath) throws TR069Exception

parameterPath A parameter path (must refer to a valid parameter, not an object or table).

□ Getting a parameter value. This method should be used to implement the GetParameterValues RPC.
This method does not handle retrieving multiple values as the corresponding RPC can request with
an object or table path, this method only accepts a parameter path. Retrieving multiple values can
be achieved with the getParameterNames(String, boolean).

If the parameterPath ends in NumberOfEntr ies then the method must synthesize the value. The pa-
rameterPath then has a pattern like (object-path)(table-name)NumberOfEntr ies . The returned val-
ue must be an TR069_UNSIGNED_INT that contains the number of child nodes in the table (ob-
ject-path)(table-name) . For example, if A.B.CNumberOfEntr ies is requested the return value must
be the number of child nodes under A/B/C .

If the value of a an Alias node is requested then the name of the parent node must be returned. For
example, if the path is M.X.Al ias then the returned value must be X .

The connector must attempt to create any missing nodes along the way, creating parent nodes on
demand.

Returns The name, value, and type triad of the requested parameter as defined by the TR-069 ParameterVal-
ueStruct .

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9004,
9005.

• 9001 TR069Exception.REQUEST_DENIED
• 9002 TR069Exception.INTERNAL_ERROR
• 9003 TR069Exception.INVALID_ARGUMENTS
• 9004 TR069Exception.RESOURCES_EXCEEDED
• 9005 TR069Exception.INVALID_PARAMETER_NAME

131.8.4.29 public void setParameterValue(String parameterPath,String value,int type) throws TR069Exception

parameterPath The parameter path

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0

Page 494 OSGi Residential Release 6

value A trimmed string value that has the given type. The value can be in either canonical or lexical repre-
sentation by TR069.

type The type of the parameter (TR069_INT, TR069_UNSIGNED_INT,TR069_LONG,
TR069_UNSIGNED_LONG,TR069_STRING, TR069_DATETIME,TR069_BASE64,
TR069_HEXBINARY, TR069_BOOLEAN)

□ Setting a parameter. This method should be used to provide the SetParameterValues RPC. This
method must convert the parameter Name to a URI and replace the DMT node at that place. It must
follow the type conversions as described in the specification.

The connector must attempt to create any missing nodes along the way, creating parent nodes on
demand.

If the value of a an Alias node is set then the parent node must be renamed. For example, if the value
of M/X/Al ias is set to Y then the node will have a URI of M/Y/Al ias . The value must not be escaped as
the connector will escape it.

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9004,
9005, 9006, 9007, 9008.

• 9001 TR069Exception.REQUEST_DENIED
• 9002 TR069Exception.INTERNAL_ERROR
• 9003 TR069Exception.INVALID_ARGUMENTS
• 9004 TR069Exception.RESOURCES_EXCEEDED
• 9005 TR069Exception.INVALID_PARAMETER_NAME
• 9006 TR069Exception.INVALID_PARAMETER_TYPE
• 9007 TR069Exception.INVALID_PARAMETER_VALUE
• 9008 TR069Exception.NON_WRITABLE_PARAMETER

131.8.4.30 public String toPath(String uri) throws TR069Exception

uri A Dmt Session relative URI

□ Convert a Dmt Session relative Dmt Admin URI to a valid TR-069 path, either a table, object, or pa-
rameter path depending on the structure of the DMT. The translation takes into account the special
meaning LIST , MAP , Alias , and InstanceId nodes.

Returns An object, table, or parameter path

Throws TR069Exception– If there is an error

131.8.4.31 public String toURI(String name,boolean create) throws TR069Exception

name A TR-069 path

create If true , create missing nodes when they reside under a MAP or LIST

□ Convert a TR-069 path to a Dmt Session relative Dmt Admin URI. The translation takes into account
the special meaning LIST , MAP , InstanceId node semantics.

The synthetic Alias or NumberOfEntr ies parameter cannot be mapped and must throw an
TR069Exception.INVALID_PARAMETER_NAME.

The returned path is properly escaped for TR-069.

The mapping from the path to a URI requires support from the meta data in the DMT, it is not pos-
sible to use a mapping solely based on string replacements. The translation takes into account the
semantics of the MAP and LIST nodes. If at a certain point a node under a MAP node does not exist
then the Connector can create it if the create flag is set to true . Otherwise a non-existent node will
terminate the mapping.

Returns A relative Dmt Admin URI

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Residential Release 6 Page 495

Throws TR069Exception– If there is an error

131.8.5 public interface TR069ConnectorFactory
A service that can create TR069 Connector

131.8.5.1 public TR069Connector create(DmtSession session)

session The session to use for the adaption. This session must not be closed before the TR069 Connector is
closed.

□ Create a TR069 connector based on the given session .

The session must be an atomic session when objects are added and/or parameters are going to be
set, otherwise it can be a read only or exclusive session. Due to the lazy creation nature of the TR069
Connector it is possible that a node must be created in a read method after a node has been added, it
is therefore necessary to always provide an atomic session when an ACS session requires modifying
parameters.

Returns A new TR069 Connector bound to the given session

131.8.6 public class TR069Exception
extends RuntimeException
This exception is defined in terms of applicable TR-069 fault codes. The TR-069 specification defines
the fault codes that can occur in different situations.

131.8.6.1 public static final int INTERNAL_ERROR = 9002

9002 Internal error

131.8.6.2 public static final int INVALID_ARGUMENTS = 9003

9003 Invalid Arguments

131.8.6.3 public static final int INVALID_PARAMETER_NAME = 9005

9005 Invalid parameter name (associated with Set/GetParameterValues, GetParameterNames, Set/
GetParameterAttributes, AddObject, and DeleteObject)

131.8.6.4 public static final int INVALID_PARAMETER_TYPE = 9006

9006 Invalid parameter type (associated with SetParameterValues)

131.8.6.5 public static final int INVALID_PARAMETER_VALUE = 9007

9007 Invalid parameter value (associated with SetParameterValues)

131.8.6.6 public static final int METHOD_NOT_SUPPORTED = 9000

9000 Method not supported

131.8.6.7 public static final int NON_WRITABLE_PARAMETER = 9008

9008 Attempt to set a non-writable parameter (associated with SetParameterValues)

131.8.6.8 public static final int NOTIFICATION_REJECTED = 9009

9009 Notification request rejected (associated with SetParameterAttributes method).

131.8.6.9 public static final int REQUEST_DENIED = 9001

9001 Request denied (no reason specified

References TR069 Connector Service Specification Version 1.0

Page 496 OSGi Residential Release 6

131.8.6.10 public static final int RESOURCES_EXCEEDED = 9004

9004 Resources exceeded (when used in association with SetParameterValues, this MUST NOT be
used to indicate parameters in error)

131.8.6.11 public TR069Exception(String message)

message The message

□ A default constructor when only a message is known. This will generate a INTERNAL_ERROR fault.

131.8.6.12 public TR069Exception(String message,int faultCode,DmtException e)

message The message

faultCode The TR-069 defined fault code

e

□ A Constructor with a message and a fault code.

131.8.6.13 public TR069Exception(String message,int faultCode)

message The message

faultCode The TR-069 defined fault code

□ A Constructor with a message and a fault code.

131.8.6.14 public TR069Exception(DmtException e)

e The Dmt Exception

□ Create a TR069Exception from a Dmt Exception.

131.8.6.15 public DmtException getDmtException()

Returns the corresponding Dmt Exception

131.8.6.16 public int getFaultCode()

□ Answer the associated TR-069 fault code.

Returns Answer the associated TR-069 fault code.

131.9 References

[1] TR-069 Amendment 3
http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf

[2] TR-106 Amendment 3
http://www.broadband-forum.org/technical/download/TR-106_Amendment-3.pdf

[3] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/xmlschema-2/

[4] SOAP 1.1
http://www.w3.org/TR/2000/NOTE- SOAP-20000508

[5] Extensible Markup Language (XML) 1.0 (Second Edition)
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Letter

[6] Broadband Forum
http://www.broadband-forum.org/

Common Namespaces Specification Version 1.1 Introduction

OSGi Residential Release 6 Page 497

135 Common Namespaces
Specification

Version 1.1

135.1 Introduction
A key aspect of the OSGi general dependency model based on requirements and capabilities is the
concept of a Namespace. A Namespace defines the semantics of a Requirement-Capability pair. The
generic model is defined in the [3] Resources API Specification. This section defines a number of Name-
spaces that are not part of the OSGi Core Release 6 specification. Unless an attribute is specifically
overridden, all Namespaces inherit the attributes and directives of the default Namespace as defined
[4] Framework Namespaces Specification.

Each Namespace is defined with the following items:

• Name - the name of an attribute or directive
• Kind - Defines where the attribute or directive can be used

• CA - Capability Attribute
• CD - Capability Directive
• RA - Requirement Attribute
• RD - Requirement Directive

• M/O - Mandatory (M) or Optional (O)
• Type - The data type
• Syntax - Any syntax rules. The syntax refers in general to the syntaxes defined in [5] General Syn-

tax Definitions and [6] Common Headers.

135.1.1 Versioning
In general, capabilities in a Namespace are versioned using Semantic Versioning. See [7] Semantic
Versioning. Therefore, a capability will specify a single version and a requirement will specify a ver-
sion range. See osgi.extender Namespace for an example.

For some Namespaces, capabilities are not versioned using Semantic Versioning. The versioning
scheme used in those Namespaces will be described in the specification for the Namespace.

135.2 osgi.extender Namespace
An Extender is a bundle that uses the life cycle events from another bundle, the extendee, to extend
that bundle's functionality when that bundle is active. It can use metadata (headers, or files inside
the extendee) to control its functionality. Extendees therefore have a dependency on the Extender
that can be modeled with the osgi .extender Namespace. The definition for this Namespace can be
found in the following table and the ExtenderNamespace class.

osgi.extender Namespace Common Namespaces Specification Version 1.1

Page 498 OSGi Residential Release 6

Table 135.1 osgi.extender Namespace

Name Kind M/O Type Syntax Description
osgi .extender CA M String symbol ic-name A symbolic name for the extender. These names

are defined in their respective specifications and
should in general use the specification top level
package name. For example, org.acme.foo . The
OSGi Alliance reserves names that start with "os-
gi .".

version CA M Version version A version. This version must correspond to the
specification of the extender.

Specifications for extenders (Blueprint, Declarative Services, etc.) should specify the values for these
attributes. Extenders that provide such a capability should list the packages that they use in their
specification in the uses directive of that capability to ensure class space consistency. For example a
Declarative Services implementation could declare its capability with the following manifest head-
er:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 uses:="org.osgi.service.component";
 version:Version="1.3"

A bundle that depends on a Declarative Services implementation should require such an extender
with the following manifest header:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Extenders can extend an extendee bundle even if that bundle does not require the extender, unless
the extender's specification explicitly forbids this. It is recommended that an extender should only
extend a bundle if one of the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
of the extender and the first of these required wires is wired to the extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name of the
extender.

Otherwise, the extender should not extend the bundle.

135.2.1 Extenders and Framework Hooks
The Framework provides a number of hooks that allow groups of bundles to be scoped. For exam-
ple, the Subsystem Service Specification. An extender may want to extend the complete set of bundles
installed in the Framework even when extendee bundles are hidden from the extender. The system
bundle context provides a complete view of the bundles and services available in the Framework
even if Framework hooks are used to scope groups of bundles. The system bundle context can be
used by an extender to track all bundles installed in the Framework regardless of how Framework
hooks are used to scope groups of bundles. This is useful in scenarios where several scoped groups
contain bundles that require an extender. Instead of requiring an extender to be installed in each
scoped group of bundles, a single extender that uses the system bundle context to track extendees
can be installed to extend all scoped groups of bundles.

Common Namespaces Specification Version 1.1 osgi.contract Namespace

OSGi Residential Release 6 Page 499

135.3 osgi.contract Namespace
Products or technologies often have a number of related APIs consisting of a large set of packages.
Some IDEs have not optimized for OSGi and requires work for each imported package. In these de-
velopment environments using modularized systems tends to require a significant amount of man-
ual effort to manage the imported packages.

The osgi .contract Namespace addresses this IDE deficiency. It allows a developer to specify a single
name and version for a contract that can then be expanded to a potentially large number of pack-
ages. For example, a developer can then specify a dependency on Java Enterprise Edition 6 contract
that can be provided by an application server.

The osgi .contract Namespace provides such a name and binds it to a set of packages with the us-
es constraint. The bundle that declares this contract must then import or export each of the listed
packages with the correct versioning. Such a bundle is called a contract bundle. The contract bundle
must ensure that it is bound to the correct versions of the packages contained within the contract it
is providing. If the contract bundle imports the packages which are specified as part of the contract
then proper matching attributes must be used to make sure it is bound to the correct versions of the
packages.

Additionally, the osgi .contract Namespace can be used in cases where API is defined by parties
that do not use Semantic Versioning. In those cases, the version of the exported package can be un-
clear and so it is difficult to specify a meaningful version range for the package import. In such cas-
es, importing the package without specifying a version range and specifying a requirement in the
osgi .contract Namespace can provide a way to create portable bundles that use the API. OSGi has
defined contract names for a number of such APIs. See [2] Portable Java Contract Definitions for more
information.

An osgi .contract capability can then be used in the following ways:

• IDEs can use the information in the uses directive to make all those packages available on the
build path. In this case the developer no longer has to specify each package separately.

• During run time the uses clause is used to enforce that all packages in the contract form a consis-
tent class space.

The uses directive will make it impossible to get wired to packages that are not valid for the con-
tract. Since the uses constrains enforce the consistency, it is in principle not necessary to version the
imported packages on client bundles since only the correctly versioned packages can be used. Con-
tracts are aggregates and therefore make clients depend on the whole and all their transitive depen-
dencies, even if the client only uses a single package of the contract.

The recommended way of using contracts is to create a contract bundle that provides the
osgi .contract capability and imports the packages with their required version range. For example:

Provide-Capability: osgi.contract;
 osgi.contract=JavaServlet;
 version:Version=2.5;
 uses:="javax.servlet,javax.servlet.http"
Export-Package:
 javax.servlet; version="2.5",
 javax.servlet.http; version="2.5"

A contract may support multiple versions of a named contract. Such a contract must use a single ca-
pability for the contract name that specifies a list of all the versions that are supported. For example,
the JavaServlet 3.1 contract capability would be specified with the following:

Provide-Capability: osgi.contract;

osgi.contract Namespace Common Namespaces Specification Version 1.1

Page 500 OSGi Residential Release 6

 osgi.contract=JavaServlet;
 version:List<Version>="2.5,3.0,3.1";
 uses:=
 "javax.servlet,
 javax.servlet.annotation,
 javax.servlet.descriptor,
 javax.servlet.http"
Export-Package:
 javax.servlet; version="3.1",
 javax.servlet.annotation; version="3.1",
 javax.servlet.descriptor; version="3.1",
 javax.servlet.http; version="3.1"

A client bundle that requires the Servlet 2.5 contract can then have the following manifest:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))",
Import-Package:
 javax.servlet, javax.servlet.http

The client bundle will be constrained by the contract's uses constraints and automatically gets
the correct packages. In this example, no semantic versioning is used for the contract because the
Servlet Specifications do not use semantic versioning (version 3.0 is backward compatible with 2.X).

In this model it is even possible to use the normally not recommended DynamicImport-Package
header with a wild card since also this header is constrained by the uses constraints. However, using
a full wildcard can also dynamically import packages that are not part of the contract. To prevent
these unwanted dynamic imports, the exporter could include an attribute on the exports. For exam-
ple:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))"
DynamicImport-Package:
 *;JavaServlet=contract

However, this model requires the exporter to specify an agreed attribute. The contract bundle does
not require such coordination; it also allows the package exporters to reside in different and unrelat-
ed bundles.

The definition of the osgi .contract Namespace is in the following table and in the ContractName-
space class. See [2] Portable Java Contract Definitions.

Table 135.2 osgi.contract Namespace

Name Kind M/O Type Syntax Description
osgi .contract CA M String symbol ic-name A symbolic name for the contract.
version CA O Version+ version A list of versions for the contract. A contract that

supports multiple versions must use a single ca-
pability with a version attribute that lists all ver-
sions supported.

uses CD O String package-name

(',' package-name)

For a contract, the standard uses clause is used to
indicate which packages are part of the contract.
The imports or exports of those packages link
these packages to a particular version.

135.3.1 Versioning
As the osgi .contract Namespace follows the versioning of the associated contract, capabilities in
this Namespace are not semantically versioned. The associated contracts are often versioned using

Common Namespaces Specification Version 1.1 osgi.service Namespace

OSGi Residential Release 6 Page 501

marketing or other versioning schemes and therefore the version number cannot be used as an indi-
cation of backwards compatibility.

As a result, capabilities in the osgi .contract Namespace use a discrete versioning scheme. In such a
versioning scheme, each version is treated as separate without any implied relation to another ver-
sion. A capability lists all compatible versions. A requirement only selects a single version.

135.4 osgi.service Namespace
The Service Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that potentially can register
a specific service.

• Providing a hint to the provisioning agent that the bundle requires a given service.
• Used as template for specifications like Blueprint and Declarative Services to express their pro-

vided and referenced services in the Repository model, see the Repository Service Specification.

A bundle providing this capability indicates that it can register such a service with at least the given
custom attributes as service properties. At resolve time this is a promise since there is no guarantee
that during runtime the bundle will actually register such a service; clients must handle this with
the normal runtime dependency managers like Blueprint, Declarative Services, or others.

See the following table and the ServiceNamespace class for this Namespace definition.

Table 135.3 osgi.service Namespace

Name Kind M/O Type Syntax Description
objectClass CA M List

<Str ing>

qname

(',' qname)*

The fully qualified name of the object class of the
service.

* CA O * * Custom attributes that will be provided as service
properties if they do not conflict with the service
properties rules and are not private service prop-
erties. Private properties start with a full stop ('.'
\u002E).

135.4.1 Versioning
Capabilities in the osgi .service Namespace are not versioned. The package of a service's object class
is generally versioned and the package can be associated with the capability via the uses directive.

135.5 osgi.implementation Namespace
The Implementation Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that provides an implemen-
tation of the specified specification or contract.

• Providing uses constraints to ensure that bundles which require an implementation of a specifi-
cation or contract will be wired appropriately by the framework.

• Providing a hint to the provisioning agent that the bundle requires a given specification or con-
tract implementation.

• Used as a general capability Namespace for specifications or contracts to express their provided
function in the Repository model, see the Repository Service Specification.

org.osgi.namespace.contract Common Namespaces Specification Version 1.1

Page 502 OSGi Residential Release 6

A bundle providing this capability indicates that it implements a specification or contract with the
specified name and version. For example, the Asynchronous Service Specification would provide the
following capability:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async"

See the following table and the ImplementationNamespace class for this Namespace definition.

Table 135.4 osgi.implementation Namespace

Name Kind M/O Type Syntax Description
osgi . implementation CA M String symbol ic-name The symbolic name of the specification or con-

tract. The OSGi Alliance reserves names that start
with "osgi .".

version CA M Version version The version of the implemented specification or
contract.

* CA O * * Custom attributes that can be used to further
identify the implementation

135.6 org.osgi.namespace.contract

Contract Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.6.1 Summary

• ContractNamespace - Contract Capability and Requirement Namespace.

135.6.2 public final class ContractNamespace
extends Namespace
Contract Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.6.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the contract. The value of this at-
tribute must be of type Version .

135.6.2.2 public static final String CONTRACT_NAMESPACE = "osgi.contract"

Namespace name for contract capabilities and requirements.

Also, the capability attribute used to specify the name of the contract.

Common Namespaces Specification Version 1.1 org.osgi.namespace.extender

OSGi Residential Release 6 Page 503

135.7 org.osgi.namespace.extender

Extender Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.7.1 Summary

• ExtenderNamespace - Extender Capability and Requirement Namespace.

135.7.2 public final class ExtenderNamespace
extends Namespace
Extender Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.7.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the extender. The value of this
attribute must be of type Version .

135.7.2.2 public static final String EXTENDER_NAMESPACE = "osgi.extender"

Namespace name for extender capabilities and requirements.

Also, the capability attribute used to specify the name of the extender.

135.8 org.osgi.namespace.service

Service Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.8.1 Summary

• ServiceNamespace - Service Capability and Requirement Namespace.

135.8.2 public final class ServiceNamespace
extends Namespace
Service Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long

org.osgi.namespace.implementation Common Namespaces Specification Version 1.1

Page 504 OSGi Residential Release 6

• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

135.8.2.1 public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"

The capability attribute used to specify the types of the service. The value of this attribute must be
of type List<Str ing> .

A ServiceNamespace capability should express a uses constraint for all the packages mentioned in
the value of this attribute.

135.8.2.2 public static final String SERVICE_NAMESPACE = "osgi.service"

Namespace name for service capabilities and requirements.

135.9 org.osgi.namespace.implementation

Implementation Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.9.1 Summary

• ImplementationNamespace - Implementation Capability and Requirement Namespace.

135.9.2 public final class ImplementationNamespace
extends Namespace
Implementation Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.9.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification or contract being implemented.
The value of this attribute must be of type Version .

135.9.2.2 public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

Namespace name for "implementation" capabilities and requirements. This is also the capability at-
tribute used to specify the name of the specification or contract being implemented.

A ImplementationNamespace capability should express a uses constraint for the appropriate pack-
ages defined by the specification/contract the packages mentioned in the value of this attribute.

Common Namespaces Specification Version 1.1 References

OSGi Residential Release 6 Page 505

135.10 References

[1] Specification References
http://www.osgi.org/Specifications/Reference

[2] Portable Java Contract Definitions
http://www.osgi.org/Specifications/ReferenceContract

[3] Resources API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] Framework Namespaces Specification
OSGi Core, Chapter 8 Framework Namespaces Specification

[5] General Syntax Definitions
OSGi Core, General Syntax Definitions

[6] Common Headers
OSGi Core, Chapter 3, Common Header Syntax

[7] Semantic Versioning
OSGi Core, Chapter 3, Semantic Versioning

135.11 Changes
• Clarified osgi.extender Namespace and added a section on the relationship with framework

hooks.
• Clarified osgi.contract Namespace and examples.
• Added osgi.implementation Namespace on page 501.
• Clarified versioning of capabilities in a namespace.

Changes Common Namespaces Specification Version 1.1

Page 506 OSGi Residential Release 6

EnOcean Device Service Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 507

139 EnOcean Device Service
Specification

Version 1.0

139.1 Introduction
EnOcean is a standard wireless communication protocol designed for low-cost and low-power de-
vices by EnOcean Alliance.

EnOcean is widely supported by various types of devices such as smart meters, lights and many
kinds of sensors in the residential area. OSGi applications need to communicate with those EnO-
cean devices. This specification defines how OSGi bundles can be developed to discover and con-
trol EnOcean devices on the one hand, and act as EnOcean devices and interoperate with EnOcean
clients on the other hand. In particular, a Java mapping is provided for the standard representation
of EnOcean devices called EnOcean Equipment Profile (EEPs). See [2] EnOcean Equipment Profiles
v2.6.2.

The specification also describes the external API of an EnOcean Base Driver according to Device Ac-
cess specification.

139.2 Essentials
• Scope - This specification is limited to general device discovery and control aspects of the stan-

dard EnOcean specifications. Aspects concerning the representation of specific or proprietary
EnOcean profiles is not addressed.

• Transparency - EnOcean devices discovered on the network and devices locally implemented on
the platform are represented in the OSGi service registry with the same API.

• Lightweight implementation option - The full description of EnOcean device services on the OSGi
platform is optional. Some base driver implementations may implement all the classes includ-
ing EnOcean device description classes while Implementations targeting constrained devices are
able to implement only the part that is necessary for EnOcean device discovery and control.

• Network Selection - It must be possible to restrict the use of the EnOcean protocols to a selection of
the connected devices.

• Event handling - Bundles are able to listen to EnOcean events.
• Discover and control EnOcean devices as OSGi services - Available learned (via an EnOcean teach-in

procedure) EnOcean external endpoints are dynamically reified as OSGi services on the service
registry upon discovery.

• OSGi services as exported EnOcean devices - OSGi services implementing the API defined here and
explicitly set to be exported should be made available to networks with EnOcean-enabled end-
points in a transparent way.

Entities EnOcean Device Service Specification Version 1.0

Page 508 OSGi Residential Release 6

139.3 Entities
• EnOcean Base Driver - The bundle that implements the bridge between OSGi and EnOcean net-

works, see Figure 139.1 on page 509. It is responsible for accessing the various EnOcean gate-
way chips on the execution machine, and ensures the reception and translation of EnOcean mes-
sages into proper objects. It is also used to send messages on the EnOcean network, using what-
ever chip it deems most appropriate.

• EnOcean Host - The EnOceanHost object is a link between the software and the EnOcean network.
It represents the chip configuration (gateway capabilities) described in [5] EnOcean System Specifi-
cation - Security of EnOcean Radio Networks v1.9. It is registered as an OSGi service.

• EnOcean Device - An EnOcean device. This entity is represented by a EnOceanDevice interface
and registered as a service within the framework. It carries the unique chip ID of the device, and
may represent either an imported or exported device, which may be a pure transmitter or a trans-
ceiver.

• EnOcean Message - Every EnOcean reporting equipment is supposed to follow a “profile”, which
is essentially the way the emitted data is encoded. In order to reflect this standard as it is defined
in [2] EnOcean Equipment Profiles v2.6.2, manufacturers are able to register the description of “Mes-
sages”, the essence of a profile, along with their associated payload (as Channels). See “EnOcean
Channels” below for more information.

• EnOcean Channel - EnOcean channels are available as an array inside EnOceanMessage objects.
They are a useful way to define any kind of payload that would be put inside of an EnOcean Mes-
sage.

EnOcean Messages and their associated Channels can be described with EnOceanMes-
sageDescription and EnOceanChannelDescription interfaces. Description providers aggregate
these descriptions in sets that they register with EnOceanMessageDescriptionSet and EnOcean-
ChannelDescriptionSet interfaces within the framework.

• EnOcean RPC - An interface that enables the invocation of vendor-specific Remote Procedure
Calls and Remote Management Commands. These are particular types of Messages and are not
linked to any EnOcean Profile, so that their descriptions are defined and registered in another
way. The RPCs are documented via the EnOceanRPCDescription objects gathered into registered
EnOceanRPCDescriptionSet services.

• EnOcean Handler - Enables clients to asynchronously get answers to their RPCs.
• EnOcean Client - An application that is intended to control EnOcean device services.
• EnOcean Exception - Delivers errors during EnOceanMessage serialization/deserialization or dur-

ing execution outside transmission.

EnOcean Device Service Specification Version 1.0 Operation Summary

OSGi Residential Release 6 Page 509

Figure 139.1 EnOcean Service Specification class diagram.

sends messages with EventAdmin

1 1

EnOcean Base Driver

sends

[Object] [Object]

An EnOcean Message
Descriptor

[Object]

[Object]

0..n

An EnOcean RPC
Descriptor

[Object]

[Object]

0..1 associated
with

0..n

A listener implementing
EventHandler

[Object]

0..1

requested
by

<<Interface>>
EnOceanRPC
DescriptionSet

<<Interface>>
EnOceanMessage
DescriptionSet

<<Interface>>
EnOceanChannel
DescriptionSet

<<Interface>>
EnOceanRPC

<<Interface>>
EnOceanMessage
DescriptionDescription

<<Interface>>
EnOceanChannel
Description

<<Interface>>
EnOceanChannel

<<Interface>>
EnOceanMessage

<<Interface>>
EnOceanDevice

<<Interface>>
EnOceanHost

An EnOcean device
implementation

has hashas

0..n

An EnOcean device
implementer

1 11

1

0..n

1

0..n

1

0..n

0..n

has

1

1

0..n

receives messages
with EventAdmin1

0..n

<<Interface>>
EnOceanRPC

An EnOcean device
client

gets

associated
with

associated
with

invoked
by

gets

139.4 Operation Summary
To make an EnOcean device service available to EnOcean clients on the OSGi platform, it must be
registered under the EnOceanDevice interface within the OSGi framework.

The EnOcean Base Driver is responsible for mapping external devices into EnOceanDevice objects,
through the use of an EnOcean gateway. See [1] Pervasive Service Composition in the Home Network. The
latter is represented on OSGi framework as an object implementing EnOceanHost interface. EnO-
cean “teach-in” messages will trigger this behavior, this is called a device import situation, see Figure
139.2 on page 509.

Figure 139.2 EnOcean device import.

EnOcean Base Driver

< < Interface> >
EnOceanDevice

An EnOcean client

< < Interface> >
EnOceanHost

An EnOcean device
implementat ion

1
0..n

1
sends messages with EventAdmin

0..n

A listener implementing
EventHandler

0..n1

Client bundles may also expose framework-internal (local) EnOceanDevice instances, registered
within the framework, see Figure 139.3 on page 510. The Base Driver then should emulate those

Operation Summary EnOcean Device Service Specification Version 1.0

Page 510 OSGi Residential Release 6

objects as EnOcean devices on the EnOcean network. This is a device export situation, made possi-
ble by the use of the 127 virtual base IDs available on an EnOcean gateway. For more information
about this process, see Export Situation on page 512.

Figure 139.3 EnOcean device export.

EnOcean Base Driver

< < Interface> >
EnOceanDevice

An EnOcean device
implementer

< < Interface> >
EnOceanHost

1
0..n

1

receives messages
with EventAdmin

0..n

A listener implementing
EventHandler

EnOcean clients send RPCs (Remote Procedure Calls) to EnOcean devices and receives RPC respons-
es and messages from them. Messages coming from EnOcean devices are accessible through Event
Admin.

RPCs and messages content are specified by EnOcean Alliance or vendor-specific descriptions. Those
descriptions may be provided on the OSGi platform by any bundle through the registration of EnO-
ceanRPCDescriptionSet, EnOceanMessageDescriptionSet and EnOceanChannelDescriptionSet ser-
vices. Every service is a set of description that enables applications to retrieve information about
supported RPCs, messages or channels that compose messages.

Figure 139.4 Using a set of message descriptions.

[Object]

<<Interface>>
EnOceanChannel
DescriptionSet

[Object]

<<Interface>>
EnOceanMessage
Description

[Object]

<<Interface>>
EnOceanChannel
Description

[Object]

<<Interface>>
EnOceanMessage
DescriptionSet

has

1 0..n

An EnOcean Message
Descriptor

An EnOcean device
client

has

1 0..n

EnOcean Device Service Specification Version 1.0 EnOcean Base Driver

OSGi Residential Release 6 Page 511

139.5 EnOcean Base Driver
Most of the functionality described in the operation summary is implemented in an EnOcean base
driver. This bundle implements the EnOcean protocol and handles the interaction with bundles
that use the EnOcean devices. An EnOcean base driver is able to discover EnOcean devices on the
network and map each discovered device into an OSGi registered EnOceanDevice service. It is also
the receptor, through EventAdmin service and OSGi service registry, of all the events related to local
devices and clients. It enables bidirectional communication for RPC and Channel updates.

Several base drivers may be deployed on a residential OSGi device, one for every supported network
technology. An OSGi device abstraction layer may then be implemented as a layer of refinement dri-
vers above a layer of base drivers. The refinement driver is responsible for adapting technology-spe-
cific device services registered by the base driver into device services of another model, see Abstract-
Device interface in Figure 139.5 on page 511. In the case of a generic device abstraction layer, the
model is agnostic to technologies.

The EnOcean Alliance defines their own abstract model with EnOcean Equipment Profiles and re-
finement drivers may provide the implementation of all EEPs with EnOcean specific Java interfaces.
The AbstractDevice interface of Figure 139.5 on page 511 is then replaced by an EEP specific Ja-
va interface in that case. The need and the choice of the abstraction depends on the targeted applica-
tion domain.

Figure 139.5 EnOcean Base Driver and a refinement driver representing devices in an abstract model.

EnOcean Base Driver

<<Interface>>
EnOceanDevice

<<Interface>>
AbstractDevice

Application interacting
with an abstraction layer

Refinement Driver

Application interacting
with the base driver

139.6 EnOcean Host
The EnOcean host represents an EnOcean gateway chip. Any EnOcean device service implementa-
tion should rely on at least one Gateway Chip in order to send and receive messages on the external
EnOcean network. This interface enables standard control over an EnOcean compatible chip. Every
EnOceanHost object should at least be identified by its unique chip ID.

The EnOceanHost interface enables OSGi applications to:

• Get or set gateway metadata (version, name, etc);
• Reset the gateway chip device;
• Retrieve a chip ID (derived from EnOcean's BASE_ID) for the given Service PID of a device.

EnOcean Device EnOcean Device Service Specification Version 1.0

Page 512 OSGi Residential Release 6

139.7 EnOcean Device

139.7.1 Generics
A physical EnOcean device is reified as an EnOceanDevice object within the framework.

An EnOcean device holds most of the natural properties for an EnOcean object: its unique ID, the
profile, a friendly name, its security information, and its available RPCs – along with the associated
getters (and setters when applicable). All those properties MUST be persistent across restart so that
teach-in procedures are made only once.

It also holds methods that reflect the natural actions a user application may physically trigger on
such a device: send a message to the device, send a teach-in message to the device, or switch the de-
vice to learning mode.

Every EnOcean Device keeps a service PID property that is assigned either by the base driver or by
any service-exporting bundle. The property value format is free and the value must be unique on
the framework.

The properties on which EnOceanDevice services can be filtered on are: the device's service PID and
chip ID, and its profile identifiers (RORG / FUNC / TYPE integers).

The EnOceanDevice also keeps security features as defined in the EnOcean Security Draft, [5] EnO-
cean System Specification - Security of EnOcean Radio Networks v1.9, which allow for a security level for-
mat (integer mask), an encryption key and/or a rolling authentication code.

The EnOceanDevice service MUST also be registered with the DEVICE_CATEGORY service property,
see Device Service Registration on page 78, that describes a array of categories to which the device be-
longs. One value MUST be EnOcean which is specified in DEVICE_CATEGORY .

Values for the additional service properties, DEVICE_DESCRIPTION , DEVICE_SERIAL as defined in
Device Service Registration on page 78, are not specified here as no description nor application-level
serial number are provided in the EnOcean standard protocol.

139.7.2 Import Situation
In import situations, the device's chip ID is uniquely set by the Base Driver, according to the one
present in the teach-in message that originated the Device's creation. The service PID, see [7] Persis-
tent Identifier (PID), should also be generated and deterministically derived from the chip ID to allow
reconstruction of a device without a new teach-in process after a framework restart.

139.7.3 Export Situation
In export situations:

1. The registering Client bundle sets the service PID of the EnOceanDevice object by itself, in a
unique manner, and registers that object.

2. The chip ID (this device's EnOcean source ID when it issues messages) will be allocated by the
Base Driver. The latter keeps a dictionary of the currently allocated chip IDs. The Client bundle
must also set an ENOCEAN_EXPORT property in the registered device's Property Map.

The standard way to programmatically retrieve an exported chip ID from a given service PID is by
using EnOceanHost's dedicated interface for this use.

The Base Driver MUST ensure the persistence of the CHIP_ID:SERVICE_PID mapping.

As an application developer, please refer to the documentation of your Base Driver to know its poli-
cies concerning exported chip ID updating, deletion and exhaustion.

EnOcean Device Service Specification Version 1.0 EnOcean Messages

OSGi Residential Release 6 Page 513

139.7.4 Interface
The EnOceanDevice interface enables client bundles to:

• Get or set the security features of the device in a protected way;
• Retrieve the currently paired devices in the case of a receiver, as a collection of device IDs;
• Get the ID-based list of currently available RPCs for the device, as a Map of {manufactur-

erID:[functionId1, functionId2,...]};
• Invoke RPCs onto the device, through the invoke(EnOceanRPC,EnOceanHandler) call.

139.8 EnOcean Messages
EnOcean Messages are at the core of the EnOcean application layer as a whole and the EnOcean
Equipment Profile specification, [2] EnOcean Equipment Profiles v2.6.2, in particular. Every exchange
of information within EnOcean networks is done with a dedicated message. The EnOceanMessage
interface provides a set of getters. The latter enables OSGi applications to get the information con-
tained in the payload of an EnOcean message and defined as data and optional data of the EnOcean
Serial Protocol Type 1 (RADIO) message (see Table 2 in Section "1.6.1 Packet description" of [4] EnO-
cean System Specification - EnOcean Serial Protocol v1.17).

This model enables reading both the EnOcean radio telegram data and the associated metadata that
may be attached to it in a single object, EnOceanMessage.

In case the 'Optional Data' section gets missing at the lowest level (the radio access layer not follow-
ing ESP protocol for instance) it is the responsibility of the Base Driver to mock the missing field's
(dBm, destinationID, …) values.

139.8.1 Mode of operation
Any EnOceanMessage object creation will be mirrored to Event Admin.

Details about the available topics, filters and properties can be found in Event API on page 517.

EnOceanMessage objects will be created only if the originating device has already been registered in
the OSGi Service Registry, along with profile information.

139.8.2 Identification
The RORG of a message defines its shape and generic type; all the RORGs are defined in the EnOcean
Radio Specification.

An addressed message will be encapsulated into an Addressed Telegram (ADT) by the base driver
transparently; this means that from the application level, it will be represented under its original
RORG, but with a valid destinationID.

A particular EnOcean Equipment Profile message is identified by three numbers: its RORG, and its
FUNC, TYPE and EXTRA subtypes. In EnOcean, a (RORG, FUNC, TYPE) triplet is enough to identify a
profile; though an EXTRA identifier is sometimes needed to identify a particular message layout for
that profile.

Those identifiers allow for retrieving EnOceanMessageDescr ipt ion objects within a registered EnO-
ceanMessageDescr ipt ionSet , which give the application more information to parse the message.

139.8.3 Interface
The methods available in the EnOceanMessage interface are:

• Identification methods, retrieving the message's profile, sender ID, optional destination ID, sta-
tus;

EnOcean Message Description EnOcean Device Service Specification Version 1.0

Page 514 OSGi Residential Release 6

• A method to get the raw bytes of payload data in the message. This data can then be passed to
the deserializer of the EnOceanMessageDescr ipt ion object to be converted to EnOceanChannel ,
which may -again- be documented (through EnOceanChannelDescr ipt ion objects) or not.

• Link quality information read-only methods that mirror some of the 'Optional Data' header in-
formation.

139.9 EnOcean Message Description
EnOceanMessageDescr ipt ion objects exposes only two methods:

• deseria l ize(byte[]) : makes the user able to deserialize the payload bytes of a raw EnOceanMes-
sage object, into a collection of EnOceanChannel objects.

• ser ia l ize(EnOceanChannel[]) : serializes the input EnOceanChannel objects into a collection of
bytes.

139.10 EnOcean Channel
The EnOceanChannel interface is the first step of an abstraction to generate or interpret EnOcean-
Message channels with plain Java types.

The simple EnOceanChannel interface provides a way to separate the different fields in a message
payload, knowing their offset and size in the byte array that constitutes the full message's payload.

At the EnOceanChannel level, the only way to get/set the information contained in the channel is
through a pair of getRawValue() and setRawValue(byte[]) methods, which act on plain bytes.

Those bytes are meant right-aligned, and the number of those bytes is the size of the data field,
floored up to the next multiple of 8. For instance, a 3-bit long channel would be encoded on one
byte, all the necessary information starting from bit 0.

Every EnOceanMessage as described in the EEP Specification contains a various amount of chan-
nels, each of them being identified by their unique ID.

This ID, or channelID, is constituted of the “Shortcut” field of this channel from the EEP 2.5 Specifi-
cation, [2] EnOcean Equipment Profiles v2.6.2, and a number fixed by the order of appearance of such a
“Shortcut” in the specification.

This unique identifier links a Channel to an EnOceanChannelDescr ipt ion object that provides more
information to encode and decode that channel's information; see below for more details. This en-
ables for loose coupling of the raw Channel itself and a richer, 3rd-party provided, information.

As an example, if the platform being developed is an electronic display that waits for Messages from
a well-known temperature sensor, the Client bundle on the platform may interpret the Temperature
Channels in every Temperature Message without needing an appropriate TemperatureChannelDe-
scription object; it may directly cast and convert the Byte[] array of every received message to a prop-
erly valued Double and display that.

Otherwise, it could as well use the channelID to get a TemperatureChannelDescription object that
would properly handle the deserialization process from the raw bytes to a proper, physical unit-aug-
mented, result.

EnOcean Device Service Specification Version 1.0 EnOcean Channel Description

OSGi Residential Release 6 Page 515

Figure 139.6 EnOcean channel and EnOcean channel descriptions.

[Object]

[Object]

[Object]

0..1 associated
with

<<Interface>>
EnOceanChannel
DescriptionSet

<<Interface>>
EnOceanChannel
Description

<<Interface>>
EnOceanChannel

has

1

1

0..n

<<Interface>>
EnOceanFlag
ChannelDescription

<<Interface>>
EnOceanEnum
ChannelDescription

<<Interface>>
EnOceanData
ChannelDescription

<<Interface>>
EnOceanChannel
EnumValue

has
1 0..n

139.11 EnOcean Channel Description
The EnOceanChannelDescr ipt ion interface enables the description of all the various channels as
specified in the EnOcean specification, as well as the description of channels issued by 3rd party ac-
tors.

Those description objects are retrieved from the registered EnOceanChannelDescr ipt ionSet inter-
face using an unique ID known as the channelID.

Here are the Channel types defined in this specification:

• TYPE_RAW : A collection of bytes. This type is used when the description is not provided, and is
thus the default. For this type, the deseria l ize(byte[]) call actually returns a byte[] collection. The
encryption key or a device ID on 4 bytes are examples of such raw types.

• TYPE_DATA : A scaled physical value. Used when the data can be mapped to a physical value; for
instance, the 'WND – Wind Speed' channel is a raw binary value, in a range from 0 to 255, that
will be mapped as a wind speed between 0 and 70 m/s. For this type, the deseria l ize(byte[]) call
actually returns a Double value.

• TYPE_FLAG : A boolean value. Used when the Channel value can be either 1 or 0. The “Teach-
In” Channel is a well-known example; this 1-bit field may either be 0 or 1, depending whether
the Message is a teach-in one or not. For this type, the deseria l ize(byte[]) call actually returns a
Boolean value.

• TYPE_ENUM : An enumeration of possible values. Used when the Channel can only take a dis-
crete number of values. More complicated than TYPE_FLAG , enumerated types may have thresh-
olds: for instance, the A5-30 “Digital Input- Input State (IPS)” channel is a 8-bit value which
means “Contact closed” between 0 and 195, and “Contact open” from 196 to 255. For this type, the
deseria l ize(byte[]) call actually returns an EnOceanChannelEnumValue object.

According to the channel type, the actual description object should implement one of the following
specialized interfaces. This will ease the use of casting to the specialized interfaces on documented
channels.

139.11.1 EnOcean Data Channel Description
The EnOceanDataChannelDescr ipt ion interface inherits from EnOceanChannelDescr ipt ion inter-
face.

EnOcean Remote Management EnOcean Device Service Specification Version 1.0

Page 516 OSGi Residential Release 6

Two more methods give access to the integer input domain of the data channel (such as 0-255) and
to the floating-point output range of it (such as -30.0°C – 24.5°C). A method is also present to retrieve
the physical unit of the channel. The ser ia l ize(Object) and deseria l ize(byte[]) methods are imple-
mented to easily convert from the raw byte[] collection to a Double, and vice versa.

Here are a few samples of such Channels:

Table 139.1 EnOcean Data Channel Description example

Short Description Possible implemented name Domain Range Unit
TMP Temperature TemperatureScaledChannel_X 0..255 -10°..+30° °C
HUM Humidity HumidityScaledChannel_X 0..250 0..100 %

139.11.2 EnOcean Flag Channel Description
The EnOceanFlagChannelDescr ipt ion interface inherits from the EnOceanChannelDescr ipt ion in-
terface.

Those channels, are typically used for On/Off reporting values (like a switch); they have no addition-
al methods, though the deseria l ize(byte[]) method converts the input bit into a proper Boolean ob-
ject.

139.11.3 EnOcean Enumerated Channel Description
The EnOceanEnumChannelDescr ipt ion interface inherits from the EnOceanChannelDescr ipt ion in-
terface.

The additional method provided to this interface is getPossibleValues() , which returns an array of
the available EnOceanChannelEnumValue objects accessible to this channel. Every EnOceanChan-
nelEnumValue object contains its integer input range and a String identifier that defines its mean-
ing.

The ser ia l ize(Object) and deseria l ize(byte[]) methods of an EnOceanEnumChannelDescr ipt ion ob-
ject thus convert an integer input value (say, 156) to an EnOceanChannelEnumValue , and vice versa.

Here is an example that shows the input range and the associated EnOceanChannelEnumValue :

Table 139.2 EnOcean Enumerated Channel Description example

Device profile EnOceanChannelEnumValue Start Stop Meaning
FanStageSwitch_Stage3 0 144 Fan speed: Stage 3
FanStageSwitch_Stage2 145 164 Fan speed: Stage 2
FanStageSwitch_Stage1 165 189 Fan speed: Stage 1

Fan speed stage switch

FanStageSwitch_Stage0 190 209 Fan speed: Stage 0

139.12 EnOcean Remote Management
Remote Management is a feature which allows EnOcean devices to be configured and maintained
over the air using radio messages.

The Remote Procedure Calls, or RPCs - as defined by the EnOcean Remote Management specifi-
cation, [3] EnOcean System Specification - Remote Management v2.0 - are not related to any EnOcean
Equipment Profile.

Note that EnOcean Remote Commissioning is detailed in an additional EnOcean document, [6] EnO-
cean Remote Commissioning Summary v1.0.

EnOcean Device Service Specification Version 1.0 Working With an EnOcean Device

OSGi Residential Release 6 Page 517

139.12.1 EnOcean RPC
An EnOceanRPC object enables client bundles to remotely manage EnOcean devices using already
defined behavior.

RPCs are defined by a MANUFACTURER_ID (11 bits, 0x7FF for the EnOcean alliance) and a unique
FUNCTION_ID code on 12 bits.

RPCs are called directly onto an EnOceanDevice object via the
invoke(EnOceanRPC,EnOceanHandler) method, which accepts also a non-mandatory EnOceanHan-
dler object as a parameter to retrieve the asynchronous answer.

Broadcasted RPCs can be addressed directly to the Base Driver using the relevant Event Admin topic;
see Event API on page 517.

139.12.2 EnOcean Handler
Responses to RPCs are processed by the driver and sent back to a handler using
notifyResponse(EnOceanRPC,byte[]) method when an EnOceanHandler is passed to the base driver.

139.13 Working With an EnOcean Device

139.13.1 Service Tracking
All discovered EnOcean devices in the local networks are registered under EnOceanDevice inter-
face within the OSGi framework. Every time an EnOcean device appears or quits the network, the
associated OSGi service is registered or unregistered in the OSGi service registry. Thanks to the EnO-
cean Base Driver, the OSGi service availability in the registry mirrors EnOcean device availability on
EnOcean network, [1] Pervasive Service Composition in the Home Network.

Thanks to service events, a bundle is able to track the addition, modification and removal of an EnO-
ceanDevice service.

The following example shows using a ServiceTracker to track EnOceanDevice services.

ServiceTracker<EnOceanDevice, EnOceanDevice> enOceanTracker =
 new ServiceTracker<>(bundleContext, EnOceanDevice.class, null);
enOceanTracker.open(); // open the tracker

...

// get a snaphot of the current EnOceanDevice services
EnOceanDevice[] enOceanDeviceSnapshot =
 enOceanTracker.getServices(new EnOceanDevice[0]);

...

enOceanTracker.close(); // close the tracker

139.14 Event API
EnOcean events must be delivered to the EventAdmin service by the EnOcean implementation,
if present. EnOcean event topic follow the following form: org/osgi/service/enocean/EnOcean-
Event/SUBTOPIC.

MESSAGE_RECEIVED and RPC_BROADCAST are the two available subtopics.

EnOcean Exceptions EnOcean Device Service Specification Version 1.0

Page 518 OSGi Residential Release 6

139.14.1 MESSAGE_RECEIVED
Properties (every event may dispatch some or all of the following properties):

• CHIP_ID – . The chip ID of the sending device.
• service.pid – The service PID of the exported device.
• RORG – The RORG (Radio Telegram Type) of the sending device.
• FUNC – The FUNC profile identifier of the sending device.
• TYPE – The TYPE profile identifier of the sending device.
• PROPERTY_MESSAGE – The EnOceanMessage object associated with this event.
• PROPERTY_EXPORTED – The presence of this property means that this message has actually been

exported from a locally implemented EnOcean Device.

139.14.2 RPC_BROADCAST
This event is used whenever an RPC is broadcasted on EnOcean networks, in IMPORT or EXPORT
situations.

Properties (every event may dispatch some or all of the following properties):

• MANUFACTURER_ID – The RPC's manufacturer ID.
• FUNCTION_ID – The RPC's function ID .
• PROPERTY_EXPORTED – The presence of this property means that this RPC has actually been ex-

ported from a locally implemented EnOcean Device.
• PROPERTY_RPC – The EnOceanRPC object associated with this event.

139.15 EnOcean Exceptions
The EnOceanException can be thrown and holds information about the different EnOcean layers.
Here below, ESP stands for EnOcean Serial Protocol. The following errors are defined:

• ESP_UNEXPECTED_FAILURE – Operation was not successful.
• ESP_RET_NOT_SUPPORTED – The ESP command was not supported by the driver.
• ESP_RET_WRONG_PARAM – The ESP command was supplied wrong parameters.
• ESP_RET_OPERATION_DENIED – The ESP command was denied authorization.
• INVALID_TELEGRAM – The message was invalid.

139.16 Security
It is recommended that ServicePermission[EnOceanDevice|EnOceanHost, REGISTER|GET] be used
sparingly and only for bundles that are trusted.

139.17 org.osgi.service.enocean

EnOcean Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

EnOcean Device Service Specification Version 1.0 org.osgi.service.enocean

OSGi Residential Release 6 Page 519

Import-Package: org.osgi .service.enocean; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.enocean; vers ion="[1.0,1.1)"

139.17.1 Summary

• EnOceanChannel - Holds the raw value and channel identification info of an EnOceanChannel.
• EnOceanDevice - This interface represents a physical device that communicates over the EnO-

cean protocol.
• EnOceanEvent - Constants for use in EnOcean events.
• EnOceanException - This class contains code and definitions necessary to support common

EnOcean exceptions.
• EnOceanHandler - The interface used to get callback answers from a RPC or a Message.
• EnOceanHost - This interface represents an EnOcean Host, a device that offers EnOcean net-

working features.
• EnOceanMessage - Holds the necessary methods to interact with an EnOcean message.
• EnOceanRPC - A very basic interface for RPCs.

139.17.2 public interface EnOceanChannel
Holds the raw value and channel identification info of an EnOceanChannel.

139.17.2.1 public String getChannelId()

Returns The unique ID of this channel.

139.17.2.2 public int getOffset()

Returns The offset, in bits, where this channel is found in the telegram.

139.17.2.3 public byte[] getRawValue()

□ Gets the raw value of this channel.

Returns corresponding value.

139.17.2.4 public int getSize()

Returns The size, in bits, of this channel.

139.17.2.5 public void setRawValue(byte[] rawValue)

rawValue

□ Sets the raw value of a channel.

139.17.3 public interface EnOceanDevice
This interface represents a physical device that communicates over the EnOcean protocol.

139.17.3.1 public static final String CHIP_ID = "enocean.device.chip_id"

Property name for the mandatory CHIP_ID of the device

139.17.3.2 public static final String DEVICE_CATEGORY = "EnOcean"

Property name for the mandatory DEVICE_CATEGORY of the device

org.osgi.service.enocean EnOcean Device Service Specification Version 1.0

Page 520 OSGi Residential Release 6

139.17.3.3 public static final String ENOCEAN_EXPORT = "enocean.device.export"

Property name that defines if the device is exported or not. If present, the device is exported.

139.17.3.4 public static final String FUNC = "enocean.device.profile.func"

Property name for the radiotelegram functional type of the profile associated with this device.

139.17.3.5 public static final String MANUFACTURER = "enocean.device.manufacturer"

Property name for the manufacturer ID that may be specified by some teach-in messages.

139.17.3.6 public static final String RORG = "enocean.device.profile.rorg"

Property name for the radiotelegram main type of the profile associated with this device.

139.17.3.7 public static final String SECURITY_LEVEL_FORMAT = "enocean.device.security_level_format"

Property name for the security level mask for this device. The format of that mask is specified in
EnOcean Security Draft.

139.17.3.8 public static final String TYPE = "enocean.device.profile.type"

Property name for the radiotelegram subtype of the profile associated with this device.

139.17.3.9 public int getChipId()

Returns The EnOcean device chip ID.

139.17.3.10 public byte[] getEncryptionKey()

□ Returns the current encryption key used by this device.

Returns The current encryption key, or null.

139.17.3.11 public int getFunc()

Returns The EnOcean profile FUNC, or -1 if unknown.

139.17.3.12 public int[] getLearnedDevices()

□ Gets the list of devices the device already has learned.

Returns The list of currently learned device's CHIP_IDs.

139.17.3.13 public int getManufacturer()

Returns The EnOcean manufacturer code, -1 if unknown.

139.17.3.14 public int getRollingCode()

□ Get the current rolling code of the device.

Returns The current rolling code in use with this device's communications.

139.17.3.15 public int getRorg()

Returns The EnOcean profile RORG.

139.17.3.16 public Map getRPCs()

□ Retrieves the currently available RPCs to this device; those are stored using their
manfufacturerId:commandId identifiers.

Returns A list of the available RPCs, in a Map<Integer, Integer[]> form.

EnOcean Device Service Specification Version 1.0 org.osgi.service.enocean

OSGi Residential Release 6 Page 521

139.17.3.17 public int getSecurityLevelFormat()

Returns The EnOcean security level format, or 0 as default (no security)

139.17.3.18 public int getType()

Returns The EnOcean profile TYPE, or -1 if unknown.

139.17.3.19 public void invoke(EnOceanRPC rpc,EnOceanHandler handler)

rpc

handler

□ Sends an RPC to the remote device.

Throws I l legalArgumentException –

139.17.3.20 public void remove()

□ Removes the device's OSGi service from OSGi service platform.

139.17.3.21 public void setEncryptionKey(byte[] key)

key the encryption key to be set.

□ Sets the encryption key of the device.

139.17.3.22 public void setFunc(int func)

func the EEP func of the device;

□ Manually sets the EEP FUNC of the device.

139.17.3.23 public void setLearningMode(boolean learnMode)

learnMode the desired state: true for learning mode, false to disable it.

□ Switches the device into learning mode.

139.17.3.24 public void setRollingCode(int rollingCode)

rollingCode the rolling code to be set or initiated.

□ Sets the rolling code of this device.

139.17.3.25 public void setType(int type)

type the EEP type of the device;

□ Manually sets the EEP TYPE of the device.

139.17.4 public final class EnOceanEvent
Constants for use in EnOcean events.

139.17.4.1 public static final String PROPERTY_EXPORTED = "enocean.message.is_exported"

Property key used to tell apart messages that are exported or imported.

139.17.4.2 public static final String PROPERTY_MESSAGE = "enocean.message"

Property key for the EnOceanMessage object embedded in an event.

139.17.4.3 public static final String PROPERTY_RPC = "enocean.rpc"

Property key for the EnOceanRPC object embedded in an event.

org.osgi.service.enocean EnOcean Device Service Specification Version 1.0

Page 522 OSGi Residential Release 6

139.17.4.4 public static final String TOPIC_MSG_RECEIVED = "org/osgi/service/enocean/EnOceanEvent/
MESSAGE_RECEIVED"

Main topic for all OSGi dispatched EnOcean messages, imported or exported.

139.17.4.5 public static final String TOPIC_RPC_BROADCAST = "org/osgi/service/enocean/EnOceanEvent/
RPC_BROADCAST"

Main topic for all OSGi broadcast EnOcean RPCs, imported or exported.

139.17.5 public class EnOceanException
extends Exception
This class contains code and definitions necessary to support common EnOcean exceptions. This
class is mostly used with low-level, gateway-interacting code : EnOceanHost.

139.17.5.1 public static final short ESP_RET_NOT_SUPPORTED = 2

Operation is not supported by the target device.

139.17.5.2 public static final short ESP_RET_OPERATION_DENIED = 4

The operation was denied.

139.17.5.3 public static final short ESP_RET_WRONG_PARAM = 3

One of the parameters was badly specified or missing.

139.17.5.4 public static final short ESP_UNEXPECTED_FAILURE = 1

Unexpected failure.

139.17.5.5 public static final short INVALID_TELEGRAM = 240

The message was invalid.

139.17.5.6 public static final short SUCCESS = 0

SUCCESS status code.

139.17.5.7 public EnOceanException(String errordesc)

errordesc exception error description

□ Constructor for EnOceanException

139.17.5.8 public EnOceanException(int errorCode,String errorDesc)

errorCode the error code.

errorDesc the description.

□ Constructor for EnOceanException

139.17.5.9 public EnOceanException(int errorCode)

errorCode An error code.

□ Constructor for EnOceanException

139.17.5.10 public int errorCode()

□ Constructor for EnOceanException

Returns An EnOcean error code, defined by the EnOcean Forum working committee or an EnOcean vendor.

EnOcean Device Service Specification Version 1.0 org.osgi.service.enocean

OSGi Residential Release 6 Page 523

139.17.6 public interface EnOceanHandler
The interface used to get callback answers from a RPC or a Message.

139.17.6.1 public void notifyResponse(EnOceanRPC original,byte[] payload)

original the original EnOceanRPC that originated this answer.

payload the payload of the response; may be deserialized to an EnOceanRPC object.

□ Notifies of the answer to a RPC.

139.17.7 public interface EnOceanHost
This interface represents an EnOcean Host, a device that offers EnOcean networking features.

139.17.7.1 public static final Object HOST_ID

The unique ID for this Host: this matches the CHIP_ID of the EnOcean Gateway Chip it embodies.

139.17.7.2 public static final int REPEATER_LEVEL_OFF = 0

repeater level to disable repeating; this is the default.

139.17.7.3 public static final int REPEATER_LEVEL_ONE = 1

repeater level to repeat every telegram at most once.

139.17.7.4 public static final int REPEATER_LEVEL_TWO = 2

repeater level to repeat every telegram at most twice.

139.17.7.5 public String apiVersion() throws EnOceanException

□ Returns the chip's API version info (cf. ESP3 command 0x03: CO_RD_VERSION)

Returns a String object containing the API version info.

Throws EnOceanException– if any problem occurs.

139.17.7.6 public String appVersion() throws EnOceanException

□ Returns the chip's application version info (cf. ESP3 command 0x03: CO_RD_VERSION)

Returns a String object containing the application version info.

Throws EnOceanException– if any problem occurs.

139.17.7.7 public int getBaseID() throws EnOceanException

□ Gets the BASE_ID of the chip, if set (cf. ESP3 command 0x08: CO_RD_IDBASE)

Returns the BASE_ID of the device as defined in EnOcean specification

Throws EnOceanException– if any problem occurs.

139.17.7.8 public int getChipId(String servicePID) throws EnOceanException

servicePID

□ Retrieves the CHIP_ID associated with the given servicePID, if existing on this chip.

Returns the associated CHIP_ID of the exported device.

Throws EnOceanException– if any problem occurs.

139.17.7.9 public int getRepeaterLevel() throws EnOceanException

□ Gets the current repeater level of the host (cf. ESP3 command 0x0A: CO_RD_REPEATER)

org.osgi.service.enocean EnOcean Device Service Specification Version 1.0

Page 524 OSGi Residential Release 6

Returns one of the Repeater Level constants as defined above.

Throws EnOceanException– if any problem occurs.

139.17.7.10 public void reset() throws EnOceanException

□ Reset the EnOcean Host (cf. ESP3 command 0x02: CO_WR_RESET)

Throws EnOceanException– if any problem occurs.

139.17.7.11 public void setBaseID(int baseID) throws EnOceanException

baseID to be set.

□ Sets the base ID of the device, may be used up to 10 times (cf. ESP3 command 0x07:
CO_WR_IDBASE)

Throws EnOceanException– if any problem occurs.

139.17.7.12 public void setRepeaterLevel(int level) throws EnOceanException

level one of the Repeater Level constants as defined above.

□ Sets the repeater level on the host (cf. ESP3 command 0x09: CO_WR_REPEATER)

Throws EnOceanException– if any problem occurs.

139.17.8 public interface EnOceanMessage
Holds the necessary methods to interact with an EnOcean message.

139.17.8.1 public byte[] getBytes()

□ Gets the bytes corresponding to the whole message, including the CRC. The generated byte[] array
may be sent to an EnOcean gateway and is conform to EnOcean Radio Protocol.

Returns The serialized byte list corresponding to the binary message.

139.17.8.2 public int getDbm()

□ Returns the average RSSI on all the received subtelegrams, including redundant ones.

Returns The average RSSI perceived.

139.17.8.3 public int getDestinationId()

Returns the message's destination ID, or -1

139.17.8.4 public int getFunc()

Returns the message's FUNC

139.17.8.5 public byte[] getPayloadBytes()

□ Returns the payload bytes of this message.

Returns corresponding value.

139.17.8.6 public int getRorg()

Returns the message's RORG

139.17.8.7 public int getSecurityLevelFormat()

□ Returns the security level of this message, as specified in the 'Security of EnOcean Radio Networks'
draft, section 4.2.1.3.

EnOcean Device Service Specification Version 1.0 org.osgi.service.enocean

OSGi Residential Release 6 Page 525

Returns The security level format.

139.17.8.8 public int getSenderId()

Returns the message's Sender ID

139.17.8.9 public int getStatus()

□ Gets the current EnOcean status of the Message. The 'status' byte is actually a bitfield that main-
ly holds repeater information, teach-in status, and more or less information depending on the ra-
diotelegram type.

Returns the current EnOcean status of this message.

139.17.8.10 public int getSubTelNum()

□ Returns the number of subtelegrams (usually 1) this Message carries.

Returns The number of subtelegrams in the case of multiframe messages.

139.17.8.11 public int getType()

Returns the message's TYPE

139.17.9 public interface EnOceanRPC
A very basic interface for RPCs.

139.17.9.1 public static final String FUNCTION_ID = "enocean.rpc.function_id"

The Function ID property string, used in EventAdmin RPC broadcasting.

139.17.9.2 public static final String MANUFACTURER_ID = "enocean.rpc.manufacturer_id"

The Manufacturer ID property string, used in EventAdmin RPC broadcasting.

139.17.9.3 public int getFunctionId()

□ Gets the functionID for this RPC.

Returns function id.

139.17.9.4 public int getManufacturerId()

□ Gets the manufacturerID for this RPC.

Returns manufacturer id.

139.17.9.5 public String getName()

□ Get a friendly name for the RPC

Returns the name.

139.17.9.6 public byte[] getPayload()

□ Gets the current payload of the RPC.

Returns the payload, in bytes, of this RPC.

139.17.9.7 public int getSenderId()

□ Sets the RPC's senderID. This member has to belong to EnOceanRPC interface, for the object may be
sent as a standalone using EventAdmin for instance.

Returns sender id.

org.osgi.service.enocean.descriptions EnOcean Device Service Specification Version 1.0

Page 526 OSGi Residential Release 6

139.17.9.8 public void setSenderId(int chipId)

chipId

□ Sets the RPC's senderID.

139.18 org.osgi.service.enocean.descriptions

EnOcean Descriptions Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.enocean.descr ipt ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.enocean.descr ipt ions; vers ion="[1.0,1.1)"

139.18.1 Summary

• EnOceanChannelDescr ipt ion - Public and registered description interface for a channel.
• EnOceanChannelDescr ipt ionSet - This interface represents an EnOcean Channel Description

Set.
• EnOceanChannelEnumValue - This transitional interface is used to define all the possible values

taken by an enumerated channel.
• EnOceanDataChannelDescr ipt ion - Subinterface of EnOceanChannelDescription that describes

physical measuring channels.
• EnOceanEnumChannelDescr ipt ion - Subinterface of EnOceanChannelDescription that de-

scribes enumerated channels.
• EnOceanFlagChannelDescr ipt ion - Subinterface of EnOceanChannelDescription that describes

boolean channels.
• EnOceanMessageDescr ipt ion - This interface represents an EnOcean Message Description.
• EnOceanMessageDescr ipt ionSet - This interface represents an EnOcean Message Description

Set.

139.18.2 public interface EnOceanChannelDescription
Public and registered description interface for a channel. Encompasses all the possible subtypes for
a channel.

139.18.2.1 public static final String CHANNEL_ID = "enocean.channel.description.channel_id"

The unique ID of this EnOceanChannelDescription object.

139.18.2.2 public static final String TYPE_DATA = "enocean.channel.description.data"

A DATA channel maps itself to a Double value representing a physical measure.

139.18.2.3 public static final String TYPE_ENUM = "enocean.channel.description.enum"

An ENUM channel maps itself to one between a list of discrete EnOceanChannelEnumValue "value
objects".

139.18.2.4 public static final String TYPE_FLAG = "enocean.channel.description.flag"

A FLAG channel maps itself to a Boolean value.

EnOcean Device Service Specification Version 1.0 org.osgi.service.enocean.descriptions

OSGi Residential Release 6 Page 527

139.18.2.5 public static final String TYPE_RAW = "enocean.channel.description.raw"

A RAW channel is only made of bytes.

139.18.2.6 public Object deserialize(byte[] bytes)

bytes the right-aligned raw bytes.

□ Tries to deserialize a series of bytes into a documented value object (raw bytes, Double or EnOcean-
ChannelEnumValue. Of course this method will be specialized for each EnOceanChannelDescrip-
tion subinterface, depending on the type of this channel.

Returns a value object.

Throws I l legalArgumentException –

139.18.2.7 public String getType()

□ Retrieves the type of the channel.

Returns one of the above-described types.

139.18.2.8 public byte[] serialize(Object obj)

obj the value of the channel.

□ Tries to serialize the channel into a series of bytes.

Returns the right-aligned value, in raw bytes, of the channel.

Throws I l legalArgumentException –

139.18.3 public interface EnOceanChannelDescriptionSet
This interface represents an EnOcean Channel Description Set. EnOceanChannelDescriptionSet is
registered as an OSGi Service. Provides a method to retrieve the EnOceanChannelDescription ob-
jects it documents.

139.18.3.1 public EnOceanChannelDescription getChannelDescription(String channelId)

channelId the unique string identifier of the description object.

□ Retrieves a EnOceanChannelDescription object according to its identifier.

Returns The corresponding EnOceanChannelDescription object, or null.

Throws I l legalArgumentException– if the supplied String is invalid, null, or other reason.

139.18.4 public interface EnOceanChannelEnumValue
This transitional interface is used to define all the possible values taken by an enumerated channel.

139.18.4.1 public String getDescription()

□ A non-mandatory description of what this enumerated value is about.

Returns the description of this channel.

139.18.4.2 public int getStart()

□ The start value of the enumeration.

Returns the start value.

139.18.4.3 public int getStop()

□ The stop value of the enumeration.

Returns the stop value.

org.osgi.service.enocean.descriptions EnOcean Device Service Specification Version 1.0

Page 528 OSGi Residential Release 6

139.18.5 public interface EnOceanDataChannelDescription
extends EnOceanChannelDescription
Subinterface of EnOceanChannelDescription that describes physical measuring channels.

139.18.5.1 public int getDomainStart()

□ The start of the raw input range for this channel.

Returns the domain start.

139.18.5.2 public int getDomainStop()

□ The end of the raw input range for this channel.

Returns the domain stop.

139.18.5.3 public double getRangeStart()

□ The scale start at which this channel will be mapped to (-20,0°C for instance)

Returns the range start.

139.18.5.4 public double getRangeStop()

□ The scale stop at which this channel will be mapped to (+30,0°C for instance)

Returns the range stop.

139.18.5.5 public String getUnit()

□ The non-mandatory physical unit description of this channel.

Returns the unit as a String

139.18.6 public interface EnOceanEnumChannelDescription
extends EnOceanChannelDescription
Subinterface of EnOceanChannelDescription that describes enumerated channels.

139.18.6.1 public EnOceanChannelEnumValue[] getPossibleValues()

□ Gets all the possible value for this channel.

Returns corresponding value(s).

139.18.7 public interface EnOceanFlagChannelDescription
extends EnOceanChannelDescription
Subinterface of EnOceanChannelDescription that describes boolean channels.

139.18.8 public interface EnOceanMessageDescription
This interface represents an EnOcean Message Description.

139.18.8.1 public EnOceanChannel[] deserialize(byte[] bytes)

bytes to be deserialized.

□ Deserializes an array of bytes into the EnOceanChannels available to the payload, if possible.

Returns deserialized value.

Throws I l legalArgumentException– if the actual instance type of the message is not compatible with the
bytes it is fed with (RORG to begin with).

EnOcean Device Service Specification Version 1.0 References

OSGi Residential Release 6 Page 529

139.18.8.2 public String getMessageDescription()

Returns the message description containing the RORG, (and the FUNC, and the TYPE if available), as well as,
the EEP's "title" (e.g. for F60201: Rocker Switch, 2 Rocker; Light and Blind Control - Application Style
1).

139.18.8.3 public byte[] serialize(EnOceanChannel[] channels)

channels to be serialized.

□ Serializes a series of EnOceanChannel objects into the corresponding byte[] sequence.

Returns serialized value.

Throws I l legalArgumentException– if the given channels is null.

139.18.9 public interface EnOceanMessageDescriptionSet
This interface represents an EnOcean Message Description Set. EnOceanMessageDescriptionSet is
registered as an OSGi Service. Provides method to retrieve the EnOceanMessageDescription objects
it documents.

139.18.9.1 public EnOceanMessageDescription getMessageDescription(int rorg,int func,int type,int extra)

rorg the radio telegram type of the message.

func The func subtype of this message.

type The type subselector.

extra Some extra information; some EnOceanMessageDescription objects need an additional specifier. If
not needed, has to be set to -1.

□ Retrieves a EnOceanMessageDescription object according to its identifiers. See EnOcean Equipment
Profile Specification for more details.

Returns The EnOceanMessageDescription object looked for, or null.

Throws I l legalArgumentException– if there was an error related to the input arguments.

139.19 References

[1] Pervasive Service Composition in the Home Network
Bottaro, A., Gérodolle, A., Lalanda, P., 21st IEEE International Conference on Advanced Information
Networking and Applications (AINA-07), Niagara Falls, Canada, May 2007

[2] EnOcean Equipment Profiles v2.6.2
EnOcean Alliance, https://www.enocean-alliance.org/en/enocean_standard/, November 19, 2014

[3] EnOcean System Specification - Remote Management v2.0
EnOcean Alliance, March 06, 2014

[4] EnOcean System Specification - EnOcean Serial Protocol v1.17
EnOcean Alliance, August 2, 2011

[5] EnOcean System Specification - Security of EnOcean Radio Networks v1.9
EnOcean Alliance, July 26, 2013

[6] EnOcean Remote Commissioning Summary v1.0
EnOcean Alliance, https://www.enocean-alliance.org/en/downloads/, December 01, 2014

[7] Persistent Identifier (PID)
OSGi Core Release, Service Layer

References EnOcean Device Service Specification Version 1.0

Page 530 OSGi Residential Release 6

Device Abstraction Layer Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 531

141 Device Abstraction Layer
Specification

Version 1.0

141.1 Introduction
The Internet-of-Things (IoT) has a major impact in the IT industry. It requires backend systems to re-
ceive information from sensors, actuators, and appliances in various vertical markets such as Smart
Home, eHealth, industrial automation, logistics, and automotive telematics. Application developers
have to face the still increasing amount of communication protocols which are the major hurdle for
interoperability.

The Device Abstraction Layer specification provides a unified interface for application developers to
interact with sensor, devices, etc. connected to a gateway. Application developers don't have to deal
with protocol specific details which simplifies the development of their applications.

The remote device control provides an opportunity to save energy, to support better security, to
save your time during daily tasks and more. The devices can play different roles in their networks as
event reporters, controllers, etc. That dynamic behavior is well mappable to the dynamic OSGi ser-
vice registry. When a new device is available in the network, there is a registration of a Device ser-
vice. It realizes basic set of management operations and provides a rich set of properties. The appli-
cations can track the device status, read descriptive information and follow the device relations. A
set of functions can belong to a single device. They represent the device operations and related prop-
erties in an atomic way. The device functions can be found in the OSGi service registry. The applica-
tions are allowed to get directly the required functions if they don't need information about the de-
vice. For example, light device is registered as Device service and there is Function service to turn on
and turn off the light. The application can operate with the light control service without access to
the device service.

141.1.1 Entities

• Device - represents the device in the OSGi service registry. It's described with a set of service prop-
erties and provides basic management operations.

• Function - atomic functional entity like switch or sensor. The function can belong to a device. The
function provides a set of properties and operations.

• FunctionEvent - asynchronous event. It's posted through EventAdmin service and notifies for Func-
t ion property change.

• FunctionData - data structure which carries Function property value with extra metadata.
• PropertyMetadata and OperationMetadata - contain metadata about the Function properties and

operations.

Device Category Device Abstraction Layer Specification Version 1.0

Page 532 OSGi Residential Release 6

Figure 141.1 Device Abstraction Layer Overview

<<interface>>
Device

<<interface>>
Function

0..1 Function belongs

0..n

posts

 event contains

provides 0..n

provides 0..n

0..n provides

<<interface>>
PropertyMetaData

<<interface>>
OperationMetaData

receives
property
changeDevice user bundle Function user bundle

finds,
manages

finds,
gets property value,
executes operation

<<class>>
FunctionData

<<interface>>
EventHandler

<<class>>
FunctionEvent

0..n

0..n 0..n

141.2 Device Category
The device category defined in the scope of the Device Access service specification is called DAL .
DEVICE_CATEGORY constant contains the category name.

141.3 Device Service
The Device interface is dedicated to a common access to the devices provided by different protocols.
It can be mapped one to one with the physical device, but can be mapped only with a given func-
tional part of the device. Another mapping can be a device realized with a set of Device services and
different relations between them. Device service can represent pure software unit. For example, it
can simulate the real device work. There are basic management operations for removal and proper-
ty access. New protocol devices can be supported with the registration of new Device services.

If the underlying protocol and the implementation allow, the Device services must be registered
again after the OSGi framework restarts. The service properties must be restored, the supported
functions must be registered and Device relations must be visible to the applications.

141.3.1 Device Service Properties
The OSGi service registry has the advantage of being easily accessible. The services can be filtered
and accessed with their properties. The Device service has a rich set of such properties:

• SERVICE_UID – Specifies the device unique identifier. It's a mandatory property. The value type
is java. lang.Str ing . To simplify the unique identifier generation, the property value must follow
the rule:

UID ::= driver-name ':' device-id

• UID – device unique identifier
• driver-name – the value of the Device.SERVICE_DRIVER service property
• device-id – device unique identifier in the scope of the driver

• SERVICE_REFERENCE_UIDS – Specifies the reference device unique identifiers. It's an optional
property. The value type is java. lang.Str ing[] . It can be used to represent different relationships
between the devices. For example, The EnOcean controller can have a reference to the USB don-
gle.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Residential Release 6 Page 533

• SERVICE_DRIVER – Specifies the device driver name. For example, EnOcean, Z-Wave, Bluetooth,
etc. It's a mandatory property. The value type is java. lang.Str ing .

• SERVICE_NAME – Specifies the device name. It's an optional property. The value type is
java. lang.Str ing .

• SERVICE_STATUS – Specifies the current device status. It's a mandatory property. The value type
java. lang. Integer . The possible values are:
• STATUS_REMOVED – Indicates that the device has been removed from the network. That sta-

tus must be set as the last device status and after that the device service can be unregistered
from the service registry. The status is available for stale device services too. All transitions to
this status are described in Removed on page 537.

• STATUS_OFFLINE – Indicates that the device is currently not available for operations. The end
device is available in the network and can become online later. The controller is unplugged or
there is no connection. All transitions to and from this status are described in detail in Offline
on page 537.

• STATUS_ONLINE – Indicates that the device is currently available for operations. The recent
communication with the device has been passed through. All transitions to and from this sta-
tus are described in detail in Online on page 538.

• STATUS_PROCESSING – Indicates that the device is currently busy with an operation. All
transitions to and from this status are described in detail in Processing on page 539.

• STATUS_NOT_INITIALIZED – Indicates that the device is currently not initialized. Some pro-
tocols don't provide device information right after the device is connected. The device can be
initialized later when it's awakened. All transitions to and from this status are described in de-
tail in Not Initialized on page 540.

• STATUS_NOT_CONFIGURED – Indicates that the device is currently not configured. The de-
vice can require additional actions to become completely connected to the network. All tran-
sitions to and from this status are described in detail in Not Configured on page 541.

• SERVICE_STATUS_DETAIL – Provides the reason for the current device status. It's an op-
tional property. The property value cannot be externally set or modified. The value type is
java. lang. Integer . There are two value categories. Positive values indicate the reason for the cur-
rent status like STATUS_DETAIL_CONNECTING . Negative values indicate errors related to the
current device status like STATUS_DETAIL_BROKEN . The list with defined status details is:
• STATUS_DETAIL_CONNECTING – The device is currently connecting to the network.

The status detail indicates the reason with a positive value 1 . The device status must be
STATUS_PROCESSING .

• STATUS_DETAIL_INITIALIZING – The device is currently in process of initialization. The
status detail indicates the reason with a positive value 2 . The network controller initializ-
ing means that information about the network is currently read. The device status must be
STATUS_PROCESSING .

• STATUS_DETAIL_REMOVING – The device is leaving the network. The status detail indicates
the reason with positive value 3 . The device status must be STATUS_PROCESSING .

• STATUS_DETAIL_FIRMWARE_UPDATING – The device firmware is updating. The status detail
indicates the reason with positive value 4 . The device status must be STATUS_PROCESSING .

• STATUS_DETAIL_CONFIGURATION_UNAPPLIED – The device configuration is not applied.
The status detail indicates an error with a negative value -1 . The device status must be
STATUS_NOT_CONFIGURED .

• STATUS_DETAIL_BROKEN – The device is broken. The status detail indicates an error with a
negative value -2 . The device status must be STATUS_OFFLINE .

• STATUS_DETAIL_COMMUNICATION_ERROR – The device communication is problemat-
ic. The status detail indicates an error with a negative value -3 . The device status must be
STATUS_ONLINE or STATUS_NOT_INITIALIZED .

Device Service Device Abstraction Layer Specification Version 1.0

Page 534 OSGi Residential Release 6

• STATUS_DETAIL_DATA_INSUFFICIENT – The device doesn't provide enough information and
cannot be determined. The status detail indicates an error with a negative value -4 . The de-
vice status must be STATUS_NOT_INITIALIZED .

• STATUS_DETAIL_INACCESSIBLE – The device is not accessible and further communication is
not possible. The status detail indicates an error with a negative value -5 . The device status
must be STATUS_OFFLINE .

• STATUS_DETAIL_CONFIGURATION_ERROR – The device cannot be configured. The
status detail indicates an error with a negative value -6 . The device status must be
STATUS_NOT_CONFIGURED .

• STATUS_DETAIL_DUTY_CYCLE – The device is in duty cycle. The status detail indicates an er-
ror with a negative value -7 . The device status must be STATUS_OFFLINE .

Custom status details are allowed, but they must not overlap the specified codes. To prevent pos-
sible collisions with further updates, custom codes must be greater than 100 and less than -100 .
Table 141.1 contains the mapping of the status details to the statuses.

Table 141.1 Status detail to status mapping.

Status Detail Status
CONNECTING PROCESSING
INITIALIZING PROCESSING
REMOVING PROCESSING
FIRMWARE_UPDATING PROCESSING
CONFIGURATION_UNAPPLIED NOT_CONFIGURED
BROKEN OFFLINE
COMMUNICATION_ERROR ONLINE, NOT_INITIALIZED
DATA_INSUFFICIENT NOT_INITIALIZED
INACCESSIBLE OFFLINE
CONFIGURATION_ERROR NOT_CONFIGURED
DUTY_CYCLE OFFLINE

• SERVICE_HARDWARE_VENDOR – Specifies the device hardware vendor. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_HARDWARE_VERSION – Specifies the device hardware version. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_FIRMWARE_VENDOR – Specifies the device firmware vendor. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_FIRMWARE_VERSION – Specifies the device firmware version. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_TYPES – Specifies the device types. It's an optional property. The value type is
java. lang.Str ing[] .

• SERVICE_MODEL – Specifies the device model. It's an optional property. The value type is
java. lang.Str ing .

• SERVICE_SERIAL_NUMBER – Specifies the device serial number. It's an optional property. The val-
ue type is java. lang.Str ing .

The next code snippet prints all online devices.

ServiceReference[] deviceSRefs = context.getServiceReferences(
 Device.class.getName(),
 '(' + Device.SERVICE_STATUS + '=' + Device.STATUS_ONLINE + ')');
if (deviceSRefs != null) {
 for (int i = 0; i < deviceSRefs.length; i++) {

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Residential Release 6 Page 535

 printDevice(deviceSRefs[i]);
 }
}

Applications need to have an access to the device properties. For convenience, there are helper
methods:

• getServiceProperty(Str ing) – Returns the current value of the specified property. The method
will return the same value as org.osgi .f ramework.ServiceReference.getProperty(Str ing) for the
service reference of this device.

• getServicePropertyKeys() – Returns an array with all device service property keys. The method
will return the same value as org.osgi .f ramework.ServiceReference.getPropertyKeys() for the
service reference of this device.

141.3.2 Device Registration
The devices are registered as services in the OSGi service registry. The service interface is
org.osgi .service.dal .Device . There is a registration order. Device services are registered last on start
up. Before their registration, there is Function service registration. The function registration proce-
dure is described in Function Registration on page 543.

The OSGi service registry provides an access to the services, but there are no management
operations like remove a given service. The service provider is responsible to register and
unregister own services. That design doesn't provide an option to remove the device ser-
vices. The Device interface fills this gap with remove() method. It's a callback to the service
provider to remove the device from the network. The method can be optionally implemented.
java. lang.UnsupportedOperationException can be thrown if the method is not supported. When
the remove() is called:

• An appropriate command will be synchronously send to the device. As a result it can leave the
network.

• The device status will be set to STATUS_REMOVED .
• The related device service will be unregistered from the OSGi service registry.

There is an unregistration order. The registration reverse order is used when the services are unreg-
istered. Device services are unregistered first before Function services.

141.3.3 Reference Devices
Device service can have a reference to other devices. That link can be used to represent different re-
lationships between devices. For example, the EnOcean dongle can be used as USB Device and EnO-
cean network controller Device . The network controller device can have a reference to the physical
USB device as it's depicted on the next diagram.

Figure 141.2 Device Reference

has reference

Network
Controller

USB
Device

The related service property is SERVICE_REFERENCE_UIDS .

Device Service Device Abstraction Layer Specification Version 1.0

Page 536 OSGi Residential Release 6

141.3.4 Device Status Transitions
The device status reveals the device availability. It can demonstrate that device is currently not
available for operations or that the device requires some additional configuration steps. The status
can move between the different values according to the rules defined in this section. The status tran-
sitions are summarized in Table 141.2, visualized on Figure 141.3 and described in detail in the next
sections. The initial device status is always STATUS_PROCESSING . When device info is processed,
the device can go to another status. The last possible device status is STATUS_REMOVED . The status
must be set when the device is removed from the network. After that status, the device service will
be unregistered.

Figure 141.3 Device Status Transitions

STATUS_PROCESSING

STATUS_REMOVED

STATUS_NOT_CONFIGURED

STATUS_NOT_INITIALIZED

STATUS_OFFLINE

STATUS_ONLINE

Table 141.2 Device Status Transitions

From\To Sta-
tus

PRO-
CESSING

ONLINE OFFLINE NOT
INITIALIZED

NOT CON-
FIGURED

REMOVED

PRO-
CESSING

- Initial de-
vice data has
been read.

Device is not
accessible.

Initial de-
vice data has
been partial-
ly read.

Device has a
pending con-
figuration.

Device has
been re-
moved.

ONLINE Device da-
ta is process-
ing.

- Device is not
accessible.

- Device has
a new pend-
ing configu-
ration.

Device has
been re-
moved.

OFFLINE Device da-
ta is process-
ing.

Device da-
ta has been
read.

- - Device has a
pending con-
figuration.

Device has
been re-
moved.

NOT
INITIALIZED

Device da-
ta is process-
ing.

- Device is not
accessible.

- - Device has
been re-
moved.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Residential Release 6 Page 537

From\To Sta-
tus

PRO-
CESSING

ONLINE OFFLINE NOT
INITIALIZED

NOT CON-
FIGURED

REMOVED

NOT CON-
FIGURED

Device da-
ta is process-
ing.

Device pend-
ing configu-
ration is sat-
isfied.

Device is not
accessible.

- - Device has
been re-
moved.

REMOVED - - - - - -

141.3.4.1 Removed

The device can go to STATUS_REMOVED from any other status. Once reached, the device status can-
not be updated any more. The device has been removed from the network and the device service is
unregistered from the OSGi service registry. If there are stale references to the Device service, their
status will be set to STATUS_REMOVED .

The common way for a given device to be removed is remove() method. When the method returns,
the device status will be STATUS_REMOVED . It requires a synchronous execution of the operation.

141.3.4.2 Offline

The STATUS_OFFLINE indicates that the device is currently not available for operations. That status
can be set, because of different reasons. The network controller has been unplugged, the connection
to the device has been lost, etc. The device can move to this status from any other status with the ex-
ception of STATUS_REMOVED . Transitions to and from this status are:

• From STATUS_OFFLINE to STATUS_REMOVED – The device has been removed. The status can be
set as a result of remove() method call.

• From STATUS_OFFLINE to STATUS_PROCESSING – Device data is processing.
• From STATUS_OFFLINE to STATUS_NOT_CONFIGURED – The device has a pending configura-

tion.
• From STATUS_OFFLINE to STATUS_ONLINE – Device data has been read and the device is current-

ly available for operations.
• From STATUS_OFFLINE to STATUS_NOT_INITIALIZED – That transition is not possible, be-

cause the status have to go through STATUS_PROCESSING . If the processing is unsuccessful,
STATUS_NOT_INITIALIZED will be set.

• To STATUS_OFFLINE from STATUS_REMOVED – That transition is not possible. If the device has
been removed, the service will be unregistered from the service registry.

• To STATUS_OFFLINE from STATUS_PROCESSING – The device is not accessible any more while
device data is processing.

• To STATUS_OFFLINE from STATUS_NOT_CONFIGURED – The device with pending configuration
is not accessible any more.

• To STATUS_OFFLINE from STATUS_ONLINE – The online device is not accessible any more.
• To STATUS_OFFLINE from STATUS_NOT_INITIALIZED – The not initialized device is not accessi-

ble any more.

The possible transitions are summarized on Figure 141.4.

Device Service Device Abstraction Layer Specification Version 1.0

Page 538 OSGi Residential Release 6

Figure 141.4 Transitions to and from STATUS_OFFLINE

STATUS_OFFLINE STATUS_REMOVED

STATUS_PROCESSING

STATUS_NOT_CONFIGURED

STATUS_ONLINE

STATUS_NOT_INITIALIZED

141.3.4.3 Online

The STATUS_ONLINE indicates that the device is currently available for operations. The online de-
vices are initialized and ready for use. Transitions to and from this status are:

• From STATUS_ONLINE to STATUS_REMOVED – The device has been removed. The status can be
set as a result of remove() method call.

• From STATUS_ONLINE to STATUS_PROCESSING – The device data is processing.
• From STATUS_ONLINE to STATUS_NOT_CONFIGURED – The device has a pending configuration.
• From STATUS_ONLINE to STATUS_OFFLINE – The online device is not accessible any more.
• From STATUS_ONLINE to STATUS_NOT_INITIALIZED – That transition is not possible. Online de-

vices are initialized.
• To STATUS_ONLINE from STATUS_REMOVED – That transition is not possible. If the device has

been removed, the service will be unregistered from the service registry.
• To STATUS_ONLINE from STATUS_PROCESSING – Initial device data has been read. The device is

available for operations.
• To STATUS_ONLINE from STATUS_NOT_CONFIGURED – The device pending configuration is sat-

isfied.
• To STATUS_ONLINE from STATUS_OFFLINE – The device is accessible for operations.
• To STATUS_ONLINE from STATUS_NOT_INITIALIZED – That transition is not possible. The

device data has to be processed and then the device can become online. Intermediate status
STATUS_PROCESSING will be used.

The possible transitions are summarized on Figure 141.5.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Residential Release 6 Page 539

Figure 141.5 Transitions to and from STATUS_ONLINE

STATUS_OFFLINE STATUS_ONLINE

STATUS_REMOVED

STATUS_NOT_CONFIGURED

STATUS_PROCESSING

141.3.4.4 Processing

The status indicates that the device is currently busy with an operation. It can be time consuming
operation and can result to any other status. The operation processing can be reached by any oth-
er status except STATUS_REMOVED . For example, offline device requires some data processing to
become online. It will apply this status sequence: STATUS_OFFLINE , STATUS_PROCESSING and
STATUS_ONLINE . Transitions to and from this status are:

• From STATUS_PROCESSING to STATUS_REMOVED – The device has been removed. The status
can be set as a result of remove() method call.

• From STATUS_PROCESSING to STATUS_ONLINE – Initial device data has been read. The device is
available for operations.

• From STATUS_PROCESSING to STATUS_NOT_CONFIGURED – The device has a pending configu-
ration.

• From STATUS_PROCESSING to STATUS_OFFLINE – The device is not accessible any more.
• From STATUS_PROCESSING to STATUS_NOT_INITIALIZED – The device initial data is partially

read.
• To STATUS_PROCESSING from STATUS_REMOVED – That transition is not possible. If the device

has been removed, the service will be unregistered from the service registry.
• To STATUS_PROCESSING from STATUS_ONLINE – The device is busy with an operation.
• To STATUS_PROCESSING from STATUS_NOT_CONFIGURED – The device pending configuration

is satisfied and the device is busy with an operation.
• To STATUS_PROCESSING from STATUS_OFFLINE – The device is busy with an operation.
• To STATUS_PROCESSING from STATUS_NOT_INITIALIZED – The device initial data is processing.

The possible transitions are summarized on Figure 141.6.

Device Service Device Abstraction Layer Specification Version 1.0

Page 540 OSGi Residential Release 6

Figure 141.6 Transitions to and from STATUS_PROCESSING

STATUS_OFFLINE STATUS_PROCESSING

STATUS_REMOVED

STATUS_NOT_INITIALIZED

STATUS_NOT_CONFIGURED

STATUS_ONLINE

141.3.4.5 Not Initialized

The status indicates that the device is currently not initialized. Some protocols don't provide
device information right after the device is connected. The device can be initialized later when
it's awakened. The not initialized device requires some data processing to become online.
STATUS_PROCESSING is used as an intermediate status. Transitions to and from this status are:

• From STATUS_NOT_INITIALIZED to STATUS_REMOVED – The device has been removed. The sta-
tus can be set as a result of remove() method call.

• From STATUS_NOT_INITIALIZED to STATUS_PROCESSING – The device data is processing.
• From STATUS_NOT_INITIALIZED to STATUS_NOT_CONFIGURED – That transition is not possi-

ble. Device requires some data processing.
• From STATUS_NOT_INITIALIZED to STATUS_OFFLINE – The device is not accessible any more.
• From STATUS_NOT_INITIALIZED to STATUS_ONLINE – That transition is not possible. Device re-

quires some data processing to become online.
• To STATUS_NOT_INITIALIZED from STATUS_REMOVED – That transition is not possible. If the

device has been removed, the service will be unregistered from the service registry.
• To STATUS_NOT_INITIALIZED from STATUS_PROCESSING – Device data is partially read.
• To STATUS_NOT_INITIALIZED from STATUS_NOT_CONFIGURED – That transition is not possi-

ble. When device pending configuration is satisfied, the device requires additional data process-
ing.

• To STATUS_NOT_INITIALIZED from STATUS_OFFLINE – That transition is not possible. Device re-
quires some data processing and then can become not initialized.

• To STATUS_NOT_INITIALIZED from STATUS_ONLINE – That transition is not possible. The online
device is initialized.

The possible transitions are summarized on Figure 141.7.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Residential Release 6 Page 541

Figure 141.7 Transitions to and from STATUS_NOT_INITIALIZED

STATUS_PROCESSING STATUS_NOT_INITIALIZED

STATUS_REMOVED

STATUS_OFFLINE

141.3.4.6 Not Configured

Indicates that the device is currently not configured. The device can require additional actions to be-
come completely connected to the network. For example, a given device button has to be pushed.
That status doesn't have transitions with STATUS_NOT_INITIALIZED , because some data processing
is required. Transitions to and from this status are:

• From STATUS_NOT_CONFIGURED to STATUS_REMOVED – The device has been removed. The
status can be set as a result of remove() method call.

• From STATUS_NOT_CONFIGURED to STATUS_PROCESSING – The device pending configuration
is satisfied and some additional data processing is required.

• From STATUS_NOT_CONFIGURED to STATUS_ONLINE – The device pending configuration is sat-
isfied.

• From STATUS_NOT_CONFIGURED to STATUS_OFFLINE – The device is not accessible any more.
• From STATUS_NOT_CONFIGURED to STATUS_NOT_INITIALIZED – That transition is not possi-

ble. When device pending configuration is satisfied, the device requires additional data process-
ing.

• To STATUS_NOT_CONFIGURED from STATUS_REMOVED – That transition is not possible. If the
device has been removed, the service will be unregistered from the service registry.

• To STATUS_NOT_CONFIGURED from STATUS_PROCESSING – Initial device data has been read
but there is a pending configuration.

• To STATUS_NOT_CONFIGURED from STATUS_ONLINE – The device has a pending configuration.
• To STATUS_NOT_CONFIGURED from STATUS_OFFLINE – The device is going to be online, but

has a pending configuration.
• To STATUS_NOT_CONFIGURED from STATUS_NOT_INITIALIZED – That transition is not possi-

ble. Device requires some data processing.

The possible transitions are summarized on Figure 141.8.

Function Service Device Abstraction Layer Specification Version 1.0

Page 542 OSGi Residential Release 6

Figure 141.8 Transitions to and from STATUS_NOT_CONFIGURED

STATUS_OFFLINE STATUS_NOT_CONFIGURED

STATUS_REMOVED

STATUS_ONLINE

STATUS_PROCESSING

141.4 Function Service
The user applications have full control over the device with the Function services. Synchronous
or asynchronous operations can trigger different actions. For example, turn on or off the light, can
change the room temperature, send an user notification, etc. The action result can be reported im-
mediately or later in case of concurrent execution. As a result, a Function property can be updat-
ed. The property is the device value container. It can provide, sensor information, meter data, the
switch current position, etc. Different property access types allow the applications to read, write or
receive events.

141.4.1 Function Service Properties
The OSGi service registry has the advantage of being easily accessible. The services can be filtered
and accessed with their properties. The function service has a rich set of such properties:

• SERVICE_UID – mandatory service property. The property value is the function unique identifier.
The value type is java. lang.Str ing . To simplify the unique identifier generation, the property val-
ue must follow the rule:

function UID ::= device-id ':' function-id

• function UID – function unique identifier
• device-id – the value of the Device.SERVICE_UID Device service property
• function-id – function identifier in the scope of the device

If the function is not bound to a device, the function unique identifier can be device indepen-
dent.

• SERVICE_TYPE – optional service property. The service property value contains the function type.
For example, the sensor function can have different types like temperature, pressure, etc. The val-
ue type is java. lang.Str ing .

Organizations that want to use function types that do not clash with OSGi Alliance defined types
should prefix their types in own namespace.

• SERVICE_VERSION – optional service property. The service property value contains the function
version. That version can point to specific implementation version and vary in the different ven-
dor implementations. The value type is java. lang.Str ing .

Device Abstraction Layer Specification Version 1.0 Function Service

OSGi Residential Release 6 Page 543

• SERVICE_DEVICE_UID – optional service property. The property value is the device identifier.
The function belongs to this device. The value type is java. lang.Str ing .

• SERVICE_REFERENCE_UIDS – optional service property. The service property value contains the
reference function unique identifiers. The value type is java. lang.Str ing[] . It can be used to repre-
sent different relationships between the functions.

• SERVICE_DESCRIPTION – optional service property. The property value is the function descrip-
tion. The value type is java. lang.Str ing .

• SERVICE_OPERATION_NAMES – optional service property. The property is missing when there
are no function operations and property must be set when there are function operations. The
property value is the function operation names. The value type is java. lang.Str ing[] . It's not pos-
sible to exist two or more function operations with the same name i.e. the operation overloading
is not allowed.

• SERVICE_PROPERTY_NAMES – optional service property. The property is missing when there are
no function properties and property must be set when there are function properties. The proper-
ty value is the function property names. The value type is java. lang.Str ing[] . It's not possible to
exist two or more function properties with the same name.

141.4.2 Function Registration
On start up, the Function services are registered before the Device service. It's possible that
SERVICE_DEVICE_UID points to missing service at the moment of the registration. The reverse or-
der is used when the services are unregistered. Device service is unregistered before the Function ser-
vices. The device registration procedure is available in Device Registration on page 535.

The Function service should be registered only under the function class hierarchy. Other classes
can be used if there are no ambiguous representations. For example, an ambiguous representa-
tion can be a function registered under two independent function classes like BinarySwitch and
Meter . In this example, both functions support the same property “state” with different meaning.
getPropertyMetadata(Str ing propertyName) method cannot determinate which property is re-
quested. It can be BinarySwitch “state” or Meter “state”.

To simplify the generic function discovery, the Function interface must be used for the service regis-
tration. In this way, the generic applications can easily find all services, which are functions in the
service registry. Because of this rule, this registration is not allowed:

context.registerService(MeterV1.class.getName(), this, regProps);

If the implementation would like to mark that there is a function, but no specific function interface
exists, the registration can be:

context.registerService(Function.class.getName(), this, regProps);

Note that such functions usually don't have operations and properties.

141.4.3 Function Interface
Function is built by a set of properties and operations. The function can have unique identifier, type,
version, description, link to the Device service and information about the referenced functions.
Function interface must be the base interface for all functions. If the device provider defines cus-
tom functions, all of them must extend Function interface. It provides a common access to the oper-
ations and properties metadata.

There are some general type rules, which unify the access to the function data. They make easier the
transfer over different protocols. All properties and operation arguments must use one of:

• Java primitive type or corresponding reference type.
• Numerical type i.e. the type which extends java. lang.Number . The numerical type must follow

these conventions:

Function Service Device Abstraction Layer Specification Version 1.0

Page 544 OSGi Residential Release 6

• The type must provide a public static method called valueOf that returns an instance of the
given type and takes a single Str ing argument or a public constructor which takes a single
Str ing argument.

• The Str ing argument from the previous bullet can be provided by toStr ing() method of the in-
stance.

• java. lang.Str ing
• Java Bean, but its properties must use those rules. Java Bean is defined in [1] JavaBeans Spec.
• java.ut i l .Map instance. The map keys can be java. lang.Str ing . The values of a single type follow

these rules.
• Array of defined types.

In order to provide common behavior, all functions must follow a set of common rules related to the
implementation of their setters, getters, operations and events:

• The setter method must be executed synchronously. If the underlying protocol can return re-
sponse to the setter call, it must be awaited. It simplifies the property value modification and
doesn't require asynchronous callback.

• The operation method must be executed synchronously. If the underlying protocol can return an
operation confirmation or response, it must be awaited. It simplifies the operation execution and
doesn't require asynchronous callback.

• The getter must return the last know cached property value. The device implementation is re-
sponsible to keep that value up to date. It'll speed up the applications when the function proper-
ty values are collected. The same cached value can be shared between a few requests instead of a
few calls to the real device.

• The function operations, getters and setters must not override java. lang.Object and this interface
methods. For example:
• hashCode() – it's java. lang.Object method and invalid function operation;
• wait() – it's java. lang.Object method and invalid function operation;
• getClass() – it's java. lang.Object method and invalid function getter;
• getPropertyMetadata(Str ing propertyName) – it's org.osgi .service.dal .Function method and

invalid function getter.

141.4.4 Function Operations
Function operations are the main callable units. They can perform a specific task on the device like
turn on or turn off. They can be used by the applications to control the device. Operation names are
available as a value of the service property SERVICE_OPERATION_NAMES . The operations are identi-
fied by their names. It's not possible to exist two operations with the same name i.e. overloaded op-
erations are not allowed. They cannot override the property accessor methods. The operations are
regular java methods. That implies that they have zero or more arguments and zero or one return
value. The operation arguments and return value must follow the general type rules.

The operations can be optionally described with metadata. Metadata is accessible with
getOperat ionMetadata(Str ing) method. The result provides metadata about the operation, opera-
tion arguments and result value. Operation arguments and result value are using the same metadata
as the function properties. The full details are defined in the next section.

141.4.5 Function Properties
Function properties are class fields. Their values can be read with getter methods and can be
set with setter methods. The property names are available as a value of the service property
SERVICE_PROPERTY_NAMES . The properties are identified by their names. It's not possible to exist
two properties with the same name.

The function properties must be integrated according to these rules:

Device Abstraction Layer Specification Version 1.0 Function Service

OSGi Residential Release 6 Page 545

• Getter methods must be available for all properties with ACCESS_READABLE access.
• Getter method must return a subclass of FunctionData .
• Setter methods must be available for all properties with ACCESS_WRITABLE access.
• Setter methods can be any combination of:

• Setter method which accepts a subclass of FunctionData .
• Setter method which accepts the values used by the FunctionData subclass, if there are no

equal types.
It's possible to have only one or both of them. Examples:
• There is MyFunctionData bean with BigDecimal value for a data property. Valid setters are

setData(MyFunctionData data) and setData(BigDecimal data) .
• There is MySecondFunctionData bean with BigDecimal prefix and BigDecimal suffix

for a data property. The prefix and suffix are using equal types and we cannot have a
setter with the values used by MySecondFunctionData . The only one possible setter is
setData(MySecondFunctionData data) .

• No methods are required for properties with ACCESS_EVENTABLE access.

The accessor method names must be defined according to [1] JavaBeans Spec.

The properties can be optionally described with a set of metadata properties. The property values
can be collected with getPropertyMetadata(Str ing) method. The method result is PropertyMetada-
ta with:

• Minimum value – available through getMinValue(Str ing) . The minimum value can be different
for the different units.

• Maximum value – available through getMaxValue(Str ing) . The maximum value can be different
for the different units.

• Enumeration of values – available through getEnumValues(Str ing) . The array of the possible val-
ues is sorted in increasing order according to the given unit.

• Step – available through getStep(Str ing) . The difference between two values in series. For exam-
ple, if the range is [0, 100] , the step can be 10 .

• Property access – available as a value in getMetadata(Str ing) result map. It's a bitmap of
java. lang. Integer type and doesn't depend on the given unit. The access is available only for
the function properties and it's missing for the operation arguments and result metadata. The
bitmap can be any combination of:
• ACCESS_READABLE – Marks the property as a readable. Function must provide a getter

method for this property according to [1] JavaBeans Spec. Function operations must not be
overridden by this getter method.

• ACCESS_WRITABLE – Marks the property as writable. Function must provide a setter method
for this property according to [1] JavaBeans Spec. Function operations must not be overridden
by this setter method.

• ACCESS_EVENTABLE – Marks the property as eventable. Function must not provide special
methods because of this access type. FunctionEvent is sent on property change. Note that the
event can be sent when there is no value change.

• Units - available as a value in getMetadata(Str ing) result map. They can be requested with
key UNITS . The value contains the property supported units. The property value type is
java. lang.Str ing[] . The array first element at index 0 represents the default unit. Each unit must
follow those rules:
• The International System of Units must be used where it's applicable. For example, kg for

kilogram and km for kilometer.
• If the unit name matches to a Unicode symbol name, the Unicode symbol must be used. For

example, the degree unit matches to the Unicode degree sign (°).

Security Device Abstraction Layer Specification Version 1.0

Page 546 OSGi Residential Release 6

• If the unit name doesn't match to a Unicode symbol, the unit symbol must be built by Uni-
code Basic Latin block of characters, superscript and subscript characters. For example, watt
per square meter steradian is built by W/(m² sr) .

If those rules cannot be applied to the unit symbol, custom rules are allowed.

A set of predefined unit symbols are available in SIUnits interface.
• Description – available as a value in getMetadata(Str ing) result map. It can be requested with

key DESCRIPTION . The property value type is java. lang.Str ing and specifies a user readable de-
scription. It doesn't depend on the given unit.

• Vendor custom properties – available as a value in getMetadata(Str ing) result map and can de-
pend on the given unit. Organizations that want to use custom keys that do not clash with OSGi
Alliance defined should prefix their keys in own namespace.

141.4.6 Function Property Events
The eventable function properties can trigger a new event on each property value modification. It
doesn't require a modification of the value. For example, the motion sensor can send a few events
with no property value change when motion is detected and continued to be detected. The event
must use FunctionEvent class. The event properties are:

• FUNCTION_UID – the event source function unique identifier.
• PROPERTY_NAME – the property name.
• PROPERTY_VALUE – the property value.

For example, there is function with an eventable boolean property called “state”. When “state” value
is changed to fa lse , function implementation can post:

FunctionEvent {
 dal.function.UID=acme.function
 dal.function.property.name=”state”
 dal.function.property.value=ACMEFuntionData(java.lang.Boolean.FALSE...)
}

141.5 Security

141.5.1 Device Permission
The DevicePermission controls the bundle's authority to perform specific privileged administrative
operations on the devices. There is only one action for this permission REMOVE to protect remove()
method.

The name of the permission is a filter based. For more details about filter based permissions, see OS-
Gi Core Specification, Filter Based Permissions. The filter provides an access to all device service
properties. Filter attribute names are processed in a case sensitive manner. For example, the operator
can give a bundle the permission to only manage devices of vendor "acme":

org.osgi.service.dal.DevicePermission("dal.device.hardware.vendor=acme", "remove")

The permission action allows the operator to assign only the necessary permissions to the bundle.
For example, the management bundle can have permission to remove all registered devices:

org.osgi.service.dal.DevicePermission("*", "remove")

The code that needs to check the device permission must always use the constructor that takes the
device as a parameter Device with a single action. For example, the implementation of remove()
method must check that the caller has an access to the operation:

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 547

public class DeviceImpl implements Device {
 ...
 public void remove() {
 securityManager.checkPermission(
 new DevicePermission(this, DevicePermission.REMOVE));
 }
 ...
}

141.5.2 Required Permissions
The Device implementation must check the caller for the appropriate DevicePermission before exe-
cution of the remove operation. Once the DevicePermission is checked against the caller the imple-
mentation will proceed with the actual operation. The operation can require a number of other per-
missions to complete. The implementation must isolate the caller from such permission checks by
use of proper privileged blocks.

DevicePermission check will keep the Device implementation in the call stack. This requires the
implementation to have this permission to perform the operation. The security policy should be
aware of this and should grant the correct permissions. Note that the DevicePermission is a filter
based permission, see OSGi Core Specification, Filter Based Permissions. It provides flexibility and
fine control based on the Device service properties.

141.6 org.osgi.service.dal

Device Abstraction Layer Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dal ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dal ; vers ion="[1.0,1.1)"

141.6.1 Summary

• Device - Represents the device in the OSGi service registry.
• DeviceException - DeviceException is a special IOException , which is thrown to indicate that

there is a device operation fail.
• DevicePermission - A bundle's authority to perform specific privileged administrative opera-

tions on the devices.
• Function - Function service provides specific device operations and properties.
• FunctionData - Abstract Function data wrapper.
• FunctionEvent - Asynchronous event, which marks a function property value modification.
• OperationMetadata - Contains metadata about function operation.
• PropertyMetadata - Contains metadata about a function property, a function operation parame-

ter or a function operation return value.
• SIUnits - Contains most of the International System of Units unit symbols.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 548 OSGi Residential Release 6

141.6.2 public interface Device
Represents the device in the OSGi service registry. Note that Device services are registered last. Be-
fore their registration, there is Function services registration. The reverse order is used when the ser-
vices are unregistered. Device services are unregistered first before Function services.

141.6.2.1 public static final String DEVICE_CATEGORY = "DAL"

Constant for the value of the Constants.DEVICE_CATEGORY service property. That category is used
by all device services.

See Also Constants.DEVICE_CATEGORY

141.6.2.2 public static final String SERVICE_DESCRIPTION = "dal.device.description"

The service property value contains the device description. It's an optional property. The value type
is java. lang.Str ing .

141.6.2.3 public static final String SERVICE_DRIVER = "dal.device.driver"

The service property value contains the device driver name. For example, EnOcean, Z-Wave, Blue-
tooth, etc. It's a mandatory property. The value type is java. lang.Str ing .

141.6.2.4 public static final String SERVICE_FIRMWARE_VENDOR = "dal.device.firmware.vendor"

The service property value contains the device firmware vendor. It's an optional property. The value
type is java. lang.Str ing .

141.6.2.5 public static final String SERVICE_FIRMWARE_VERSION = "dal.device.firmware.version"

The service property value contains the device firmware version. It's an optional property. The value
type is java. lang.Str ing .

141.6.2.6 public static final String SERVICE_HARDWARE_VENDOR = "dal.device.hardware.vendor"

The service property value contains the device hardware vendor. It's an optional property. The value
type is java. lang.Str ing .

141.6.2.7 public static final String SERVICE_HARDWARE_VERSION = "dal.device.hardware.version"

The service property value contains the device hardware version. It's an optional property. The val-
ue type is java. lang.Str ing .

141.6.2.8 public static final String SERVICE_MODEL = "dal.device.model"

The service property value contains the device model. It's an optional property. The value type is
java. lang.Str ing .

141.6.2.9 public static final String SERVICE_NAME = "dal.device.name"

The service property value contains the device name. It's an optional property. The value type is
java. lang.Str ing .

141.6.2.10 public static final String SERVICE_REFERENCE_UIDS = "dal.device.reference.UIDs"

The service property value contains the reference device unique identifiers. It's an optional property.
The value type is java. lang.Str ing[] . It can be used to represent different relationships between the
devices. For example, the EnOcean controller can have a reference to the USB dongle.

141.6.2.11 public static final String SERVICE_SERIAL_NUMBER = "dal.device.serial.number"

The service property value contains the device serial number. It's an optional property. The value
type is java. lang.Str ing .

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 549

141.6.2.12 public static final String SERVICE_STATUS = "dal.device.status"

The service property value contains the device status. It's a mandatory property. The value type is
java. lang. Integer . The possible values are:

• STATUS_ONLINE
• STATUS_OFFLINE
• STATUS_REMOVED
• STATUS_PROCESSING
• STATUS_NOT_INITIALIZED
• STATUS_NOT_CONFIGURED

141.6.2.13 public static final String SERVICE_STATUS_DETAIL = "dal.device.status.detail"

The service property value contains the device status detail. It holds the reason for the current de-
vice status. It's an optional property. The value type is java. lang. Integer . There are two value cate-
gories:

• positive values i.e. > 0 - those values contain details related to the current status. Examples:
STATUS_DETAIL_CONNECTING and STATUS_DETAIL_INITIALIZING.

• negative values i.e. <0 - those values contain errors related to the current status.
Examples:STATUS_DETAIL_CONFIGURATION_UNAPPLIED, STATUS_DETAIL_BROKEN and
STATUS_DETAIL_COMMUNICATION_ERROR.

141.6.2.14 public static final String SERVICE_TYPES = "dal.device.types"

The service property value contains the device types like DVD, TV, etc. It's an optional property. The
value type is java. lang.Str ing[] .

141.6.2.15 public static final String SERVICE_UID = "dal.device.UID"

The service property value contains the device unique identifier. It's a mandatory property. The val-
ue type is java. lang.Str ing . To simplify the unique identifier generation, the property value must fol-
low the rule:

UID ::= driver-name ':' device-id

UID - device unique identifier

driver-name - the value of the SERVICE_DRIVER service property

device-id - device unique identifier in the scope of the driver

141.6.2.16 public static final Integer STATUS_DETAIL_BROKEN

Device status detail indicates that the device is broken. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_OFFLINE.

141.6.2.17 public static final Integer STATUS_DETAIL_COMMUNICATION_ERROR

Device status detail indicates that the device communication is problematic. It can be used as a val-
ue of SERVICE_STATUS_DETAIL service property. The device status must be STATUS_ONLINE or
STATUS_NOT_INITIALIZED.

141.6.2.18 public static final Integer STATUS_DETAIL_CONFIGURATION_ERROR

Device status detail indicates that the device cannot be configured. It can be used as
a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_NOT_CONFIGURED.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 550 OSGi Residential Release 6

141.6.2.19 public static final Integer STATUS_DETAIL_CONFIGURATION_UNAPPLIED

Device status detail indicates that the device configuration is not applied. It can be used
as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_NOT_CONFIGURED.

141.6.2.20 public static final Integer STATUS_DETAIL_CONNECTING

Device status detail indicates that the device is currently connecting to the network. It can
be used as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_PROCESSING.

141.6.2.21 public static final Integer STATUS_DETAIL_DATA_INSUFFICIENT

Device status detail indicates that the device doesn't provide enough information and cannot be de-
termined. It can be used as a value of SERVICE_STATUS_DETAIL service property. The device status
must be STATUS_NOT_INITIALIZED.

141.6.2.22 public static final Integer STATUS_DETAIL_DUTY_CYCLE

Device status detail indicates that the device is in duty cycle. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_OFFLINE.

141.6.2.23 public static final Integer STATUS_DETAIL_FIRMWARE_UPDATING

Device status detail indicates that the device firmware is updating. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

141.6.2.24 public static final Integer STATUS_DETAIL_INACCESSIBLE

Device status detail indicates that the device is not accessible and further communication is not
possible. It can be used as a value of SERVICE_STATUS_DETAIL service property. The device status
must be STATUS_OFFLINE.

141.6.2.25 public static final Integer STATUS_DETAIL_INITIALIZING

Device status detail indicates that the device is currently in process of initialization. It can
be used as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_PROCESSING.

141.6.2.26 public static final Integer STATUS_DETAIL_REMOVING

Device status detail indicates that the device is leaving the network. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

141.6.2.27 public static final Integer STATUS_NOT_CONFIGURED

Device status indicates that the device is currently not configured. The device can require ad-
ditional actions to become completely connected to the network. It can be used as a value of
SERVICE_STATUS service property.

141.6.2.28 public static final Integer STATUS_NOT_INITIALIZED

Device status indicates that the device is currently not initialized. Some protocols don't provide de-
vice information right after the device is connected. The device can be initialized later when it's
awakened. It can be used as a value of SERVICE_STATUS service property.

141.6.2.29 public static final Integer STATUS_OFFLINE

Device status indicates that the device is currently not available for operations. It can be used as a
value of SERVICE_STATUS service property.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 551

141.6.2.30 public static final Integer STATUS_ONLINE

Device status indicates that the device is currently available for operations. The recent communica-
tion with the device has been passed through. It can be used as a value of SERVICE_STATUS service
property.

141.6.2.31 public static final Integer STATUS_PROCESSING

Device status indicates that the device is currently busy with an operation. It can be used as a value
of SERVICE_STATUS service property.

141.6.2.32 public static final Integer STATUS_REMOVED

Device status indicates that the device has been removed from the network. That status must be set
as the last device status. After that the device service can be unregistered from the service registry. It
can be used as a value of SERVICE_STATUS service property.

141.6.2.33 public Object getServiceProperty(String propKey)

propKey The property key.

□ Returns the current value of the specified property. The method will return the same value as
ServiceReference.getProperty(Str ing) for the service reference of this device.

This method must continue to return property values after the device service has been unregistered.

Returns The property value or nul l if the property key cannot be mapped to a value.

141.6.2.34 public String[] getServicePropertyKeys()

□ Returns an array with all device service property keys. The method will return the same value as
ServiceReference.getPropertyKeys() for the service reference of this device. The result cannot be
nul l .

Returns An array with all device service property keys, cannot be nul l .

141.6.2.35 public void remove() throws DeviceException

□ Removes this device.

The method must synchronously:

• Remove the device from the device network.
• Set the device status to STATUS_REMOVED.
• Unregister the device service from the OSGi service registry.

The caller should release the device service after successful execution, because the device will not be
operational.

Throws DeviceException– If an operation error is available.

UnsupportedOperationException– If the operation is not supported over this device.

SecurityException– If the caller does not have the appropriate DevicePermission(this device,
DevicePermission.REMOVE) and the Java Runtime Environment supports permissions.

I l legalStateException– If this device service object has already been unregistered.

141.6.3 public class DeviceException
extends IOException
DeviceException is a special IOException , which is thrown to indicate that there is a device oper-
ation fail. The error reason can be located with getCode() method. The cause is available with get-
Cause().

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 552 OSGi Residential Release 6

141.6.3.1 public static final int COMMUNICATION_ERROR = 1

An exception code indicates that there is an error in the communication.

141.6.3.2 public static final int NO_DATA = 4

An exception code indicates that the requested value is currently not available.

141.6.3.3 public static final int NOT_INITIALIZED = 3

An exception code indicates that the device is not initialized. The device status is
Device.STATUS_NOT_INITIALIZED or Device.STATUS_PROCESSING.

141.6.3.4 public static final int TIMEOUT = 2

An exception code indicates that there is expired timeout without any processing.

141.6.3.5 public static final int UNKNOWN = 0

An exception code indicates that the error is unknown.

141.6.3.6 public DeviceException()

□ Construct a new device exception with nul l message. The cause is not initialized and the exception
code is set to UNKNOWN.

141.6.3.7 public DeviceException(String message)

message The exception message.

□ Constructs a new device exception with the given message. The cause is not initialized and the ex-
ception code is set to UNKNOWN.

141.6.3.8 public DeviceException(String message,Throwable cause)

message The exception message.

cause The exception cause.

□ Constructs a new device exception with the given message and cause. The exception code is set to
UNKNOWN.

141.6.3.9 public DeviceException(String message,Throwable cause,int code)

message The exception message.

cause The exception cause.

code The exception code.

□ Constructs a new device exception with the given message, cause and code.

141.6.3.10 public int getCode()

□ Returns the exception code. It indicates the reason for this exception. The code can be:

• UNKNOWN
• COMMUNICATION_ERROR
• TIMEOUT
• NOT_INITIALIZED
• NO_DATA
• custom code

Zero and positive values are reserved for this definition and further extensions of the device excep-
tion codes. Custom codes can be used only as negative values to prevent potential collisions.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 553

Returns An exception code.

141.6.4 public class DevicePermission
extends BasicPermission
A bundle's authority to perform specific privileged administrative operations on the devices. The
method Device.remove() is protected with REMOVE permission action.

The name of the permission is a filter based. See OSGi Core Specification, Filter Based Permissions.
The filter gives an access to all device service properties. Filter attribute names are processed in a
case sensitive manner.

141.6.4.1 public static final String REMOVE = "remove"

A permission action to remove the device.

141.6.4.2 public DevicePermission(String filter,String action)

filter A filter expression that can use any device service property. The filter attribute names are processed
in a case insensitive manner. A special value of "*" can be used to match all devices.

action REMOVE action.

□ Creates a new DevicePermission with the given filter and actions. The constructor must only be
used to create a permission that is going to be checked.

A filter example: (dal.device.hardware.vendor=acme)

An action: remove

Throws I l legalArgumentException– If the filter syntax is not correct or invalid action is specified.

NullPointerException– If the filter or action is null.

141.6.4.3 public DevicePermission(Device device,String action)

device The device that needs to be checked for a permission.

action REMOVE action.

□ Creates a new DevicePermission with the given device and actions. The permission must be used for
the security checks like:

securityManager.checkPermission(new DevicePermission(this , " remove")) . The permissions con-
structed by this constructor must not be added to the DevicePermission permission collections.

Throws I l legalArgumentException– If an invalid action is specified.

NullPointerException– If the device or action is null.

141.6.4.4 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Two DevicePermission instances are equal if:

• Represents the same filter and action.
• Represents the same device (in respect to device unique identifier) and action.

Returns true if two permissions are equal, fa lse otherwise.

141.6.4.5 public String getActions()

□ Returns the canonical string representation of REMOVE action.

Returns The canonical string representation of the actions.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 554 OSGi Residential Release 6

141.6.4.6 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

141.6.4.7 public boolean implies(Permission p)

p The permission to be implied. It must be constructed by DevicePermission(Device, String).

□ Determines if the specified permission is implied by this object. The method will return fa lse if the
specified permission was not constructed by DevicePermission(Device, String). Returns true if the
specified permission is a DevicePermission and this permission filter matches the specified permis-
sion device properties.

Returns true if the specified permission is implied by this permission, fa lse otherwise.

Throws I l legalArgumentException– If the specified permission is not constructed by
DevicePermission(Device, String).

141.6.4.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion suitable for storing DevicePermission instances.

Returns A new PermissionCol lect ion instance.

141.6.5 public interface Function
Function service provides specific device operations and properties. Each function service must im-
plement this interface. In additional to this interface, the implementation can provide own:

• properties;
• operations.

The function service is registered in the service registry with these service properties:

• SERVICE_UID - mandatory service property. The property value contains the function unique
identifier.

• SERVICE_DEVICE_UID - optional service property. The property value is the Functional Device
identifiers. The function belongs to those devices.

• SERVICE_REFERENCE_UIDS - optional service property. The property value contains the refer-
ence function unique identifiers.

• SERVICE_TYPE - mandatory service property. The property value is the function type.
• SERVICE_VERSION - optional service property. The property value contains the function ver-

sion.
• SERVICE_DESCRIPTION - optional service property. The property value is the function descrip-

tion.
• SERVICE_OPERATION_NAMES - optional service property. The property is missing when there

are no function operations and property must be set when there are function operations. The
property value is the function operation names.

• SERVICE_PROPERTY_NAMES - optional service property. The property is missing when there
are no function properties and property must be set when there are function properties. The
property value is the function property names.

On start up, the Function services are registered before the Device services. It's possible that
SERVICE_DEVICE_UID point to missing services at the moment of the registration. The reverse or-
der is used when the services are unregistered. Function services are unregistered last after Device
services.

The Function service should be registered only under the function class hierarchy. Other classes
can be used if there are no ambiguous representations. For example, an ambiguous representa-

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 555

tion can be a function registered under two independent function classes like BinarySwitch and
Meter . In this example, both functions support the same property state with different meaning.
getPropertyMetadata(Str ing propertyName) method cannot determinate which property is re-
quested. It can be BinarySwitch state or Meter state .

To simplify the generic function discovery, the Function interface must be used for the service regis-
tration. In this way, the generic applications can easily find all services, which are functions in the
service registry. Because of this rule, this registration is not allowed:

context.registerService(MeterV1.class.getName(), this , regProps);

If the implementation would like to mark that there is a function, but no specific function interface
exists, the registration can be:

context.registerService(Function.class.getName(), this , regProps);

Note that such functions usually don't have operations and properties.

The function properties must be integrated according to these rules:

• Getter methods must be available for all properties with PropertyMetadata.ACCESS_READABLE
access.

• Getter method must return a subclass of FunctionData.
• Setter methods must be available for all properties with PropertyMetadata.ACCESS_WRITABLE

access.
• Setter methods can be any combination of:

• Setter method which accepts a subclass of FunctionData.
• Setter method which accepts the values used by the FunctionData subclass, if there are no

equal types.

It's possible to have only one or both of them. Examples:
• There is MyFunctionData bean with BigDecimal value for a data property. Valid setters are

setData(MyFunctionData data) and setData(BigDecimal data) .
• There is MySecondFunctionData bean with BigDecimal prefix and BigDecimal suffix

for a data property. The prefix and suffix are using equal types and we cannot have a
setter with the values used by MySecondFunctionData . The only one possible setter is
setData(MySecondFunctionData data) .

• No methods are required for properties with PropertyMetadata.ACCESS_EVENTABLE access.

The accessor method names must be defined according JavaBeans specification.

The function operations are java methods, which cannot override the property accessor methods.
They can have zero or more parameters and zero or one return value.

Operation arguments and function properties are restricted by the same set of rules. The data type
can be one of the following types:

• Java primitive type or corresponding reference type.
• java. lang.Str ing .
• Numerical type i.e. the type which extends java. lang.Number . The numerical type must follow

these conventions:
• The type must provide a public static method called valueOf that returns an instance of the

given type and takes a single Str ing argument or a public constructor which takes a single
Str ing argument.

• The Str ing argument from the previous bullet can be provided by toStr ing() method of the in-
stance.

• Beans , but the beans properties must use those rules. Java Beans are defined in JavaBeans specifi-
cation.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 556 OSGi Residential Release 6

• java.ut i l .Maps. The keys can be java. lang.Str ing . The values of a single type follow these rules.
• Arrays of defined types.

The properties metadata is accessible with getPropertyMetadata(String). The operations metadata is
accessible with getOperationMetadata(String).

In order to provide common behavior, all functions must follow a set of common rules related to the
implementation of their setters, getters, operations and events:

• The setter method must be executed synchronously. If the underlying protocol can return re-
sponse to the setter call, it must be awaited. It simplifies the property value modifications and
doesn't require asynchronous callback.

• The operation method must be executed synchronously. If the underlying protocol can return an
operation confirmation or response, they must be awaited. It simplifies the operation execution
and doesn't require asynchronous callback.

• The getter must return the last know cached property value. The device implementation is re-
sponsible to keep that value up to date. It'll speed up the applications when the function proper-
ty values are collected. The same cached value can be shared between a few requests instead of a
few calls to the real device.

• The function operations, getters and setters must not override java. lang.Object and this interface
methods.

141.6.5.1 public static final String SERVICE_DESCRIPTION = "dal.function.description"

The service property value contains the function description. It's an optional property. The value
type is java. lang.Str ing .

141.6.5.2 public static final String SERVICE_DEVICE_UID = "dal.function.device.UID"

The service property value contains the device unique identifier. The function belongs to this de-
vice. It's an optional property. The value type is java. lang.Str ing .

141.6.5.3 public static final String SERVICE_OPERATION_NAMES = "dal.function.operation.names"

The service property value contains the function operation names. It's an optional property. The
property is missing when there are no function operations and property must be set when there are
function operations. The value type is java. lang.Str ing[] . It's not possible to exist two or more func-
tion operations with the same name i.e. the operation overloading is not allowed.

141.6.5.4 public static final String SERVICE_PROPERTY_NAMES = "dal.function.property.names"

The service property value contains the function property names. It's an optional property. The
property is missing when there are no function properties and property must be set when there are
function properties. The value type is java. lang.Str ing[] . It's not possible to exist two or more func-
tion properties with the same name.

141.6.5.5 public static final String SERVICE_REFERENCE_UIDS = "dal.function.reference.UIDs"

The service property value contains the reference function unique identifiers. It's an optional prop-
erty. The value type is java. lang.Str ing[] . It can be used to represent different relationships between
the functions.

141.6.5.6 public static final String SERVICE_TYPE = "dal.function.type"

The service property value contains the function type. It's an optional property. For example,
the sensor function can have different types like temperature, pressure, etc. The value type is
java. lang.Str ing .

Organizations that want to use function types that do not clash with OSGi Alliance defined types
should prefix their types in own namespace.

The type doesn't mandate specific function interface. It can be used with different functions.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 557

141.6.5.7 public static final String SERVICE_UID = "dal.function.UID"

The service property value contains the function unique identifier. It's a mandatory property. The
value type is java. lang.Str ing . To simplify the unique identifier generation, the property value must
follow the rule:

function UID ::= device-id ':' function-id

function UID - function unique identifier

device-id - the value of the Device.SERVICE_UID Device service property

function-id - function identifier in the scope of the device

If the function is not bound to a device, the function unique identifier can be device independent.

141.6.5.8 public static final String SERVICE_VERSION = "dal.function.version"

The service property value contains the function version. That version can point to specific imple-
mentation version and vary in the different vendor implementations. It's an optional property. The
value type is java. lang.Str ing .

141.6.5.9 public OperationMetadata getOperationMetadata(String operationName)

operationName The function operation name, for which metadata is requested.

□ Provides metadata about the function operation.

This method must continue to return the operation metadata after the function service has been un-
registered.

Returns The operation metadata for the given operation name. nul l if the operation metadata is not avail-
able.

Throws I l legalArgumentException– If the function operation with the specified name is not available.

141.6.5.10 public PropertyMetadata getPropertyMetadata(String propertyName)

propertyName The function property name, for which metadata is requested.

□ Provides metadata about the function property.

This method must continue to return the property metadata after the function service has been un-
registered.

Returns The property metadata for the given property name. nul l if the property metadata is not available.

Throws I l legalArgumentException– If the function property with the specified name is not available.

141.6.5.11 public Object getServiceProperty(String propKey)

propKey The property key.

□ Returns the current value of the specified property. The method will return the same value as
ServiceReference.getProperty(Str ing) for the service reference of this function.

This method must continue to return property values after the device function service has been un-
registered.

Returns The property value or nul l if the property key cannot be mapped to a value.

141.6.5.12 public String[] getServicePropertyKeys()

□ Returns an array with all function service property keys. The method will return the same value as
ServiceReference.getPropertyKeys() for the service reference of this function. The result cannot be
nul l .

Returns An array with all function service property keys, cannot be nul l .

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 558 OSGi Residential Release 6

141.6.6 public abstract class FunctionData
implements Comparable
Abstract Function data wrapper. A subclass must be used for an access to the property values by all
functions. It takes care about the timestamp and additional metadata. The subclasses are responsi-
ble to provide concrete value and unit if required.

141.6.6.1 public static final String DESCRIPTION = "description"

Metadata key, which value represents the data description. The property value type is
java. lang.Str ing .

141.6.6.2 public static final String FIELD_METADATA = "metadata"

Represents the metadata field name. The field value is available with getMetadata(). The field type is
Map . The constant can be used as a key to FunctionData(Map).

141.6.6.3 public static final String FIELD_TIMESTAMP = "timestamp"

Represents the timestamp field name. The field value is available with getTimestamp(). The field
type is long . The constant can be used as a key to FunctionData(Map).

141.6.6.4 public FunctionData(Map fields)

fields Contains the new FunctionData instance field values.

□ Constructs new FunctionData instance with the specified field values. The map keys must match
to the field names. The map values will be assigned to the appropriate class fields. For example, the
maps can be: {"timestamp"=Long(1384440775495)}. That map will initialize the FIELD_TIMESTAMP
field with 1384440775495. If timestamp is missing, Long.MIN_VALUE is used.

• FIELD_TIMESTAMP - optional field. The value type must be Long .
• FIELD_METADATA - optional field. The value type must be Map .

Throws ClassCastException– If the field value types are not expected.

NullPointerException– If the fields map is nul l .

141.6.6.5 public FunctionData(long timestamp,Map metadata)

timestamp The data timestamp optional field.

metadata The data metadata optional field.

□ Constructs new FunctionData instance with the specified arguments.

141.6.6.6 public int compareTo(Object o)

o FunctionData to be compared.

□ Compares this FunctionData instance with the given argument. If the argument is not FunctionDa-
ta , it throws ClassCastException . Otherwise, this method returns:

• -1 if this instance timestamp is less than the argument timestamp. If they are equivalent, it can
be the result of the metadata map deep comparison.

• 0 if all fields are equivalent.
• 1 if this instance timestamp is greater than the argument timestamp. If they are equivalent, it can

be the result of the metadata map deep comparison.

Metadata map deep comparison compares the elements of all nested java.ut i l .Map and array in-
stances. nul l is less than any other non-null instance.

Returns -1 , 0 or 1 depending on the comparison rules.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 559

Throws ClassCastException– If the method argument is not of type FunctionData or metadata maps contain
values of different types for the same key.

NullPointerException– If the method argument is nul l .

See Also java.lang.Comparable.compareTo(java.lang.Object)

141.6.6.7 public boolean equals(Object other)

other The other instance to compare. It must be of FunctionData type.

□ Two FunctionData instances are equal if their metadata and timestamp are equivalent.

Returns true if this instance and argument have equivalent metadata and timestamp, fa lse otherwise.

See Also java.lang.Object.equals(java.lang.Object)

141.6.6.8 public Map getMetadata()

□ Returns FunctionData metadata. It's dynamic metadata related only to this specific value. Possible
keys:

• DESCRIPTION
• custom key

Returns FunctionData metadata or nul l is there is no metadata.

141.6.6.9 public long getTimestamp()

□ Returns FunctionData timestamp. The timestamp is the difference between the value collecting
time and midnight, January 1, 1970 UTC. It's measured in milliseconds. The device driver is respon-
sible to generate that value when the value is received from the device. java.lang.Long.MIN_VALUE
value means no timestamp.

Returns FunctionData timestamp.

141.6.6.10 public int hashCode()

□ Returns the hash code of this FunctionData .

Returns FunctionData hash code.

See Also java.lang.Object.hashCode()

141.6.7 public class FunctionEvent
extends Event
Asynchronous event, which marks a function property value modification. The event can be trig-
gered when there is a new property value, but it's possible to have events in series with no value
change. The event properties must contain:

• FUNCTION_UID - the event source function unique identifier.
• PROPERTY_NAME - the property name.
• PROPERTY_VALUE - the property value. The property value type must be a subclass of Function-

Data.

141.6.7.1 public static final String EVENT_CLASS = "org/osgi/service/dal/FunctionEvent/"

Represents the event class. That constant can be useful for the event handlers depending on the
event filters.

141.6.7.2 public static final String EVENT_PACKAGE = "org/osgi/service/dal/"

Represents the event package. That constant can be useful for the event handlers depending on the
event filters.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 560 OSGi Residential Release 6

141.6.7.3 public static final String FUNCTION_UID = "dal.function.UID"

Represents an event property key for function UID. The property value type is java. lang.Str ing . The
value represents the property value change source function identifier.

141.6.7.4 public static final String PROPERTY_NAME = "dal.function.property.name"

Represents an event property key for the function property name. The property value type is
java. lang.Str ing . The value represents the property name.

141.6.7.5 public static final String PROPERTY_VALUE = "dal.function.property.value"

Represents an event property key for the function property value. The property value type is a sub-
class of FunctionData . The value represents the property value.

141.6.7.6 public static final String TOPIC_PROPERTY_CHANGED = "org/osgi/service/dal/FunctionEvent/
PROPERTY_CHANGED"

Represents the event topic for the function property changed.

141.6.7.7 public FunctionEvent(String topic,Dictionary properties)

topic The event topic.

properties The event properties.

□ Constructs a new event with the specified topic and properties.

141.6.7.8 public FunctionEvent(String topic,Map properties)

topic The event topic.

properties The event properties.

□ Constructs a new event with the specified topic and properties.

141.6.7.9 public FunctionEvent(String topic,String functionUID,String propName,FunctionData propValue)

topic The event topic.

functionUID The event source function UID.

propName The event source property name.

propValue The event source property value.

□ Constructs a new event with the specified topic, function UID, property name and property value.

141.6.7.10 public String getFunctionPropertyName()

□ Returns the property name. The value is same as the value of PROPERTY_NAME.

Returns The property name.

141.6.7.11 public FunctionData getFunctionPropertyValue()

□ Returns the property value. The value is same as the value of PROPERTY_VALUE.

Returns The property value.

141.6.7.12 public String getFunctionUID()

□ Returns the property value change source function identifier. The value is same as the value of
FUNCTION_UID property.

Returns The property value change source function.

141.6.8 public interface OperationMetadata
Contains metadata about function operation.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 561

See Also Function, PropertyMetadata

141.6.8.1 public static final String DESCRIPTION = "description"

Metadata key, which value represents the operation description. The property value type is
java. lang.Str ing .

141.6.8.2 public Map getMetadata()

□ Returns metadata about the function operation. The keys of the java.ut i l .Map result must be of
java. lang.Str ing type. Possible keys:

• DESCRIPTION
• custom key

Returns The operation metadata or nul l if no such metadata is available.

141.6.8.3 public PropertyMetadata[] getParametersMetadata()

□ Returns metadata about the operation parameters or nul l if no such metadata is available.

Returns Operation parameters metadata.

141.6.8.4 public PropertyMetadata getReturnValueMetadata()

□ Returns metadata about the operation return value or nul l if no such metadata is available.

Returns Operation return value metadata.

141.6.9 public interface PropertyMetadata
Contains metadata about a function property, a function operation parameter or a function opera-
tion return value. The access to the function properties is a bitmap value of ACCESS metadata key.
Function properties can be accessed in three ways. Any combinations between them are possible:

• ACCESS_READABLE - available for all properties, which can be read. Function must provide a
getter method for an access to the property value.

• ACCESS_WRITABLE - available for all properties, which can be modified. Function must provide
a setter method for a modification of the property value.

• ACCESS_EVENTABLE - available for all properties, which can report the property value. Func-
tionEvents are sent on property change.

See Also Function, PropertyMetadata

141.6.9.1 public static final String ACCESS = "access"

Metadata key, which value represents the access to the function property. The property value is a
bitmap of Integer type. The bitmap can be any combination of:

• ACCESS_READABLE
• ACCESS_WRITABLE
• ACCESS_EVENTABLE

For example, value Integer(3) means that the property is readable and writable, but not eventable.

The property access is available only for function properties and it's missing for the operation para-
meters.

141.6.9.2 public static final int ACCESS_EVENTABLE = 4

Marks the eventable function properties. The flag can be used as a part of bitmap value of ACCESS.

See Also Function

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 562 OSGi Residential Release 6

141.6.9.3 public static final int ACCESS_READABLE = 1

Marks the readable function properties. The flag can be used as a part of bitmap value of ACCESS.
The readable access mandates function to provide a property getter method.

See Also Function

141.6.9.4 public static final int ACCESS_WRITABLE = 2

Marks the writable function properties. The flag can be used as a part of bitmap value of ACCESS.
The writable access mandates function to provide a property setter methods.

See Also Function

141.6.9.5 public static final String DESCRIPTION = "description"

Metadata key, which value represents the property description. The property value type is
java. lang.Str ing .

141.6.9.6 public static final String UNITS = "units"

Metadata key, which value represents the property supported units. The property value type is
java. lang.Str ing[] . The array first element at index 0 represents the default unit. Each unit must fol-
low those rules:

• The International System of Units must be used where it's applicable. For example, kg for kilo-
gram and km for kilometer.

• If the unit name matches to an Unicode symbol name, the Unicode symbol must be used. For ex-
ample, the degree unit matches to the Unicode degree sign (°).

• If the unit name doesn't match to an Unicode symbol, the unit symbol must be built by Uni-
code Basic Latin block of characters, superscript and subscript characters. For example, watt per
square meter steradian is built by W/(m² sr) .

If those rules cannot be applied to the unit symbol, custom rules are allowed. A set of predefined
unit symbols are available in SIUnits interface.

141.6.9.7 public FunctionData[] getEnumValues(String unit)

unit The unit to align the supported values, can be nul l .

□ Returns the property possible values according to the specified unit. If the unit is nul l , the values set
is aligned to the default unit. If there is no such set of supported values, nul l is returned. The values
must be sorted in increasing order.

Returns The supported values according to the specified unit or nul l if no such values are supported. The val-
ues must be sorted in increasing order.

Throws I l legalArgumentException– If the unit is not supported.

141.6.9.8 public FunctionData getMaxValue(String unit)

unit The unit to align the maximum value, can be nul l .

□ Returns the property maximum value according to the specified unit. If the unit is nul l , the maxi-
mum value is aligned to the default unit. If there is no maximum value, nul l is returned.

Returns The maximum value according to the specified unit or nul l if no maximum value is supported.

Throws I l legalArgumentException– If the unit is not supported.

141.6.9.9 public Map getMetadata(String unit)

unit The unit to align the metadata if it's applicable. It can be null, which means that the default unit
will be used.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 563

□ Returns metadata about the function property or operation parameter. The keys of the java.ut i l .Map
result must be of java. lang.Str ing type. Possible keys:

• DESCRIPTION - doesn't depend on the given unit.
• ACCESS - available only for function property and missing for function operation parameters. It

doesn't depend on the given unit.
• UNITS - doesn't depend on the given unit.
• custom key - can depend on the unit. Organizations that want to use custom keys that do not

clash with OSGi Alliance defined should prefix their keys in own namespace.

Returns The property metadata or nul l if no such metadata is available.

141.6.9.10 public FunctionData getMinValue(String unit)

unit The unit to align the minimum value, can be nul l .

□ Returns the property minimum value according to the specified unit. If the unit is nul l , the mini-
mum value is aligned to the default unit. If there is no minimum value, nul l is returned.

Returns The minimum value according to the specified unit or nul l if no minimum value is supported.

Throws I l legalArgumentException– If the unit is not supported.

141.6.9.11 public FunctionData getStep(String unit)

unit The unit to align the step, can be nul l .

□ Returns the difference between two values in series. For example, if the range is [0, 100], the step can
be 10.

Returns The step according to the specified unit or nul l if no step is supported.

Throws I l legalArgumentException– If the unit is not supported.

141.6.10 public final class SIUnits
Contains most of the International System of Units unit symbols. The constant name rep-
resents the unit name. The constant value represents the unit symbol as it's defined in
PropertyMetadata.UNITS.

141.6.10.1 public static final String AMPERE = "A"

Unit of electric current defined by the International System of Units (SI). It's one of be base units
called ampere.

141.6.10.2 public static final String AMPERE_PER_METER = "A/m"

Unit of magnetic field strength. It's one of coherent derived units in the SI expressed in terms of base
units. The unit is called ampere per meter.

141.6.10.3 public static final String AMPERE_PER_SQUARE_METER = "A/m\u00b2"

Unit of current density. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called ampere per square meter.

141.6.10.4 public static final String ANGSTROM = "\u212b"

Unit of length. It's one of other non-SI units. The unit is called angstrom.

141.6.10.5 public static final String BAR = "bar"

Unit of pressure. It's one of other non-SI units. The unit is called bar.

141.6.10.6 public static final String BARN = "b"

Unit of area. It's one of other non-SI units. The unit is called barn.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 564 OSGi Residential Release 6

141.6.10.7 public static final String BECQUEREL = "Bq"

Unit of activity referred to a radionuclide. It's one of the coherent derived units in the SI with special
names and symbols. The unit is called becquerel.

141.6.10.8 public static final String BEL = "B"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called bel.

141.6.10.9 public static final String CANDELA = "cd"

Unit of luminous intensity defined by the International System of Units (SI). It's one of be base units
called candela.

141.6.10.10 public static final String CANDELA_PER_SQUARE_METER = "cd/m\u00b2"

Unit of luminance. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called candela per square meter.

141.6.10.11 public static final String COULOMB = "C"

Unit of electronic charge, amount of electricity. It's one of the coherent derived units in the SI with
special names and symbols. The unit is called coulomb.

141.6.10.12 public static final String COULOMB_PER_CUBIC_METER = "C/m\u00b3"

Unit of electric charge density. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called coulomb per cubic me-
ter.

141.6.10.13 public static final String COULOMB_PER_KILOGRAM = "C/kg"

Unit of exposure (x- and gamma-rays). It's one of coherent derived units whose names and symbols
include SI coherent derived units with special names and symbols. The unit is called coulomb per
kilogram.

141.6.10.14 public static final String COULOMB_PER_SQUARE_METER = "C/m\u00b2"

Unit of surface charge density, electric flux density, electric displacement. It's one of coherent de-
rived units whose names and symbols include SI coherent derived units with special names and
symbols. The unit is called coulomb per square meter.

141.6.10.15 public static final String CUBIC_METER = "m\u00b3"

Unit of volume. It's one of coherent derived units in the SI expressed in terms of base units. The unit
is called cubic meter.

141.6.10.16 public static final String CUBIC_METER_PER_KILOGRAM = "m\u00b3/kg"

Unit of specific volume. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called cubic meter per kilogram.

141.6.10.17 public static final String DAY = "d"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The
unit is called day.

141.6.10.18 public static final String DECIBEL = "dB"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called decibel.

141.6.10.19 public static final String DEGREE = "\u00b0"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units.
The unit is called degree.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 565

141.6.10.20 public static final String DEGREE_CELSIUS = "\u2103"

Unit of Celsius temperature. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called degree Celsius.

141.6.10.21 public static final String DYNE = "dyn"

Unit of force. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of units.
The unit is called dyne.

141.6.10.22 public static final String ERG = "erg"

Unit of energy. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called erg.

141.6.10.23 public static final String FARAD = "F"

Unit of capacitance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called farad.

141.6.10.24 public static final String FARAD_PER_METER = "F/m"

Unit of permittivity. It's one of coherent derived units whose names and symbols include SI coher-
ent derived units with special names and symbols. The unit is called farad per meter.

141.6.10.25 public static final String GAL = "Gal"

Unit of acceleration. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called gal.

141.6.10.26 public static final String GAUSS = "G"

Unit of magnetic flux density. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called gauss.

141.6.10.27 public static final String GRAY = "Gy"

Unit of absorbed dose, specific energy (imparted), kerma. It's one of the coherent derived units in the
SI with special names and symbols. The unit is called gray.

141.6.10.28 public static final String GRAY_PER_SECOND = "Gy/s"

Unit of absorbed dose rate. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called gray per second.

141.6.10.29 public static final String HECTARE = "ha"

Unit of area. It's one of non-SI units accepted for use with the International System of Units. The
unit is called hectare.

141.6.10.30 public static final String HENRY = "H"

Unit of inductance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called henry.

141.6.10.31 public static final String HENRY_PER_METER = "H/m"

Unit of permeability. It's one of coherent derived units whose names and symbols include SI coher-
ent derived units with special names and symbols. The unit is called henry per meter.

141.6.10.32 public static final String HERTZ = "Hz"

Unit of frequency. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called hertz.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 566 OSGi Residential Release 6

141.6.10.33 public static final String HOUR = "h"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The
unit is called hour.

141.6.10.34 public static final String JOULE = "J"

Unit of energy, work, amount of electricity. It's one of the coherent derived units in the SI with spe-
cial names and symbols. The unit is called joule.

141.6.10.35 public static final String JOULE_PER_CUBIC_METER = "J/m\u00b3"

Unit of energy density. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called joule per cubic meter.

141.6.10.36 public static final String JOULE_PER_KELVIN = "J/\u212a"

Unit of heat capacity, entropy. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called joule per kelvin.

141.6.10.37 public static final String JOULE_PER_KILOGRAM = "J/kg"

Unit of specific energy. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called joule per kilogram.

141.6.10.38 public static final String JOULE_PER_KILOGRAM_KELVIN = "J/(kg \u212a)"

Unit of specific heat capacity, specific entropy. It's one of coherent derived units whose names and
symbols include SI coherent derived units with special names and symbols. The unit is called joule
per kilogram kelvin.

141.6.10.39 public static final String JOULE_PER_MOLE = "J/mol"

Unit of molar energy. It's one of coherent derived units whose names and symbols include SI coher-
ent derived units with special names and symbols. The unit is called joule per mole.

141.6.10.40 public static final String JOULE_PER_MOLE_KELVIN = "J/(mol \u212a)"

Unit of molar entropy, molar heat capacity. It's one of coherent derived units whose names and sym-
bols include SI coherent derived units with special names and symbols. The unit is called joule per
mole kelvin.

141.6.10.41 public static final String KATAL = "kat"

Unit of catalytic activity. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called katal.

141.6.10.42 public static final String KATAL_PER_CUBIC_METER = "kat/m\u00b3"

Unit of catalytic activity concentration. It's one of coherent derived units whose names and symbols
include SI coherent derived units with special names and symbols. The unit is called katal per cubic
meter.

141.6.10.43 public static final String KELVIN = "\u212a"

Unit of thermodynamic temperature defined by the International System of Units (SI). It's one of be
base units called kelvin.

141.6.10.44 public static final String KILOGRAM = "kg"

Unit of mass defined by the International System of Units (SI). It's one of be base units called kilo-
gram.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 567

141.6.10.45 public static final String KILOGRAM_PER_CUBIC_METER = "kg/m\u00b3"

Unit of density, mass density, mass concentration. It's one of coherent derived units in the SI ex-
pressed in terms of base units. The unit is called kilogram per cubic meter.

141.6.10.46 public static final String KILOGRAM_PER_SQUARE_METER = "kg/m\u00b2"

Unit of surface density. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called kilogram per square meter.

141.6.10.47 public static final String KNOT = "kn"

Unit of speed. It's one of other non-SI units. The unit is called knot.

141.6.10.48 public static final String LITER = "l"

Unit of volume. It's one of non-SI units accepted for use with the International System of Units. The
unit is called liter. International System of Units accepts two symbols: lower-case l and capital L.
That constant value is using the lower-case l.

141.6.10.49 public static final String LUMEN = "lm"

Unit of luminous flux. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called lumen.

141.6.10.50 public static final String LUX = "lx"

Unit of illuminance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called lux.

141.6.10.51 public static final String MAXWELL = "Mx"

Unit of magnetic flux. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called maxwell.

141.6.10.52 public static final String METER = "m"

Unit of length defined by the International System of Units (SI). It's one of be base units called meter.

141.6.10.53 public static final String METER_PER_SECOND = "m/s"

Unit of speed, velocity. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called meter per second.

141.6.10.54 public static final String METER_PER_SECOND_SQUARED = "m/s\u00b2"

Unit of acceleration. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called meter per second squared.

141.6.10.55 public static final String MILLIMETER_OF_MERCURY = "mmHg"

Unit of pressure. It's one of other non-SI units. The unit is called millimeter of mercury.

141.6.10.56 public static final String MOLE = "mol"

Unit of amount of substance defined by the International System of Units (SI). It's one of be base
units called mole.

141.6.10.57 public static final String MOLE_PER_CUBIC_METER = "mol/m\u00b3"

Unit of amount concentration, concentration. It's one of coherent derived units in the SI expressed
in terms of base units. The unit is called mole per cubic meter.

141.6.10.58 public static final String NAUTICAL_MILE = "M"

Unit of distance. It's one of other non-SI units. The unit is called nautical mile.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 568 OSGi Residential Release 6

141.6.10.59 public static final String NEPER = "Np"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called neper.

141.6.10.60 public static final String NEWTON = "N"

Unit of force. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called newton.

141.6.10.61 public static final String NEWTON_METER = "N m"

Unit of moment of force. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called newton meter.

141.6.10.62 public static final String NEWTON_PER_METER = "N/m"

Unit of surface tension. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called newton per meter.

141.6.10.63 public static final String OERSTED = "Oe"

Unit of magnetic field. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called oersted.

141.6.10.64 public static final String OHM = "\u2126"

Unit of electric resistance. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called ohm.

141.6.10.65 public static final String PASCAL = "Pa"

Unit of pressure, stress. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called pascal.

141.6.10.66 public static final String PASCAL_SECOND = "Pa s"

Unit of dynamic viscosity. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called pascal second.

141.6.10.67 public static final String PHOT = "ph"

Unit of illuminance. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called phot.

141.6.10.68 public static final String PLANE_ANGLE_MINUTE = "\u2032"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units.
The unit is called minute.

141.6.10.69 public static final String PLANE_ANGLE_SECOND = "\u2033"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units.
The unit is called second.

141.6.10.70 public static final String POISE = "P"

Unit of dynamic viscosity. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called poise.

141.6.10.71 public static final String PREFIX_ATTO = "a"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called atto
and represents the 18th negative power of ten.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 569

141.6.10.72 public static final String PREFIX_CENTI = "c"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called centi
and represents the 2nd negative power of ten.

141.6.10.73 public static final String PREFIX_DECA = "da"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called deca and
represents the 1st power of ten.

141.6.10.74 public static final String PREFIX_DECI = "d"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called deci
and represents the 1st negative power of ten.

141.6.10.75 public static final String PREFIX_EXA = "E"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called exa and
represents the 18th power of ten.

141.6.10.76 public static final String PREFIX_FEMTO = "f "

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called femto
and represents the 15th negative power of ten.

141.6.10.77 public static final String PREFIX_GIGA = "G"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called giga and
represents the 9th power of ten.

141.6.10.78 public static final String PREFIX_HECTO = "h"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called hecto and
represents the 2nd power of ten.

141.6.10.79 public static final String PREFIX_KILO = "k"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called kilo and
represents the 3rd power of ten.

141.6.10.80 public static final String PREFIX_MEGA = "M"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called mega and
represents the 6th power of ten.

141.6.10.81 public static final String PREFIX_MICRO = "\u00b5"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called micro
and represents the 6th negative power of ten.

141.6.10.82 public static final String PREFIX_MILLI = "m"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called milli
and represents the 3rd negative power of ten.

141.6.10.83 public static final String PREFIX_NANO = "n"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called nano
and represents the 9th negative power of ten.

141.6.10.84 public static final String PREFIX_PICO = "p"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called pico
and represents the 12th negative power of ten.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 570 OSGi Residential Release 6

141.6.10.85 public static final String PREFIX_YOCTO = "y"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called yocto
and represents the 24th negative power of ten.

141.6.10.86 public static final String PREFIX_YOTTA = "Y"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called yotta and
represents the 24th power of ten.

141.6.10.87 public static final String PREFIX_ZEPTO = "z"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called zepto
and represents the 21th negative power of ten.

141.6.10.88 public static final String PREFIX_ZETTA = "Z"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called zetta and
represents the 21th power of ten.

141.6.10.89 public static final String RADIAN = "rad"

Unit of plane angle. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called radian.

141.6.10.90 public static final String RADIAN_PER_SECOND = "rad/s"

Unit of angular velocity. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called radian per second.

141.6.10.91 public static final String RADIAN_PER_SECOND_SQUARED = "rad/s\u00b2"

Unit of angular acceleration. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called radian per second
squared.

141.6.10.92 public static final String RECIPROCAL_METER = "m\u207b\u00b9"

Unit of wavenumber. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called reciprocal meter.

141.6.10.93 public static final String SECOND = "s"

Unit of time defined by the International System of Units (SI). It's one of be base units called second.

141.6.10.94 public static final String SIEMENS = "S"

Unit of electric conductance. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called siemens.

141.6.10.95 public static final String SIEVERT = "Sv"

Unit of dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equiv-
alent. It's one of the coherent derived units in the SI with special names and symbols. The unit is
called sievert.

141.6.10.96 public static final String SQUARE_METER = "m\u00b2"

Unit of area. It's one of coherent derived units in the SI expressed in terms of base units. The unit is
called square meter.

141.6.10.97 public static final String STERADIAN = "sr"

Unit of solid angle. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called steradian.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Residential Release 6 Page 571

141.6.10.98 public static final String STILB = "sb"

Unit of luminance. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called stilb.

141.6.10.99 public static final String STOKES = "St"

Unit of kinematic viscosity. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called stokes.

141.6.10.100 public static final String TESLA = "T"

Unit of magnetic flux density. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called tesla.

141.6.10.101 public static final String TIME_MINUTE = "min"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The
unit is called minute.

141.6.10.102 public static final String TONNE = "t"

Unit of mass. It's one of non-SI units accepted for use with the International System of Units. The
unit is called tonne.

141.6.10.103 public static final String VOLT = "V"

Unit of electric potential difference, electromotive force. It's one of the coherent derived units in the
SI with special names and symbols. The unit is called volt.

141.6.10.104 public static final String VOLT_PER_METER = "V/m"

Unit of electric field strength. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called volt per meter.

141.6.10.105 public static final String WATT = "W"

Unit of power, radiant flux. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called watt.

141.6.10.106 public static final String WATT_PER_METER_KELVIN = "W/(m \u212a)"

Unit of thermal conductivity. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called watt per meter kelvin.

141.6.10.107 public static final String WATT_PER_SQUARE_METER = "W/m\u00b2"

Unit of heat flux density, irradiance. It's one of coherent derived units whose names and symbols in-
clude SI coherent derived units with special names and symbols. The unit is called watt per square
meter.

141.6.10.108 public static final String WATT_PER_SQUARE_METER_STERADIAN = "W/(m\u00b2 sr)"

Unit of radiance. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called watt per square meter steradian.

141.6.10.109 public static final String WATT_PER_STERADIAN = "W/sr"

Unit of radiant intensity. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called watt per steradian.

141.6.10.110 public static final String WEBER = "Wb"

Unit of magnetic flux. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called weber.

References Device Abstraction Layer Specification Version 1.0

Page 572 OSGi Residential Release 6

141.7 References

[1] JavaBeans Spec
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Device Abstraction Layer Functions Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 573

142 Device Abstraction Layer
Functions Specification

Version 1.0

142.1 Introduction
Concrete function interfaces are used to unify the access and the control of the basic device opera-
tions and the related properties. The current section specifies the minimal set of such functionali-
ties. They can be extended or replaced to cover domain specific scenarios. The set is not closed and
can be incorporated with vendor specific functions. There is support for: control, monitoring and
metering information.

142.2 Functions

142.2.1 BooleanControl
BooleanControl function provides a binary control support. The property eventing must follow the
definition of Device Abstraction Layer, Function Property Events on page 546. The full function defini-
tion is available in the next tables.

Table 142.1 BooleanControl Operations

Name Description
inverse Reverses the BooleanControl state. If the current

state represents true value, it'll be changed to
fa lse . If the current state represents fa lse value,
it'll be changed to true .

setTrue Sets the BooleanControl state to true value.
setFalse Sets the BooleanControl state to fa lse value.

Table 142.2 BooleanControl Properties

Name Description
data Contains the current state of BooleanControl .

The property access is readable, writable and
eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to BooleanControl :

• LIGHT - indicates that there is a light device control. true state means that the light device will be
turned on. fa lse state means that the light device will be turned off.

• DOOR - indicates that there is a door position control. true state means that the door will be
opened. fa lse state means that the door will be closed.

Functions Device Abstraction Layer Functions Specification Version 1.0

Page 574 OSGi Residential Release 6

• WINDOW - indicates that there is a window position control. true state means that the window
will be opened. fa lse state means that the window will be closed.

• POWER - indicates that there is electricity control. true state means that the power will be re-
stored. fa lse state means that the power will be cut.

• other type defined in Types
• vendor specific

The function is using BooleanData on page 578 data structure to provide the control state.

The next code snippet sets to true all BooleanControl functions, which control the light.

ServiceReference[] booleanControlSRefs = context.getServiceReferences(
 BooleanControl.class.getName(),
 '(' + Function.SERVICE_TYPE + '=' + Types.LIGHT + ')');
if (booleanControlSRefs != null) {
 for (int i = 0; i < booleanControlSRefs.length; i++) {
 BooleanControl booleanControl = (BooleanControl) context.getService(
 booleanControlSRefs[i]);
 if (booleanControl != null) {
 booleanControl.setTrue();
 context.ungetService(booleanControlSRefs[i]);
 }
 }
}

142.2.2 BooleanSensor
BooleanSensor function provides binary sensor monitoring. It reports the state when an important
event is available. There are no operations. The property eventing must follow the definition of De-
vice Abstraction Layer, Function Property Events on page 546. The full function definition is available
in the next table.

Table 142.3 BooleanSensor Properties

Name Description
data Contains the current state of BooleanSensor .

The property access is readable and eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to BooleanSensor :

• LIGHT - indicates that the BooleanSensor can detected light. true state means that there is light.
fa lse state means that there is no light.

• GAS - indicates that the BooleanSensor supports gas detection. true state means there is gas. fa lse
state means that there is no gas.

• SMOKE - indicates that the BooleanSensor can detect smoke. true state means that there is
smoke. fa lse state means that there is no smoke.

• DOOR - indicates that the BooleanSensor can detect the door state. true state means that the door
is opened. fa lse state means that the door is closed.

• WINDOW - indicates that the BooleanSensor can window state. true state means that the window
is opened. fa lse state means that the window is closed.

• POWER - indicates that the BooleanSensor can detect power/no power. true state means that
there is power. fa lse state means that there is no power.

• RAIN - indicates that the BooleanSensor can detect rain. true state means that there is rain. fa lse
state means that there is no rain.

Device Abstraction Layer Functions Specification Version 1.0 Functions

OSGi Residential Release 6 Page 575

• CONTACT - indicates that the BooleanSensor can detect contact. true state means that there is
contact. fa lse state means that there is no contact.

• FIRE - indicates that the BooleanSensor can detect fire. true state means that there is fire. fa lse
state means that there is no fire.

• OCCUPANCY - indicates that the BooleanSensor can detect presence. true state means that some-
one is detected. fa lse state means that nobody is detected.

• WATER - indicates that the BooleanSensor can detect water leak. true state means that there is wa-
ter leak. fa lse state means that there is no water leak.

• MOTION - indicates that the BooleanSensor can detect motion. true state means that there is mo-
tion detection. fa lse state means that there is no motion detection.

• other type defined in Types
• vendor specific

The function is using BooleanData on page 578 data structure to provide the sensor state.

142.2.3 MultiLevelControl
MultiLevelControl function provides multi-level control support. The property eventing must fol-
low the definition of Device Abstraction Layer, Function Property Events on page 546. The full func-
tion definition is available in the next table.

Table 142.4 MultiLevelControl Properties

Name Description
data Contains the current state of MultiLevelControl .

The property access is readable, writable and
eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to MultiLevelControl :

• LIGHT - indicates that the MultiLevelControl can control light devices. Usually, such devices are
called dimmable. MultiLevelControl minimum value can switch off the device and MultiLevel-
Control maximum value can increase the device light to the maximum possible value.

• TEMPERATURE - indicates that the MultiLevelControl can control temperature devices. For exam-
ple, such device can be thermostat. MultiLevelControl minimum value is the lowest supported
temperature. MultiLevelControl maximum value is the highest supported temperature.

• FLOW - indicates that the MultiLevelControl can control the flow level. MultiLevelControl min-
imum value is the minimum supported flow level. MultiLevelControl maximum value is the
maximum supported flow level.

• PRESSURE - indicates that the MultiLevelControl can control the pressure level. MultiLevelCon-
trol minimum value is the lowest supported pressure level. MultiLevelControl maximum value
is the highest supported pressure level.

• HUMIDITY - indicates that the MultiLevelControl can control the humidity level. It's typical func-
tionality for HVAC (heating, ventilation, and air conditioning) devices. MultiLevelControl min-
imum value is the lowest supported humidity level. MultiLevelControl maximum value is the
highest supported humidity level.

• GAS - indicates that the MultiLevelControl can control the gas level. MultiLevelControl minimum
value is the lowest supported gas level. MultiLevelControl maximum value is the highest sup-
ported gas level.

• SMOKE - indicates that the MultiLevelControl can control the smoke level. MultiLevelControl
minimum value is the lowest supported smoke level. MultiLevelControl maximum value is the
highest supported smoke level.

Functions Device Abstraction Layer Functions Specification Version 1.0

Page 576 OSGi Residential Release 6

• DOOR - indicates that the MultiLevelControl can control the door position. MultiLevelControl
minimum value can completely close the door. MultiLevelControl maximum value can open the
door to the maximum allowed position.

• WINDOW - indicates that the MultiLevelControl can control the window position. MultiLevel-
Control minimum value can completely close the window. MultiLevelControl maximum value
can open the window to the maximum allowed position.

• LIQUID - indicates that the MultiLevelControl can control the liquid level. MultiLevelControl
minimum value is the lowest supported liquid level. MultiLevelControl maximum value is the
highest supported liquid level.

• POWER - indicates that the MultiLevelControl can control the power level. MultiLevelControl
minimum value is the lowest supported power level. MultiLevelControl maximum value is the
highest supported power level.

• NOISINESS - indicates that the MultiLevelControl can control the noise level. MultiLevelControl
minimum value is the lowest supported noise level. MultiLevelControl maximum value is the
highest supported noise level.

• other type defined in Types
• vendor specific

The function is using LevelData on page 579 data structure to provide the level.

142.2.4 MultiLevelSensor
MultiLevelSensor function provides multi-level sensor monitoring. It reports its state when an im-
portant event is available. There are no operations. The property eventing must follow the defini-
tion of Device Abstraction Later, Function Property Events on page 546. The full function definition is
available in the next table.

Table 142.5 MultiLevelSensor Properties

Name Description
data Contains the current state of MultiLevelSensor .

The property access is readable and eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to MultiLevelSensor :

• LIGHT - indicates that the sensor can monitor the light level.
• TEMPERATURE - indicates that the sensor can monitor the temperature.
• FLOW - indicates that the sensor can monitor the flow level.
• PRESSURE - indicates that the sensor can monitor the pressure level.
• HUMIDITY - indicates that the sensor can monitor the humidity level.
• GAS - indicates that the sensor can monitor the gas level.
• SMOKE - indicates that the sensor can monitor the smoke level.
• DOOR - indicates that the sensor can monitor the door position.
• WINDOW - indicates that the sensor can monitor the window position.
• LIQUID - indicates that the sensor can monitor the liquid level.
• POWER - indicates that the sensor can monitor the power level.
• NOISINESS - indicates that the sensor can monitor the noise level.
• RAIN - indicates that the MultiLevelSensor can monitor the rain rate.
• other type defined in Types
• vendor specific

The function is using LevelData on page 579 data structure to provide the level.

Device Abstraction Layer Functions Specification Version 1.0 Functions

OSGi Residential Release 6 Page 577

142.2.5 Meter
Meter function can measure metering information. It provides the current and total consumptions
or generations. The property eventing must follow the definition of Device Abstraction Later, Func-
tion Property Events on page 546. The full function definition is available in the next tables.

Table 142.6 Meter Properties

Name Description
total Contains the total consumption or production.

The property access is readable and eventable.
current Contains the current consumption or pro-

duction. The property access is readable and
eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to Meter :

• PRESSURE - indicates that the Meter measures pressure.
• GAS - indicates that the Meter measures the gas consumption.
• POWER - indicates that the Meter measures the power consumption.
• WATER - indicates that the Meter measures water consumption.
• HEAT - indicates that the Meter measures thermal energy provided by a source.
• COLD - indicates that the Meter measures thermal energy provided by a source.
• other type defined in Types
• vendor specific

The function is using LevelData on page 579 data structure to provide metering information.

Meter function service can be optionally registered with SERVICE_FLOW service property. The value
type is java. lang.Str ing . It contains the metering flow. Currently, the flow can be FLOW_IN for a con-
sumption or FLOW_OUT for a production.

142.2.6 Alarm
Alarm function provides alarm sensor support. There is only one eventable property and no opera-
tions. The property eventing must follow the definition of Device Abstraction Layer, Function Proper-
ty Events on page 546. The full function definition is available in the next table.

Table 142.7 BooleanSensor Properties

Name Description
alarm Specifies the alarm property name. The property

is eventable.

The function is using AlarmData on page 579 data structure to report the alarm. The property
eventing must follow the definition of Device Abstraction Layer, Function Property Events on page
546.

142.2.7 Keypad
Keypad function provides support for keypad control. The keypad typically consists of one or more
keys/buttons, which can be discerned. Different types of key presses like short and long press can
typically also be detected. Each key pressed event is followed by a key released event. It's not possi-
ble to have two consecutive key pressed or key released events. There is only one eventable proper-

Functions Data Device Abstraction Layer Functions Specification Version 1.0

Page 578 OSGi Residential Release 6

ty and no operations. The property eventing must follow the definition of Device Abstraction Layer,
Function Property Events on page 546. The full function definition is available in the next table.

Table 142.8 Keypad Properties

Name Description
key Specifies a property name for a key from the key-

pad. The property is eventable.

The function is using KeypadData on page 579 data structure to report the keys.

142.2.8 WakeUp
WakeUp function provides device awake monitoring. It's especially applicable to battery-operat-
ed devices. Such device can notify the system that it's awake and can receive commands with a
PROPERTY_AWAKE property event. The property eventing must follow the definition of Device Ab-
straction Layer, Function Property Events on page 546.

The device can periodically wake up for commands. The interval can be managed with
PROPERTY_WAKE_UP_INTERVAL property.

Table 142.9 WakeUp Properties

Name Description
awake Specifies the awake eventable property name.

If the device is awake, it will trigger a property
event. The property value type is BooleanData on
page 578.

wakeUpInterval Specifies the wake up interval. The device can
periodically wake up and receive commands.
That interval is managed by this property.
The property access is readable, writable and
eventable. The property value type is LevelData
on page 579.

142.3 Functions Data
FunctionData subclasses are wrappers on top of the java types to cover the requirements of the De-
vice Abstraction Layer section. They can be received with the getter methods, can be set with the
setter methods and can be reported with FunctionEvent . The value can be described with different
properties like:

• timestamp - the timestamp is the difference between the value collecting time and midnight,
January 1, 1970 UTC. It's measured in milliseconds. The device driver is responsible to generate
that value when the value is received from the device.

• unit - represents the value unit as it's defined in Function Properties on page 544.
• description - represents a human readable description of the value.

142.3.1 BooleanData
BooleanData is used by BooleanControl on page 573, BooleanSensor on page 574 and WakeUp on
page 578.

It provides information about the function state. That data object contains boolean value, the value
collecting time and additional metadata. The value field is accessible with getValue() getter. Other
fields are inherited from the parent class FunctionData .

Device Abstraction Layer Functions Specification Version 1.0 Functions Data

OSGi Residential Release 6 Page 579

Two BooleanData instances are equal if they contain equal metadata, timestamp and boolean value.

compareTo(Object) method compares BooleanData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, value.

142.3.2 LevelData
LevelData is used by MultiLevelControl on page 575, MultiLevelSensor on page 576, Meter on page
577 and WakeUp on page 578.

It provides information about the function level. That data object contains BigDecimal value and
the value unit. The measurement unit is used as it's defined in Function Properties on page 544. The
unit field is accessible with getUnit() getter. The level field is accessible with getLevel() getter.

Two LevelData instances are equal if they contain equal metadata, timestamp, unit and level.

compareTo(Object) method compares LevelData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, level, unit.

142.3.3 AlarmData
AlarmData is used by Alarm on page 577.

AlarmData data structure is used to provide information about the available alarm. That data object
contains:

• alarm type - indicates the meaning of the alarm like smoke, power fail, etc.
• alarm severity - indicates the alarm importance level like minor, critical, etc.

The severity field is accessible with getSeverity() getter. The type field is accessible with getType()
getter.

Two AlarmData instances are equal if they contain equal metadata, timestamp, type and severity.

compareTo(Object) method compares AlarmData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, severity.

142.3.4 KeypadData
KeypadData is used by Keypad on page 577.

KeypadData data structure is used to provide information when a change with some key from the
keypad has occurred. That data object contains the event type, sub-type, key code and key name.
Currently, there are two predefined event types:

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 580 OSGi Residential Release 6

• TYPE_PRESSED – used for a key pressed;
• TYPE_RELEASED – used for a key released.

Predefined event sub-types are:

• SUB_TYPE_PRESSED_NORMAL – used for a normal key pressed event. Usually, there is a single
press and the key is not held down. This sub-type is used with TYPE_PRESSED type.

• SUB_TYPE_PRESSED_LONG – used for a long key pressed event. Usually, there is a single press
and the key is held down. This sub-type is used with TYPE_PRESSED type.

• SUB_TYPE_PRESSED_DOUBLE – used for a double key pressed event. Usually, there are two
press actions and the key is not held down after the second press. This sub-type is used with
TYPE_PRESSED type.

• SUB_TYPE_PRESSED_DOUBLE_LONG – used for a double long key pressed event. Usually, there
are two press actions and the key is held down after the second press. This sub-type is used with
TYPE_PRESSED type.

The type field is accessible with getType() getter. The subType field is accessible with getSubType()
getter. The keyCode field is accessible with getKeyCode() getter. The keyName field is accessible
with getKeyName() getter.

Two KeypadData instances are equal if they contain equal metadata, timestamp, event type, sub-
type, key code and key name.

compareTo(Object) method compares KeypadData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, sub-type, key code, key name.

142.4 org.osgi.service.dal.functions

Device Abstraction Layer Functions Package 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dal .functions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dal .functions; vers ion="[1.0,1.1)"

142.4.1 Summary

• Alarm - Alarm function provides alarm sensor support.
• BooleanControl - BooleanControl function provides a boolean control support.
• BooleanSensor - BooleanSensor function provides boolean sensor monitoring.
• Keypad - Keypad function provides support for keypad control.
• Meter - Meter function can measure metering information.
• MultiLevelControl - MultiLevelControl function provides multi-level control support.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Residential Release 6 Page 581

• MultiLevelSensor - MultiLevelSensor function provides multi-level sensor monitoring.
• Types - Shares common constants for all functions defined in this package.
• WakeUp - WakeUp function provides device awake monitoring.

142.4.2 public interface Alarm
extends Function
Alarm function provides alarm sensor support. There is only one eventable property and no opera-
tions.

See Also AlarmData

142.4.2.1 public static final String PROPERTY_ALARM = "alarm"

Specifies the alarm property name. The property is eventable.

See Also AlarmData

142.4.3 public interface BooleanControl
extends Function
BooleanControl function provides a boolean control support. The eventable function state is ac-
cessible with getData() getter and setData(boolean) setter. The state can be reversed with inverse()
method, can be set to true value with setTrue() method and can be set to fa lse value with setFalse()
method.

The control type can be:

• Types.LIGHT
• Types.DOOR
• Types.WINDOW
• Types.POWER
• other type defined in Types
• custom - vendor specific type

See Also BooleanData

142.4.3.1 public static final String OPERATION_INVERSE = "inverse"

Specifies the inverse operation name. The operation can be executed with inverse() method.

142.4.3.2 public static final String OPERATION_SET_FALSE = "setFalse"

Specifies the operation name, which sets the control state to fa lse value. The operation can be exe-
cuted with setFalse() method.

142.4.3.3 public static final String OPERATION_SET_TRUE = "setTrue"

Specifies the operation name, which sets the control state to true value. The operation can be exe-
cuted with setTrue() method.

142.4.3.4 public static final String PROPERTY_DATA = "data"

Specifies the state property name. The eventable property value is accessible with getData() method.

See Also BooleanData

142.4.3.5 public BooleanData getData() throws DeviceException

□ Returns the current state of BooleanControl . It's a getter method for PROPERTY_DATA property.

Returns The current state of BooleanControl .

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 582 OSGi Residential Release 6

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also BooleanData, BooleanControl.PROPERTY_DATA

142.4.3.6 public void inverse() throws DeviceException

□ Reverses the BooleanControl state. If the current state represents true value, it'll be changed to
fa lse . If the current state represents fa lse value, it'll be changed to true . The operation name is
OPERATION_INVERSE.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

142.4.3.7 public void setData(boolean data) throws DeviceException

data The new function value.

□ Sets the BooleanControl state to the specified value. It's setter method for PROPERTY_DATA proper-
ty.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

I l legalArgumentException– If there is an invalid argument.

See Also BooleanControl.PROPERTY_DATA

142.4.3.8 public void setFalse() throws DeviceException

□ Sets the BooleanControl state to fa lse value. The operation name is OPERATION_SET_FALSE.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

142.4.3.9 public void setTrue() throws DeviceException

□ Sets the BooleanControl state to true value. The operation name is OPERATION_SET_TRUE.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

142.4.4 public interface BooleanSensor
extends Function
BooleanSensor function provides boolean sensor monitoring. It reports its state when an important
event is available. The eventable state is accessible with getData() getter. There are no operations.

The sensor type can be:

• Types.LIGHT
• Types.GAS
• Types.SMOKE
• Types.DOOR
• Types.WINDOW
• Types.POWER
• Types.RAIN
• Types.CONTACT
• Types.FIRE
• Types.OCCUPANCY

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Residential Release 6 Page 583

• Types.WATER
• Types.MOTION
• other type defined in Types
• custom - vendor specific type

See Also BooleanData

142.4.4.1 public static final String PROPERTY_DATA = "data"

Specifies the state property name. The eventable property value is accessible with getData() getter.

142.4.4.2 public BooleanData getData() throws DeviceException

□ Returns the BooleanSensor current state. It's a getter method for PROPERTY_DATA property.

Returns The BooleanSensor current state.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also BooleanData

142.4.5 public interface Keypad
extends Function
Keypad function provides support for keypad control. The keypad typically consists of one or more
keys/buttons, which can be discerned. Different types of key presses like short and long press can
typically also be detected. Each key pressed event is followed by a key released event. It's not possi-
ble to have two consecutive key pressed or key released events. There is only one eventable property
and no operations.

Keypad can enumerate all supported keys in the key property metadata,
PropertyMetadata.getEnumValues(String).

See Also KeypadData

142.4.5.1 public static final String PROPERTY_KEY = "key"

Specifies a property name for a key from the keypad. The property is eventable.

See Also KeypadData

142.4.6 public interface Meter
extends Function
Meter function can measure metering information. The function provides these properties:

• PROPERTY_CURRENT - eventable property accessible with getCurrent() getter;
• PROPERTY_TOTAL - eventable property accessible with getTotal() getter.

The sensor type can be:

• Types.PRESSURE
• Types.GAS
• Types.POWER
• Types.WATER
• Types.HEAT
• Types.COLD
• other type defined in Types

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 584 OSGi Residential Release 6

• custom - vendor specific type

See Also LevelData

142.4.6.1 public static final String FLOW_IN = "in"

Represents the metering consumption flow. It can be used as SERVICE_FLOW property value.

142.4.6.2 public static final String FLOW_OUT = "out"

Represents the metering production flow. It can be used as SERVICE_FLOW property value.

142.4.6.3 public static final String PROPERTY_CURRENT = "current"

Specifies the current consumption or production property name. The eventable property can be
read with getCurrent() getter.

142.4.6.4 public static final String PROPERTY_TOTAL = "total"

Specifies the total consumption or production property name. The eventable property can be read
with getTotal() getter.

142.4.6.5 public static final String SERVICE_FLOW = "dal.meter.flow"

The service property value contains the metering flow. It's an optional property and available only if
it's supported by the meter. The value type is java. lang.Str ing . Possible property values:

• FLOW_IN
• FLOW_OUT

142.4.6.6 public LevelData getCurrent() throws DeviceException

□ Returns the current metering info. It's a getter method for PROPERTY_CURRENT property.

Returns The current metering info.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.6.7 public LevelData getTotal() throws DeviceException

□ Returns the total metering info. It's a getter method for PROPERTY_TOTAL property.

Returns The total metering info.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.7 public interface MultiLevelControl
extends Function
MultiLevelControl function provides multi-level control support. The eventable function level is ac-
cessible with getData() getter and setData(BigDecimal, String) setter.

The control type can be:

• Types.LIGHT
• Types.TEMPERATURE
• Types.FLOW

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Residential Release 6 Page 585

• Types.PRESSURE
• Types.HUMIDITY
• Types.GAS
• Types.SMOKE
• Types.DOOR
• Types.WINDOW
• Types.LIQUID
• Types.POWER
• Types.NOISINESS
• other type defined in Types
• custom - vendor specific type

See Also LevelData

142.4.7.1 public static final String PROPERTY_DATA = "data"

Specifies the level property name. The eventable property can be read with getData() getter and can
be set with setData(BigDecimal, String) setters.

142.4.7.2 public LevelData getData() throws DeviceException

□ Returns MultiLevelControl level. It's a getter method for PROPERTY_DATA property.

Returns MultiLevelControl level.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.7.3 public void setData(BigDecimal level,String unit) throws DeviceException

level The new control level.

unit The level unit.

□ Sets MultiLevelControl level according to the specified unit. It's a setter method for
PROPERTY_DATA property.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

I l legalArgumentException– If there is an invalid argument.

142.4.8 public interface MultiLevelSensor
extends Function
MultiLevelSensor function provides multi-level sensor monitoring. It reports its state when an im-
portant event is available. The eventable state is accessible with getData() getter. There are no opera-
tions.

The sensor type can be:

• Types.LIGHT
• Types.TEMPERATURE
• Types.FLOW
• Types.PRESSURE
• Types.HUMIDITY
• Types.GAS

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 586 OSGi Residential Release 6

• Types.SMOKE
• Types.DOOR
• Types.WINDOW
• Types.LIQUID
• Types.POWER
• Types.NOISINESS
• Types.RAIN
• other type defined in Types
• custom - vendor specific type

See Also LevelData

142.4.8.1 public static final String PROPERTY_DATA = "data"

Specifies the state property name. The eventable property can be read with getData() getter.

See Also LevelData

142.4.8.2 public LevelData getData() throws DeviceException

□ Returns the MultiLevelSensor current state. It's a getter method for PROPERTY_DATA property.

Returns The MultiLevelSensor current state.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.9 public interface Types
Shares common constants for all functions defined in this package. The defined function types are
mapped as follow:

• LIGHT - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
• TEMPERATURE - MultiLevelControl and MultiLevelSensor
• FLOW - MultiLevelControl and MultiLevelSensor
• PRESSURE - MultiLevelControl, MultiLevelSensor and Meter
• HUMIDITY - MultiLevelControl and MultiLevelSensor
• GAS - MultiLevelControl, MultiLevelSensor, BooleanSensor and Meter
• SMOKE - MultiLevelControl, MultiLevelSensor and BooleanSensor
• DOOR - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
• WINDOW - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
• LIQUID - MultiLevelControl and MultiLevelSensor
• POWER - MultiLevelControl, MultiLevelSensor, BooleanSensor, BooleanControl and Meter
• NOISINESS - MultiLevelControl and MultiLevelSensor
• RAIN - MultiLevelSensor and BooleanSensor
• CONTACT - BooleanSensor
• FIRE - BooleanSensor
• OCCUPANCY - BooleanSensor
• WATER - BooleanSensor and Meter
• MOTION - BooleanSensor
• HEAT - Meter
• COLD - Meter

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Residential Release 6 Page 587

The mapping is not mandatory. The function can use custom defined types.

142.4.9.1 public static final String COLD = "cold"

The function type is applicable to:

• Meter - indicates that the Meter measures thermal energy provided by a source.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.2 public static final String CONTACT = "contact"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect contact. true state means that there
is contact. fa lse state means that there is no contact.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.3 public static final String DOOR = "door"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the door position. Multi-
LevelControl minimum value can completely close the door. MultiLevelControl maximum value
can open the door to the maximum allowed position.

• MultiLevelSensor - indicates that the sensor can monitor the door position.
• BooleanSensor - indicates that the BooleanSensor can detect the door state. true state means that

the door is opened. fa lse state means that the door is closed.
• BooleanControl - indicates that there is a door position control. true state means that the door

will be opened. fa lse state means that the door will be closed.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.4 public static final String FIRE = "fire"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect fire. true state means that there is
fire. fa lse state means that there is no fire.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.5 public static final String FLOW = "flow"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the flow level. MultiLevel-
Control minimum value is the minimum supported flow level. MultiLevelControl maximum val-
ue is the maximum supported flow level.

• MultiLevelSensor - indicates that the sensor can monitor the flow level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.6 public static final String GAS = "gas"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the gas level. MultiLevel-
Control minimum value is the lowest supported gas level. MultiLevelControl maximum value is
the highest supported gas level.

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 588 OSGi Residential Release 6

• MultiLevelSensor - indicates that the sensor can monitor the gas level.
• BooleanSensor - indicates that the BooleanSensor supports gas detection. true state means there

is gas. fa lse state means that there is no gas.
• Meter - indicates that the Meter measures the gas consumption.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.7 public static final String HEAT = "heat"

The function type is applicable to:

• Meter - indicates that the Meter measures thermal energy provided by a source.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.8 public static final String HUMIDITY = "humidity"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the humidity level. It's typ-
ical functionality for HVAC (heating, ventilation, and air conditioning) devices. MultiLevelCon-
trol minimum value is the lowest supported humidity level. MultiLevelControl maximum value
is the highest supported humidity level.

• MultiLevelSensor - indicates that the sensor can monitor the humidity level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.9 public static final String LIGHT = "light"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control light devices. Usually, such
devices are called dimmable. MultiLevelControl minimum value can switch off the device and
MultiLevelControl maximum value can increase the device light to the maximum possible value.

• MultiLevelSensor - indicates that the sensor can monitor the light level.
• BooleanSensor - indicates that the BooleanSensor can detected light. true state means that there

is light. fa lse state means that there is no light.
• BooleanControl - indicates that there is a light device control. true state means that the light de-

vice will be turned on. fa lse state means that the light device will be turned off.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.10 public static final String LIQUID = "liquid"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the liquid level. MultiLevel-
Control minimum value is the lowest supported liquid level. MultiLevelControl maximum value
is the highest supported liquid level.

• MultiLevelSensor - indicates that the sensor can monitor the liquid level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.11 public static final String MOTION = "motion"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect motion. true state means that there
is motion detection. fa lse state means that there is no motion detection.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Residential Release 6 Page 589

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.12 public static final String NOISINESS = "noisiness"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the noise level. MultiLevel-
Control minimum value is the lowest supported noise level. MultiLevelControl maximum value
is the highest supported noise level.

• MultiLevelSensor - indicates that the sensor can monitor the noise level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.13 public static final String OCCUPANCY = "occupancy"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect presence. true state means that
someone is detected. fa lse state means that nobody is detected.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.14 public static final String POWER = "power"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the power level. MultiLevel-
Control minimum value is the lowest supported power level. MultiLevelControl maximum value
is the highest supported power level.

• MultiLevelSensor - indicates that the sensor can monitor the power level.
• BooleanSensor - indicates that the BooleanSensor can detect power/no power. true state means

that there is power. fa lse state means that there is no power.
• BooleanControl - indicates that there is electricity control. true state means that the power will

be restored. fa lse state means that the power will be cut.
• Meter - indicates that the Meter measures the power consumption.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.15 public static final String PRESSURE = "pressure"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the pressure level. Multi-
LevelControl minimum value is the lowest supported pressure level. MultiLevelControl maxi-
mum value is the highest supported pressure level.

• MultiLevelSensor - indicates that the sensor can monitor the pressure level.
• Meter - Indicates that the Meter measures pressure.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.16 public static final String RAIN = "rain"

The function type is applicable to:

• MultiLevelSensor - indicates that the MultiLevelSensor can monitor the rain rate. It's not applica-
ble to MultiLevelControl .

• BooleanSensor - indicates that the BooleanSensor can detect rain. true state means that there is
rain. fa lse state means that there is no rain.

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 590 OSGi Residential Release 6

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.17 public static final String SMOKE = "smoke"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the smoke level. MultiLevel-
Control minimum value is the lowest supported smoke level. MultiLevelControl maximum val-
ue is the highest supported smoke level.

• MultiLevelSensor - indicates that the sensor can monitor the smoke level.
• BooleanSensor - indicates that the BooleanSensor can detect smoke. true state means that there

is smoke. fa lse state means that there is no smoke.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.18 public static final String TEMPERATURE = "temperature"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control temperature devices. For ex-
ample, such device can be thermostat. MultiLevelControl minimum value is the lowest support-
ed temperature. MultiLevelControl maximum value is the highest supported temperature.

• MultiLevelSensor - indicates that the sensor can monitor the temperature.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.19 public static final String WATER = "water"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect water leak. true state means that
there is water leak. fa lse state means that there is no water leak.

• Meter - indicates that the Meter measures water consumption.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.20 public static final String WINDOW = "window"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the window position. Mul-
t iLevelControl minimum value can completely close the window. MultiLevelControl maximum
value can open the window to the maximum allowed position.

• MultiLevelSensor - indicates that the sensor can monitor the window position.
• BooleanSensor - indicates that the BooleanSensor can window state. true state means that the

window is opened. fa lse state means that the window is closed.
• BooleanControl - indicates that there is a window position control. true state means that the win-

dow will be opened. fa lse state means that the window will be closed.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.10 public interface WakeUp
extends Function
WakeUp function provides device awake monitoring. It's especially applicable to battery-operat-
ed devices. Such device can notify the system that it's awake and can receive commands with a
PROPERTY_AWAKE property event.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Residential Release 6 Page 591

The device can periodically wake up for commands. The interval can be managed with
PROPERTY_WAKE_UP_INTERVAL property.

See Also LevelData, BooleanData

142.4.10.1 public static final String PROPERTY_AWAKE = "awake"

Specifies the awake property name. The property access type can be
PropertyMetadata.ACCESS_EVENTABLE. If the device is awake, it will trigger a property event.

The property value type is BooleanData . The boolean data is always true . It marks that the device is
awake.

142.4.10.2 public static final String PROPERTY_WAKE_UP_INTERVAL = "wakeUpInterval"

Specifies the wake up interval. The device can periodically wake up and receive commands. That in-
terval is managed by this eventable property. The current property value is available with getWake-
UpInterval() and can be modified with setWakeUpInterval(BigDecimal, String).

142.4.10.3 public LevelData getWakeUpInterval() throws DeviceException

□ Returns the current wake up interval. It's a getter method for PROPERTY_WAKE_UP_INTERVAL
property. The device can periodically wake up and receive command based on this interval.

The interval can be measured in different units like hours, minutes, seconds, etc. The unit is speci-
fied in LevelData instance.

Returns The current wake up interval.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.10.4 public void setWakeUpInterval(BigDecimal interval,String unit) throws DeviceException

interval The new wake up interval.

unit The interval unit. If the unit is nul l , the interval is measured in milliseconds.

□ Sets wake up interval according to the specified unit. It's a setter method for
PROPERTY_WAKE_UP_INTERVAL property. The device can periodically wake up and receive com-
mand based on this interval. The unit can be nul l , then the interval is measured in milliseconds.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

I l legalArgumentException– If there is an invalid argument.

142.5 org.osgi.service.dal.functions.data

Device Abstraction Layer Functions Data Package 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dal .functions.data; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dal .functions.data; vers ion="[1.0,1.1)"

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 592 OSGi Residential Release 6

142.5.1 Summary

• AlarmData - Function alarm data.
• BooleanData - Function boolean data wrapper.
• KeypadData - Represents a keypad event data that is collected when a change with some key

from the keypad has occurred.
• LevelData - Function level data wrapper.

142.5.2 public class AlarmData
extends FunctionData
Function alarm data. It cares about the alarm type, severity, timestamp and additional metadata. It
doesn't support unit. The alarm type is mapped to FunctionData value.

See Also Alarm, FunctionData

142.5.2.1 public static final String FIELD_SEVERITY = "severity"

Represents the severity field name. The field value is available with getSeverity(). The field type is
int . The constant can be used as a key to AlarmData(Map) .

142.5.2.2 public static final String FIELD_TYPE = "type"

Represents the type field name. The field value is available with getType(). The field type is int . The
constant can be used as a key to AlarmData(Map).

142.5.2.3 public static final int SEVERITY_CRITICAL = 3

The severity rating indicates that there a critical alarm. The severity priority is higher than
SEVERITY_MINOR and SEVERITY_MAJOR.

142.5.2.4 public static final int SEVERITY_MAJOR = 2

The severity rating indicates that there is a major alarm. The severity priority is higher than
SEVERITY_MINOR and lower than SEVERITY_CRITICAL.

142.5.2.5 public static final int SEVERITY_MINOR = 1

The severity rating indicates that there is a minor alarm. The severity priority is lower than
SEVERITY_MAJOR and SEVERITY_CRITICAL.

142.5.2.6 public static final int SEVERITY_UNDEFINED = 0

The severity constant indicates that there is no severity rating for this alarm.

142.5.2.7 public static final int TYPE_ACCESS_CONTROL = 1

The alarm type indicates that there is access control issue. For example, the alarm can indicate that
the door is unlocked.

142.5.2.8 public static final int TYPE_BURGLAR = 2

The alarm type indicates that there is a burglar notification. For example, the alarm can indicate
that the glass is broken.

142.5.2.9 public static final int TYPE_COLD = 3

The alarm type indicates that temperature is too low.

142.5.2.10 public static final int TYPE_GAS_CO = 4

The alarm type indicates that carbon monoxide (CO) is detected.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Residential Release 6 Page 593

142.5.2.11 public static final int TYPE_GAS_CO2 = 5

The alarm type indicates that carbon dioxide (CO2) is detected.

142.5.2.12 public static final int TYPE_HARDWARE_FAIL = 7

The alarm type indicates that there is hardware failure.

142.5.2.13 public static final int TYPE_HEAT = 6

The alarm type indicates that temperature is too high.

142.5.2.14 public static final int TYPE_POWER_FAIL = 8

The alarm type indicates a power cut.

142.5.2.15 public static final int TYPE_SMOKE = 9

The alarm type indicates that smoke is detected.

142.5.2.16 public static final int TYPE_SOFTWARE_FAIL = 10

The alarm type indicates that there is software failure.

142.5.2.17 public static final int TYPE_TAMPER = 11

The alarm type for a tamper indication.

142.5.2.18 public static final int TYPE_UNDEFINED = 0

The alarm type indicates that the type is not specified.

142.5.2.19 public static final int TYPE_WATER = 12

The alarm type indicates that a water leak is detected.

142.5.2.20 public AlarmData(Map fields)

fields Contains the new AlarmData instance field values.

□ Constructs new AlarmData instance with the specified field values. The map keys must match to the
field names. The map values will be assigned to the appropriate class fields. For example, the maps
can be: {"severity"=Integer(1)...}. That map will initialize the FIELD_SEVERITY field with 1. If severi-
ty is missing, SEVERITY_UNDEFINED is used.

• FIELD_SEVERITY - optional field. The value type must be Integer .
• FIELD_TYPE - optional field. The value type must be Integer .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the alarm severity is invalid.

NullPointerException– If the fields map is nul l .

142.5.2.21 public AlarmData(long timestamp,Map metadata,int severity,int type)

timestamp The alarm data timestamp optional field.

metadata The alarm data metadata optional field.

severity The alarm data severity optional field.

type The alarm data type optional field.

□ Constructs new AlarmData instance with the specified arguments.

Throws I l legalArgumentException– If the alarm severity is invalid.

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 594 OSGi Residential Release 6

142.5.2.22 public int compareTo(Object o)

o AlarmData to be compared.

□ Compares this AlarmData instance with the given argument. If the argument is not AlarmData , it
throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, severity.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type AlarmData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.2.23 public boolean equals(Object o)

o The object to compare this data.

□ Two AlarmData instances are equal if they contain equal metadata, timestamp, type and severity.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.2.24 public int getSeverity()

□ Returns the alarm severity. The severity can be one of:

• SEVERITY_UNDEFINED
• SEVERITY_MINOR
• SEVERITY_MAJOR
• SEVERITY_CRITICAL

Returns The alarm severity.

142.5.2.25 public int getType()

□ Returns the alarm type. The type can be one of the predefined:

• TYPE_UNDEFINED
• TYPE_SMOKE
• TYPE_HEAT
• TYPE_COLD
• TYPE_GAS_CO
• TYPE_GAS_CO2
• TYPE_WATER
• TYPE_POWER_FAIL
• TYPE_HARDWARE_FAIL
• TYPE_SOFTWARE_FAIL
• vendor specific

Zero and positive values are reserved for this definition and further extensions of the alarm types.
Custom types can be used only as negative values to prevent potential collisions.

Returns The alarm type.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Residential Release 6 Page 595

142.5.2.26 public int hashCode()

□ Returns the hash code for this AlarmData object. The hash code is a sum of
FunctionData.hashCode(), the alarm severity and the alarm type.

Returns The hash code of this AlarmData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.2.27 public String toString()

□ Returns the string representation of this alarm data.

Returns The string representation of this alarm data.

142.5.3 public class BooleanData
extends FunctionData
Function boolean data wrapper. It can contain a boolean value, timestamp and additional metadata.
It doesn't support measurement unit.

See Also BooleanControl, BooleanSensor, FunctionData

142.5.3.1 public static final String FIELD_VALUE = "value"

Represents the value field name. The field value is available with getValue(). The field type is
boolean . The constant can be used as a key to BooleanData(Map).

142.5.3.2 public BooleanData(Map fields)

fields Contains the new BooleanData instance field values.

□ Constructs new BooleanData instance with the specified field values. The map keys must match
to the field names. The map values will be assigned to the appropriate class fields. For example, the
maps can be: {"value"=Boolean(true)...}. That map will initialize the FIELD_VALUE field with true .

FIELD_VALUE - mandatory field. The value type must be Boolean .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the value is missing.

NullPointerException– If the fields map is nul l .

142.5.3.3 public BooleanData(long timestamp,Map metadata,boolean value)

timestamp The boolean data timestamp optional field.

metadata The boolean data metadata optional field.

value The boolean value mandatory field.

□ Constructs new BooleanData instance with the specified arguments.

142.5.3.4 public int compareTo(Object o)

o BooleanData to be compared.

□ Compares this BooleanData instance with the given argument. If the argument is not BooleanData ,
it throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, value.

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 596 OSGi Residential Release 6

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type BooleanData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.3.5 public boolean equals(Object o)

o The object to compare this data.

□ Two BooleanData instances are equal if they contain equal metadata, timestamp and boolean value.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.3.6 public boolean getValue()

□ Returns BooleanData value.

Returns BooleanData value.

142.5.3.7 public int hashCode()

□ Returns the hash code for this BooleanData object. The hash code is a sum of
FunctionData.hashCode() and Boolean.hashCode(), where Boolean.hashCode() represents the
boolean value hash code.

Returns The hash code of this BooleanData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.3.8 public String toString()

□ Returns the string representation of this boolean data.

Returns The string representation of this boolean data.

142.5.4 public class KeypadData
extends FunctionData
Represents a keypad event data that is collected when a change with some key from the keypad has
occurred.

The key pressed event is using TYPE_PRESSED type, while the key released event is using
TYPE_RELEASED type.

See Also Keypad, FunctionData

142.5.4.1 public static final String FIELD_KEY_CODE = "keyCode"

Represents the key code field name. The field value is available with getKeyCode(). The field type is
int . The constant can be used as a key to KeypadData(Map).

142.5.4.2 public static final String FIELD_KEY_NAME = "keyName"

Represents the key name field name. The field value is available with getKeyName(). The field type
is Str ing . The constant can be used as a key to KeypadData(Map).

142.5.4.3 public static final String FIELD_SUB_TYPE = "subType"

Represents the event sub-type field name. The field value is available with getSubType(). The field
type is int . The constant can be used as a key to KeypadData(Map).

142.5.4.4 public static final String FIELD_TYPE = "type"

Represents the event type field name. The field value is available with getType(). The field type is
int . The constant can be used as a key to KeypadData(Map).

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Residential Release 6 Page 597

142.5.4.5 public static final int SUB_TYPE_PRESSED_DOUBLE = 3

Represents a keypad event sub-type for a double key pressed event. Usually, there are two press ac-
tions and the key is not held down after the second press. This sub-type is used with TYPE_PRESSED
type.

142.5.4.6 public static final int SUB_TYPE_PRESSED_DOUBLE_LONG = 4

Represents a keypad event sub-type for a double long key pressed event. Usually, there are two press
actions and the key is held down after the second press. This sub-type is used with TYPE_PRESSED
type.

142.5.4.7 public static final int SUB_TYPE_PRESSED_LONG = 2

Represents a keypad event sub-type for a long key pressed event. Usually, there is a single press and
the key is held down. This sub-type is used with TYPE_PRESSED type.

142.5.4.8 public static final int SUB_TYPE_PRESSED_NORMAL = 1

Represents a keypad event sub-type for a normal key pressed event. Usually, there is a single press
and the key is not held down. This sub-type is used with TYPE_PRESSED type.

142.5.4.9 public static final int TYPE_PRESSED = 0

Represents a keypad event type for a key pressed event.

142.5.4.10 public static final int TYPE_RELEASED = 1

Represents a keypad event type for a key released event.

142.5.4.11 public KeypadData(Map fields)

fields Contains the new KeypadData instance field values.

□ Constructs new KeypadData instance with the specified field values. The map keys must match to
the field names. The map values will be assigned to the appropriate class fields. For example, the
maps can be: {"type"=Integer(1)...}. That map will initialize the FIELD_TYPE field with 1.

• FIELD_TYPE - mandatory field. The value type must be Integer .
• FIELD_SUB_TYPE - optional field. The value type must be Integer .
• FIELD_KEY_CODE - mandatory field. The value type must be Integer .
• FIELD_KEY_NAME - optional field. The value type must be Str ing .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the event type or key code is missing or invalid arguments are speci-
fied.

NullPointerException– If the fields map is nul l .

142.5.4.12 public KeypadData(long timestamp,Map metadata,int type,int subType,int keyCode,String keyName)

timestamp The data timestamp optional field.

metadata The data metadata optional field.

type The data event type mandatory field.

subType The data event sub-type optional field or 0 if there is no sub-type.

keyCode The data key code mandatory field.

keyName The data key name optional field or nul l if there is no key name.

□ Constructs new KeypadData instance with the specified arguments.

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 598 OSGi Residential Release 6

142.5.4.13 public int compareTo(Object o)

o KeypadData to be compared.

□ Compares this KeypadData instance with the given argument. If the argument is not KeypadData , it
throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, sub-type, key code, key name.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type KeypadData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.4.14 public boolean equals(Object o)

o The object to compare this data.

□ Two KeypadData instances are equal if they contain equal metadata, timestamp, event type, key
code and key name.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.4.15 public int getKeyCode()

□ The code of the key. This field is mandatory and it holds the semantics(meaning) of the key.

Returns The key code.

142.5.4.16 public String getKeyName()

□ Represents a human readable name of the corresponding key code. This field is optional and some-
times it could be missed(might be nul l).

Returns A string with the name of the key or nul l if not specified.

142.5.4.17 public int getSubType()

□ Returns the event sub-type. The sub-type provides additional details about the event. The sub-type
can be one of:

• SUB_TYPE_PRESSED_NORMAL
• SUB_TYPE_PRESSED_LONG
• SUB_TYPE_PRESSED_DOUBLE
• SUB_TYPE_PRESSED_DOUBLE_LONG
• custom sub-type

Zero and positive values are reserved for this definition and further extensions of the sub-types. Cus-
tom sub-types can be used only as negative values to prevent potential collisions.

Returns The event sub-type.

142.5.4.18 public int getType()

□ Returns the event type. The type represents the main reason for this event. It can be one of:

• TYPE_PRESSED

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Residential Release 6 Page 599

• TYPE_RELEASED

Returns The event type.

142.5.4.19 public int hashCode()

□ Returns the hash code for this KeypadData object. The hash code is a sum of
FunctionData.hashCode(), String.hashCode(), event type, event sub-type and key code, where
String.hashCode() represents the key name hash code if available.

Returns The hash code of this LevelData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.4.20 public String toString()

□ Returns the string representation of this keypad data.

Returns The string representation of this keypad data.

142.5.5 public class LevelData
extends FunctionData
Function level data wrapper. It supports all properties defined in FunctionData .

See Also MultiLevelControl, MultiLevelSensor, Meter, FunctionData

142.5.5.1 public static final String FIELD_LEVEL = "level"

Represents the level field name. The field value is available with getLevel(). The field type is BigDec-
imal . The constant can be used as a key to LevelData(Map).

142.5.5.2 public static final String FIELD_UNIT = "unit"

Represents the unit field name. The field value is available with getUnit(). The field type is Str ing .
The constant can be used as a key to LevelData(Map).

142.5.5.3 public LevelData(Map fields)

fields Contains the new LevelData instance field values.

□ Constructs new LevelData instance with the specified field values. The map keys must match to the
field names. The map values will be assigned to the appropriate class fields. For example, the maps
can be: {"level"=BigDecimal(1)...}. That map will initialize the FIELD_LEVEL field with 1.

• FIELD_LEVEL - mandatory field. The value type must be BigDecimal .
• FIELD_UNIT - optional field. The value type must be Str ing .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the level is missing.

NullPointerException– If the fields map is nul l .

142.5.5.4 public LevelData(long timestamp,Map metadata,BigDecimal level,String unit)

timestamp The data timestamp optional field.

metadata The data metadata optional field.

level The level value mandatory field.

unit The data unit optional field.

□ Constructs new LevelData instance with the specified arguments.

Throws NullPointerException– If level is nul l .

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 600 OSGi Residential Release 6

142.5.5.5 public int compareTo(Object o)

o LevelData to be compared.

□ Compares this LevelData instance with the given argument. If the argument is not LevelData , it
throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, level, unit.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type LevelData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.5.6 public boolean equals(Object o)

o The object to compare this data.

□ Two LevelData instances are equal if they contain equal metadata, timestamp, unit and level.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.5.7 public BigDecimal getLevel()

□ Returns LevelData value. The value type is BigDecimal instead of double to guarantee value accura-
cy.

Returns The LevelData value.

142.5.5.8 public String getUnit()

□ Returns LevelData unit as it's specified in PropertyMetadata.UNITS or nul l if the unit is missing.

Returns The value unit or nul l if the unit is missing.

142.5.5.9 public int hashCode()

□ Returns the hash code for this LevelData object. The hash code is a sum of FunctionData.hashCode(),
String.hashCode() and BigDecimal.hashCode(), where String.hashCode() represents the unit hash
code and BigDecimal.hashCode() represents the level hash code.

Returns The hash code of this LevelData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.5.10 public String toString()

□ Returns the string representation of this level data.

Returns The string representation of this level data.

Network Interface Information Service Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 601

143 Network Interface Information
Service Specification

Version 1.0

143.1 Introduction
The Network Interface Information Service is a service that provides a standard way for bundles to
receive notification about changes in the network interface and IP address.

When the IP address has changed, bundles utilizing the IP address information need to de-
tect this change. When using the standard Java API, such as java.net.NetworkInterface and
java.net. InetAddress , calls to confirm the IP address at regular intervals are required. Since this is a
process common to all bundles that need to detect any change in IP address information, this speci-
fication defines a notification feature for all available network interfaces, including the IP address.
In addition, this specification defines an API that provides the function to obtain the network inter-
face information and the information about the IP address bound to a network interface.

The name of a network interface can be Operating System specific. In order for bundles to refer to
the network interface it is necessary to distinguish the network interface in a form that it is inde-
pendent of the Operating System.

This specification defines the NetworkAdapter Service and NetworkAddress Service. These services
provide information about the network interface and IP addresses.

143.1.1 Entities

• Network Interface - Available and activated network interfaces provided in the execution environ-
ment. In this specification, the unit of the network interface is the logical interface, not the phys-
ical interface.

• NetworkAdapter - The OSGi service that provides information related to the Network Interface.
This service provides function similar to java.net.NetworkInterface .

• NetworkAddress - The OSGi service that provides information of IP addresses available on the exe-
cution environment in which a Network Interface Information Service bundle is running.

• Network Interface Information Service bundle - The OSGi bundle that implements NetworkAdapter
and NetworkAddress services. Network Interface Information Service bundle registers Net-
workAdapter and NetworkAddress services with the Framework.

• Network Interface Type - An identifier of the network interface. It is independent of the operat-
ing system. The two type of identifier string is specified in this specification. This specification
allows that Network Interface type other than them can be defined by the platform provider in
each environment. This identifier is used by user bundle to specify the network interface to be
monitored.

• IPAddressVersion - An identifier indicating the IP address version. For example, IPv4, IPv6. This
identifier is defined in this specification. This identifier is used by a bundle to specify the net-
work interface to be monitored.

NetworkAdapter Service Network Interface Information Service Specification Version 1.0

Page 602 OSGi Residential Release 6

• IPAddressScope - An identifier indicating the scope of IP address. For example, GLOBAL, PRIVATE.
This identifier is defined in this specification. This identifier is used by a bundle to specify the
network interface to be monitored.

Figure 143.1 Network Interface Information Service Overview Diagram

A NetworkAddress
impl

A NetworkAdapter
impl

<<Interface>>
NetworkAddress

Network Interface Information Service bundle

1 0..n

a Network Interface
Information Service
user bundle Bundle using Network Interface

Information Service

<<Interface>>
NetworkAdapter

obtain the information of
Network Interface

obtain the information of
IP address

The NetworkAdapter service provides the network interface information for a logical interface. Net-
workAddress service provides the IP address information for an IP address. A NetworkAddress ser-
vice is associated with a NetworkAdapter service.

When network interface information is changed, the service properties of the corresponing Net-
workAdapter service and NetworkAddress service are changed. It is necessary for the bundle using
these services to track these services and be advised of changes in the network interface information
through Service Events.

143.2 NetworkAdapter Service
NetworkAdapter is an interface that provides information about a single network interface provided
by the execution environment. If multiple network interfaces are present, NetworkAdapter services
that correspond to each network interface must be registered. NetworkAdapter services must be reg-
istered with service properties as shown in the following table.

Table 143.1 Service properties of NetworkAdapter service

The key of service property Type Description
networkAdapter.type Str ing Required property. Network interface

type is set to a value.

Network Interface Information Service Specification Version 1.0 NetworkAdapter Service

OSGi Residential Release 6 Page 603

The key of service property Type Description
networkAdapter.hardwareAddress byte[] Required property. Hardware address

(MAC address) is set to a value. This prop-
erty can also be obtained from getHard-
wareAddress() .

networkAdapter.name Str ing Required property. Network interface
name is set to a value. This property can
also be obtained from getName() .

networkAdapter.displayName Str ing Required property. Network interface dis-
play name is set to a value. This proper-
ty can also be obtained from getDisplay-
Name() .

networkAdapter. isUp boolean Required property. The value is true when
a network interface is up and running,
otherwise it is false.

networkAdapter. isLoopback boolean Required property. The value is true when
a network interface is a loopback inter-
face, otherwise it is false.

networkAdapter. isPointToPoint boolean Required property. The value is true when
a network interface is a point to point in-
terface, otherwise it is false.

networkAdapter. isVirtual boolean Required property. The value is true when
a network interface is a virtual interface,
otherwise it is false.

networkAdapter.supportsMult icast boolean Required property. The value is true when
a network interface supports multicast-
ing, otherwise it is false.

networkAdapter.parent Str ing Required property. Service PID of the Net-
workAdapter service which is parent of
this NetworkAdapter is specified.

networkAdapter.subInterface Str ing[] Required property. Service PID of the Net-
workAdapter service which is subinter-
face of this NetworkAdapter is specified.

When a network interface becomes available, a NetworkAdapter service associated with the net-
work interface is registered with the service registry. If the network interface becomes unavailable,
the corresponding NetworkAdapter service is unregistered.

When the attribute values of the network interface change, the NetworkAdapter service is updat-
ed with changed service properties. NetworkAdapter interface provides a method corresponding to
java.net.NetworkInterface in order to provide information on the associated network interface.

143.2.1 Network Interface Type
Identifying the network interface is possible by using the network interface name. However, since
the network interface name is an identifier that is dependent on the operating system, if network
interface name is used as identifier, bundles must be implemented to be aware of the operating sys-
tem. Therefore, in this specification, "network interface type” which is independent of the operat-
ing system, is used to identify the network interface. The network interface type string of "LAN" and
"WAN" are defined in this specification. This specification allows that Network Interface type other
than "LAN"and "WAN" can be defined by the platform provider in each environment. It is provided
by the platform provider on which Network Interface Information Service bundle is running. Net-
work Interface type "LAN"indicates the network interface connects to a local area network. Network
Interface type "WAN" indicates the network interface connects to an external network (i.e. Internet).

NetworkAddress Service Network Interface Information Service Specification Version 1.0

Page 604 OSGi Residential Release 6

If a bundle wants to obtain the information of the network interface connected to the Internet, the
bundle is able to get it by obtaining NetworkAdapter service with the networkAdapter.type service
property set to the value "WAN".

This specification allows that Network Interface type other than "LAN"and "WAN" can be defined
by the platform provider in each environment. It may be provided by the platform provider on
which Network Interface Information Service bundle is running.

Table 143.2 Network Interface Type

Network Interface Type Description
LAN The network interface to connect to a local area net-

work.
WAN The network interface to connect to an external net-

work (i .e . Internet) .

143.3 NetworkAddress Service
NetworkAddress interface provides information about an IP address available in the execution en-
vironment in which the a Network Interface Information Service bundle is running. NetworkAd-
dress service is registered with the service registry together with service properties as shown in the
following table.

Table 143.3 Service properties of NetworkAddress service

The key of service property Type Description
networkAdapter.type Str ing Required property. Network interface

type is set to a value.
ipAddress.version Str ing Required property. IP address version is

set to a value.
ipAddress.scope Str ing Required property. IP address scope is set

to a value.
ipAddress Str ing Required property. IP address String is set

to a value.
subnetmask. length int Required property. Subnet mask length of

the required properties IPv4, or IPv6 pre-
fix length is set to a value.

networkAdapter.pid Str ing Required property. Service PID of the Net-
workAdapterService corresponding to
the network interface binding this IP ad-
dress is set to a value.

A NetworkAddress service is registered with the service registry for each available IP address. When
an associated IP address is deleted, or the network interface to which the IP address is bound be-
comes unavailable, the NetworkAddress service is unregistered. When the associated IP address
changes, the NetworkAddress service is updated with updated service properties. A bundle can de-
tect the change of IP address by monitoring the registration or unregistering, updating of the Net-
workAddress service. When registering a NetworkAdapter service, the Network Interface Informa-
tion Service bundle must register it with a unique service PID. Because IP addresses are bound to a
network interface, the service PID of the associated NetworkAdapter service and its network inter-
face type are set in the service properties of the NetworkAddress service.

143.3.1 IP Address Version
Defines the version of the IP address. A bundle can select NetworkAddress services using the follow-
ing IP address version.

Network Interface Information Service Specification Version 1.0 A Controller Example

OSGi Residential Release 6 Page 605

Table 143.4 IP Address Version

IP Address Version Description
IPV4 IP address version which means IPv4 address.
IPV6 IP address version which means IPv6 address.

143.3.2 IP address scope
Defins the scope of the IP address. A bundle can select NetworkAddress services using the following
IP address scope.

Table 143.5 IP Address Scope

IP Address Scope Description
GLOBAL IP address scope which means global address.
PRIVATE_USE IP address scope which means pr ivate address.
LOOPBACK IP address scope which means loopback address.
L INKLOCAL IP address scope which means l ink local address.
UNIQUE_LOCAL IP address scope which means unique-localaddress.
UNSPECIFIED IP address scope which means the absence of an ad-

dress.

If a bundle which wants to check for an IP address of the IPv4 global, the bundle is able to confirm
by obtaining NetworkAddress service with the ipAddress.version service property set to the value
"IPV4" and the ipAddress.scope service property set to the value "GLOBAL".

143.4 A Controller Example
The following example shows the usage of NetworkAddress service. The sample Control ler class ex-
tends the ServiceTracker class so that it can track NetworkAddress services.

class Controller extends ServiceTracker {
 Controller(BundleContext context) {
 super(context, NetworkAdapter.class.getName(), null);
 }

 public Object addingService(ServiceReference ref) {
 NetworkAdapter addAdapter = (NetworkAdapter)super.addingService(ref);
 String type = addAdapter.getNetworkAdapterType();
 String displayName = addAdapter.getDisplayName();

 // ...

 String servicePID = (String)ref.getProperty(Constants.SERVICE_PID);
 try {
 String filter
 = "(" + NetworkAddress.NETWORKADAPTER_PID + "=" + servicePID + ")";
 ServiceReference[] refs
 = context.getServiceReferences(NetworkAddress.class.getName(), filter);
 for (int i = 0; i < refs.length; i++) {
 NetworkAddress address = (NetworkAddress) context.getService(refs[i]);
 String ipAddress = address.getIpAddress();
 int subnetMaskLength = address.getSubnetMaskLength();
 // ...

Security Network Interface Information Service Specification Version 1.0

Page 606 OSGi Residential Release 6

 }
 } catch (InvalidSyntaxException e) {
 e.printStackTrace();
 }
 return addAdapter;
 }
}

143.5 Security
To acquire network interface information, a bundle needs ServicePermission[NetworkAdapter,
GET] and ServicePermission[NetworkAddress, GET] . It can use Filter Based Permissions. When a
platform provider performs access control of the bundle, It can set ServicePermission like the fol-
lowing example.

ServicePermission["(&(objectClass=org.osgi .service.networkadapter.NetworkAdapter)
(networkAdapter.type=LAN))",GET]

ServicePermission["(&(objectClass=org.osgi .service.networkadapter.NetworkAddress)
(networkAdapter.type=LAN) (ipAddress.version=IPV4)(ipAddress.scope=PRIVATE_USE))", GET]

The NetworkAdapter service and the NetworkAddress service should only be implemented
by trusted bundles. This bundle requires ServicePermission[NetworkAdapter, REGISTER] and
ServicePermission[NetworkAddress, REGISTER] .

143.6 org.osgi.service.networkadapter

Network Interface Information Service Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.networkadapter; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.networkadapter; vers ion="[1.0,1.1)"

143.6.1 Summary

• NetworkAdapter - NetworkAdapter is an interface that provides information about single net-
work interfaces provided by the execution environment.

• NetworkAddress - This interface represents an IP address information.

143.6.2 public interface NetworkAdapter
NetworkAdapter is an interface that provides information about single network interfaces provided
by the execution environment.

If multiple network interfaces are present, NetworkAdapter Services that correspond to each net-
work interface must be registered. Network interface information service is set the following infor-
mation as service property.

• NETWORKADAPTER_TYPE : Network Interface Type

Network Interface Information Service Specification Version 1.0 org.osgi.service.networkadapter

OSGi Residential Release 6 Page 607

• NETWORKADAPTER_DISPLAYNAME : Network Interface Display Name
• NETWORKADAPTER_NAME : Network Interface Name
• NETWORKADAPTER_HARDWAREADDRESS : Hardware Address
• NETWORKADAPTER_IS_UP : Running status of Network Interface
• NETWORKADAPTER_IS_LOOPBACK : To check loopback interface
• NETWORKADAPTER_IS_POINTTOPOINT : To check point to point interface
• NETWORKADAPTER_IS_VIRTUAL : To check virtual interface
• NETWORKADAPTER_SUPPORTS_MULTICAST : To check supports multicasting
• NETWORKADAPTER_PARENT : The PID of parent Network Interface
• NETWORKADAPTER_SUBINTERFACE : The PID of sub Network Interface

When a network interface becomes available, NetworkAdapter service associated with the network
interface is registered with the service registry. If the network interface becomes unavailable, the
corresponding NetworkAdapter service is unregistered.

When the attribute values of the network interface are set to the service property changes, Net-
workAdapter service is updated. NetworkAdapter interface provides a method corresponding to
java.net.NetworkInterface in order to provide information on the associated network interface.
However, this interface method does not support the Static method. In addition, because Net-
workInterface object or InetAddress object is registered in the service registry as NetworkAdapter
and NetworkAddress, the NetworkAdapter interface does not provide a method to get those objects.
NetworkAdapter provides a method to retrieve the value of an attribute of a network interface.

Concurrency Thread-safe

143.6.2.1 public static final byte[] EMPTY_BYTE_ARRAY

The value byte array of service property, when information is not available.

143.6.2.2 public static final String EMPTY_STRING = ""

The value string of service property, when information is not available.

143.6.2.3 public static final String[] EMPTY_STRING_ARRAY

The value string array of service property, when information is not available.

143.6.2.4 public static final String LAN = "LAN"

The string of network interface type which means the network interface to connect to a local area
network.

143.6.2.5 public static final String NETWORKADAPTER_DISPLAYNAME = "networkAdapter.displayName"

The key string of "networkAdapter.displayName" service property.

Network Interface display name is specified. EMPTY_STRING if no display name is available.

143.6.2.6 public static final String NETWORKADAPTER_HARDWAREADDRESS = "networkAdapter.hardwareAddress"

The key string of "networkAdapter.hardwareAddress" service property.

Hardware Address is specified. EMPTY_BYTE_ARRAY if no hardware address is available.

143.6.2.7 public static final String NETWORKADAPTER_IS_LOOPBACK = "networkAdapter.isLoopback"

The key string of "networkAdapter.isLoopback" service property.

The value is true when a network interface is a loopback interface, otherwise it is false.

143.6.2.8 public static final String NETWORKADAPTER_IS_POINTTOPOINT = "networkAdapter.isPointToPoint"

The key string of "networkAdapter.isPointToPoint" service property.

org.osgi.service.networkadapter Network Interface Information Service Specification Version 1.0

Page 608 OSGi Residential Release 6

The value is true when a network interface is a point to point interface, otherwise it is false.

143.6.2.9 public static final String NETWORKADAPTER_IS_UP = "networkAdapter.isUp"

The key string of "networkAdapter.isUp" service property.

The value is true when a network interface is up and running, otherwise it is false.

143.6.2.10 public static final String NETWORKADAPTER_IS_VIRTUAL = "networkAdapter.isVirtual"

The key string of "networkAdapter.isVirtual" service property.

The value is true when a network interface is a virtual interface, otherwise it is false.

143.6.2.11 public static final String NETWORKADAPTER_NAME = "networkAdapter.name"

The key string of "networkAdapter.name" service property.

Network Interface Name is specified. EMPTY_STRING if no name is available.

143.6.2.12 public static final String NETWORKADAPTER_PARENT = "networkAdapter.parent"

The key string of "networkAdapter.parent" service property.

Service PID of the NetworkAdapter service which is parent of this NetworkAdapter is specified.
EMPTY_STRING if no parent is available.

143.6.2.13 public static final String NETWORKADAPTER_SUBINTERFACE = "networkAdapter.subInterface"

The key string of "networkAdapter.subInterface" service property.

Service PID of the NetworkAdapter service which is subinterface of this NetworkAdapter is speci-
fied. EMPTY_STRING_ARRAY if no subinterface is available.

143.6.2.14 public static final String NETWORKADAPTER_SUPPORTS_MULTICAST =
"networkAdapter.supportsMulticast"

The key string of "networkAdapter.supportsMulticast" service property.

The value is true when a network interface supports multicasting, otherwise it is false.

143.6.2.15 public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"

The key string of "networkAdapter.type" service property.

Network Interface Type is specified.

143.6.2.16 public static final String WAN = "WAN"

The string of network interface type which means the network interface to connect to an external
network (i.e. Internet).

143.6.2.17 public String getDisplayName()

□ Returns the network interface display name of "networkAdapter.displayname" service property val-
ue.

Returns Network Interface display name, or null if "networkAdapter.displayname" service property value is
empty.

143.6.2.18 public byte[] getHardwareAddress()

□ Returns the MAC address of "networkAdapter.hardwareAddress" service property value.

Returns Hardware Address, or null if "networkAdapter.hardwareAddress" service property value is empty.

143.6.2.19 public int getMTU() throws SocketException

□ Returns the Maximum Transmission Unit (MTU) of this interface.

Network Interface Information Service Specification Version 1.0 org.osgi.service.networkadapter

OSGi Residential Release 6 Page 609

Returns The value of the MTU for that interface.

Throws SocketException– If an I/O error occurs.

143.6.2.20 public String getName()

□ Returns the network interface name of "networkAdapter.name" service property value.

Returns Network Interface Name, or null if "networkAdapter.name" service property value is empty.

143.6.2.21 public String getNetworkAdapterType()

□ Returns the network interface type of "networkAdapter.type" service property value.

Returns Network Interface Type, or null if "networkAdapter.type" service property value is empty.

143.6.2.22 public boolean isLoopback() throws SocketException

□ Returns whether a network interface is a loopback interface.

Returns true if the interface is a loopback interface.

Throws SocketException– If an I/O error occurs.

143.6.2.23 public boolean isPointToPoint() throws SocketException

□ Returns whether a network interface is a point to point interface.

Returns true if the interface is a point to point interface.

Throws SocketException– If an I/O error occurs.

143.6.2.24 public boolean isUp() throws SocketException

□ Returns whether a network interface is up and running.

Returns true if the interface is up and running.

Throws SocketException– If an I/O error occurs.

143.6.2.25 public boolean isVirtual()

□ Returns whether this interface is a virtual interface (also called subinterface). Virtual interfaces are,
on some systems, interfaces created as a child of a physical interface and given different settings
(like address or MTU). Usually the name of the interface will the name of the parent followed by a
colon (:) and a number identifying the child since there can be several virtual interfaces attached to
a single physical interface.

Returns true if this interface is a virtual interface.

143.6.2.26 public boolean supportsMulticast() throws SocketException

□ Returns whether a network interface supports multicasting or not.

Returns true if the interface supports Multicasting.

Throws SocketException– If an I/O error occurs.

143.6.3 public interface NetworkAddress
This interface represents an IP address information.

NetworkAddress interface provides information of IP addresses available in which execution envi-
ronment on a Network Interface Information Service bundle is running. IP address information ser-
vice is set the following information as service property.

• NETWORKADAPTER_TYPE : Network Interface Type
• IPADDRESS_VERSION : IP Address Version

org.osgi.service.networkadapter Network Interface Information Service Specification Version 1.0

Page 610 OSGi Residential Release 6

• IPADDRESS_SCOPE : IP Address Scope
• IPADDRESS : IP Address
• SUBNETMASK_LENGTH : Subnet Mask Length(IPv4) or Prefix Length(IPv6)
• NETWORKADAPTER_PID : Service PID of the NetworkAdapter service to which this service be-

longs

NetworkAddress service is registered with the service registry for each available IP address. When
associated IP addresses are deleted, or the network interface to which the IP address is bound be-
comes unavailable, the NetworkAddress service is unregistered. When the associated IP address
changes, NetworkAddress service is updated. The user bundle can detect the change of IP address
by monitoring the registration or unregistering, updating of NetworkAddress service. Because IP ad-
dresses are bound to the network interface, if any, Service PID of the associated NetworkAdapter ser-
vice and its network interface type are set to service property. NetworkAdapter service MUST be reg-
istered after the all associated NetworkAddress services are registered. On the other hand, when un-
registering services, after associated NetworkAdapter service is unregistered, NetworkAddress of all
related services are unregistered.

Concurrency Thread-safe

143.6.3.1 public static final Integer EMPTY_INTEGER

The value integer of service property, when information is not available.

143.6.3.2 public static final String IPADDRESS = "ipAddress"

The key string of "ipAddress" service property. IP Address is specified.

143.6.3.3 public static final String IPADDRESS_SCOPE = "ipAddress.scope"

The key string of "ipAddress.scope" service property. IP Address scope is specified.

143.6.3.4 public static final String IPADDRESS_SCOPE_GLOBAL = "GLOBAL"

The string of IP address scope which means global address.

The global address is defined as the address other than the address defined in the RFC6890.

143.6.3.5 public static final String IPADDRESS_SCOPE_HOST = "HOST"

The string of IP address scope which means "This host on this network".

See RFC6890 for the definition of "This host on this network".

143.6.3.6 public static final String IPADDRESS_SCOPE_LINKED_SCOPED_UNICAST = "LINKED_SCOPED_UNICAST"

The string of IP address scope which means "Linked-Scoped Unicast".

See RFC6890 for the definition of "Linked-Scoped Unicast".

143.6.3.7 public static final String IPADDRESS_SCOPE_LINKLOCAL = "LINKLOCAL"

The string of IP address scope which means "Link Local".

See RFC6890 for the definition of "Link Local".

143.6.3.8 public static final String IPADDRESS_SCOPE_LOOPBACK = "LOOPBACK"

The string of IP address scope which means "Loopback".

See RFC6890 for the definition of "Loopback".

143.6.3.9 public static final String IPADDRESS_SCOPE_PRIVATE_USE = "PRIVATE_USE"

The string of IP address scope which means "Private-Use Networks".

Network Interface Information Service Specification Version 1.0 org.osgi.service.networkadapter

OSGi Residential Release 6 Page 611

See RFC6890 for the definition of "Private-Use Networks".

143.6.3.10 public static final String IPADDRESS_SCOPE_SHARED = "SHARED"

The string of IP address scope which means "Shared Address Space".

See RFC6890 for the definition of "Shared Address Space".

143.6.3.11 public static final String IPADDRESS_SCOPE_UNIQUE_LOCAL = "UNIQUE_LOCAL"

The string of IP address scope which means "Unique-Local".

See RFC6890 for the definition of "Unique-Local".

143.6.3.12 public static final String IPADDRESS_SCOPE_UNSPECIFIED = "UNSPECIFIED"

The string of IP address scope which means "Unspecified Address".

See RFC6890 for the definition of "Unspecified Address".

143.6.3.13 public static final String IPADDRESS_VERSION = "ipAddress.version"

The key string of "ipAddress.version" service property. IP Address version is specified.

143.6.3.14 public static final String IPADDRESS_VERSION_4 = "IPV4"

The string of IP address version which means IP address version 4.

143.6.3.15 public static final String IPADDRESS_VERSION_6 = "IPV6"

The string of IP address version which means IP address version 6.

143.6.3.16 public static final String NETWORKADAPTER_PID = "networkAdapter.pid"

The key string of "networkAdapter.pid" service property.

Service PID of the interface information service to which it belongs is specified.

143.6.3.17 public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"

The key string of "networkAdapter.type" service property. Network Interface Type is specified.

143.6.3.18 public static final String SUBNETMASK_LENGTH = "subnetmask.length"

The key string of "subnetmask.length" service property.

Subnet Mask Length(IPv4) or Prefix Length(IPv6) is specified. EMPTY_INTEGER if no length is avail-
able.

143.6.3.19 public InetAddress getInetAddress()

□ Returns the InetAddress object of this IP address.

Returned object is created from "ipaddress" service property value.

Returns InetAddress, or null if "ipaddress" service property value is empty.

143.6.3.20 public String getIpAddress()

□ Returns the IP address of "ipaddress" service property value.

Returns IP Address string, or null if "ipaddress" service property value is empty.

143.6.3.21 public String getIpAddressScope()

□ Returns the IP address scope of "ipaddress.scope" service property value.

Returns IP Address Scope, or null if "ipaddress.scope" service property value is empty.

References Network Interface Information Service Specification Version 1.0

Page 612 OSGi Residential Release 6

143.6.3.22 public String getIpAddressVersion()

□ Returns the IP address version of "ipaddress.version" service property value.

Returns IP Address Version, or null if "ipaddress.version" service property value is empty.

143.6.3.23 public String getNetworkAdapterPid()

□ Returns the "networkadapter.pid" service property value.

Returns Service ID of the interface information service to which it belongs, or null if "networkadapter.pid"
service property value is empty.

143.6.3.24 public String getNetworkAdapterType()

□ Returns the network interface type of "networkAdapter.type" service property value.

Returns Network Interface Type, or null if "networkAdapter.type" service property value is empty.

143.6.3.25 public int getSubnetMaskLength()

□ Returns the "subnetmask.length" service property value.

Returns Subnet Mask Length(IPv4) or Prefix Length(IPv6), or -1 if "subnetmask.length" service property val-
ue is empty.

143.7 References

[1] RFC 6890 : Special-Purpose IP Address Registries
http://www.ietf.org/rfc/rfc6890.txt, April 2013

Resource Monitoring Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 613

144 Resource Monitoring Specification

Version 1.0

144.1 Introduction
Applications, executed on an OSGi platform, need hardware resources (CPU, memory, disk, storage
space) and software resources (sockets, threads). As these resources are limited, applications have to
share them in order to preserve system quality of service. This is a general fact in OSGi business cas-
es where multiple bundles share the OSGi framework. This is especially the case when the frame-
work is shared by distinct tenants, which are responsible for distinct set of bundles running with
their own business logic and lifecycle.

The chapter defines an API for applications to monitor hardware resources consumed by any set of
bundles. The bundle is the smallest unit that can be considered as a resource context, the entity that
is monitored. Monitored data may enable applications to take decisions on management actions to
apply. Resource management actions are mentioned as examples in this chapter, for example, ac-
tions on the lifecycle of components, bundles, the framework and the JVM, Java threads, raise of ex-
ceptions.

144.2 Essentials
• Monitoring - Bundle execution resource usage is monitored.
• Granular activation - The resource monitoring service can be activated and deactivated per bundle

or per bundle set.
• Extensibility - Five resource types are specified (CPU, memory, disk storage, alive thread and in-use

sockets). The list of monitored resource types is extensible and query-able.
• Eventing - The resource monitoring service notifies interested entities of exceeded limits.

144.3 Entities
• Resource Context - A logical entity for resource accounting. A context may be related to a single

bundle or a set of bundles.
• System Resource Context - Resource context of the core framework.
• Platform Resource Context - A Resource context monitoring the resource usage of the platform as a

whole.
• Resource Monitor - Monitors the usage of a specific resource type for a specific Resource Context.

Resource Monitors track resource usage. They hold Resource Thresholds instances. Resource
Monitor object implementation may depend on standard or proprietary JVM APIs, and on oper-
ating system features.

• Resource Monitor Factory - A factory creating Resource Monitor instances for every Resource Con-
text.

• CPU Monitor - Resource Monitor used to monitor CPU.
• Memory Monitor - Resource Monitor used to monitor memory.

Operation Summary Resource Monitoring Specification Version 1.0

Page 614 OSGi Residential Release 6

• Socket Monitor - Resource Monitor used to monitor socket resource.
• Disk Storage Monitor - Resource Monitor for disk storage usage.
• Thread Monitor - Resource Monitor used to monitor alive Java Thread objects.
• Resource Listener - A Resource Listener receives resource threshold notifications.
• Resource Event - A Resource Event defines a notification to be synchronously sent to Resource Lis-

tener instances.
• Resource Context Listener - A Resource Context Listener receives notifications about resource con-

text creation and configuration.
• Resource Context Event - A Resource Context Event defines a notification to be sent to Resource

Context Listeners instances.
• Resource Monitoring Service - This is a singleton entity which manages Resource Context in-

stances. It is used to create new Resource Context instances and to enumerate existing contexts.
• Resource Monitoring Client - Makes any decision to ensure the quality of the service of the system.

They use the Resource Monitoring Service to create Resource Context instances. It configures
them by adding bundles and Resource Monitors.

Figure 144.1 Resource monitoring class diagram specification.

<<Interface>>
CPUMonitor

<<Interface>>
DiskStorage
Monitor

A ResourceMonitor
implementer

A ResourceMonitorFactory
implementer

Bundle

A ResourceMonitoring
Service implementer

<<Interface>>
ResourceMonitoring
Service

A ResourceContext
Listener

Resource Monitoring
Client

<<Interface>>
ResourceMonitorFactory

<<Interface>>
ResourceMonitor

<<Interface>>
ResourceContext

uses

[Object]

<<Interface>>
ResourceContext
Listener

uses
0..1

is not if ied byResourceContextEvent

0..*

creates, retrieves
1

creates

1

monitors resource usage, and thresholds
1

not if ies ResourceEvent

[Object]

<<Interface>>
ResourceListener

A ResourceListener

<<Interface>>
MemoryMonitor

<<Interface>>
SocketMonitor

0..*

0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

has

1

0..*
creates

ThreadMonitor
<<Interface>>

144.4 Operation Summary
Resource Monitoring Clients use the Resource Monitoring Service service to create Resource Con-
texts. These clients set bundles or group of bundles to Resource Contexts. They also request every
Resource Monitor Factory to create Resource Monitors for a resource type. These Resource Monitors
are associated to a single Resource Context.

When activated, Resource Monitors provide the current resource usage per Resource Context. Then,
they check whether the current resource usage is compatible with the thresholds held by their as-
sociated Resource Listeners. When one of these thresholds is violated, the related Resource Monitor
notifies the Resource Listener holding this threshold.

Resource Monitoring Specification Version 1.0 Resource Context

OSGi Residential Release 6 Page 615

The Resource Monitoring Service manages the set of Resource Contexts. Resource Contexts are per-
sistent between platform restarts. Resource Context Listeners are notified when a Resource Context
is created or deleted or when a Resource Context configuration (that is, adding or removing of bun-
dle) is updated.

144.5 Resource Context
A ResourceContext instance is a logical entity used to account resource usage. Every Resource Con-
text defines a bundle scope which can be either a single bundle or a set of bundles. Once the bundle
scope is defined, resources used by those bundles are monitored through a set of per-resource-type
Resource Monitor instances.

Resource Context instances are persistent. The persistence of those instances is directly managed by
the Resource Monitoring Service instance.

Each Resource Context is uniquely identified by a name. It can be retrieved through the getName()
method. It can not be changed, that is it is definitively set when the Resource Context instance is
created.

The Resource Context bundle scope is retrieved through the getBundleIds() method. This bundle
scope can be extended through the addBundle(long) method. Bundles can also be removed from a
Resource Context through the removeBundle(long,ResourceContext) method. For this last method,
a Resource Context instance MAY be specified in order to associate the removed bundle to another
Resource Context instance.

Resource Monitor instances are retrieved through getMonitor(Str ing) method or the getMonitors()
method. The list of available resource types is retrieved through the Resource Monitoring Service
singleton instance.

Resource Monitor instances are added to and removed from a Resource Context
instance by calling either addResourceMonitor(ResourceMonitor) method or
removeResourceMonitor(ResourceMonitor) method. Both methods SHOULD only be called by Re-
sourceMonitorFactory instances (see createResourceMonitor(ResourceContext) method).

A Resource Context is retrieved through the Resource Monitoring Service service.

A Resource Context instance can be deleted through removeContext(ResourceContext) method.
The Resource Context input argument then defines a destination Resource Context instance for the
bundles belonging to the to-be-removed Resource Context instance.

144.6 System Resource Context
The System Resource Context is the Resource Context of the execution environment for the running
OSGi bundles. It includes the resources of bundle "0". It is retrieved through the Resource Monitor-
ing Service service.

The name of this context is “system”. See SYSTEM_CONTEXT_NAME .

144.7 Framework Resource Context
The Framework Resource Context is a Resource Context monitoring resources of the platform as a
whole. It is retrieved through the Resource Monitoring Service service. This Resource Context holds
all hosted bundles allowing access to the whole platform resource consumption.

The name of this context is “framework”. See FRAMEWORK_CONTEXT_NAME .

Resource Monitor Resource Monitoring Specification Version 1.0

Page 616 OSGi Residential Release 6

144.8 Resource Monitor
A ResourceMonitor instance monitors a resource type consumed by the bundles of a specific Re-
source Context instance.

A Resource Context instance holds at most one Resource Monitor instance per monitor-able re-
source type. Resource Monitor instances are retrieved through their related Resource Context in-
stance. Resource Monitor instances give access to their related Resource Context instance through a
call to See getContext() method.

The monitored resource type is retrieved through the getResourceType() method.

The current usage of a resource consumed by a Resource Context instance is given through the ge-
tUsage() method. This method returns a Java Object to be casted to the appropriate Java object type
depending on the Resource type. The next table provides the expected Java Object type for each
specified resource type:

Table 144.1 Table of resource types.

Type of Resource Expected Java Object type Value description
CPU Long Cumulative CPU time in ns.
Memory Long Allocated memory in bytes.
Threads Long Number of alive thread.
Socket Long Number of in-use socket.
Disk storage space Long Bytes on the bundle persistent

storage area.

For example, for a MemoryMonitor instance, a call to getUsage() returns a Long java object indicat-
ing the amount of memory the related Resource Context instance is consuming.

A Resource Monitor instance is enabled and disabled through enable() and disable() methods. The
state (enabled or disabled) of a Resource Monitor is retrieved through a call to isEnabled() method.
Enable and disable monitoring mechanisms on-the-fly on localized set of bundles may be crucial for
performance issues. See [1] Adaptive Monitoring of End-user OSGi based Home Boxes.

A Resource Monitor instance can also be deleted (delete() method). isDeleted() method returns true
if the ResourceMonitor instance has been deleted.

Five types of Resource Monitor are specified:

• CPU Monitor
• Memory Monitor
• Socket Monitor
• Disk Storage Monitor
• Thread Monitor

The support of any Resource Monitor is optional. This list MAY be extended by the solution ven-
dor. The list of the types that are supported on the OSGi platform can be computed by querying Re-
sourceMonitorFactory services. Resource monitoring algorithms may vary with factories, see [2]
Memory Monitoring in a Multi-tenant OSGi Execution Environment. They are out of the scope of this
specification.

144.9 Resource Monitor Factory
A ResourceMonitorFactory is a service that provides Resource Monitor instances of a specific re-
source type (for example, CPUMonitor , MemoryMonitor , etc.) for every Resource Context.

Resource Monitoring Specification Version 1.0 CPU Monitor

OSGi Residential Release 6 Page 617

Every Resource Monitor Factory service is registered with the
org.osgi . resourcemonitor ing.ResourceType mandatory property, see RESOURCE_TYPE_PROPERTY .
This property indicates which type of Resource Monitor a Resource Monitor Factory is able to create.
The type can also be retrieved through a call to getType() . The type MUST be unique (two Resource
Monitor Factory services MUST not have the same type).

New Resource Monitor instances are created by a call to createResourceMonitor(ResourceContext) .
This method returns a new Resource Monitor instance associated to the provided Resource Context
instance. The ResourceMonitorFactory MUST call addResourceMonitor(ResourceMonitor) to asso-
ciate the newly created ResourceMonitor with the provided ResourceContext instance. The newly
created Resource Monitor is disabled, that is, it is initially not monitoring the Resource Context re-
source consumption. It can be activated through a call to enable() .

Resource Monitor instances are deleted by calling delete() method.

A Resource Monitor instance MUST only be created through its ResourceMonitorFactory .

Resource Monitor Factory instances should be only used by the Resource Monitoring Service single-
ton instance. The Resource Monitoring Service singleton instance performs a service lookup on all
existing Resource Monitor Factories. It uses a Resource Monitor Factory instance when it has to cre-
ate a new Resource Context instance and their associated Resource Monitor instances.

144.10 CPU Monitor
A CPUMonitor instance is a Resource Monitor used to monitor the CPU usage of the bundles belong-
ing to a Resource Context.

CPU usage and thresholds are expressed as a cumulative number of nanoseconds (long). The encap-
sulated value can be retrieved with the getCPUUsage() method.

In case where a threshold is reached, the CPU Monitor instance generates an event triggering Re-
source Monitoring Clients defined corrective actions (for example, decrease thread priority).

144.11 Memory Monitor
A MemoryMonitor instance monitors and limits the memory used by the bundles of a Resource
Context instance.

Memory is accounted as bytes. Memory usage and thresholds are long java objects. The encapsulat-
ed value can be retrieved through the getMemoryUsage() method.

When an error threshold is reached, the next memory allocation MAY be prevented by the system
and MAY throw a specific Exception in the associated context.

144.12 Socket Monitor
A SocketMonitor instance monitors and limits the number of existing sockets (for example, TCP,
UDP) which are considered to be in use (for example, listening for incoming packet, bound, or send-
ing outgoing packets).

A Socket is considered to be in-use state when a native socket file descriptor is created. It leaves this
state when this socket file descriptor is deleted.

The number of in-use sockets is a long. The encapsulated value can be retrieved using getSocke-
tUsage() method.

Disk Storage Monitor Resource Monitoring Specification Version 1.0

Page 618 OSGi Residential Release 6

When an ERROR threshold is reached, the next socket file descriptor creation in the associated con-
text MAY throw a SocketException.

144.13 Disk Storage Monitor
A DiskStorageMonitor instance monitors and limits the use of persistent storage within Bundle Per-
sistent Storage Area a Resource Context (the bundles actually belonging to it) consumes.

Disk Storage is expressed as a number of bytes of type long. The encapsulated value can be retrieved
using getUsedDiskStorage() method.

An IOException MAY be thrown in the associated context when an ERROR threshold is reached.

144.14 Thread Monitor
A ThreadMonitor instance monitors and limits the number of alive Java Thread objects for a Re-
source Context instance. A Thread is considered to be alive when it is in the RUNNABLE , BLOCKED ,
WAITING or TIMED_WAITING thread state.

Usage and thresholds are Java int objects. The encapsulated value can be retrieved using getAl-
iveThreads() method.

When an ERROR threshold is reached, any further thread activation will be prevented in the associ-
ated context. An InternalError exception MAY also be thrown in the associated context.

144.15 Resource Listener
A ResourceListener receives notifications about resource usage for a specific Resource Context and
a specific type of resource. A notification will be sent to a Resource Listener when one of its thresh-
olds is violated.

A Resource Listener holds two types of threshold:

• A lower threshold type. This kind of threshold is reached when the monitored resource usage de-
creases below the threshold.

• An upper threshold type. An upper threshold is reached when the monitored resource usage ex-
ceeds this threshold.

Each of them have two levels:

• a WARNING level.
• an ERROR level.

A threshold has the following state diagram, which transitions are associated to events:

Resource Monitoring Specification Version 1.0 Resource Listener

OSGi Residential Release 6 Page 619

Figure 144.2 Threshold state diagram.

Normal Warning Error

when warning
threshold is reached.

when error threshold
is reached

back to normal back to warning

when error threshold
is directly reached

back to normal

A threshold state depends on the current consumption of resource and the type of threshold (upper
or lower threshold).

A Resource Listener is registered as an OSGi service. The implementer must provide the two follow-
ing mandatory properties:

• RESOURCE_CONTEXT property – a String defining the name of Resource Context for which the
Listener want to receive threshold notifications.

• RESOURCE_TYPE property – a String defining which type of resource the listener wants to moni-
tor.

It also has to provide at least one of these four properties when registered as an OSGi service:

• UPPER_WARNING_THRESHOLD
• UPPER_ERROR_THRESHOLD
• LOWER_WARNING_THRESHOLD
• LOWER_ERROR_THRESHOLD

These properties are mapped to the four types of threshold values a Resource Listener may support.
The service properties are used to notify the associated Resource Monitor when one of these thresh-
old values is modified.

Threshold values can also be retrieved through a set of getter methods. All of these methods returns
a Comparable object used by the associated Resource Monitor in order to determine the current
state of the current usage.

RESOURCE_CONTEXT and RESOURCE_TYPE properties are used by Resource Monitors to identify
their associated Resource Listeners. Once associated, a Resource Monitor retrieves the threshold set-
tings using service properties. When one of its thresholds is reached, the Resource Monitor calls
notify(ResourceEvent) .

Resource Listener Resource Monitoring Specification Version 1.0

Page 620 OSGi Residential Release 6

Two examples of resource consumption are explained below, first with in-use sockets monitoring,
second with CPU monitoring. The next picture shows the state diagram of the number of in-use
state socket over the time.

Figure 144.3 Number of in-use sockets over the time.

Upper Threshold

Lower Threshold

: Error threshold

: Warning threshold

NORMAL

WARNING

ERROR

WARNING

ERROR

State :

Time

Number of in-use sockets

0

5

10

100

1000

: Events are emitted

In our example, the lower warning threshold and the lower error threshold of the Resource Listen-
er are respectively set to 10 and 5. When the number of in-use sockets decreases under 10, the usage
goes from the NORMAL state to the WARNING state and the Resource Listener receives a WARNING
event. If the number of in-use state sockets decreases again and goes down to 5, the usage goes from
the WARNING state to the ERROR state and the Resource Listener receives a ERROR Resource Event.

The upper threshold is also set. The upper warning threshold and the upper error threshold are
respectively set to 100 and 1000 in-use state sockets. When the number of sockets reaches 100,
the usage goes from the NORMAL state to the WARNING state and the Resource Listener receives a
WARNING Resource Event. If this number is still increasing and exceeds 1000, then the usage goes
from the WARNING state to the ERROR state and the Resource Listener receives an ERROR Resource
Event.

This is a typical use case for a Java Web server. Indeed, one of the most important quality of service
indicator is the number of in-use state sockets a java web server is handling. A low number of in-
use state sockets may indicate the java web server encounters network problems. On the contrary,
a high number of in-use state socket may be the result of an external network attack or it could also
indicates the java web server is overused and its administrator should take actions to load-balance
the charge to another java web server instance.

For other resource types, only upper thresholds may be useful. The next diagram shows the CPU
consumption a Resource Context is using over the time:

Resource Monitoring Specification Version 1.0 Resource Event

OSGi Residential Release 6 Page 621

Figure 144.4 CPU consumption (%) over the time – Upper Threshold.

: Error threshold
: Warning threshold

NORMAL

WARNING

ERROR

State :

time

CPU consumption (%)

0

25

50

75

100

An Authority takes action
in order to preserve
the QOS :
 here it stops the bundle.

: Events are emitted

In this example, only the upper threshold is set. The upper warning threshold is set to 50%, the er-
ror one is set to 75%. CPU consumption fluctuates between 0 and 50%, the usage is in the NOR-
MAL state. Then it increases and reaches 50%. The usage then goes from the NORMAL state to the
WARNING state and the Resource Listener holding the threshold receives a WARNING Resource
Event.

Afterwards, CPU consumption decreases under 50%; the usage goes from the WARNING state to the
NORMAL state. The related Resource listener receives a NORMAL Resource Event.

It then increases again and exceeds 50%. The usage goes to the WARNING state. CPU consumption is
still increasing and exceeds 75%. At this moment, the usage goes from the WARNING state to the ER-
ROR state and the related Resource Listener receives an ERROR Resource Event.

After some seconds in the ERROR state, the Resource Listener implementation stops the bundle in
order to preserve the quality of service.

The choice of the type of threshold (lower or upper, or both of them) depends on the type of re-
source and the needs of the Resource Monitoring Clients providing the Resource Listener. Other re-
sources like the free memory may take advantage of a lower threshold.

144.16 Resource Event
A ResourceEvent instance is an event synchronously sent to a Resource Listener when one
of its thresholds is reached. This event is notified to a Resource Listener through a call to
ResourceListener.notify(ResourceEvent).

A Resource Event has a type among the following ones:

• ERROR – The resource consumption reaches either the upper or the lower error threshold of the
Resource Listener receiving this event.

Resource Context Listener Resource Monitoring Specification Version 1.0

Page 622 OSGi Residential Release 6

• WARNING – The resource consumption reaches either the upper or the lower warning threshold
of the Resource Listener receiving this event.

• NORMAL – The resource consumption is back from warning or error state to normal state.

The Resource Listener instance analyzes this event by calling the following methods:

• getValue() method returns the resource consumption at the time when the Resource Event in-
stance was generated.

• isUpperThreshold() method returns true if the reached threshold is an upper threshold type. If
this method returns false, this is a lower threshold.

• getType() method indicates the state (WARNING, ERROR, or NORMAL) of the resource usage.
• getContext() method returns the Resource Context instance related to this event. The

Resource Listener can use it to retrieve the Resource Monitor instance. For example,
event.getContext() .getMonitor(event.getResourceType()) .

144.17 Resource Context Listener
A ResourceContextListener instance receives notifications about Resource Context lifecycle and
configuration.

A notification will be sent when:

• A Resource Context is created.
• A Resource Context is updated, that is, a bundle has been added or removed from a Resource Con-

text instance.
• A Resource Context is deleted.

An application which is interested in notifications has to register a Resource Context Listener in-
stance as an OSGi service. The application may provide a set of properties at registration time to re-
duce the number of notifications a Resource Listener instance will receive. The available property is:

• RESOURCE_CONTEXT property – An array of String defining the name of Resource Context in-
stances. If defined, a Resource Listener instance will only receive notifications related to these
specified Resource Context instances.

A Resource Context Listener instance is notified through a call to notify(ResourceContextEvent)
method.

144.18 Resource Context Event
A ResourceContextEvent instance is an event sent to Resource Context Listener instances through a
call to the notify(ResourceContextEvent) method.

A Resource Context Event has a type among the four following ones:

• RESOURCE_CONTEXT_CREATED – A new Resource Context instance has been created.
• RESOURCE_CONTEXT_REMOVED – A Resource Context instance has been deleted.
• BUNDLE_ADDED – A bundle has been added in the scope of a Resource Context instance.
• BUNDLE_REMOVED – A bundle has been removed from the scope of a Resource Context instance.

In the case of a RESOURCE_CONTEXT_CREATED event or a RESOURCE_CONTEXT_REMOVED event,
a call to getContext() returns the targeted Resource Context instance.

Resource Monitoring Specification Version 1.0 Resource Monitoring Service

OSGi Residential Release 6 Page 623

In the case of a BUNDLE_ADDED type or BUNDLE_REMOVED type, getBundleId() returns the id of
the bundle to be added to or removed from. The related Resource Context instance is given by a call
to getContext() .

144.19 Resource Monitoring Service
The ResourceMonitor ingService manages the Resource Context instances. The Resource Monitor-
ing Service is available through the OSGi service registry.

This service holds the existing Resource Context instances. Resource Context instances are created
by calling the createContext(Str ing,ResourceContext) method. The caller provides a context name
as a string and optionally a template as a ResourceContext object.

The list of existing Resource Context instances can be retrieved through the following methods:

• getContext(Str ing) – returns the ResourceContext with the specified resource context name.
• getContext(long) – returns the ResourceContext associated to the provided bundle id.
• l istContext() – retrieve all existing Resource Context instances as an array.

The Resource Monitoring Service singleton manages the persistence of the Resource Context in-
stances. The following properties are stored:

• name of the Resource Context.
• list of the bundles belonging to the Resource Context.
• list of the Resource Monitor instances. For each one: the sampling period, and the monitoring pe-

riod.

The way the Resource Monitoring Service persists the Resource Context instances is implementa-
tion specific. The implementer is free to use any file format and file location it wants. At startup, the
Resource Monitoring Service will load the persisted Resource Context instances to restore the state
prior to shutdown.

144.20 Resource Monitoring Client
A Resource Monitoring Client uses the Resource Monitoring Service singleton instance to apply Re-
source Monitoring policies. These entities MAY:

• create and configure Resource Context instances (resource thresholds, bundle scope)
• take any decisions (stop a bundle, uninstall a bundle) if a Resource Context exceeds resource lim-

it.

These policies are out of the scope of this specification.

144.21 Security
It is recommended that ServicePermission[ResourceMonitor ingService|ResourceMonitor ingFacto-
ry|ResourceListener, REGISTER|GET] be used sparingly and only for bundles that are trusted.

144.22 org.osgi.service.resourcemonitoring

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 624 OSGi Residential Release 6

Resource Monitoring Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing; vers ion="[1.0,1.1)"

144.22.1 Summary

• ResourceContext - Logical entity for resource accounting.
• ResourceContextEvent - A Resource Context Event instance is an event sent to Resource Con-

text Listener instances through a call to ResourceContextListener.notify(ResourceContextEvent)
method.

• ResourceContextException - Resource Context Exception.
• ResourceContextListener - A ResourceContextListener is notified whenever:

• a ResourceContext is created or deleted.
• a bundle is added or removed from a ResourceContext.

• ResourceEvent - An event is sent to a ResourceListener when resource usage violates one of their
thresholds.

• ResourceListener - A ResourceListener is an OSGi service which is notified when a Resource
Context violates one of the threshold defined by the listener.

• ResourceMonitor - Representation of the state of a resource for a resource context.
• ResourceMonitorException - Resource Monitor Exception reports an invalid usage of a monitor.
• ResourceMonitorFactory - A Resource Monitor Factory is a service that provides Resource Moni-

tor instances of a specific resource type (for example, CPUMonitor, MemoryMonitor...) for every
Resource Context.

• ResourceMonitor ingService - It manages the Resource Context instances.

144.22.2 public interface ResourceContext
Logical entity for resource accounting. A resource context has a group of member bundles, and a
bundle can be a member of 0 or 1 resource context.

Resource Monitoring Clients can use the ResourceMonitoringService.createContext(String, Re-
sourceContext) method to create ResourceContext instances.

Resource Monitoring Clients can use the getMonitor(String) method to get ResourceMonitor in-
stances for the supported resource types. These instances can then be used to monitor the usage of
the resources, or the set usage limits.

ResourceContexts are retrieved through the ResourceMonitoringService OSGi service.

144.22.2.1 public void addBundle(long bundleId) throws ResourceContextException

bundleId The bundle to add to this resource context

□ Adds a bundle to the resource context. The bundle will be a member of the context until it
is uninstalled, or explicitly removed from the context with removeBundle(long) method or
removeBundle(long, ResourceContext) method.

Resources previously allocated by this bundle (in another resource context) will not be moved to
this resource context. The change applies only for future allocations.

A ResourceContextEvent with type ResourceContextEvent.BUNDLE_ADDED will be sent.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Residential Release 6 Page 625

Throws ResourceContextException– For example, when the bundle can't be added to the ResourceContext.

144.22.2.2 public void addResourceMonitor(ResourceMonitor resourceMonitor) throws ResourceContextException

resourceMonitor resourceMonitor instance to be added

□ Adds a new ResourceMonitor instance monitoring resource for this resource context. This method
should be called only by ResourceMonitorFactory instance.

Throws ResourceContextException– For example, when the monitor can't be added to the ResourceContext.

144.22.2.3 public boolean equals(Object resourceContext)

resourceContext resource context

□ A ResourceContext rc1 is equals to ResourceContext rc2 if rc1.getName() is equals to rc2.getName().

Returns true if getName().equals(resourceContext.getName()

144.22.2.4 public long[] getBundleIds()

□ Returns the bundle identifiers belonging to this Resource Context.

Returns An array of Bundle objects, or an empty array if no bundles are currently members of this context

144.22.2.5 public ResourceMonitor getMonitor(String resourceType) throws ResourceContextException

resourceType The resource type, for which a resource monitor is requested

□ Returns a ResourceMonitor instance for the specified resource type. If the ResourceMonitoringSer-
vice implementation does not support this resource type, null is returned

Returns A ResourceMonitor instance, or null, if this resource type is not supported

Throws ResourceContextException– For example, when the monitor(s) can't be retrieved from the Resource-
Context.

144.22.2.6 public ResourceMonitor[] getMonitors() throws ResourceContextException

□ Retrieves all the existing ResourceMonitor belonging to this context.

Returns an array of ResourceMonitor. May be empty if no ResourceMonitor

Throws ResourceContextException– For example, when the monitor(s) can't be retrieved from the Resource-
Context.

144.22.2.7 public String getName()

□ Returns the name of the resource context. Resource context names are unique within a framework
instance.

Returns The resource context name

144.22.2.8 public int hashCode()

□ Retrieves the hashCode value of a ResourceContext. The hashCode value of a ResourceContext is on-
ly based on the hashcode value of the name of the context.

Returns hashcode

144.22.2.9 public void removeBundle(long bundleId) throws ResourceContextException

bundleId bundle identifier

□ Removes the bundle identified by bundleId from the Resource Context. The bundle is no longer to
this Resource Context.

Throws ResourceContextException– For example, when the bundle can't be removed from the Resource-
Context.

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 626 OSGi Residential Release 6

144.22.2.10 public void removeBundle(long bundleId,ResourceContext destination) throws ResourceContextException

bundleId the identifier of the bundle to be removed from the Resource Context

destination A resource context in which to add the bundle, after removing it from this context. If no destination
is provided (that is null), the bundle is not associated to a new Resource Context.

□ Removes the bundle from this resource context. If a destinat ion context is specified, the bundle will
be added in it.

Resources previously allocated by this bundle will not be removed from the resource context. The
change applies only for future allocations.

A ResourceContextEvent with type ResourceContextEvent.BUNDLE_REMOVED will be sent.

Throws ResourceContextException– For example, when the bundle can't be removed from the Resource-
Context.

144.22.2.11 public void removeContext(ResourceContext destination) throws ResourceContextException

destination The ResourceContext where the resources currently allocated by this resource context will be
moved.

□ Removes a resource context. All resources allocated in this resource context will be moved to the
destinat ion context. If destinat ion is nul l , these resources will no longer be monitored.

A ResourceContextEvent with type ResourceContextEvent.RESOURCE_CONTEXT_REMOVED will
be sent.

Throws ResourceContextException– For example, when the resource context can't be removed.

144.22.2.12 public void removeResourceMonitor(ResourceMonitor resourceMonitor) throws ResourceContextException

resourceMonitor resource monitor instance to be removed

□ Removes a ResourceMonitor instance from the context.

Throws ResourceContextException– For example, when the monitor can't be removed from the Resource-
Context.

144.22.3 public class ResourceContextEvent
A Resource Context Event instance is an event sent to Resource Context Listener instances through
a call to ResourceContextListener.notify(ResourceContextEvent) method. A Resource Context Event
has a type among the four following ones:

• RESOURCE_CONTEXT_CREATED – A new Resource Context instance has been created.
• RESOURCE_CONTEXT_REMOVED – A Resource Context instance has been deleted.
• BUNDLE_ADDED – A bundle has been added in the scope of a Resource Context instance.
• BUNDLE_REMOVED – A bundle has been removed from the scope of a Resource Context in-

stance.

144.22.3.1 public static final int BUNDLE_ADDED = 2

A bundle has been added to e ResourceContext

The ResourceContext.addBundle(long) method has been invoked

144.22.3.2 public static final int BUNDLE_REMOVED = 3

A bundle has been removed from a ResourceContext

ResourceContext.removeBundle(long) method or ResourceContext.removeBundle(long, Resource-
Context) method have been invoked, or the bundle has been uninstalled

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Residential Release 6 Page 627

144.22.3.3 public static final int RESOURCE_CONTEXT_CREATED = 0

A new ResourceContext has been created.

The ResourceMonitoringService.createContext(String, ResourceContext) method has been invoked.

144.22.3.4 public static final int RESOURCE_CONTEXT_REMOVED = 1

A ResourceContext has been removed

The ResourceContext.removeContext(ResourceContext) method has been invoked

144.22.3.5 public ResourceContextEvent(int pType,ResourceContext pResourceContext)

pType event type

pResourceContext context

□ Create a new ResourceContextEvent. This constructor should be used when the type of the event is
either RESOURCE_CONTEXT_CREATED or RESOURCE_CONTEXT_REMOVED.

144.22.3.6 public ResourceContextEvent(int pType,ResourceContext pResourceContext,long pBundleId)

pType event type

pResourceContext context

pBundleId bundle

□ Create a new ResourceContextEvent. This constructor should be used when the type of the event is
either BUNDLE_ADDED or BUNDLE_REMOVED.

144.22.3.7 public boolean equals(Object var0)

144.22.3.8 public long getBundleId()

Retrieves the identifier of the bundle being added to or removed from the Resource Context.

This method returns a valid value only when getType() returns:

• BUNDLE_ADDED
• BUNDLE_REMOVED

Returns the bundle id or -1 (invalid value).

144.22.3.9 public ResourceContext getContext()

□ Retrieves the Resource Context associated to this event

Returns Resource Context.

144.22.3.10 public int getType()

□ Retrieves the type of this Resource Context Event.

Returns the type of the event. One of:

• RESOURCE_CONTEXT_CREATED
• RESOURCE_CONTEXT_REMOVED
• BUNDLE_ADDED
• BUNDLE_REMOVED

144.22.3.11 public int hashCode()

144.22.3.12 public String toString()

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 628 OSGi Residential Release 6

144.22.4 public class ResourceContextException
extends Exception
Resource Context Exception.

144.22.4.1 public ResourceContextException(String msg)

msg message

□ Create a new ResourceContextException

144.22.4.2 public ResourceContextException(String msg,Throwable t)

msg message

t exception

□ Create a new ResourceContextException

144.22.5 public interface ResourceContextListener
A ResourceContextListener is notified whenever:

• a ResourceContext is created or deleted.
• a bundle is added or removed from a ResourceContext.

A ResourceContextListener is registered as an OSGi service. At registration time, the following
property may be provided:

• the RESOURCE_CONTEXT property which limits the Resource Context for which notifications
will be received. This property can be either a String value or an array of String. If this property is
not set, the Resource Context Listener receives events from all the Resource Context.

144.22.5.1 public static final String RESOURCE_CONTEXT = "resource.context"

Property specifying the ResourceContext(s) for which a notification will be received by this listener.

The property value is either a string (i.e the name of the ResourceContext) and an array of string
(several ResourceContext).

144.22.5.2 public void notify(ResourceContextEvent event)

event event.

□ Notify this listener about a ResourceContext events.

144.22.6 public class ResourceEvent
An event is sent to a ResourceListener when resource usage violates one of their thresholds.

ResourceEvent objects are delivered synchronously to all matching ResourceListener services. A
typed code is used to identify the event.

See Also ResourceListener

144.22.6.1 public static final int ERROR = 2

Type of ResourceEvent indicating a threshold goes to the ERROR state.

144.22.6.2 public static final int NORMAL = 0

Type of ResourceEvent indicating a threshold goes to the NORMAL state.

144.22.6.3 public static final int WARNING = 1

Type of ResourceEvent indicating a threshold goes to the WARNING state.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Residential Release 6 Page 629

144.22.6.4 public ResourceEvent(int pType,ResourceContext pContext,boolean pIsUpperThreshold,Comparable
pValue)

pType the event type

pContext the resource context

pIsUpperThresh-
old

whether it is an upper threshold

pValue the value

□ Creates a new ResourceEvent.

144.22.6.5 public boolean equals(Object var0)

144.22.6.6 public ResourceContext getContext()

□ Returns the resource context that caused the event.

Returns The resource context that caused the event.

144.22.6.7 public int getType()

□ Returns the event type. The type values are:

• NORMAL
• WARNING
• ERROR

Returns The event type

144.22.6.8 public Comparable getValue()

□ Returns the resource consumption value. Relevant only for event types NORMAL, WARNING and
ERROR.

Returns the resource consumption value, or null if a resource monitor is not relevant.

144.22.6.9 public int hashCode()

144.22.6.10 public boolean isUpperThreshold()

□ Returns true if the threshold triggering this event is an upper threshold. This method is only used
when getType() returns NORMAL, WARNING or ERROR.

Returns true if it is an upper threshold.

144.22.6.11 public String toString()

144.22.7 public interface ResourceListener
A ResourceListener is an OSGi service which is notified when a Resource Context violates one of the
threshold defined by the listener.

Every ResourceListener is associated to a specific Resource Context and a specific Resource type.
It defines two types of thresholds: a lower and a upper. A lower threshold is reached when the re-
source usage decreases below the threshold. On the contrary, an upper threshold is reached when
the resource usage exceeds the threshold.

Both lower or upper threshold are two levels: a warning level and error level. The warning level in-
dicates the resource usage becomes to be critical but are still acceptable. The error level indicates the
resource usage is now critical for the overall system and actions should be taken.

A Resource Listener is registered with these two mandatory properties:

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 630 OSGi Residential Release 6

• RESOURCE_CONTEXT which defines the ResourceContext associated to this Listener
• RESOURCE_TYPE which the type of resource

The next optional properties are used to specify threshold values. A ResourceListener must at least
provides one of them:

• ResourceListener.UPPER_WARNING_THRESHOLD
• ResourceListener.UPPER_ERROR_THRESHOLD
• ResourceListener.LOWER_WARNING_THRESHOLD
• ResourceListener.LOWER_ERROR_THRESHOLD

These threshold values can also be retrieved through methods.

Resource Listeners are associated to a Resource Context and a Resource Monitor based on the
RESOURCE_CONTEXT property and the RESOURCE_TYPE property (both of them are mandatory
at registration time).

Once associated, the ResourceMonitor gets the threshold values through the ser-
vice properties (i.e UPPER_WARNING_THRESHOLD, UPPER_ERROR_THRESHOLD,
LOWER_WARNING_THRESHOLD and LOWER_WARNING_THRESHOLD) and store them. Once
it detects a new resource consumption, it compares the new resource usage value with the thresh-
olds provided by the Resource Listener. If the resource usage violates one of these thresholds, the Re-
source Monitor notifies the ResourceListener through a call to notify(ResourceEvent).

A ResourceMonitor tracks threshold value modification by using a ServiceListener.

144.22.7.1 public static final String LOWER_ERROR_THRESHOLD = "lower.error.threshold"

Optional property defining the value of the lower error threshold.

144.22.7.2 public static final String LOWER_WARNING_THRESHOLD = "lower.warning.threshold"

Optional property defining the value of the lower warning threshold.

144.22.7.3 public static final String RESOURCE_CONTEXT = "resource.context"

Mandatory property specifying the Resource Context associated with the listener.

144.22.7.4 public static final String RESOURCE_TYPE = "resource.type"

Mandatory property defining the type of Resource (i.e the ResourceMonitor) associated to this Lis-
tener.

144.22.7.5 public static final String UPPER_ERROR_THRESHOLD = "upper.error.threshold"

Optional property defining the value of the upper error threshold.

144.22.7.6 public static final String UPPER_WARNING_THRESHOLD = "upper.warning.threshold"

Optional property defining the value of the upper warning threshold.

144.22.7.7 public Comparable getLowerErrorThreshold()

□ Retrieves the lower error threshold value set by the listener. If the resource usage decreases under
this threshold, the notify(ResourceEvent) will be called. The provided ResourceEvent then indicates
the ERROR state is reached.

Returns a comparable object or null if no threshold is set.

144.22.7.8 public Comparable getLowerWarningThreshold()

□ Retrieves the lower warning threshold value set by the listener. If the resource usage decreases un-
der this threshold value, the notify(ResourceEvent) will be called. The provided ResourceEvent then
indicates the WARNING state is reached.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Residential Release 6 Page 631

Returns a comparable object or null if no threshold is set.

144.22.7.9 public Comparable getUpperErrorThreshold()

□ Retrieves the upper error threshold value set by this listener. If the resource usage exceeds this
threshold, the notify(ResourceEvent) will be called. The provided ResourceEvent then indicates the
ERROR state is reached.

Returns a comparable object or null if no threshold is reached.

144.22.7.10 public Comparable getUpperWarningThreshold()

□ Retrieves the upper warning threshold value set by this listener. If the resource usage exceeds this
threshold, the notify(ResourceEvent) method will be called. The provided ResourceEvent then indi-
cates the WARNING state is reached.

Returns a comparable object or null if no threshold is reached.

144.22.7.11 public void notify(ResourceEvent event)

event The ResourceEvent object

□ Receives a resource monitoring notification

144.22.8 public interface ResourceMonitor
Representation of the state of a resource for a resource context.

ResourceMonitor objects are returned by the ResourceContext.getMonitor(String) method.

The ResourceMonitor object may be used to:

• Enable/Disable the monitoring of the corresponding resource type for the corresponding re-
source context

• View the current usage of the resource by this resource context

A resource monitor can have a sampling period, a monitored period, or both. For example, for CPU
monitoring, the resource monitor implementation can get the CPU usage of the running threads
once per minute, and calculate the CPU usage per context in percentages based on the last ten such
measurements. This could make a 60 000 milliseconds sampling period, and a 600 000 milliseconds
monitored period.

144.22.8.1 public void delete() throws ResourceMonitorException

□ Disable and delete this instance of Resource Monitor. This method MUST update the list of Re-
sourceMonitor instances hold by the Resource Context (getContext().removeMonitor(this)).

Throws ResourceMonitorException– For example, when the monitor can't be removed from the Resource-
Context.

144.22.8.2 public void disable() throws ResourceMonitorException

□ Disable the monitoring of this resource type for the resource context associated with this monitor
instance. The resource usage is not available until it is enabled again.

Throws ResourceMonitorException– if the ResourceMonitor instance has been previously deleted

144.22.8.3 public void enable() throws ResourceMonitorException

□ Enable the monitoring of this resource type for the resource context associated with this monitor
instance. This method SHOULD also update the current resource consumption value (to take into
account all previous resource allocations and releases occurred during the time the monitor was dis-
abled).

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 632 OSGi Residential Release 6

Throws ResourceMonitorException– if the ResourceMonitor instance can not be enabled (for example,
some MemoryMonitor implementations evaluate the memory consumption by tracking memo-
ry allocation operation at runtime. This kind of Monitor can not get instantaneous memory value.
Such Monitor instances need to be enabled at starting time.). if the ResourceMonitor instance has
been previously deleted

144.22.8.4 public boolean equals(Object resourceMonitor)

resourceMonitor

□ Checks if resourceMonitor is equals to the current instance. A ResourceMonitor rm1
is equals to a ResourceMonitor rm2 if rm1.getContext().equals(rm2.getContext()) and
r1.getType().equals(rm2.getType()).

Returns true if the current instance is equals to the provided resourceMonitor

144.22.8.5 public ResourceContext getContext()

□ Returns the resource context that this monitor belongs to

Returns The associated ResourceContext

144.22.8.6 public long getMonitoredPeriod()

□ Returns the time period for which the usage of this resource type is monitored.

Returns The monitored period in milliseconds, or -1 if a monitored period is not relevant for this resource
type.

144.22.8.7 public String getResourceType()

□ The name of the resource type that this monitor represents

Returns The name of the monitored resource type

144.22.8.8 public long getSamplingPeriod()

□ Returns the sampling period for this resource type.

Returns The sampling period in milliseconds, or -1 if a sampling period is not relevant for this resource type.

144.22.8.9 public Comparable getUsage() throws ResourceMonitorException

□ Returns an object representing the current usage of this resource type by this resource context.

Returns The current usage of this resource type.

Throws ResourceMonitorException– if the ResourceMonitor instance is not enabled.

144.22.8.10 public int hashCode()

□ Retrieves the hashCode value of this ResourceMonitor. The hashCode value is based on the hash-
Code value of the associated ResourceContext and the hashCode value of the type.

Returns hashcode

144.22.8.11 public boolean isDeleted()

□ Returns true if the ResourceMonitor instance has been deleted, that is the delete() method has been
called previously.

Returns true if deleted.

144.22.8.12 public boolean isEnabled()

□ Checks if the monitoring for this resource type is enabled for this resource context

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Residential Release 6 Page 633

Returns true if monitoring for this resource type is enabled for this context, fa lse otherwise

144.22.9 public class ResourceMonitorException
extends Exception
Resource Monitor Exception reports an invalid usage of a monitor.

144.22.9.1 public ResourceMonitorException(String msg)

msg message

□ Create a new ResourceMonitorException

144.22.9.2 public ResourceMonitorException(String msg,Throwable t)

msg message

t

□ Create a new ResourceMonitorException

144.22.10 public interface ResourceMonitorFactory
A Resource Monitor Factory is a service that provides Resource Monitor instances of a specific re-
source type (for example, CPUMonitor, MemoryMonitor...) for every Resource Context. Every Re-
source Monitor Factory service is registered with the RESOURCE_TYPE_PROPERTY mandatory
property. This property indicates which type of Resource Monitor a Resource Monitor Factory is able
to create. The type can also be retrieved through a call to getType(). The type MUST be unique (two
Resource Monitor Factory instances MUST not have the same type).

144.22.10.1 public static final String RESOURCE_TYPE_PROPERTY = "org.osgi.resourcemonitoring.ResourceType"

Resource type property. The value is of type String. For example,
ResourceMonitoringService.RES_TYPE_CPU

144.22.10.2 public ResourceMonitor createResourceMonitor(ResourceContext resourceContext) throws
ResourceMonitorException

resourceContext ResourceContext instance associated with the newly created ResourceMonitor instance

□ Creates a new ResourceMonitor instance. This instance is associated with the ResourceContext in-
stance provided as argument (ResourceContext.addResourceMonitor(ResourceMonitor) is called
by the factory). The newly ResourceMonitor instance is disabled. It can be enabled by calling
ResourceMonitor.enable().

Returns a ResourceMonitor instance

Throws ResourceMonitorException– If the factory is unable to create a ResourceMonitor For example, when
a ResourceMonitor of this type already exists for this ResourceContext

144.22.10.3 public String getType()

□ Returns the type of ResourceMonitor instance this factory is able to create.

Returns factory type

144.22.11 public interface ResourceMonitoringService
It manages the Resource Context instances. It is available through the OSGi service registry. This ser-
vice holds the existing Resource Context instances. Resource Context instances are created by call-
ing the createContext(String, ResourceContext) method.

144.22.11.1 public static final String FRAMEWORK_CONTEXT_NAME = "framework"

The name of the special, optional resource context, representing the whole OSGi framework.

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 634 OSGi Residential Release 6

144.22.11.2 public static final String RES_TYPE_CPU = "resource.type.cpu"

The name of the CPU resource type, used to monitor and control the CPU time used by a resource
context. ResourceMonitoringService implementations must create CPUMonitor instances for this
resource type.

144.22.11.3 public static final String RES_TYPE_DISK_STORAGE = "resource.type.disk.storage"

The name of the disk storage resource type, used to monitor and control the size of the persistent
storage used by a resource context. ResourceMonitoringService implementations must create DiskS-
torageMonitor instances for this resource type.

144.22.11.4 public static final String RES_TYPE_MEMORY = "resource.type.memory"

The name of the memory resource type, used to monitor and control the size of the java heap used
by a resource context. ResourceMonitoringService implementations must create MemoryMonitor
instances for this resource type.

144.22.11.5 public static final String RES_TYPE_SOCKET = "resource.type.socket"

The name of the socket resource type, used to monitor and control the number of existing sockets
used by a resource context. ResourceMonitoringService implementations must create SocketMoni-
tor instances for this resource type.

144.22.11.6 public static final String RES_TYPE_THREADS = "resource.type.threads"

The name of the threads resource type, used to monitor and control the number of threads created
by a resource context. ResourceMonitoringService implementations must create ThreadMonitor in-
stances for this resource type.

144.22.11.7 public static final String SYSTEM_CONTEXT_NAME = "system"

The name of the Resource Context associated with System bundle (bundle 0).

144.22.11.8 public ResourceContext createContext(String name,ResourceContext template)

name The name identifying the context. Names must be unique within the framework instance.

template If a template is provided, the new resource context will inherit all resource monitoring settings (en-
abled monitors, thresholds) from the template.

□ Creates a new ResourceContext.

A ResourceContextEvent with type ResourceContextEvent.RESOURCE_CONTEXT_CREATED will
be sent.

Returns A new ResourceContext instance.

Throws I l legalArgumentException– if a problem occurred, for example if the name is already used.

144.22.11.9 public ResourceContext getContext(String name)

name The resource context name

□ Returns the context with the specified resource context name.

Returns An existing ResourceContext with the specified name, or null if such a context doesn't exist

144.22.11.10 public ResourceContext getContext(long bundleId)

bundleId bundle identifier

□ Returns the ResourceContext associated to the provided bundle id.

Returns the ResourceContext associated to bundle b or null if the bundle b does not belong to a Resource
Context.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring.monitor

OSGi Residential Release 6 Page 635

144.22.11.11 public String[] getSupportedTypes()

□ Returns a list with the supported resource type names.

Returns An array containing the names of all resource types that this ResourceMonitoringService imple-
mentation supports.

144.22.11.12 public ResourceContext[] listContext()

□ Lists all available resource contexts. The list will contain the special
FRAMEWORK_CONTEXT_NAME context and the SYSTEM_CONTEXT_NAME context, if it is sup-
ported.

Returns An array of ResourceContext objects, or an empty array, if no contexts have been created.

144.23 org.osgi.service.resourcemonitoring.monitor

Resource Monitoring Monitor Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing.monitor ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing.monitor ; vers ion="[1.0,1.1)"

144.23.1 Summary

• CPUMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_CPU resource
type.

• DiskStorageMonitor - A ResourceMonitor for the
ResourceMonitoringService.RES_TYPE_DISK_STORAGE resource type.

• MemoryMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_MEMORY
resource type.

• SocketMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_SOCKET re-
source type.

• ThreadMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_THREADS
resource type.

144.23.2 public interface CPUMonitor
extends ResourceMonitor
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_CPU resource type. CPUMonitor
instance monitors the CPU consumed by a ResourceContext instance.

144.23.2.1 public long getCPUUsage()

□ Returns the CPU usage as a cumulative number of nanoseconds

The getUsage() method returns the same value, wrapped in a long.

Returns the CPU usage in nanoseconds

org.osgi.service.resourcemonitoring.monitor Resource Monitoring Specification Version 1.0

Page 636 OSGi Residential Release 6

144.23.3 public interface DiskStorageMonitor
extends ResourceMonitor
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_DISK_STORAGE resource type.
A DiskStorageMonitor instance monitors and limits the persistent storage of the bundle belonging
to the ResourceContext

144.23.3.1 public long getUsedDiskStorage()

□ Returns the sum of the size of the persistent storage areas of the bundles in this resource context.

The getUsage() method returns the same value, wrapped in a long.

Returns the sum of the sizes of the persistent storage areas in bytes

144.23.4 public interface MemoryMonitor
extends ResourceMonitor
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_MEMORY resource type. A Mem-
oryMonitor instance monitors and limits the memory used by a ResourceContext instance.

144.23.4.1 public long getMemoryUsage()

□ Returns the size of the java heap used by the bundles in this resource context.

The getUsage() method returns the same value, wrapped in a long.

Returns the size of the used java heap in bytes

144.23.5 public interface SocketMonitor
extends ResourceMonitor
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_SOCKET resource type. Socket-
Monitor instance are used to monitor and limit the number of in-use sockets per ResourceContext
instance. SocketMonitor instance handle all types of sockets (TCP, UDP, ...).

A TCP socket is considered to be in-use when it is bound (Socket.bind(java.net.SocketAddress)) or
when it is connected (Socket.connect(java.net.SocketAddress)). It leaves the in-use state when the
socket is closed (Socket.close()). *

A UDP socket is in-use when it is bound (DatagramSocket.bind(java.net.SocketAddress)) or con-
nected (DatagramSocket.connect(java.net.SocketAddress)). A UDP Socket leaves the in-use state
when it is closed (DatagramSocket.close()).

144.23.5.1 public long getSocketUsage()

□ Returns the number of existing socket created by a ResourceContext.

The getUsage() method returns the same value, wrapped in a long.

Returns the number of existing socket.

144.23.6 public interface ThreadMonitor
extends ResourceMonitor
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_THREADS resource type. A
ThreadMonitor instance monitors and limits the thread created by a ResourceContext instance.

144.23.6.1 public int getAliveThreads()

□ Returns the number of alive threads created by the bundles in this resource context. A Thread is con-
sidered to be alive when its java state is one of the following:

• RUNNABLE

Resource Monitoring Specification Version 1.0 References

OSGi Residential Release 6 Page 637

• BLOCKED
• WAITING
• TIMED_WAITING

The getUsage() method returns the same value, wrapped in a int.

Returns the number of alive threads created by this resource context

144.24 References

[1] Adaptive Monitoring of End-user OSGi based Home Boxes
Y. Maurel, A. Bottaro, R. Kopetz, and K. Attouchi. Component Base Software Engineering, 15th ACM
SIGSOFT International Symposium on Component-Based Software Engineering, CBSE'2012, Berti-
noro, Italy, June 2012.

[2] Memory Monitoring in a Multi-tenant OSGi Execution Environment
K. Attouchi, G. Thomas, A. Bottaro, and G. Muller. Proceedings of the 17th ACM SIGSOFT sympo-
sium on Component Based Software Engineering, CBSE’14, Lille, France, July 2014.

References Resource Monitoring Specification Version 1.0

Page 638 OSGi Residential Release 6

USB Information Device Category Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 639

145 USB Information Device Category
Specification

Version 1.0

145.1 Introduction
The Device Access Specification on page 75 defines a unified and sophisticated way to handle devices
attached to a residential gateway or devices found in the home network by using various protocols
such as USB, ZigBee, Z-Wave, KNX, UPnP, etc.

Recently, OSGi is gaining popularity as enabling technology for building embedded systems in the
residential market as well as other Internet-of-Things (IoT) domains. Such systems often have USB
interfaces and the need of handling USB devices attached to these systems is increasing.

Device Category Specifications on page 79 defines the concept of device categories. This specification
defines a device category for USB devices.

145.1.1 Entities

• USBInfoDevice - The representation of a USB device. This service provide information defined by
the USB Implementers Forum, Inc.

Figure 145.1 USB Information Device Service Overview Diagram

A Device implA Driver impl

<<Interface>>
USBInfoDevice

Refining driver bundle USB information base driver bundle

attaches device and possible refines

0,1

0..n

Device Manager
impl

listens to all device registrations

0..n

1

device manager

<<Interface>>
Driver

1
corrects all drivers
and matches them to devices

0..n

USBInfoDevice Service USB Information Device Category Specification Version 1.0

Page 640 OSGi Residential Release 6

145.2 USBInfoDevice Service
The device services are registered in the OSGi service registry with the USBInfoDevice interface. The
service is registered by a USB information base driver bundle when a USB device is attached. A USB
information base driver bundle must implement USBInfoDevice interface and register the OSGi ser-
vice under USBInfoDevice . Refining drivers can find USB devices via USBInfoDevice services and
identify the device. The USBInfoDevice service has a set of properties.

USB Specification, see [1] Universal Serial Bus Specification Revision 1.1 , defines that a USB device has
USB interface(s). A USB information base driver bundle must register USBInfoDevice services num-
ber of USB interfaces. A USBInfoDevice service has information that contains a USB device informa-
tion and a USB interface information.

The USB information base driver may need native drivers such as kernel drivers on Linux. This doc-
ument has a precondition that there are native drivers. It is out of scope how to install native dri-
vers.

145.2.1 Device Access Category
The device access category is called "USBInfo". The category name is defined as a value of
DEVICE_CATEGORY constant. It must be used as a part of theDEVICE_CATEGORY service property
value on the USBInfoDevice service. The category defines the following additional service proper-
ties for the USBInfoDevice service.

145.2.2 Service Properties based upon USB Specification
The USB Specification defines a Device Descriptor. USB devices report their attributes using descrip-
tors. The following USBInfoDevice service properties use information from the USB device descrip-
tor.

Table 145.1 Service properties of USBInfoDevice service from Device Descriptor

The key of service property Type Description Device Descriptor's
Field from USB
Spec.

usbinfo.bcdUSB Str ing OPTIONAL property key. The 4-
digit BCD format.

Example: "0210"

bcdUSB

usbinfo.bDeviceClass Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bDeviceClass

usbinfo.bDeviceSubClass Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bDeviceSubClass

usbinfo.bDeviceProtocol Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bDeviceProtocol

usbinfo.bMaxPacketSize0 Integer OPTIONAL property key. bMaxPacketSize0
usbinfo. idVendor Str ing MANDATORY property key.

Hexadecimal, 4-digits.

Example: "0403"

idVendor

USB Information Device Category Specification Version 1.0 USBInfoDevice Service

OSGi Residential Release 6 Page 641

The key of service property Type Description Device Descriptor's
Field from USB
Spec.

usbinfo. idProduct Str ing MANDATORY property key.
Hexadecimal, 4-digits.

Example: "8372"

idProduct

usbinfo.bcdDevice Str ing MANDATORY property key. The
4-digit BCD format.

Example: "0200"

bcdDevice

usbinfo.Manufacturer Str ing OPTIONAL property key. String
value referenced by iManufactur-
er. The value is not the index val-
ue of iManufacturer.

Example: "Buffalo Inc."

iManufacturer

usbinfo.Product Str ing OPTIONAL property key. String
value referenced by iProduct. The
value is not the index value of
iProduct.

Example: "USB2.0 PC Camera"

iProduct

usbinfo.Seria lNumber Str ing OPTIONAL property key. String
value referenced by iSerialNum-
ber. The value is not the index
value of iSerialNumber.

Example: "57B0002600000001"

iSerialNumber

usbinfo.bNumConfigurat ions Integer OPTIONAL property key. bNumConfigura-
tions

According to the USB Specification, a device descriptor has some Interface Descriptors.

Refining drivers need each interface descriptor's bInterfaceClass, bInterfaceSubClass and bInterface-
Protocol to identify devices. The following USBInfoDevice service properties use information from
the USB interface descriptor.

Table 145.2 Service properties of USBInfoDevice service from Interface Descriptor

The key of service property Type Description Interface
Descriptor's Field
from USB Spec.

usbinfo.bInterfaceNumber Integer MANDATORY property key. bInterfaceNumber
usbinfo.bAlternateSett ing Integer OPTIONAL property key. bAlternateSetting
usbinfo.bNumEndpoints Integer OPTIONAL property key. bNumEndpoints
usbinfo.bInterfaceClass Str ing MANDATORY property key.

Hexadecimal, 2-digits.

Example: "ff"

bInterfaceClass

usbinfo.bInterfaceSubClass Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bInterfaceSub-
Class

usbinfo.bInterfaceProtocol Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bInterfaceProtocol

Security USB Information Device Category Specification Version 1.0

Page 642 OSGi Residential Release 6

The key of service property Type Description Interface
Descriptor's Field
from USB Spec.

usbinfo. Interface Str ing OPTIONAL property key. String
value referenced by iInterface.
The value is not the index value
of iInterface.

iInterface

145.2.3 Additional Service Properties
Some additional service properties are needed to identify and access a device by refining drivers.

Table 145.3 Additional service properties of USBInfoDevice service

The key of service property Type Description
usbinfo.bus Integer MANDATORY property key. The value is Integer. Used

to identify USB devices with same VID / PID. The value
is the ID of the USB bus assigned when connecting the
USB device. USB bus ID is integer. The USB bus ID does
not change while the USB device remains connected.

Example: 3
usbinfo.address Integer MANDATORY property key. The value is Integer. Used

to identify USB devices with same VID / PID. The val-
ue is the ID of the USB address assigned when connect-
ing the USB device. USB address is integer in the range
1-127. The USB address does not change while the USB
device remains connected.

Example: 2

145.2.4 Match scale
When the driver service is registered by the driver bundle, the Device Manager calls
match(ServiceReference) with the argument of the USBInfoDevice service's Service Reference. The
driver responds with a match value based on following choices.

• MATCH_VERSION - Constant for the USB device match scale, indicating a match with
USB_IDVENDOR , USB_IDPRODUCT and USB_BCDDEVICE . Value is 50.

• MATCH_MODEL - Constant for the USB device match scale, indicating a match with
USB_IDVENDOR and USB_IDPRODUCT . Value is 40.

• MATCH_PROTOCOL - Constant for the USB device match scale, indicating a match with
USB_BDEVICECLASS , USB_BDEVICESUBCLASS and USB_BDEVICEPROTOCOL , or a match with
USB_BINTERFACECLASS , USB_BINTERFACESUBCLASS and USB_BINTERFACEPROTOCOL . Value is
30.

• MATCH_SUBCLASS - Constant for the USB device match scale, indicating a match
USB_BDEVICECLASS and USB_BDEVICESUBCLASS , or a match with USB_BINTERFACECLASS and
USB_BINTERFACESUBCLASS . Value is 20.

• MATCH_CLASS - Constant for the USB device match scale, indicating a match with
USB_BDEVICECLASS , or a match with USB_BINTERFACECLASS . Value is 10.

145.3 Security
To acquire USB information device service, The refining bundle require that
ServicePermission[USBInfoDevice, GET] is assigned.

USB Information Device Category Specification Version 1.0 org.osgi.service.usbinfo

OSGi Residential Release 6 Page 643

USBInfoDevice service should only be implemented by trusted bundles. This bundle requires
ServicePermission[USBInfoDevice, REGISTER] .

145.4 org.osgi.service.usbinfo

USB Information Device Category Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.usbinfo; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.usbinfo; vers ion="[1.0,1.1)"

145.4.1 Summary

• USBInfoDevice - Represents a USB device.

145.4.2 public interface USBInfoDevice
Represents a USB device. For each USB device, an object is registered with the framework under the
USBInfoDevice interface. A USB information base driver must implement this interface.

The values of the USB property names are defined by the USB Implementers Forum, Inc.

Concurrency Thread-safe

145.4.2.1 public static final String DEVICE_CATEGORY = "USBInfo"

Constant for the value of the service property DEVICE_CATEGORY used for all USB devices.

A USB information base driver bundle must set this property key.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY

145.4.2.2 public static final int MATCH_CLASS = 10

Device Access match value indicating a match with USB_BDEVICECLASS or a match with
USB_BINTERFACECLASS.

145.4.2.3 public static final int MATCH_MODEL = 40

Device Access match value indicating a match with USB_IDVENDOR, and USB_IDPRODUCT.

145.4.2.4 public static final int MATCH_PROTOCOL = 30

Device Access match value indicating a match with USB_BDEVICECLASS,
USB_BDEVICESUBCLASS, and USB_BDEVICEPROTOCOL or a match with
USB_BINTERFACECLASS , USB_BINTERFACESUBCLASS, and USB_BINTERFACEPROTOCOL.

145.4.2.5 public static final int MATCH_SUBCLASS = 20

Device Access match value indicating a match with USB_BDEVICECLASS,
and USB_BDEVICESUBCLASS or a match with USB_BINTERFACECLASS, and
USB_BINTERFACESUBCLASS.

org.osgi.service.usbinfo USB Information Device Category Specification Version 1.0

Page 644 OSGi Residential Release 6

145.4.2.6 public static final int MATCH_VERSION = 50

Device Access match value indicating a match with USB_IDVENDOR, USB_IDPRODUCT, and
USB_BCDDEVICE.

145.4.2.7 public static final String USB_ADDRESS = "usbinfo.address"

Service property to identify USB address.

Used to identify USB devices with same VID / PID. The value is the ID of the USB address assigned
when connecting the USB device. USB address is an integer in the range 1-127 and does not change
while the USB device remains connected. The value type is Integer.

145.4.2.8 public static final String USB_BALTERNATESETTING = "usbinfo.bAlternateSetting"

Service property for USB Interface Descriptor field "bAlternateSetting".

The value type is Integer. This service property is optional.

145.4.2.9 public static final String USB_BCDDEVICE = "usbinfo.bcdDevice"

Service property for USB Device Descriptor field "bcdDevice".

The value type is String; the value is in 4-digit BCD format. For example, "0200".

145.4.2.10 public static final String USB_BCDUSB = "usbinfo.bcdUSB"

Service property for USB Device Descriptor field "bcdUSB".

The value type is String; the value is in 4-digit BCD format. For example, "0210". This service proper-
ty is optional.

145.4.2.11 public static final String USB_BDEVICECLASS = "usbinfo.bDeviceClass"

Service property for USB Device Descriptor field "bDeviceClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.12 public static final String USB_BDEVICEPROTOCOL = "usbinfo.bDeviceProtocol"

Service property for USB Device Descriptor field "bDeviceProtocol".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.13 public static final String USB_BDEVICESUBCLASS = "usbinfo.bDeviceSubClass"

Service property for USB Device Descriptor field "bDeviceSubClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.14 public static final String USB_BINTERFACECLASS = "usbinfo.bInterfaceClass"

Service property for USB Interface Descriptor field "bInterfaceClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.15 public static final String USB_BINTERFACENUMBER = "usbinfo.bInterfaceNumber"

Service property for USB Interface Descriptor field "bInterfaceNumber".

The value type is Integer.

145.4.2.16 public static final String USB_BINTERFACEPROTOCOL = "usbinfo.bInterfaceProtocol"

Service property for USB Interface Descriptor field "bInterfaceProtocol".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

USB Information Device Category Specification Version 1.0 org.osgi.service.usbinfo

OSGi Residential Release 6 Page 645

145.4.2.17 public static final String USB_BINTERFACESUBCLASS = "usbinfo.bInterfaceSubClass"

Service property for USB Interface Descriptor field "bInterfaceSubClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.18 public static final String USB_BMAXPACKETSIZE0 = "usbinfo.bMaxPacketSize0"

Service property for USB Device Descriptor field "bMaxPacketSize0".

The value type is Integer. This service property is optional.

145.4.2.19 public static final String USB_BNUMCONFIGURATIONS = "usbinfo.bNumConfigurations"

Service property for USB Device Descriptor field "bNumConfigurations".

The value type is Integer. This service property is optional.

145.4.2.20 public static final String USB_BNUMENDPOINTS = "usbinfo.bNumEndpoints"

Service property for USB Interface Descriptor field "bNumEndpoints".

The value type is Integer. This service property is optional.

145.4.2.21 public static final String USB_BUS = "usbinfo.bus"

Service property to identify USB bus.

Used to identify USB devices with same VID / PID. The value is the ID of the USB bus assigned when
connecting the USB device. The USB bus ID is an integer and does not change while the USB device
remains connected. The value type is Integer.

145.4.2.22 public static final String USB_IDPRODUCT = "usbinfo.idProduct"

Service property for USB Device Descriptor field "idProduct".

The value type is String; the value is in 4-digit hexadecimal. For example, "8372".

145.4.2.23 public static final String USB_IDVENDOR = "usbinfo.idVendor"

Service property for USB Device Descriptor field "idVendor".

The value type is String; the value is in 4-digit hexadecimal. For example, "0403".

145.4.2.24 public static final String USB_INTERFACE = "usbinfo.Interface"

Service property for name referenced by USB Interface Descriptor field "iInterface".

The value type is String. This service property is optional.

145.4.2.25 public static final String USB_MANUFACTURER = "usbinfo.Manufacturer"

Service property for name referenced by USB Device Descriptor field "iManufacturer".

The value type is String. For example, "Buffalo Inc.". This service property is optional.

145.4.2.26 public static final String USB_PRODUCT = "usbinfo.Product"

Service property for name referenced by USB Device Descriptor field "iProduct".

The value type is String. For example, "USB2.0 PC Camera". This service property is optional.

145.4.2.27 public static final String USB_SERIALNUMBER = "usbinfo.SerialNumber"

Service property for name referenced by USB Device Descriptor field "iSerialNumber".

The value type is String. For example, "57B0002600000001". This service property is optional.

References USB Information Device Category Specification Version 1.0

Page 646 OSGi Residential Release 6

145.5 References

[1] Universal Serial Bus Specification Revision 1.1
September 23, 1998.

Serial Device Service Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 647

146 Serial Device Service Specification

Version 1.0

146.1 Introduction
Recently, OSGi is gaining popularity as an enabling technology for building embedded systems in
the residential market as well as other Internet-of-Things (IoT) domains. It is expected that commu-
nication with various devices attached to OSGi enabled gateways will be necessary.

Such communication can be implemented by means of serial connection when using non-IP de-
vices based on ZigBee and Z-wave protocols. The most typical case arises when a USB dongle that
supports such protocols is connected to the USB port of such a device, for example, residential gate-
way. The Operating System on the gateways will recognize the dongle as a virtual serial device and
initiate a serial communication with the application process.

The Serial Device Service specification defines an API for establishing communications between an
OSGi bundle and a serial device, such as a ZigBee coordinator or Z-Wave controller.

Device Category Specifications on page 79 defines the concept of device categories. USB Information De-
vice Category Specification on page 639 defines a device category for USB devices. This specification
and USB Information Device Category Specification on page 639 provide a solution for the USB serial
use case.

146.1.1 Entities

• SerialDevice - This is an OSGi service that is used to represent a serial device. This OSGi service
stores information regarding serial device and its status as service properties and provides com-
munication function with the device.

• SerialEventListener - A listener to events coming from Serial Devices.
• Serial base driver bundle - The bundle that implements SerialDevice . Serial base driver bundle reg-

isters SerialDevice services with the Framework. It provides communication function with the
(physical) serial devices.

• Refining driver bundle - Refining drivers provide a refined view of a physical device that is already
represented by another Device service registered with the Framework (see the details for Device
Access Specification).

SerialDevice Service Serial Device Service Specification Version 1.0

Page 648 OSGi Residential Release 6

Figure 146.1 Serial Device Service class diagram

A Device impl.A Driver impl.

<<Interface>>
SerialDevice

Refining driver bundle Serial base driver bundle

attaches device
and possible refines

0,1

0..n

<<Interface>>
SerialEventListener

A Listener

receives events from0..n

1

146.2 SerialDevice Service
SerialDevice is the interface expressing a serial device. It maintains information and state of the se-
rial device as a service property. It provides the communication facility with the serial device. Each
SerialDevice expresses each serial device.

SerialDevice service is registered with the service registry with service properties as shown in the
following table.

Table 146.1 Service properties of SerialDevice service

The key of service property Type Description
DEVICE_CATEGORY Str ing[] Constant for the value of the service property

DEVICE_CATEGORY used for all Serial devices. Value is
"Serial".

ser ia l .comport Str ing MANDATORY property key. Represents the name of the
port.

Examples: "/dev/ttyUSB0", "COM5", "/dev/tty.usbserial-
XXXXXX"

The Serial base driver may need native libraries. This document has a precondition that there are na-
tive libraries. It is out of scope how to install native libraries.

Serial Device Service Specification Version 1.0 SerialEventListener Service

OSGi Residential Release 6 Page 649

146.3 SerialEventListener Service
Serial events are sent using the white board model, in which a bundle interested in receiving the Se-
rial events registers an object implementing the SerialEventListener interface. A COM port name
can be set to limit the events for which a bundle is notified.

146.4 USB Serial Example
The Serial base driver registers a SerialDevice service that represents a (physical) Serial device. If the
device is USB Serial device, then it is recommended that the base driver implements USBInfoDevice
and SerialDevice concurrently, and registers the service under USBInfoDevice and SerialDevice in-
terfaces.

146.5 Security
To acquire the Serial device service, the refining bundle need that ServicePermission[Seria lDevice,
GET] are assigned.

To receive the Serial events, the bundles need that ServicePermission[Seria lEventListener,
REGISTER] are assigned.

SerialDevice service should only be implemented by trusted bundles. This bundle requires
ServicePermission[Seria lDevice, REGISTER] and ServicePermission[Seria lEventListener, GET] .

146.6 org.osgi.service.serial

Serial Device Service Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.ser ia l ; vers ion="[1.0,2.0)"

146.6.1 Summary

• SerialConstants - Constants for serial device settings.
• SerialDevice - SerialDevice is a service representing a device performing serial communication.
• SerialDeviceException - A exception used to indicate that a serial device communication prob-

lem occurred.
• SerialEvent - A serial device event.
• SerialEventListener - Serial events are sent using the white board model, in which a bundle in-

terested in receiving the Serial events registers an object implementing the SerialEventListener
interface.

• SerialPortConfigurat ion - An object represents the Serial port configuration.

146.6.2 public final class SerialConstants
Constants for serial device settings.

org.osgi.service.serial Serial Device Service Specification Version 1.0

Page 650 OSGi Residential Release 6

146.6.2.1 public static final int BAUD_115200 = 115200

Baud rate: 115200.

146.6.2.2 public static final int BAUD_14400 = 14400

Baud rate: 14400.

146.6.2.3 public static final int BAUD_19200 = 19200

Baud rate: 19200.

146.6.2.4 public static final int BAUD_38400 = 38400

Baud rate: 38400.

146.6.2.5 public static final int BAUD_57600 = 57600

Baud rate: 57600.

146.6.2.6 public static final int BAUD_9600 = 9600

Baud rate: 9600.

146.6.2.7 public static final int BAUD_AUTO = -1

Baud rate: Automatic baud rate (if available).

146.6.2.8 public static final int DATABITS_5 = 5

Data bits: 5.

146.6.2.9 public static final int DATABITS_6 = 6

Data bits: 6.

146.6.2.10 public static final int DATABITS_7 = 7

Data bits: 7.

146.6.2.11 public static final int DATABITS_8 = 8

Data bits: 8.

146.6.2.12 public static final int FLOWCONTROL_NONE = 0

Flow control: None.

146.6.2.13 public static final int FLOWCONTROL_RTSCTS_IN = 1

Flow control: RTS/CTS on input.

146.6.2.14 public static final int FLOWCONTROL_RTSCTS_OUT = 2

Flow control: RTS/CTS on output.

146.6.2.15 public static final int FLOWCONTROL_XONXOFF_IN = 4

Flow control: XON/XOFF on input.

146.6.2.16 public static final int FLOWCONTROL_XONXOFF_OUT = 8

Flow control: XON/XOFF on output.

146.6.2.17 public static final int PARITY_EVEN = 2

Parity: Even.

Serial Device Service Specification Version 1.0 org.osgi.service.serial

OSGi Residential Release 6 Page 651

146.6.2.18 public static final int PARITY_MARK = 3

Parity: Mark.

146.6.2.19 public static final int PARITY_NONE = 0

Parity: None.

146.6.2.20 public static final int PARITY_ODD = 1

Parity: Odd.

146.6.2.21 public static final int PARITY_SPACE = 4

Parity: Space.

146.6.2.22 public static final int STOPBITS_1 = 1

Stop bits: 1.

146.6.2.23 public static final int STOPBITS_1_5 = 3

Stop bits: 1.5.

146.6.2.24 public static final int STOPBITS_2 = 2

Stop bits: 2.

146.6.3 public interface SerialDevice
SerialDevice is a service representing a device performing serial communication.

Concurrency Thread-safe

146.6.3.1 public static final String DEVICE_CATEGORY = "Serial"

Constant for the value of the service property DEVICE_CATEGORY used for all Serial devices.

A Serial base driver bundle must set this property key.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY

146.6.3.2 public static final String SERIAL_COMPORT = "serial.comport"

Service property for the serial comport.

Represents the name of the port. The value type is String.

For example, "/dev/ttyUSB0", "COM5", or "/dev/tty.usbserial-XXXXXX".

146.6.3.3 public SerialPortConfiguration getConfiguration()

□ Gets the Serial port configuration.

Returns The SerialPortConfiguration object containing the configuration.

146.6.3.4 public InputStream getInputStream() throws IOException

□ Returns an input stream.

Returns An input stream.

Throws IOException– if an I/O error occurred.

146.6.3.5 public OutputStream getOutputStream() throws IOException

□ Returns an output stream.

Returns An output stream.

org.osgi.service.serial Serial Device Service Specification Version 1.0

Page 652 OSGi Residential Release 6

Throws IOException– If an I/O error occurred.

146.6.3.6 public boolean isCTS()

□ Returns the CTS state.

Returns The CTS state.

146.6.3.7 public boolean isDSR()

□ Returns the DSR state.

Returns The DSR state.

146.6.3.8 public boolean isDTR()

□ Returns the DTR state.

Returns The DTR state.

146.6.3.9 public boolean isRTS()

□ Returns the DTS state.

Returns The DTS state.

146.6.3.10 public void setConfiguration(SerialPortConfiguration configuration) throws SerialDeviceException

configuration The SerialPortConfiguration object containing the configuration.

□ Sets the Serial port configuration.

Throws SerialDeviceException– If the parameter is specified incorrectly or the parameter is not supported.

146.6.3.11 public void setDTR(boolean dtr) throws SerialDeviceException

dtr true for DTR on; fa lse for DTR for off.

□ Sets the DTR state.

Throws SerialDeviceException– If the parameter is not supported.

146.6.3.12 public void setRTS(boolean rts) throws SerialDeviceException

rts true for RTS on; fa lse for RTS for off.

□ Sets the RTS state.

Throws SerialDeviceException– If the parameter is not supported.

146.6.4 public class SerialDeviceException
extends Exception
A exception used to indicate that a serial device communication problem occurred.

146.6.4.1 public static final int PORT_IN_USE = 1

The port in use.

146.6.4.2 public static final int UNKNOWN = 0

The reason is unknown.

146.6.4.3 public static final int UNSUPPORTED_OPERATION = 2

The operation is unsupported.

146.6.4.4 public SerialDeviceException(int type,String message)

type The type for this exception.

Serial Device Service Specification Version 1.0 org.osgi.service.serial

OSGi Residential Release 6 Page 653

message The message.

□ Creates a SerialDeviceException with the specified type and message.

146.6.4.5 public int getType()

□ Returns the type for this exception.

Returns The type of this exception.

146.6.5 public interface SerialEvent
A serial device event. SerialEvent objects are delivered to SerialEventListeners when an event oc-
curs.

A type of code is used to identify the event. Additional event types may be defined in the future.

Concurrency Thread-safe

146.6.5.1 public static final int DATA_AVAILABLE = 1

Event type indicating data available.

146.6.5.2 public String getComPort()

□ Returns the port name of this event.

This value must be equal to the value of SerialDevice.SERIAL_COMPORT service property of the Se-
rialDevice.

Returns The port name of this event.

146.6.5.3 public int getType()

□ Returns the type of this event.

Returns The type of this event.

146.6.6 public interface SerialEventListener
Serial events are sent using the white board model, in which a bundle interested in receiving the Se-
rial events registers an object implementing the SerialEventListener interface. A COM port name
can be set to limit the events for which a bundle is notified.

Concurrency Thread-safe

146.6.6.1 public static final String SERIAL_COMPORT = "serial.comport"

Key for a service property that is used to limit received events.

146.6.6.2 public void notifyEvent(SerialEvent event)

event The SerialEvent object.

□ Callback method that is invoked for received an event.

146.6.7 public class SerialPortConfiguration
An object represents the Serial port configuration.

Concurrency Immutable

146.6.7.1 public SerialPortConfiguration(int baudRate,int dataBits,int flowControl,int parity,int stopBits)

baudRate Baud rate.

dataBits Data bits.

org.osgi.service.serial Serial Device Service Specification Version 1.0

Page 654 OSGi Residential Release 6

flowControl Flow control.

parity Parity.

stopBits Stop bits.

□ Creates an instance of the serial port configuration with the specified Baud rate, Data bits, Flow con-
trol, Parity and Stop bits.

146.6.7.2 public SerialPortConfiguration(int baudRate)

baudRate Baud rate.

□ Creates an instance of the serial port configuration with the specified Baud rate and the following
configuration: Data bits = 8, Flow control = none, Parity = none, Stop bits = 1.

146.6.7.3 public SerialPortConfiguration()

□ Creates an instance of the serial port configuration with the following configuration: Baud rate = au-
to, Data bits = 8, Flow control = none, Parity = none, Stop bits = 1.

146.6.7.4 public int getBaudRate()

□ Returns the baud rate.

Returns The baud rate.

146.6.7.5 public int getDataBits()

□ Returns the data bits.

Returns The data bits.

146.6.7.6 public int getFlowControl()

□ Returns the flow control.

Returns The flow control.

146.6.7.7 public int getParity()

□ Returns the parity.

Returns The parity.

146.6.7.8 public int getStopBits()

□ Returns the stop bits.

Returns The stop bits.

XML Parser Service Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 655

702 XML Parser Service Specification

Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of describing data. As more
bundles use XML to describe their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP for Java 2 Standard Edi-
tion and Enterprise Edition. This specification addresses how the classes defined in JAXP can be used
in an OSGi framework. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials

• Standards - Leverage existing standards in Java based XML parsing: JAXP, SAX and DOM
• Unmodified JAXP code - Run unmodified JAXP code
• Simple - It should be easy to provide a SAX or DOM parser as well as easy to find a matching pars-

er
• Multiple - It should be possible to have multiple implementations of parsers available
• Extendable - It is likely that parsers will be extended in the future with more functionality

702.1.2 Entities

• XMLParserActivator - A utility class that registers a parser factory from declarative information in
the Manifest file.

• SAXParserFactory - A class that can create an instance of a SAXParser class.
• DocumentBuilderFactory - A class that can create an instance of a DocumentBui lder class.
• SAXParser - A parser, instantiated by a SaxParserFactory object, that parses according to the SAX

specifications.
• DocumentBuilder - A parser, instantiated by a DocumentBui lderFactory , that parses according to

the DOM specifications.

JAXP XML Parser Service Specification Version 1.0

Page 656 OSGi Residential Release 6

Figure 702.1 XML Parsing diagram

SAXParser
Factory

Document
Builder Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..*0..*

0..*0..*

0..*0..*

0..*0..*

0,1 0,1

0,10,1

0..*10..* 1

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a SAXParserFactory and/
or a DocumentBui lderFactory service object with the Framework. Service registration properties de-
scribe the features of the parsers to other bundles. A bundle that needs an XML parser will get a SAX-
ParserFactory or DocumentBui lderFactory service object from the Framework service registry. This
object is then used to instantiate the requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the interchange of complex in-
formation between different parties. Though only a single XML standard exists, there are multiple
APIs to XML parsers, primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by different vendors.

A given XML Parser implementation may support either or both of these parser types by imple-
menting the org.w3c.dom and/or org.xml.sax packages. In addition, parsers have characteristics
such as whether they are validating or non-validating parsers and whether or not they are name-
space aware.

An application which uses a specific XML Parser must code to that specific parser and become cou-
pled to that specific implementation. If the parser has implemented [4] JAXP, however, the applica-
tion developer can code against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts the creation of another
object. JAXP defines a DocumentBui lderFactory and a SAXParserFactory class for this purpose.

XML Parser Service Specification Version 1.0 XML Parser service

OSGi Residential Release 6 Page 657

JAXP is implemented in the javax.xml.parsers package and provides an abstraction layer between
an application and a specific XML Parser implementation. Using JAXP, applications can choose to
use any JAXP compliant parser without changing any code, simply by changing a System property
which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the SAXParserFactory or Document-
Bui lderFactory class. This method will inspect the associated System property and create a new in-
stance of that class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each type of parser factories
can be registered. This specification specifies how multiple SAXParserFactory objects and Docu-
mentBui lderFactory objects can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi service registry under the
factory class name. Service properties are used to describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for parsers supporting the spe-
cific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the service. In this specification,
the following properties are specified:

• PARSER_NAMESPACEAWARE - The registered parser is aware of name-spaces. Name-spaces allow
an XML document to consist of independently developed DTDs. In an XML document, they are
recognized by the xmlns attribute and names prefixed with an abbreviated name-space identifi-
er, like: <xsl : i f . . .> . The type is a Boolean object that must be true when the parser supports name-
spaces. All other values, or the absence of the property, indicate that the parser does not imple-
ment name-spaces.

• PARSER_VALIDATING - The registered parser can read the DTD and can validate the XML accord-
ingly. The type is a Boolean object that must true when the parser is validating. All other values,
or the absence of the property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory from the service registry. In
a simple case in which a non-validating, non-name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBuilder getParser(BundleContext context)
 throws Exception {
 ServiceReference ref = context.getServiceReference(
 DocumentBuilderFactory.class.getName());
 if (ref == null)
 return null;

Adapting a JAXP Parser to OSGi XML Parser Service Specification Version 1.0

Page 658 OSGi Residential Release 6

 DocumentBuilderFactory factory =
 (DocumentBuilderFactory) context.getService(ref);
 return factory.newDocumentBuilder();
}

In a more demanding case, the filtered version allows the bundle to select a parser that is validating
and name-space aware:

SAXParser getParser(BundleContext context)
 throws Exception {
 ServiceReference refs[] = context.getServiceReferences(
 SAXParserFactory.class.getName(),
 "(&(parser.namespaceAware=true)"
 + "(parser.validating=true))");
 if (refs == null)
 return null;
 SAXParserFactory factory =
 (SAXParserFactory) context.getService(refs[O]);
 return factory.newSAXParser();
}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware bundle
by adding a BundleActivator class which registers an XML Parser Service. The utility
org.osgi .ut i l .xml.XMLParserActivator class provides this function and can be added (copied, not ref-
erenced) to any XML Parser bundle, or it can be extended and customized if desired.

702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, services directory. This spec-
ification defines a concept for service providers. A JAR file can contain an implementation of an ab-
stractly defined service. The class (or classes) implementing the service are designated from a file in
the META-INF/services directory. The name of this file is the same as the abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by new lines. White space is
ignored and the number sign ('# ' \u0023) is the comment character.

JAXP uses this service provider mechanism. It is therefore likely that vendors will place these ser-
vice files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class that should be normally
delivered with the OSGi framework implementation. This class is a Bundle Activator and must start
when the bundle is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleActivator class will look in the META-INF/services service
provider directory for the files javax.xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax.xml.parsers.DocumentBui lderFactory (DOMFACTORYNAME). The full path name is specified
in the constants SAXCLASSFILE and DOMCLASSFILE respectively.

If either of these files exist, the utility BundleActivator class will parse the contents according to the
specification. A service provider file can contain multiple class names. Each name is read and a new
instance is created. The following example shows the possible content of such a file:

ACME example SAXParserFactory file

XML Parser Service Specification Version 1.0 Usage of JAXP

OSGi Residential Release 6 Page 659

com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax.xml.parsers.SAXParserFactory and the javax.xml.parsers.DocumentBui lderFactory
provide methods that describe the features of the parsers they can create. The XMLParserActivator
activator will use these methods to set the values of the properties, as defined in Properties on page
657, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
To incorporate this bundle activator into a XML Parser Bundle, do the following:

• If SAX parsing is supported, create a /META-INF/services/ javax.xml.parsers.SAXParserFactory re-
source file containing the class names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/ser-
vices/ javax.xml.parsers.DocumentBui lderFactory file containing the fully qualified class names
of the DocumentBui lderFactory classes.

• Create manifest file which imports the packages org.w3c.dom , org.xml.sax , and
javax.xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the XMLParserActivator , the sub-class
that was created, or a fully custom one.

• If the parsers support attributes, properties, or features that should be registered
as properties so they can be searched, extend the XMLParserActivator class and
override setSAXPropert ies(javax.xml.parsers.SAXParserFactory,Hashtable) and
setDOMPropert ies(javax.xml.parsers.DocumentBui lderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP does not provide a way for
XMLParserActivator to query the parser to find out what properties were added.

• Bundles that extend the XMLParserActivator class must call the original methods via super to
correctly initialize the XML Parser Service properties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org.osgi .ut i l .xml.XMLParserActivator class is contained in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of contained packages
must be appropriately labeled. JAXP 1.1 or later is required which references SAX 2 and DOM 2. See
[4] JAXP for the exact version dependencies.

This specification is related to related packages as defined in the JAXP 1.1 document. The following
table contains the expected minimum versions.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version
javax.xml.parsers 1.1
org.xml.sax 2.0
org.xml.sax.helpers 2.0
org.xsml.sax.ext 1.0
org.w3c.dom 2.0

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a number libraries that
implement the necessary APIs. These libraries can be wrapped in a bundle to provide the relevant
packages.

Security XML Parser Service Specification Version 1.0

Page 660 OSGi Residential Release 6

702.8 Security
A centralized XML parser is likely to see sensitive information from other bundles. Provi-
sioning an XML parser should therefore be limited to trusted bundles. This security can be
achieved by providing ServicePermission[javax.xml.parsers.DocumentBui lderFactory |
javax.xml.parsers.SAXFactory,REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermission[javax.xml.parsers.DOMParserFactory | javax.xml.parsers.SAXFactory, GET]
should not be restricted.

The XML parser bundle will need Fi lePermission[<<ALL FILES>>,READ] for parsing of files because
it is not known beforehand where those files will be located. This requirement further implies that
the XML parser is a system bundle that must be fully trusted.

702.9 org.osgi.util.xml

XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .xml; vers ion="[1.0,2.0)"

702.9.1 Summary

• XMLParserActivator - A BundleActivator class that allows any JAXP compliant XML Parser to
register itself as an OSGi parser service.

702.9.2 public class XMLParserActivator
implements BundleActivator, ServiceFactory
A BundleActivator class that allows any JAXP compliant XML Parser to register itself as an OSGi
parser service. Multiple JAXP compliant parsers can concurrently register by using this Bundle-
Activator class. Bundles who wish to use an XML parser can then use the framework's service reg-
istry to locate available XML Parsers with the desired characteristics such as validating and name-
space-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME)
• javax.xml.parsers.DocumentBui lderFactory(DOMFACTORYNAME)

The algorithm to find the implementations of the abstract parsers is derived from the JAR file speci-
fications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the factory classes in the fol-
lowing files:

• /META-INF/services/ javax.xml.parsers.SAXParserFactory is a file contained in a jar available to
the runtime which contains the implementation class name(s) of the SAXParserFactory.

• /META-INF/services/ javax.xml.parsers.DocumentBui lderFactory is a file contained in a jar avail-
able to the runtime which contains the implementation class name(s) of the DocumentBui lder-
Factory

XML Parser Service Specification Version 1.0 org.osgi.util.xml

OSGi Residential Release 6 Page 661

If either of the files does not exist, XMLParserActivator assumes that the parser does not support that
parser type.

XMLParserActivator attempts to instantiate both the SAXParserFactory and the DocumentBui lder-
Factory . It registers each factory with the framework along with service properties:

• PARSER_VALIDATING- indicates if this factory supports validating parsers. It's value is a
Boolean .

• PARSER_NAMESPACEAWARE- indicates if this factory supports namespace aware parsers It's
value is a Boolean .

Individual parser implementations may have additional features, properties, or attributes which
could be used to select a parser with a filter. These can be added by extending this class and overrid-
ing the setSAXPropert ies and setDOMPropert ies methods.

Concurrency Thread-safe

702.9.2.1 public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"

Fully qualified path name of DOM Parser Factory Class Name file

702.9.2.2 public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"

Filename containing the DOM Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.3 public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"

Service property specifying if factory is configured to support namespace aware parsers. The value is
of type Boolean .

702.9.2.4 public static final String PARSER_VALIDATING = "parser.validating"

Service property specifying if factory is configured to support validating parsers. The value is of type
Boolean .

702.9.2.5 public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"

Fully qualified path name of SAX Parser Factory Class Name file

702.9.2.6 public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"

Filename containing the SAX Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.7 public XMLParserActivator()

702.9.2.8 public Object getService(Bundle bundle,ServiceRegistration registration)

bundle The bundle using the service.

registration The ServiceRegistrat ion object for the service.

□ Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating and namespace aware sup-
port as specified in the service properties of the specified ServiceRegistration object. This method
can be overridden to configure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error was encountered

702.9.2.9 public void setDOMProperties(DocumentBuilderFactory factory,Hashtable props)

factory - the DocumentBuilderFactory object

org.osgi.util.xml XML Parser Service Specification Version 1.0

Page 662 OSGi Residential Release 6

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
props object.

This method can be overridden to add additional DOM2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.10 public void setSAXProperties(SAXParserFactory factory,Hashtable properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
properties object.

This method can be overridden to add additional SAX2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

□ Called when this bundle is started so the Framework can perform the bundle-specific activities nec-
essary to start this bundle. This method can be used to register services or to allocate any resources
that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Framework's service registry.

Throws Exception– If this method throws an exception, this bundle is marked as stopped and the Frame-
work will remove this bundle's listeners, unregister all services registered by this bundle, and re-
lease all services used by this bundle.

702.9.2.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

□ This method has nothing to do as all active service registrations will automatically get unregistered
when the bundle stops.

Throws Exception– If this method throws an exception, the bundle is still marked as stopped, and the
Framework will remove the bundle's listeners, unregister all services registered by the bundle, and
release all services used by the bundle.

702.9.2.13 public void ungetService(Bundle bundle,ServiceRegistration registration,Object service)

bundle The bundle releasing the service.

registration The ServiceRegistrat ion object for the service.

service The XML Parser Factory object returned by a previous call to the getService method.

□ Releases a XML Parser Factory object.

XML Parser Service Specification Version 1.0 References

OSGi Residential Release 6 Page 663

702.10 References

[1] XML
http://www.w3.org/XML

[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://jaxp.java.net/

[5] JAR File specification, services directory
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xerces.apache.org/xerces2-j/

References XML Parser Service Specification Version 1.0

Page 664 OSGi Residential Release 6

Promises Specification Version 1.0 Introduction

OSGi Residential Release 6 Page 665

705 Promises Specification

Version 1.0

705.1 Introduction
One of the fundamental pieces of an asynchronous programming model is the mechanism
by which clients retrieve the result of the asynchronous task. Since Java 5, there has been a
java.ut i l .concurrent.Future interface available in the Java class libraries, which means that it is
the de facto API in Java for handling the result of an asynchronous task. Futures have some limita-
tions however in that they have no mechanism for registering callbacks. Java 8 introduces the class
java.ut i l .concurrent.CompletableFuture which addresses this but the requirement of Java 8 is un-
suitable for many OSGi users at this time.

This specification defines a Promises API which can be used on many versions of Java including Java
5 and Java ME CDC/Foundation. The Promises API defined by this specification is independent of all
other OSGi specifications including the OSGi Framework and thus can be easily used outside of the
OSGi environment.

A Promise object holds the result of a potentially asynchronous task. The receiver of a Promise ob-
ject can register callbacks on the Promise to be notified when the result is available or can block on
the result becoming available. Promises can be chained together in powerful ways to handle asyn-
chronous work flows and recovery.

Promises capture the effects of latency and errors by making these explicit in the API signatures. La-
tency is represented by callbacks which will eventually be called. Errors are represented by the fail-
ure member. In essence, this is what sets Promises apart from things such as RPC calls where such
effects are not explicitly captured but rather attempted to be transparently handled.

705.1.1 Essentials

• Common concepts - The API is inspired by the Promises work in JavaScript and uses the same basic
concepts. See [2] JavaScript Promises.

• Independent - The design is independent of all other OSGi specifications and can be used outside
of an OSGi environment.

• Asynchronous - The design supports asynchronous tasks.
• Small - The API and implementation are very compact.
• Complete - The design provides a very complete set of operations for Promise which are primi-

tives that can be used to address most use cases.
• Monad - The design supports monadic programming. See [4] Monad.
• Resolution - A Promise can be resolved successfully with a value or unsuccessfully with an excep-

tion.
• Generified - Generics are used to promote type safety.

705.1.2 Entities

• Promise - A Promise object holds the eventual result of a potentially asynchronous task.
• Callback - The receiver of a Promise can register callbacks on the Promise to be notified when the

task is completed.

Promise Promises Specification Version 1.0

Page 666 OSGi Residential Release 6

• Deferred - A Deferred object represents the potentially asynchronous task and is used to resolve
the Promise.

Figure 705.1 Class diagram of org.osgi.util.promise

<<class>>
Deferred resolves

<<interface>>
Promise1

<<class>>
Promises <<interface>>

Failure
<<interface>>
Success

<<interface>>
Runnable

0..n0..n 0..n

calls callscalls

705.2 Promise
A Promise object holds the eventual result of a potentially asynchronous task. A Promise is either
unresolved or resolved. An unresolved Promise does not have the result of the associated task avail-
able while a resolved Promise has the result of the associated task available. The isDone() method
must return true if the Promise is resolved and fa lse if the Promise is unresolved. A Promise must
only be resolved once.

A resolved Promise can be either resolved with a value, which means the associated task completed
successfully and supplied a result, or resolved with a failure, which means the associated task com-
pleted unsuccessfully and supplied an exception. The getFai lure() method can be called to determine
if the resolved Promise completed successfully with a value or unsuccessfully with a failure. If the
getFai lure() method returns a Throwable , the Promise resolved unsuccessfully with a failure. If the
getFai lure() method returns nul l , the Promise resolved successfully with a value that can be ob-
tained from getValue() .

If the Promise is unresolved, then calling getFai lure() or getValue() must block until the Promise is
resolved. In general, these two methods should not be used outside of a callback. Use callbacks to be
notified when the Promise is resolved. See Callbacks on page 667.

705.3 Deferred
Promise is an interface which can allow for many Promise implementations. This API contains the
Deferred class which provides a standard Promise implementation. A Deferred object can be creat-
ed with the Deferred() constructor and the Promise associated with the new Deferred object can be
obtained using getPromise() . This Promise can then be supplied to other parties who can use it to be
notified of and obtain the eventual result.

public Promise<String> getTimeConsumingAnswer() {
 Deferred<String> deferred = new Deferred<String>();
 asynchronously(() -> doTask(deferred));
 return deferred.getPromise();
}

A Deferred object can later be used to resolve the associated Promise successfully by calling
resolve(T) or unsuccessfully by calling fa i l (Throwable) .

private void doTask(Deferred<String> deferred) {
 try {
 String answer = computeTimeConsumingAnswer();

Promises Specification Version 1.0 Callbacks

OSGi Residential Release 6 Page 667

 deferred.resolve(answer); // successfully resolve with value
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

A Deferred object can also be used to resolve the associated Promise with the eventual result of an-
other Promise by calling resolveWith(Promise) .

private void doTask(Deferred<String> deferred) {
 try {
 Promise<String> answer = getPromiseWithTheAnswer();
 deferred.resolveWith(answer); // resolve with another Promise
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

If resolve(T) or fa i l (Throwable) is called when the Promise associated with the Deferred is already
resolved, then an Illegal State Exception must be thrown.

Care must be taken in sharing a Deferred object with other parties since the other parties can re-
solve the associated Promise. A Deferred object should be made available only to the party that will
responsible for resolving the associated Promise.

705.4 Callbacks
To be notified when a Promise has been resolved, callbacks are used. The Promise API provides two
forms of callbacks: the basic Runnable callback and the more specialized Success and Fai lure call-
backs.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
callback is called.

Resolving a Promise happens-before any registered callback is called. That is, for the resolved Promise,
in a registered callback isDone() must return true and getValue() and getFai lure() must not block.

Callbacks may be registered at any time including before and after a Promise has been resolved. If
a callback is registered before the Promise is resolved, it will be called later when the Promise is re-
solved. If a callback is registered on an already resolved Promise, it will be called right away.

705.4.1 Runnable
The onResolve(Runnable) method is used to register a Runnable with the Promise which must be
called when the Promise is resolved either successfully with a value or unsuccessfully with a failure.
The resolved Promise is not passed to the Runnable, so if the Runnable implementation needs access
to the resolved Promise, it must take care to ensure it has access.

final Promise<String> answer = getTimeConsumingAnswer();
answer.onResolve(new Runnable() {
 public void run() {
 doSomethingWithAnswer(answer);
 }
});

The onResolve(Runnable) method returns the Promise object upon which it is called.

Chaining Promises Promises Specification Version 1.0

Page 668 OSGi Residential Release 6

705.4.2 Success and Failure
The then(Success) and then(Success,Fai lure) methods can be used to register the more specialized
Success and Fai lure callbacks. The Success callback is only called if the Promise is successfully re-
solved with a value. The Fai lure callback is only called if the Promise is unsuccessfully resolved with
a failure.

Promise<String> answer = getTimeConsumingAnswer();
answer.then(p -> processResult(p.getValue()), p -> handleFailure(p.getFailure()));

The then methods return a new Promise which can be used to chain Promises together.

705.5 Chaining Promises
The then(Success) and then(Success,Fai lure) methods also provide a means to chain Promises
together. The then methods return a new Promise which is chained to the original Promise up-
on which the then method was called. The returned Promise must be resolved when the original
Promise is resolved after the specified Success or Failure callback is executed. The result of the exe-
cuted callback must be used to resolve the returned Promise. A sequence of calls to the then meth-
ods can be used to create a chain of promises which are resolved in sequence.

If the original Promise is successfully resolved, the Success callback is executed and the Promise re-
turned by the Success callback, if any, or thrown exception is used to resolve the Promise returned
from the then method. If the original Promise is resolved with a failure, the Failure callback is exe-
cuted and the Promise returned from the then method is resolved with a failure.

In the following example, a Promise which will supply the name of the file to download is chained
to a Promise which will return a mirror URL to use to download the file which is then further
chained to a Promise which will return an Input Stream from which to read the download file.

Promise<String> name = getDownloadName();
Promise<URL> mirror = name.then(p -> getMirror(p.getValue()));
Promise<InputStream> in = mirror.then(p -> getStream(p.getValue()));

Since we probably do not need the intermediate Promises, we can collapse the chain into a single
statement.

Promise<InputStream> in = getDownloadName().then(p -> getMirror(p.getValue()))
 .then(p -> getStream(p.getValue()));

The chain of Promises will also propagate any exceptions that occur to resolve the last Promise in
the chain which means we do not need to do any exception handling in the intermediate tasks.

705.6 Monad
The Promise API supports monadic programming. See [4] Monad. The Promise interface defines a
number of interesting methods including map , f latMap and f i l ter .

• f i l ter(Predicate) - Filter the value of the Promise.

If the Promise is successfully resolved, the predicate argument is called with the value of the
Promise. If the predicate accepts the value, then the value is used to successfully resolve the
Promise returned by the filter method. If the predicate does not accept the value, the Promise re-
turned by the filter method is unsuccessfully resolved with a No Such Element Exception. If the
predicate throws an exception, the Promise returned by the filter method is unsuccessfully re-
solved with that exception.

Promises Specification Version 1.0 Monad

OSGi Residential Release 6 Page 669

If the Promise is unsuccessfully resolved, the predicate argument is not called and the Promise
returned by the filter method is unsuccessfully resolved with the failure of the Promise.

• map(Function) - Map the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The value returned by the function is used to successfully resolve the Promise returned
by the map method. If the function throws an exception, the Promise returned by the map
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the map method is unsuccessfully resolved with the failure of the Promise.

• f latMap(Function) - FlatMap the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The Promise returned by the function is used to resolve the Promise returned by the
flatMap method. If the function throws an exception, the Promise returned by the flatMap
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the flatMap method is unsuccessfully resolved with the failure of the Promise.

• recover(Function) - Recover from the unsuccessful resolution of the Promise with a recovery val-
ue.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery value. If the recovery value is not nul l , the Promise returned by the recover
method is successfully resolved with the recovery value. If the recovery value is nul l , the Promise
returned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• recoverWith(Function) - Recover from the unsuccessful resolution of the Promise with a recov-
ery Promise.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery Promise. If the recovery Promise is not nul l , the Promise returned by the recov-
er method is resolved with the recovery Promise. If the recovery Promise is nul l , the Promise re-
turned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• fa l lbackTo(Promise) - Fall back to the value of the Promise argument if the Promise unsuccessful-
ly resolves.

If the Promise is successfully resolved, the Promise argument is not used and the Promise re-
turned by the fallbackTo method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the Promise argument is used to provide a fallback
value when it becomes resolved. If the Promise argument is successfully resolved, the Promise
returned by the fallbackTo method is resolved with the value of the Promise argument. If the
Promise argument is unsuccessfully resolved, the Promise returned by the fallbackTo method is
unsuccessfully resolved with the failure of the Promise.

These functions can be used to build pipelines of chained Promises that are processed in sequence.
For example, in the following chain, the value of the original promise, once resolved, is filtered for

Functional Interfaces Promises Specification Version 1.0

Page 670 OSGi Residential Release 6

acceptable values. If the filter says the value is not acceptable, the recover method will be used to re-
place it with a default value.

return promise.filter(v -> isValueOk(v)).recover(p -> getDefaultValue())

With these chains, one can write powerful programs without the need to resort to complex if/else
and try/catch logic.

705.7 Functional Interfaces
In Java 8, the concept of Functional Interfaces is introduced. See [5] Function Interfaces. Functional
interfaces are interfaces with a single abstract method. Instances of functional interfaces can be
created with lambda expressions, method references, or constructor references. Many methods on
Promise take functional interface arguments and so are suitable for use with lambda expressions
and method references in Java 8.

Two of these functional interfaces are Function and Predicate . These are equivalent to functional in-
terfaces which are part of the java.ut i l .function package introduced in Java 8. Since OSGi intends the
Promise API to be usable on versions of Java prior to Java 8, we define our own interfaces. In the fu-
ture, if Java 8 or later, becomes the base supported Java level for this specification, OSGi can update
the Promise interface to add default methods which accept the java.ut i l .function versions of these
functional interfaces.

705.8 Promises Class
The Promises class provides several useful static methods when working with Promises.

Often, you may need to create an already resolved Promise to return or chain with another Promise.
The resolved(T) method can be used to create a new Promise already successfully resolved with the
specified value. The fa i led(Throwable) method can be used to create a new Promise already unsuc-
cessfully resolved with the specified exception.

 return getTimeConsumingAnswer().fallbackTo(Promises.resolved("Fallback Value"));

The Promises class also provides the al l (Promise. . .) and al l (Col lect ion) methods which return a new
Promise that is a latch on the specified Promises. The returned Promise must resolve only when all
of the specified Promises have resolved.

705.9 Security
The Promise API does not define any OSGi services nor does the API perform any privileged actions.
Therefore, it has no security considerations.

705.10 org.osgi.util.promise

Promise Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Residential Release 6 Page 671

Import-Package: org.osgi .ut i l .promise; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .promise; vers ion="[1.0,1.1)"

705.10.1 Summary

• Deferred - A Deferred Promise resolution.
• Fai ledPromisesException - Promise failure exception for a collection of failed Promises.
• Fai lure - Failure callback for a Promise.
• Promise - A Promise of a value.
• Promises - Static helper methods for Promises.
• Success - Success callback for a Promise.

705.10.2 public class Deferred<T>
<T> The value type associated with the created Promise.

A Deferred Promise resolution.

Instances of this class can be used to create a Promise that can be resolved in the future. The
associated Promise can be successfully resolved with resolve(Object) or resolved with a fail-
ure with fail(Throwable). It can also be resolved with the resolution of another promise using
resolveWith(Promise).

The associated Promise can be provided to any one, but the Deferred object should be made avail-
able only to the party that will responsible for resolving the Promise.

Concurrency Immutable

705.10.2.1 public Deferred()

□ Create a new Deferred with an associated Promise.

705.10.2.2 public void fail(Throwable failure)

failure The failure of the resolved Promise. Must not be nul l .

□ Fail the Promise associated with this Deferred.

After the associated Promise is resolved with the specified failure, all registered callbacks are called
and any chained Promises are resolved.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.10.2.3 public Promise<T> getPromise()

□ Returns the Promise associated with this Deferred.

Returns The Promise associated with this Deferred.

705.10.2.4 public void resolve(T value)

value The value of the resolved Promise.

□ Successfully resolve the Promise associated with this Deferred.

After the associated Promise is resolved with the specified value, all registered callbacks are called
and any chained Promises are resolved.

org.osgi.util.promise Promises Specification Version 1.0

Page 672 OSGi Residential Release 6

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.10.2.5 public Promise<Void> resolveWith(Promise<? extends T> with)

with A Promise whose value or failure must be used to resolve the associated Promise. Must not be nul l .

□ Resolve the Promise associated with this Deferred with the specified Promise.

If the specified Promise is successfully resolved, the associated Promise is resolved with the value of
the specified Promise. If the specified Promise is resolved with a failure, the associated Promise is re-
solved with the failure of the specified Promise.

After the associated Promise is resolved with the specified Promise, all registered callbacks are called
and any chained Promises are resolved.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A Promise that is resolved only when the associated Promise is resolved by the specified Promise.
The returned Promise must be successfully resolved with the value nul l , if the associated Promise
was resolved by the specified Promise. The returned Promise must be resolved with a failure of Ille-
galStateException, if the associated Promise was already resolved when the specified Promise was
resolved.

705.10.3 public class FailedPromisesException
extends RuntimeException
Promise failure exception for a collection of failed Promises.

705.10.3.1 public FailedPromisesException(Collection<Promise<?>> failed,Throwable cause)

failed A collection of Promises that have been resolved with a failure. Must not be nul l , must not be empty
and all of the elements in the collection must not be nul l .

cause The cause of this exception. This is typically the failure of the first Promise in the specified collec-
tion.

□ Create a new FailedPromisesException with the specified Promises.

705.10.3.2 public Collection<Promise<?>> getFailedPromises()

□ Returns the collection of Promises that have been resolved with a failure.

Returns The collection of Promises that have been resolved with a failure. The returned collection is unmod-
ifiable.

705.10.4 public interface Failure
Failure callback for a Promise.

A Failure callback is registered with a Promise using the Promise.then(Success, Failure) method and
is called if the Promise is resolved with a failure.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.10.4.1 public void fail(Promise<?> resolved) throws Exception

resolved The failed resolved Promise.

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Residential Release 6 Page 673

□ Failure callback for a Promise.

This method is called if the Promise with which it is registered resolves with a failure.

In the remainder of this description we will refer to the Promise returned by Promise.then(Success,
Failure) when this Failure callback was registered as the chained Promise.

If this methods completes normally, the chained Promise must be failed with the same exception
which failed the resolved Promise. If this method throws an exception, the chained Promise must be
failed with the thrown exception.

Throws Exception– The chained Promise must be failed with the thrown exception.

705.10.5 public interface Promise<T>
<T> The value type associated with this Promise.

A Promise of a value.

A Promise represents a future value. It handles the interactions for asynchronous processing. A De-
ferred object can be used to create a Promise and later resolve the Promise. A Promise is used by the
caller of an asynchronous function to get the result or handle the error. The caller can either get a
callback when the Promise is resolved with a value or an error, or the Promise can be used in chain-
ing. In chaining, callbacks are provided that receive the resolved Promise, and a new Promise is gen-
erated that resolves based upon the result of a callback.

Both callbacks and chaining can be repeated any number of times, even after the Promise has been
resolved.

Example callback usage:

 final Promise<String> foo = foo();
 foo.onResolve(new Runnable() {
 public void run() {
 System.out.println(foo.getValue());
 }
 });

Example chaining usage;

 Success<String,String> doubler = new Success<String,String>() {
 public Promise<String> call(Promise<String> p) throws Exception {
 return Promises.resolved(p.getValue()+p.getValue());
 }
 };
 final Promise<String> foo = foo().then(doubler).then(doubler);
 foo.onResolve(new Runnable() {
 public void run() {
 System.out.println(foo.getValue());
 }
 });

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

705.10.5.1 public Promise<T> fallbackTo(Promise<? extends T> fallback)

fallback The Promise whose value must be used to resolve the returned Promise if this Promise resolves with
a failure. Must not be nul l .

□ Fall back to the value of the specified Promise if this Promise fails.

org.osgi.util.promise Promises Specification Version 1.0

Page 674 OSGi Residential Release 6

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the successful result of the specified Promise is used to re-
solve the returned Promise. If the specified Promise is resolved with a failure, the returned Promise
must be failed with the failure of this Promise rather than the failure of the specified Promise.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise or falls back to the value of the specified Promise.

705.10.5.2 public Promise<T> filter(Predicate<?> predicate)

predicate The Predicate to evaluate the value of this Promise. Must not be nul l .

□ Filter the value of this Promise.

If this Promise is successfully resolved, the returned Promise must either be resolved with the value
of this Promise, if the specified Predicate accepts that value, or failed with a NoSuchElementExcep-
t ion , if the specified Predicate does not accept that value. If the specified Predicate throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that filters the value of this Promise.

705.10.5.3 public Promise<R> flatMap(Function<?,Promise<? extends R>> mapper)

Type Arguments <R>

<R> The value type associated with the returned Promise.

mapper The Function that must flatMap the value of this Promise to a Promise that must be used to resolve
the returned Promise. Must not be nul l .

□ FlatMap the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the Promise
from the specified Function as applied to the value of this Promise. If the specified Function throws
an exception, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.10.5.4 public Throwable getFailure() throws InterruptedException

□ Returns the failure of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

If this Promise was resolved with a failure, this method returns with the failure of this Promise. If
this Promise was successfully resolved, this method must return nul l .

Returns The failure of this resolved Promise or nul l if this Promise was successfully resolved.

Throws InterruptedException– If the current thread was interrupted while waiting.

705.10.5.5 public T getValue() throws InvocationTargetException, InterruptedException

□ Returns the value of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Residential Release 6 Page 675

If this Promise was successfully resolved, this method returns with the value of this Promise. If this
Promise was resolved with a failure, this method must throw an InvocationTargetException with
the failure exception as the cause.

Returns The value of this resolved Promise.

Throws InvocationTargetException– If this Promise was resolved with a failure. The cause of the Invoca-
t ionTargetException is the failure exception.

InterruptedException– If the current thread was interrupted while waiting.

705.10.5.6 public boolean isDone()

□ Returns whether this Promise has been resolved.

This Promise may be successfully resolved or resolved with a failure.

Returns true if this Promise was resolved either successfully or with a failure; fa lse if this Promise is unre-
solved.

705.10.5.7 public Promise<R> map(Function<?,? extends R> mapper)

Type Arguments <R>

<R> The value type associated with the returned Promise.

mapper The Function that must map the value of this Promise to the value that must be used to resolve the
returned Promise. Must not be nul l .

□ Map the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of
specified Function as applied to the value of this Promise. If the specified Function throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.10.5.8 public Promise<T> onResolve(Runnable callback)

callback A callback to be called when this Promise is resolved. Must not be nul l .

□ Register a callback to be called when this Promise is resolved.

The specified callback is called when this Promise is resolved either successfully or with a failure.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

705.10.5.9 public Promise<T> recover(Function<Promise<?>,? extends T> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery value to
be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery value.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

org.osgi.util.promise Promises Specification Version 1.0

Page 676 OSGi Residential Release 6

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery value.

• If the recovery value is not nul l , the returned Promise must be resolved with the recovery value.
• If the recovery value is nul l , the returned Promise must be failed with the failure of this Promise.
• If the specified Function throws an exception, the returned Promise must be failed with that ex-

ception.

To recover from a failure of this Promise with a recovery value of nul l , the recoverWith(Function)
method must be used. The specified Function for recoverWith(Function) can return
Promises.resolved(nul l) to supply the desired nul l value.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.10.5.10 public Promise<T> recoverWith(Function<Promise<?>,Promise<? extends T>> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery Promise
to be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery Promise.

• If the recovery Promise is not nul l , the returned Promise must be resolved with the recovery
Promise.

• If the recovery Promise is nul l , the returned Promise must be failed with the failure of this
Promise.

• If the specified Function throws an exception, the returned Promise must be failed with that ex-
ception.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.10.5.11 public Promise<R> then(Success<?,? extends R> success,Failure failure)

Type Arguments <R>

<R> The value type associated with the returned Promise.

success A Success callback to be called when this Promise is successfully resolved. May be nul l if no Success
callback is required. In this case, the returned Promise must be resolved with the value nul l when
this Promise is successfully resolved.

failure A Failure callback to be called when this Promise is resolved with a failure. May be nul l if no Failure
callback is required.

□ Chain a new Promise to this Promise with Success and Failure callbacks.

The specified Success callback is called when this Promise is successfully resolved and the specified
Failure callback is called when this Promise is resolved with a failure.

This method returns a new Promise which is chained to this Promise. The returned Promise must
be resolved when this Promise is resolved after the specified Success or Failure callback is executed.
The result of the executed callback must be used to resolve the returned Promise. Multiple calls to
this method can be used to create a chain of promises which are resolved in sequence.

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Residential Release 6 Page 677

If this Promise is successfully resolved, the Success callback is executed and the result Promise, if
any, or thrown exception is used to resolve the returned Promise from this method. If this Promise is
resolved with a failure, the Failure callback is executed and the returned Promise from this method
is failed.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success or Failure callback, if any, is executed.

705.10.5.12 public Promise<R> then(Success<?,? extends R> success)

Type Arguments <R>

<R> The value type associated with the returned Promise.

success A Success callback to be called when this Promise is successfully resolved. May be nul l if no Success
callback is required. In this case, the returned Promise must be resolved with the value nul l when
this Promise is successfully resolved.

□ Chain a new Promise to this Promise with a Success callback.

This method performs the same function as calling then(Success, Failure) with the specified Success
callback and nul l for the Failure callback.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success, if any, is executed.

See Also then(Success, Failure)

705.10.6 public class Promises
Static helper methods for Promises.

Concurrency Thread-safe

705.10.6.1 public static Promise<List<T>> all(Collection<Promise<S>> promises)

Type Arguments <T,S extends T>

<T> The value type of the List value associated with the returned Promise.

<S> A subtype of the value type of the List value associated with the returned Promise.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the elements in the collection must not be nul l .

□ Create a new Promise that is a latch on the resolution of the specified Promises.

The new Promise acts as a gate and must be resolved after all of the specified Promises are resolved.

Returns A Promise that is resolved only when all the specified Promises are resolved. The returned Promise
must be successfully resolved with a List of the values in the order of the specified Promises if all the
specified Promises are successfully resolved. The List in the returned Promise is the property of the
caller and is modifiable. The returned Promise must be resolved with a failure of FailedPromisesEx-
ception if any of the specified Promises are resolved with a failure. The failure FailedPromisesExcep-
tion must contain all of the specified Promises which resolved with a failure.

org.osgi.util.promise Promises Specification Version 1.0

Page 678 OSGi Residential Release 6

705.10.6.2 public static Promise<List<T>> all(Promise<? extends T> ... promises)

Type Arguments <T>

<T> The value type associated with the specified Promises.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the arguments must not be nul l .

□ Create a new Promise that is a latch on the resolution of the specified Promises.

The new Promise acts as a gate and must be resolved after all of the specified Promises are resolved.

Returns A Promise that is resolved only when all the specified Promises are resolved. The returned Promise
must be successfully resolved with a List of the values in the order of the specified Promises if all the
specified Promises are successfully resolved. The List in the returned Promise is the property of the
caller and is modifiable. The returned Promise must be resolved with a failure of FailedPromisesEx-
ception if any of the specified Promises are resolved with a failure. The failure FailedPromisesExcep-
tion must contain all of the specified Promises which resolved with a failure.

705.10.6.3 public static Promise<T> failed(Throwable failure)

Type Arguments <T>

<T> The value type associated with the returned Promise.

failure The failure of the resolved Promise. Must not be nul l .

□ Create a new Promise that has been resolved with the specified failure.

Returns A new Promise that has been resolved with the specified failure.

705.10.6.4 public static Promise<T> resolved(T value)

Type Arguments <T>

<T> The value type associated with the returned Promise.

value The value of the resolved Promise.

□ Create a new Promise that has been resolved with the specified value.

Returns A new Promise that has been resolved with the specified value.

705.10.7 public interface Success<T,R>
<T> The value type of the resolved Promise passed as input to this callback.

<R> The value type of the returned Promise from this callback.

Success callback for a Promise.

A Success callback is registered with a Promise using the Promise.then(Success) method and is
called if the Promise is resolved successfully.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.10.7.1 public Promise<R> call(Promise<T> resolved) throws Exception

resolved The successfully resolved Promise.

□ Success callback for a Promise.

This method is called if the Promise with which it is registered resolves successfully.

Promises Specification Version 1.0 org.osgi.util.function

OSGi Residential Release 6 Page 679

In the remainder of this description we will refer to the Promise returned by this method as the re-
turned Promise and the Promise returned by Promise.then(Success) when this Success callback was
registered as the chained Promise.

If the returned Promise is nul l then the chained Promise must resolve immediately with a success-
ful value of nul l . If the returned Promise is not nul l then the chained Promise must be resolved when
the returned Promise is resolved.

Returns The Promise to use to resolve the chained Promise, or nul l if the chained Promise is to be resolved
immediately with the value nul l .

Throws Exception– The chained Promise must be failed with the thrown exception.

705.11 org.osgi.util.function

Function Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.0,1.1)"

705.11.1 Summary

• Function - A function that accepts a single argument and produces a result.
• Predicate - A predicate that accepts a single argument and produces a boolean result.

705.11.2 public interface Function<T,R>
<T> The type of the function input.

<R> The type of the function output.

A function that accepts a single argument and produces a result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.11.2.1 public R apply(T t)

t The input to this function.

□ Applies this function to the specified argument.

Returns The output of this function.

705.11.3 public interface Predicate<T>
<T> The type of the predicate input.

A predicate that accepts a single argument and produces a boolean result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

References Promises Specification Version 1.0

Page 680 OSGi Residential Release 6

705.11.3.1 public boolean test(T t)

t The input to this predicate.

□ Evaluates this predicate on the specified argument.

Returns true if the specified argument is accepted by this predicate; fa lse otherwise.

705.12 References

[1] JavaScript Promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

[2] JavaScript Promises
http://www.html5rocks.com/en/tutorials/es6/promises/

[3] ECMAScript 6 drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

[4] Monad
https://en.wikipedia.org/wiki/Monad_%28functional_programming%29

[5] Function Interfaces
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8

OSGi Residential Release 6

OSGi Residential Release 6 Page 681

OSGi Residential Release 6

Page 682 OSGi Residential Release 6

End Of Document

	OSGi Residential
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview of the Residential Specifications
	1.1.1. Remote Management
	1.1.2. Configuration, Monitoring and Management Services
	1.1.3. Component Models
	1.1.4. HTTP and Servlets
	1.1.5. Event models
	1.1.6. Device Interoperability
	1.1.7. Miscellaneous Supporting Services

	1.2. Version Information
	1.2.1. OSGi Core Release 6
	1.2.2. Component Versions

	1.3. References
	1.4. Changes

	Chapter 2. Residential Device Management Tree Specification
	2.1. Introduction
	2.1.1. Essentials
	2.1.2. Entities

	2.2. The Residential Management Tree
	2.3. Managing Bundles
	2.3.1. Bundle Life Cycle Example
	2.3.2. Framework Restart
	2.3.3. Access to Wiring
	2.3.4. Wiring Example

	2.4. Filtering
	2.4.1. Example

	2.5. Log Access
	2.6. osgi.wiring.rmt.service Namespace
	2.7. Tree Summary
	2.7.1. Framework
	2.7.2. Filter
	2.7.3. Log

	2.8. org.osgi.dmt.residential
	2.8.1. $
	2.8.2. Bundle
	2.8.2.1. FRAGMENT = "FRAGMENT"
	2.8.2.2. INSTALLED = "INSTALLED"
	2.8.2.3. RESOLVED = "RESOLVED"
	2.8.2.4. STARTING = "STARTING"
	2.8.2.5. ACTIVE = "ACTIVE"
	2.8.2.6. STOPPING = "STOPPING"
	2.8.2.7. UNINSTALLED = "UNINSTALLED"

	2.8.3. Bundle.Certificate
	2.8.4. Bundle.Entry
	2.8.5. Filter
	2.8.6. Framework
	2.8.7. Wire
	2.8.8. Wire.Capability
	2.8.9. Wire.Requirement

	2.9. org.osgi.dmt.service.log
	2.9.1. Log
	2.9.2. LogEntry

	2.10. References

	Chapter 3. TR-157 Amendment 3 Software Module Guidelines
	3.1. Management Agent
	3.2. Parameter Mapping
	3.3. References

	Chapter 101. Log Service Specification
	101.1. Introduction
	101.1.1. Entities

	101.2. The Log Service Interface
	101.3. Log Level and Error Severity
	101.4. Log Reader Service
	101.5. Log Entry Interface
	101.6. Mapping of Events
	101.6.1. Bundle Events Mapping
	101.6.2. Service Events Mapping
	101.6.3. Framework Events Mapping
	101.6.4. Log Events

	101.7. Security
	101.8. org.osgi.service.log
	101.8.1. Summary
	101.8.2. public interface LogEntry
	101.8.2.1. public Bundle getBundle()
	101.8.2.2. public Throwable getException()
	101.8.2.3. public int getLevel()
	101.8.2.4. public String getMessage()
	101.8.2.5. public ServiceReference getServiceReference()
	101.8.2.6. public long getTime()

	101.8.3. public interface LogListener extends EventListener
	101.8.3.1. public void logged(LogEntry entry)

	101.8.4. public interface LogReaderService
	101.8.4.1. public void addLogListener(LogListener listener)
	101.8.4.2. public Enumeration getLog()
	101.8.4.3. public void removeLogListener(LogListener listener)

	101.8.5. public interface LogService
	101.8.5.1. public static final int LOG_DEBUG = 4
	101.8.5.2. public static final int LOG_ERROR = 1
	101.8.5.3. public static final int LOG_INFO = 3
	101.8.5.4. public static final int LOG_WARNING = 2
	101.8.5.5. public void log(int level,String message)
	101.8.5.6. public void log(int level,String message,Throwable exception)
	101.8.5.7. public void log(ServiceReference sr,int level,String message)
	101.8.5.8. public void log(ServiceReference sr,int level,String message,Throwable exception)

	Chapter 102. Http Service Specification
	102.1. Introduction
	102.1.1. Entities

	102.2. Registering Servlets
	102.3. Registering Resources
	102.4. Mapping HTTP Requests to Servlet and Resource Registrations
	102.5. The Default Http Context Object
	102.6. Multipurpose Internet Mail Extension (MIME) Types
	102.7. Authentication
	102.8. Security
	102.8.1. Accessing Resources with the Default Http Context
	102.8.2. Accessing Other Types of Resources
	102.8.3. Servlet and HttpContext objects

	102.9. Configuration Properties
	102.10. org.osgi.service.http
	102.10.1. Summary
	102.10.2. public interface HttpContext
	102.10.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	102.10.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	102.10.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	102.10.2.4. public String getMimeType(String name)
	102.10.2.5. public URL getResource(String name)
	102.10.2.6. public boolean handleSecurity(HttpServletRequest request,HttpServletResponse response) throws IOException

	102.10.3. public interface HttpService
	102.10.3.1. public HttpContext createDefaultHttpContext()
	102.10.3.2. public void registerResources(String alias,String name,HttpContext context) throws NamespaceException
	102.10.3.3. public void registerServlet(String alias,Servlet servlet,Dictionary initparams,HttpContext context) throws ServletException, NamespaceException
	102.10.3.4. public void unregister(String alias)

	102.10.4. public class NamespaceException extends Exception
	102.10.4.1. public NamespaceException(String message)
	102.10.4.2. public NamespaceException(String message,Throwable cause)
	102.10.4.3. public Throwable getCause()
	102.10.4.4. public Throwable getException()
	102.10.4.5. public Throwable initCause(Throwable cause)

	102.11. References

	Chapter 103. Device Access Specification
	103.1. Introduction
	103.1.1. Essentials
	103.1.2. Operation
	103.1.3. Entities

	103.2. Device Services
	103.2.1. Device Service Registration
	103.2.2. Device Service Attachment
	103.2.2.1. Idle Device Service
	103.2.2.2. Device Service Unregistration

	103.3. Device Category Specifications
	103.3.1. Device Category Guidelines
	103.3.2. Sample Device Category Specification
	103.3.3. Match Example

	103.4. Driver Services
	103.4.1. Driver Bundles
	103.4.2. Driver Taxonomy
	103.4.2.1. Base Drivers
	103.4.2.2. Refining Drivers
	103.4.2.3. Network Drivers
	103.4.2.4. Composite Drivers
	103.4.2.5. Referring Drivers
	103.4.2.6. Bridging Drivers
	103.4.2.7. Multiplexing Drivers
	103.4.2.8. Pure Consuming Drivers
	103.4.2.9. Other Driver Types

	103.4.3. Driver Service Registration
	103.4.4. Driver Service Unregistration
	103.4.5. Driver Service Methods
	103.4.6. Idle Driver Bundles

	103.5. Driver Locator Service
	103.5.1. The DriverLocator Interface
	103.5.2. A Driver Example

	103.6. The Driver Selector Service
	103.7. Device Manager
	103.7.1. Device Manager Startup
	103.7.2. The Device Attachment Algorithm
	103.7.3. Legend
	103.7.4. Optimizations
	103.7.5. Driver Bundle Reclamation
	103.7.6. Handling Driver Bundle Updates
	103.7.7. Simultaneous Device Service and Driver Service Registration

	103.8. Security
	103.9. org.osgi.service.device
	103.9.1. Summary
	103.9.2. public interface Constants
	103.9.2.1. public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"
	103.9.2.2. public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"
	103.9.2.3. public static final String DEVICE_SERIAL = "DEVICE_SERIAL"
	103.9.2.4. public static final String DRIVER_ID = "DRIVER_ID"

	103.9.3. public interface Device
	103.9.3.1. public static final int MATCH_NONE = 0
	103.9.3.2. public void noDriverFound()

	103.9.4. public interface Driver
	103.9.4.1. public String attach(ServiceReference reference) throws Exception
	103.9.4.2. public int match(ServiceReference reference) throws Exception

	103.9.5. public interface DriverLocator
	103.9.5.1. public String[] findDrivers(Dictionary props)
	103.9.5.2. public InputStream loadDriver(String id) throws IOException

	103.9.6. public interface DriverSelector
	103.9.6.1. public static final int SELECT_NONE = -1
	103.9.6.2. public int select(ServiceReference reference,Match[] matches)

	103.9.7. public interface Match
	103.9.7.1. public ServiceReference getDriver()
	103.9.7.2. public int getMatchValue()

	103.10. References

	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order

	104.10. Meta Typing
	104.11. Security
	104.11.1. Configuration Permission
	104.11.2. Permissions Summary
	104.11.3. Configuration and Permission Administration

	104.12. org.osgi.service.cm
	104.12.1. Summary
	104.12.2. Permissions
	104.12.2.1. Configuration
	104.12.2.2. ConfigurationAdmin
	104.12.2.3. ManagedService
	104.12.2.4. ManagedServiceFactory

	104.12.3. public interface Configuration
	104.12.3.1. public void delete() throws IOException
	104.12.3.2. public boolean equals(Object other)
	104.12.3.3. public String getBundleLocation()
	104.12.3.4. public long getChangeCount()
	104.12.3.5. public String getFactoryPid()
	104.12.3.6. public String getPid()
	104.12.3.7. public Dictionary<String,Object> getProperties()
	104.12.3.8. public int hashCode()
	104.12.3.9. public void setBundleLocation(String location)
	104.12.3.10. public void update(Dictionary<String,?> properties) throws IOException
	104.12.3.11. public void update() throws IOException

	104.12.4. public interface ConfigurationAdmin
	104.12.4.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.12.4.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.12.4.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.12.4.4. public Configuration createFactoryConfiguration(String factoryPid,String location) throws IOException
	104.12.4.5. public Configuration getConfiguration(String pid,String location) throws IOException
	104.12.4.6. public Configuration getConfiguration(String pid) throws IOException
	104.12.4.7. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.12.5. public class ConfigurationEvent
	104.12.5.1. public static final int CM_DELETED = 2
	104.12.5.2. public static final int CM_LOCATION_CHANGED = 3
	104.12.5.3. public static final int CM_UPDATED = 1
	104.12.5.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference,int type,String factoryPid,String pid)
	104.12.5.5. public String getFactoryPid()
	104.12.5.6. public String getPid()
	104.12.5.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.12.5.8. public int getType()

	104.12.6. public class ConfigurationException extends Exception
	104.12.6.1. public ConfigurationException(String property,String reason)
	104.12.6.2. public ConfigurationException(String property,String reason,Throwable cause)
	104.12.6.3. public Throwable getCause()
	104.12.6.4. public String getProperty()
	104.12.6.5. public String getReason()
	104.12.6.6. public Throwable initCause(Throwable cause)

	104.12.7. public interface ConfigurationListener
	104.12.7.1. public void configurationEvent(ConfigurationEvent event)

	104.12.8. public final class ConfigurationPermission extends BasicPermission
	104.12.8.1. public static final String CONFIGURE = "configure"
	104.12.8.2. public static final String TARGET = "target"
	104.12.8.3. public ConfigurationPermission(String name,String actions)
	104.12.8.4. public boolean equals(Object obj)
	104.12.8.5. public String getActions()
	104.12.8.6. public int hashCode()
	104.12.8.7. public boolean implies(Permission p)
	104.12.8.8. public PermissionCollection newPermissionCollection()

	104.12.9. public interface ConfigurationPlugin
	104.12.9.1. public static final String CM_RANKING = "service.cmRanking"
	104.12.9.2. public static final String CM_TARGET = "cm.target"
	104.12.9.3. public void modifyConfiguration(ServiceReference<?> reference,Dictionary<String,Object> properties)

	104.12.10. public interface ManagedService
	104.12.10.1. public void updated(Dictionary<String,?> properties) throws ConfigurationException

	104.12.11. public interface ManagedServiceFactory
	104.12.11.1. public void deleted(String pid)
	104.12.11.2. public String getName()
	104.12.11.3. public void updated(String pid,Dictionary<String,?> properties) throws ConfigurationException

	104.12.12. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.13. Changes

	Chapter 105. Metatype Service Specification
	105.1. Introduction
	105.1.1. Essentials
	105.1.2. Entities
	105.1.3. Operation

	105.2. Attributes Model
	105.3. Object Class Definition
	105.4. Attribute Definition
	105.5. Meta Type Service
	105.6. Meta Type Provider Service
	105.7. Using the Meta Type Resources
	105.7.1. XML Schema of a Meta Type Resource
	105.7.2. Designate Element
	105.7.3. Example Metadata File
	105.7.4. Object Element

	105.8. Meta Type Resource XML Schema
	105.9. Meta Type Annotations
	105.9.1. ObjectClassDefinition Annotation
	105.9.2. AttributeDefinition Annotation
	105.9.3. Designate Annotation

	105.10. Limitations
	105.11. Related Standards
	105.12. Capabilities
	105.13. Security Considerations
	105.14. org.osgi.service.metatype
	105.14.1. Summary
	105.14.2. public interface AttributeDefinition
	105.14.2.1. public static final int BIGDECIMAL = 10
	105.14.2.2. public static final int BIGINTEGER = 9
	105.14.2.3. public static final int BOOLEAN = 11
	105.14.2.4. public static final int BYTE = 6
	105.14.2.5. public static final int CHARACTER = 5
	105.14.2.6. public static final int DOUBLE = 7
	105.14.2.7. public static final int FLOAT = 8
	105.14.2.8. public static final int INTEGER = 3
	105.14.2.9. public static final int LONG = 2
	105.14.2.10. public static final int PASSWORD = 12
	105.14.2.11. public static final int SHORT = 4
	105.14.2.12. public static final int STRING = 1
	105.14.2.13. public int getCardinality()
	105.14.2.14. public String[] getDefaultValue()
	105.14.2.15. public String getDescription()
	105.14.2.16. public String getID()
	105.14.2.17. public String getName()
	105.14.2.18. public String[] getOptionLabels()
	105.14.2.19. public String[] getOptionValues()
	105.14.2.20. public int getType()
	105.14.2.21. public String validate(String value)

	105.14.3. public interface MetaTypeInformation extends MetaTypeProvider
	105.14.3.1. public Bundle getBundle()
	105.14.3.2. public String[] getFactoryPids()
	105.14.3.3. public String[] getPids()

	105.14.4. public interface MetaTypeProvider
	105.14.4.1. public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"
	105.14.4.2. public static final String METATYPE_PID = "metatype.pid"
	105.14.4.3. public String[] getLocales()
	105.14.4.4. public ObjectClassDefinition getObjectClassDefinition(String id,String locale)

	105.14.5. public interface MetaTypeService
	105.14.5.1. public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"
	105.14.5.2. public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"
	105.14.5.3. public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

	105.14.6. public interface ObjectClassDefinition
	105.14.6.1. public static final int ALL = -1
	105.14.6.2. public static final int OPTIONAL = 2
	105.14.6.3. public static final int REQUIRED = 1
	105.14.6.4. public AttributeDefinition[] getAttributeDefinitions(int filter)
	105.14.6.5. public String getDescription()
	105.14.6.6. public InputStream getIcon(int size) throws IOException
	105.14.6.7. public String getID()
	105.14.6.8. public String getName()

	105.15. org.osgi.service.metatype.annotations
	105.15.1. Summary
	105.15.2. @AttributeDefinition
	105.15.2.1. String name default ""
	105.15.2.2. String description default ""
	105.15.2.3. AttributeType type default STRING
	105.15.2.4. int cardinality default 0
	105.15.2.5. String min default ""
	105.15.2.6. String max default ""
	105.15.2.7. String[] defaultValue default {}
	105.15.2.8. boolean required default true
	105.15.2.9. Option[] options default {}

	105.15.3. enum AttributeType
	105.15.3.1. STRING
	105.15.3.2. LONG
	105.15.3.3. INTEGER
	105.15.3.4. SHORT
	105.15.3.5. CHARACTER
	105.15.3.6. BYTE
	105.15.3.7. DOUBLE
	105.15.3.8. FLOAT
	105.15.3.9. BOOLEAN
	105.15.3.10. PASSWORD

	105.15.4. @Designate
	105.15.4.1. Class<?> ocd
	105.15.4.2. boolean factory default false

	105.15.5. @Icon
	105.15.5.1. String resource
	105.15.5.2. int size

	105.15.6. @ObjectClassDefinition
	105.15.6.1. String id default ""
	105.15.6.2. String name default ""
	105.15.6.3. String description default ""
	105.15.6.4. String localization default ""
	105.15.6.5. String[] pid default {}
	105.15.6.6. String[] factoryPid default {}
	105.15.6.7. Icon[] icon default {}

	105.15.7. @Option
	105.15.7.1. String label default ""
	105.15.7.2. String value

	105.16. References
	105.17. Changes

	Chapter 107. User Admin Service Specification
	107.1. Introduction
	107.1.1. Essentials
	107.1.2. Entities
	107.1.3. Operation

	107.2. Authentication
	107.2.1. Repository
	107.2.2. Basic Authentication
	107.2.3. Certificates

	107.3. Authorization
	107.3.1. The Authorization Object
	107.3.2. Authorization Example

	107.4. Repository Maintenance
	107.5. User Admin Events
	107.5.1. Event Admin and User Admin Change Events

	107.6. Security
	107.6.1. User Admin Permission

	107.7. Relation to JAAS
	107.7.1. JDK 1.3 Dependencies
	107.7.2. Existing OSGi Mechanism
	107.7.3. Future Road Map

	107.8. org.osgi.service.useradmin
	107.8.1. Summary
	107.8.2. public interface Authorization
	107.8.2.1. public String getName()
	107.8.2.2. public String[] getRoles()
	107.8.2.3. public boolean hasRole(String name)

	107.8.3. public interface Group extends User
	107.8.3.1. public boolean addMember(Role role)
	107.8.3.2. public boolean addRequiredMember(Role role)
	107.8.3.3. public Role[] getMembers()
	107.8.3.4. public Role[] getRequiredMembers()
	107.8.3.5. public boolean removeMember(Role role)

	107.8.4. public interface Role
	107.8.4.1. public static final int GROUP = 2
	107.8.4.2. public static final int ROLE = 0
	107.8.4.3. public static final int USER = 1
	107.8.4.4. public static final String USER_ANYONE = "user.anyone"
	107.8.4.5. public String getName()
	107.8.4.6. public Dictionary getProperties()
	107.8.4.7. public int getType()

	107.8.5. public interface User extends Role
	107.8.5.1. public Dictionary getCredentials()
	107.8.5.2. public boolean hasCredential(String key,Object value)

	107.8.6. public interface UserAdmin
	107.8.6.1. public Role createRole(String name,int type)
	107.8.6.2. public Authorization getAuthorization(User user)
	107.8.6.3. public Role getRole(String name)
	107.8.6.4. public Role[] getRoles(String filter) throws InvalidSyntaxException
	107.8.6.5. public User getUser(String key,String value)
	107.8.6.6. public boolean removeRole(String name)

	107.8.7. public class UserAdminEvent
	107.8.7.1. public static final int ROLE_CHANGED = 2
	107.8.7.2. public static final int ROLE_CREATED = 1
	107.8.7.3. public static final int ROLE_REMOVED = 4
	107.8.7.4. public UserAdminEvent(ServiceReference ref,int type,Role role)
	107.8.7.5. public Role getRole()
	107.8.7.6. public ServiceReference getServiceReference()
	107.8.7.7. public int getType()

	107.8.8. public interface UserAdminListener
	107.8.8.1. public void roleChanged(UserAdminEvent event)

	107.8.9. public final class UserAdminPermission extends BasicPermission
	107.8.9.1. public static final String ADMIN = "admin"
	107.8.9.2. public static final String CHANGE_CREDENTIAL = "changeCredential"
	107.8.9.3. public static final String CHANGE_PROPERTY = "changeProperty"
	107.8.9.4. public static final String GET_CREDENTIAL = "getCredential"
	107.8.9.5. public UserAdminPermission(String name,String actions)
	107.8.9.6. public boolean equals(Object obj)
	107.8.9.7. public String getActions()
	107.8.9.8. public int hashCode()
	107.8.9.9. public boolean implies(Permission p)
	107.8.9.10. public PermissionCollection newPermissionCollection()
	107.8.9.11. public String toString()

	107.9. References

	Chapter 110. Initial Provisioning Specification
	110.1. Introduction
	110.1.1. Essentials
	110.1.2. Entities

	110.2. Procedure
	110.2.1. InitialProvisioning-Entries Manifest Header

	110.3. Special Configurations
	110.3.1. Branded OSGi framework Server
	110.3.2. Non-connected OSGi framework

	110.4. The Provisioning Service
	110.5. Management Agent Environment
	110.6. Mapping To File Scheme
	110.6.1. Example With File Scheme

	110.7. Mapping To HTTP(S) Scheme
	110.7.1. HTTPS Certificates
	110.7.2. Certificate Encoding
	110.7.3. URL Encoding

	110.8. Mapping To RSH Scheme
	110.8.1. Shared Secret
	110.8.2. Request Coding
	110.8.3. Response Coding
	110.8.4. RSH URL
	110.8.5. Extensions to the Provisioning Service Dictionary
	110.8.6. RSH Transport

	110.9. Exception Handling
	110.10. Security
	110.10.1. Concerns
	110.10.2. OSGi framework Long-Term Security
	110.10.3. Permissions

	110.11. org.osgi.service.provisioning
	110.11.1. Summary
	110.11.2. public interface ProvisioningService
	110.11.2.1. public static final String INITIALPROVISIONING_ENTRIES = "InitialProvisioning-Entries"
	110.11.2.2. public static final String MIME_BUNDLE = "application/vnd.osgi.bundle"
	110.11.2.3. public static final String MIME_BUNDLE_ALT = "application/x-osgi-bundle"
	110.11.2.4. public static final String MIME_BUNDLE_URL = "text/x-osgi-bundle-url"
	110.11.2.5. public static final String MIME_BYTE_ARRAY = "application/octet-stream"
	110.11.2.6. public static final String MIME_STRING = "text/plain;charset=utf-8"
	110.11.2.7. public static final String PROVISIONING_AGENT_CONFIG = "provisioning.agent.config"
	110.11.2.8. public static final String PROVISIONING_REFERENCE = "provisioning.reference"
	110.11.2.9. public static final String PROVISIONING_ROOTX509 = "provisioning.rootx509"
	110.11.2.10. public static final String PROVISIONING_RSH_SECRET = "provisioning.rsh.secret"
	110.11.2.11. public static final String PROVISIONING_SPID = "provisioning.spid"
	110.11.2.12. public static final String PROVISIONING_START_BUNDLE = "provisioning.start.bundle"
	110.11.2.13. public static final String PROVISIONING_UPDATE_COUNT = "provisioning.update.count"
	110.11.2.14. public void addInformation(Dictionary info)
	110.11.2.15. public void addInformation(ZipInputStream zis) throws IOException
	110.11.2.16. public Dictionary getInformation()
	110.11.2.17. public void setInformation(Dictionary info)

	110.12. References

	Chapter 111. UPnP™ Device Service Specification
	111.1. Introduction
	111.1.1. Essentials
	111.1.2. Entities
	111.1.3. Operation Summary

	111.2. UPnP Specifications
	111.2.1. UPnP Base Driver

	111.3. UPnP Device
	111.3.1. Root Device
	111.3.2. Exported Versus Imported Devices
	111.3.3. Icons

	111.4. Device Category
	111.5. UPnPService
	111.5.1. State Variables

	111.6. Working With a UPnP Device
	111.7. Implementing a UPnP Device
	111.8. Event API
	111.8.1. Initial Event Delivery

	111.9. UPnP Events and Event Admin service
	111.10. Localization
	111.11. Dates and Times
	111.12. UPnP Exception
	111.13. Configuration
	111.14. Networking considerations
	111.14.1. The UPnP Multicasts

	111.15. Security
	111.16. org.osgi.service.upnp
	111.16.1. Summary
	111.16.2. public interface UPnPAction
	111.16.2.1. public String[] getInputArgumentNames()
	111.16.2.2. public String getName()
	111.16.2.3. public String[] getOutputArgumentNames()
	111.16.2.4. public String getReturnArgumentName()
	111.16.2.5. public UPnPStateVariable getStateVariable(String argumentName)
	111.16.2.6. public Dictionary invoke(Dictionary args) throws Exception

	111.16.3. public interface UPnPDevice
	111.16.3.1. public static final String CHILDREN_UDN = "UPnP.device.childrenUDN"
	111.16.3.2. public static final String DEVICE_CATEGORY = "UPnP"
	111.16.3.3. public static final String FRIENDLY_NAME = "UPnP.device.friendlyName"
	111.16.3.4. public static final String ID = "UPnP.device.UDN"
	111.16.3.5. public static final String MANUFACTURER = "UPnP.device.manufacturer"
	111.16.3.6. public static final String MANUFACTURER_URL = "UPnP.device.manufacturerURL"
	111.16.3.7. public static final int MATCH_GENERIC = 1
	111.16.3.8. public static final int MATCH_MANUFACTURER_MODEL = 7
	111.16.3.9. public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15
	111.16.3.10. public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31
	111.16.3.11. public static final int MATCH_TYPE = 3
	111.16.3.12. public static final String MODEL_DESCRIPTION = "UPnP.device.modelDescription"
	111.16.3.13. public static final String MODEL_NAME = "UPnP.device.modelName"
	111.16.3.14. public static final String MODEL_NUMBER = "UPnP.device.modelNumber"
	111.16.3.15. public static final String MODEL_URL = "UPnP.device.modelURL"
	111.16.3.16. public static final String PARENT_UDN = "UPnP.device.parentUDN"
	111.16.3.17. public static final String PRESENTATION_URL = "UPnP.presentationURL"
	111.16.3.18. public static final String SERIAL_NUMBER = "UPnP.device.serialNumber"
	111.16.3.19. public static final String TYPE = "UPnP.device.type"
	111.16.3.20. public static final String UDN = "UPnP.device.UDN"
	111.16.3.21. public static final String UPC = "UPnP.device.UPC"
	111.16.3.22. public static final String UPNP_EXPORT = "UPnP.export"
	111.16.3.23. public Dictionary getDescriptions(String locale)
	111.16.3.24. public UPnPIcon[] getIcons(String locale)
	111.16.3.25. public UPnPService getService(String serviceId)
	111.16.3.26. public UPnPService[] getServices()

	111.16.4. public interface UPnPEventListener
	111.16.4.1. public static final String UPNP_FILTER = "upnp.filter"
	111.16.4.2. public void notifyUPnPEvent(String deviceId,String serviceId,Dictionary events)

	111.16.5. public class UPnPException extends Exception
	111.16.5.1. public static final int DEVICE_INTERNAL_ERROR = 501
	111.16.5.2. public static final int INVALID_ACTION = 401
	111.16.5.3. public static final int INVALID_ARGS = 402
	111.16.5.4. public static final int INVALID_SEQUENCE_NUMBER = 403
	111.16.5.5. public static final int INVALID_VARIABLE = 404
	111.16.5.6. public UPnPException(int errorCode,String errorDescription)
	111.16.5.7. public UPnPException(int errorCode,String errorDescription,Throwable errorCause)
	111.16.5.8. public int getUPnPError_Code()
	111.16.5.9. public int getUPnPErrorCode()

	111.16.6. public interface UPnPIcon
	111.16.6.1. public int getDepth()
	111.16.6.2. public int getHeight()
	111.16.6.3. public InputStream getInputStream() throws IOException
	111.16.6.4. public String getMimeType()
	111.16.6.5. public int getSize()
	111.16.6.6. public int getWidth()

	111.16.7. public interface UPnPLocalStateVariable extends UPnPStateVariable
	111.16.7.1. public Object getCurrentValue()

	111.16.8. public interface UPnPService
	111.16.8.1. public static final String ID = "UPnP.service.id"
	111.16.8.2. public static final String TYPE = "UPnP.service.type"
	111.16.8.3. public UPnPAction getAction(String name)
	111.16.8.4. public UPnPAction[] getActions()
	111.16.8.5. public String getId()
	111.16.8.6. public UPnPStateVariable getStateVariable(String name)
	111.16.8.7. public UPnPStateVariable[] getStateVariables()
	111.16.8.8. public String getType()
	111.16.8.9. public String getVersion()

	111.16.9. public interface UPnPStateVariable
	111.16.9.1. public static final String TYPE_BIN_BASE64 = "bin.base64"
	111.16.9.2. public static final String TYPE_BIN_HEX = "bin.hex"
	111.16.9.3. public static final String TYPE_BOOLEAN = "boolean"
	111.16.9.4. public static final String TYPE_CHAR = "char"
	111.16.9.5. public static final String TYPE_DATE = "date"
	111.16.9.6. public static final String TYPE_DATETIME = "dateTime"
	111.16.9.7. public static final String TYPE_DATETIME_TZ = "dateTime.tz"
	111.16.9.8. public static final String TYPE_FIXED_14_4 = "fixed.14.4"
	111.16.9.9. public static final String TYPE_FLOAT = "float"
	111.16.9.10. public static final String TYPE_I1 = "i1"
	111.16.9.11. public static final String TYPE_I2 = "i2"
	111.16.9.12. public static final String TYPE_I4 = "i4"
	111.16.9.13. public static final String TYPE_INT = "int"
	111.16.9.14. public static final String TYPE_NUMBER = "number"
	111.16.9.15. public static final String TYPE_R4 = "r4"
	111.16.9.16. public static final String TYPE_R8 = "r8"
	111.16.9.17. public static final String TYPE_STRING = "string"
	111.16.9.18. public static final String TYPE_TIME = "time"
	111.16.9.19. public static final String TYPE_TIME_TZ = "time.tz"
	111.16.9.20. public static final String TYPE_UI1 = "ui1"
	111.16.9.21. public static final String TYPE_UI2 = "ui2"
	111.16.9.22. public static final String TYPE_UI4 = "ui4"
	111.16.9.23. public static final String TYPE_URI = "uri"
	111.16.9.24. public static final String TYPE_UUID = "uuid"
	111.16.9.25. public String[] getAllowedValues()
	111.16.9.26. public Object getDefaultValue()
	111.16.9.27. public Class getJavaDataType()
	111.16.9.28. public Number getMaximum()
	111.16.9.29. public Number getMinimum()
	111.16.9.30. public String getName()
	111.16.9.31. public Number getStep()
	111.16.9.32. public String getUPnPDataType()
	111.16.9.33. public boolean sendsEvents()

	111.17. References

	Chapter 112. Declarative Services Specification
	112.1. Introduction
	112.1.1. Essentials
	112.1.2. Entities
	112.1.3. Synopsis
	112.1.4. Readers

	112.2. Components
	112.2.1. Declaring a Component
	112.2.2. Immediate Component
	112.2.3. Delayed Component
	112.2.4. Factory Component

	112.3. References to Services
	112.3.1. Accessing Services
	112.3.2. Event Methods
	112.3.3. Field Strategy
	112.3.4. Reference Cardinality
	112.3.5. Reference Scope
	112.3.6. Reference Policy
	112.3.6.1. Static Reference Policy
	112.3.6.2. Dynamic Reference Policy

	112.3.7. Reference Policy Option
	112.3.8. Reference Field Option
	112.3.8.1. Replace Field Option
	112.3.8.2. Update Field Option

	112.3.9. Selecting Target Services
	112.3.10. Circular References

	112.4. Component Description
	112.4.1. Annotations
	112.4.2. Service Component Header
	112.4.3. XML Document
	112.4.4. Component Element
	112.4.5. Implementation Element
	112.4.6. Property and Properties Elements
	112.4.7. Service Element
	112.4.8. Reference Element

	112.5. Component Life Cycle
	112.5.1. Enabled
	112.5.2. Satisfied
	112.5.3. Immediate Component
	112.5.4. Delayed Component
	112.5.5. Factory Component
	112.5.6. Activation
	112.5.7. Binding Services
	112.5.8. Activate Method
	112.5.9. Component Context
	112.5.10. Bound Service Replacement
	112.5.11. Updated
	112.5.12. Modification
	112.5.13. Modified Method
	112.5.14. Deactivation
	112.5.15. Deactivate Method
	112.5.16. Unbinding
	112.5.17. Life Cycle Example

	112.6. Component Properties
	112.6.1. Service Properties
	112.6.2. Reference Properties
	112.6.2.1. Target Property
	112.6.2.2. Minimum Cardinality Property

	112.7. Deployment
	112.7.1. Configuration Changes
	112.7.1.1. Ignore Configuration Policy
	112.7.1.2. Require Configuration Policy
	112.7.1.3. Optional Configuration Policy
	112.7.1.4. Configuration Change Actions

	112.8. Annotations
	112.8.1. Component Annotations
	112.8.2. Component Property Types
	112.8.2.1. Component Property Mapping
	112.8.2.2. Coercing Component Property Values

	112.8.3. Ordering of Generated Properties

	112.9. Service Component Runtime
	112.9.1. Relationship to OSGi Framework
	112.9.2. Starting and Stopping SCR
	112.9.3. Logging Error Messages
	112.9.4. Locating Component Methods and Fields
	112.9.5. Bundle Activator Interaction
	112.9.6. Introspection
	112.9.7. Capabilities

	112.10. Security
	112.10.1. Service Permissions
	112.10.2. Required Admin Permission
	112.10.3. Using hasPermission
	112.10.4. Configuration Multi-Locations and Regions

	112.11. Component Description Schema
	112.12. org.osgi.service.component
	112.12.1. Summary
	112.12.2. public interface ComponentConstants
	112.12.2.1. public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"
	112.12.2.2. public static final String COMPONENT_FACTORY = "component.factory"
	112.12.2.3. public static final String COMPONENT_ID = "component.id"
	112.12.2.4. public static final String COMPONENT_NAME = "component.name"
	112.12.2.5. public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6
	112.12.2.6. public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4
	112.12.2.7. public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3
	112.12.2.8. public static final int DEACTIVATION_REASON_DISABLED = 1
	112.12.2.9. public static final int DEACTIVATION_REASON_DISPOSED = 5
	112.12.2.10. public static final int DEACTIVATION_REASON_REFERENCE = 2
	112.12.2.11. public static final int DEACTIVATION_REASON_UNSPECIFIED = 0
	112.12.2.12. public static final String REFERENCE_TARGET_SUFFIX = ".target"
	112.12.2.13. public static final String SERVICE_COMPONENT = "Service-Component"

	112.12.3. public interface ComponentContext
	112.12.3.1. public void disableComponent(String name)
	112.12.3.2. public void enableComponent(String name)
	112.12.3.3. public BundleContext getBundleContext()
	112.12.3.4. public ComponentInstance getComponentInstance()
	112.12.3.5. public Dictionary<String,Object> getProperties()
	112.12.3.6. public ServiceReference<?> getServiceReference()
	112.12.3.7. public Bundle getUsingBundle()
	112.12.3.8. public Object locateService(String name)
	112.12.3.9. public S locateService(String name,ServiceReference<S> reference)
	112.12.3.10. public Object[] locateServices(String name)

	112.12.4. public class ComponentException extends RuntimeException
	112.12.4.1. public ComponentException(String message,Throwable cause)
	112.12.4.2. public ComponentException(String message)
	112.12.4.3. public ComponentException(Throwable cause)
	112.12.4.4. public Throwable getCause()
	112.12.4.5. public Throwable initCause(Throwable cause)

	112.12.5. public interface ComponentFactory
	112.12.5.1. public ComponentInstance newInstance(Dictionary<String,?> properties)

	112.12.6. public interface ComponentInstance
	112.12.6.1. public void dispose()
	112.12.6.2. public Object getInstance()

	112.12.7. public interface ComponentServiceObjects<S>
	112.12.7.1. public S getService()
	112.12.7.2. public ServiceReference<S> getServiceReference()
	112.12.7.3. public void ungetService(S service)

	112.13. org.osgi.service.component.annotations
	112.13.1. Summary
	112.13.2. @Activate
	112.13.3. @Component
	112.13.3.1. String name default ""
	112.13.3.2. Class<?>[] service default {}
	112.13.3.3. String factory default ""
	112.13.3.4. boolean servicefactory default false
	112.13.3.5. boolean enabled default true
	112.13.3.6. boolean immediate default false
	112.13.3.7. String[] property default {}
	112.13.3.8. String[] properties default {}
	112.13.3.9. String xmlns default ""
	112.13.3.10. ConfigurationPolicy configurationPolicy default OPTIONAL
	112.13.3.11. String[] configurationPid default "$"
	112.13.3.12. ServiceScope scope default DEFAULT
	112.13.3.13. Reference[] reference default {}
	112.13.3.14. String NAME = "$"

	112.13.4. enum ConfigurationPolicy
	112.13.4.1. OPTIONAL
	112.13.4.2. REQUIRE
	112.13.4.3. IGNORE

	112.13.5. @Deactivate
	112.13.6. enum FieldOption
	112.13.6.1. UPDATE
	112.13.6.2. REPLACE

	112.13.7. @Modified
	112.13.8. @Reference
	112.13.8.1. String name default ""
	112.13.8.2. Class<?> service default Object.class
	112.13.8.3. ReferenceCardinality cardinality default MANDATORY
	112.13.8.4. ReferencePolicy policy default STATIC
	112.13.8.5. String target default ""
	112.13.8.6. ReferencePolicyOption policyOption default RELUCTANT
	112.13.8.7. ReferenceScope scope default BUNDLE
	112.13.8.8. String bind default ""
	112.13.8.9. String updated default ""
	112.13.8.10. String unbind default ""
	112.13.8.11. String field default ""
	112.13.8.12. FieldOption fieldOption default REPLACE

	112.13.9. enum ReferenceCardinality
	112.13.9.1. OPTIONAL
	112.13.9.2. MANDATORY
	112.13.9.3. MULTIPLE
	112.13.9.4. AT_LEAST_ONE

	112.13.10. enum ReferencePolicy
	112.13.10.1. STATIC
	112.13.10.2. DYNAMIC

	112.13.11. enum ReferencePolicyOption
	112.13.11.1. RELUCTANT
	112.13.11.2. GREEDY

	112.13.12. enum ReferenceScope
	112.13.12.1. BUNDLE
	112.13.12.2. PROTOTYPE
	112.13.12.3. PROTOTYPE_REQUIRED

	112.13.13. enum ServiceScope
	112.13.13.1. SINGLETON
	112.13.13.2. BUNDLE
	112.13.13.3. PROTOTYPE
	112.13.13.4. DEFAULT

	112.14. org.osgi.service.component.runtime
	112.14.1. Summary
	112.14.2. public interface ServiceComponentRuntime
	112.14.2.1. public Promise<Void> disableComponent(ComponentDescriptionDTO description)
	112.14.2.2. public Promise<Void> enableComponent(ComponentDescriptionDTO description)
	112.14.2.3. public Collection<ComponentConfigurationDTO> getComponentConfigurationDTOs(ComponentDescriptionDTO description)
	112.14.2.4. public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle,String name)
	112.14.2.5. public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle ... bundles)
	112.14.2.6. public boolean isComponentEnabled(ComponentDescriptionDTO description)

	112.15. org.osgi.service.component.runtime.dto
	112.15.1. Summary
	112.15.2. public class ComponentConfigurationDTO extends DTO
	112.15.2.1. public static final int ACTIVE = 8
	112.15.2.2. public ComponentDescriptionDTO description
	112.15.2.3. public long id
	112.15.2.4. public Map<String,Object> properties
	112.15.2.5. public static final int SATISFIED = 4
	112.15.2.6. public SatisfiedReferenceDTO[] satisfiedReferences
	112.15.2.7. public int state
	112.15.2.8. public static final int UNSATISFIED_CONFIGURATION = 1
	112.15.2.9. public static final int UNSATISFIED_REFERENCE = 2
	112.15.2.10. public UnsatisfiedReferenceDTO[] unsatisfiedReferences
	112.15.2.11. public ComponentConfigurationDTO()

	112.15.3. public class ComponentDescriptionDTO extends DTO
	112.15.3.1. public String activate
	112.15.3.2. public BundleDTO bundle
	112.15.3.3. public String[] configurationPid
	112.15.3.4. public String configurationPolicy
	112.15.3.5. public String deactivate
	112.15.3.6. public boolean defaultEnabled
	112.15.3.7. public String factory
	112.15.3.8. public boolean immediate
	112.15.3.9. public String implementationClass
	112.15.3.10. public String modified
	112.15.3.11. public String name
	112.15.3.12. public Map<String,Object> properties
	112.15.3.13. public ReferenceDTO[] references
	112.15.3.14. public String scope
	112.15.3.15. public String[] serviceInterfaces
	112.15.3.16. public ComponentDescriptionDTO()

	112.15.4. public class ReferenceDTO extends DTO
	112.15.4.1. public String bind
	112.15.4.2. public String cardinality
	112.15.4.3. public String field
	112.15.4.4. public String fieldOption
	112.15.4.5. public String interfaceName
	112.15.4.6. public String name
	112.15.4.7. public String policy
	112.15.4.8. public String policyOption
	112.15.4.9. public String scope
	112.15.4.10. public String target
	112.15.4.11. public String unbind
	112.15.4.12. public String updated
	112.15.4.13. public ReferenceDTO()

	112.15.5. public class SatisfiedReferenceDTO extends DTO
	112.15.5.1. public ServiceReferenceDTO[] boundServices
	112.15.5.2. public String name
	112.15.5.3. public String target
	112.15.5.4. public SatisfiedReferenceDTO()

	112.15.6. public class UnsatisfiedReferenceDTO extends DTO
	112.15.6.1. public String name
	112.15.6.2. public String target
	112.15.6.3. public ServiceReferenceDTO[] targetServices
	112.15.6.4. public UnsatisfiedReferenceDTO()

	112.16. References
	112.17. Changes

	Chapter 113. Event Admin Service Specification
	113.1. Introduction
	113.1.1. Essentials
	113.1.2. Entities
	113.1.3. Synopsis
	113.1.4. What To Read

	113.2. Event Admin Architecture
	113.3. The Event
	113.3.1. Topics
	113.3.2. Properties
	113.3.3. High Performance

	113.4. Event Handler
	113.4.1. Ordering

	113.5. Event Publisher
	113.6. Specific Events
	113.6.1. General Conventions
	113.6.2. OSGi Events
	113.6.3. Framework Event
	113.6.4. Bundle Event
	113.6.5. Service Event
	113.6.6. Other Event Sources

	113.7. Event Admin Service
	113.7.1. Synchronous Event Delivery
	113.7.2. Asynchronous Event Delivery
	113.7.3. Order of Event Delivery

	113.8. Reliability
	113.8.1. Exceptions in callbacks
	113.8.2. Dealing with Stalled Handlers

	113.9. Inter-operability with Native Applications
	113.10. Security
	113.10.1. Topic Permission
	113.10.2. Required Permissions
	113.10.3. Security Context During Event Callbacks

	113.11. org.osgi.service.event
	113.11.1. Summary
	113.11.2. public class Event
	113.11.2.1. public Event(String topic,Map<String,?> properties)
	113.11.2.2. public Event(String topic,Dictionary<String,?> properties)
	113.11.2.3. public final boolean containsProperty(String name)
	113.11.2.4. public boolean equals(Object object)
	113.11.2.5. public final Object getProperty(String name)
	113.11.2.6. public final String[] getPropertyNames()
	113.11.2.7. public final String getTopic()
	113.11.2.8. public int hashCode()
	113.11.2.9. public final boolean matches(Filter filter)
	113.11.2.10. public String toString()

	113.11.3. public interface EventAdmin
	113.11.3.1. public void postEvent(Event event)
	113.11.3.2. public void sendEvent(Event event)

	113.11.4. public interface EventConstants
	113.11.4.1. public static final String BUNDLE = "bundle"
	113.11.4.2. public static final String BUNDLE_ID = "bundle.id"
	113.11.4.3. public static final String BUNDLE_SIGNER = "bundle.signer"
	113.11.4.4. public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"
	113.11.4.5. public static final String BUNDLE_VERSION = "bundle.version"
	113.11.4.6. public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"
	113.11.4.7. public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"
	113.11.4.8. public static final String EVENT = "event"
	113.11.4.9. public static final String EVENT_DELIVERY = "event.delivery"
	113.11.4.10. public static final String EVENT_FILTER = "event.filter"
	113.11.4.11. public static final String EVENT_TOPIC = "event.topics"
	113.11.4.12. public static final String EXCEPTION = "exception"
	113.11.4.13. public static final String EXCEPTION_CLASS = "exception.class"
	113.11.4.14. public static final String EXCEPTION_MESSAGE = "exception.message"
	113.11.4.15. public static final String EXECPTION_CLASS = "exception.class"
	113.11.4.16. public static final String MESSAGE = "message"
	113.11.4.17. public static final String SERVICE = "service"
	113.11.4.18. public static final String SERVICE_ID = "service.id"
	113.11.4.19. public static final String SERVICE_OBJECTCLASS = "service.objectClass"
	113.11.4.20. public static final String SERVICE_PID = "service.pid"
	113.11.4.21. public static final String TIMESTAMP = "timestamp"

	113.11.5. public interface EventHandler
	113.11.5.1. public void handleEvent(Event event)

	113.11.6. public class EventProperties implements Map<String,Object>
	113.11.6.1. public EventProperties(Map<String,?> properties)
	113.11.6.2. public void clear()
	113.11.6.3. public boolean containsKey(Object name)
	113.11.6.4. public boolean containsValue(Object value)
	113.11.6.5. public Set<Map.Entry<String,Object>> entrySet()
	113.11.6.6. public boolean equals(Object object)
	113.11.6.7. public Object get(Object name)
	113.11.6.8. public int hashCode()
	113.11.6.9. public boolean isEmpty()
	113.11.6.10. public Set<String> keySet()
	113.11.6.11. public Object put(String key,Object value)
	113.11.6.12. public void putAll(Map<? extends String,? extends Object> map)
	113.11.6.13. public Object remove(Object key)
	113.11.6.14. public int size()
	113.11.6.15. public String toString()
	113.11.6.16. public Collection<Object> values()

	113.11.7. public final class TopicPermission extends Permission
	113.11.7.1. public static final String PUBLISH = "publish"
	113.11.7.2. public static final String SUBSCRIBE = "subscribe"
	113.11.7.3. public TopicPermission(String name,String actions)
	113.11.7.4. public boolean equals(Object obj)
	113.11.7.5. public String getActions()
	113.11.7.6. public int hashCode()
	113.11.7.7. public boolean implies(Permission p)
	113.11.7.8. public PermissionCollection newPermissionCollection()

	Chapter 117. Dmt Admin Service Specification
	117.1. Introduction
	117.1.1. Entities

	117.2. The Device Management Model
	117.2.1. Tree Terminology
	117.2.2. Actors

	117.3. The DMT Admin Service
	117.4. Manipulating the DMT
	117.4.1. The DMT Addressing URI
	117.4.2. Locking and Sessions
	117.4.3. Associating a Principal
	117.4.4. Relative Addressing
	117.4.5. Creating Nodes
	117.4.6. Node Properties
	117.4.7. Setting and Getting Data
	117.4.8. Complex Values
	117.4.9. Nodes and Types
	117.4.10. Deleting Nodes
	117.4.11. Copying Nodes
	117.4.12. Renaming Nodes
	117.4.13. Execute
	117.4.14. Closing

	117.5. Meta Data
	117.5.1. Operations
	117.5.2. Scope
	117.5.3. Description and Default
	117.5.4. Validation
	117.5.5. Data Types
	117.5.6. Cardinality
	117.5.7. Matching
	117.5.8. Numeric Ranges
	117.5.9. Name Validation
	117.5.10. User Extensions

	117.6. Plugins
	117.6.1. Data Sessions
	117.6.2. URIs and Plugins
	117.6.3. Associating a sub-tree
	117.6.4. Synchronization with Dmt Admin Service
	117.6.5. Plugin Meta Data
	117.6.6. Plugins and Transactions
	117.6.7. Side Effects
	117.6.8. Copying
	117.6.9. Scaffold Nodes

	117.7. Sharing the DMT
	117.7.1. Mount Points
	117.7.2. Parent Plugin
	117.7.3. Shared Mount Points
	117.7.4. Mount Points are Excluded
	117.7.5. Mapping a Plugin
	117.7.6. Mount Plugins

	117.8. Access Control Lists
	117.8.1. Global Permissions
	117.8.2. Ghost ACLs

	117.9. Notifications
	117.9.1. Routing Alerts

	117.10. Exceptions
	117.11. Events
	117.11.1. Event Admin
	117.11.2. Dmt Event Listeners
	117.11.3. Atomic Sessions and Events
	117.11.4. Event Types
	117.11.5. General Event Properties
	117.11.6. Session Event Properties
	117.11.7. Life Cycle Event Properties
	117.11.8. Example Event Delivery

	117.12. OSGi Object Modeling
	117.12.1. Object Models
	117.12.2. Protocol Mapping
	117.12.3. Hierarchy
	117.12.4. General Restriction Guidelines
	117.12.5. DDF
	117.12.6. Types
	117.12.7. Primitives
	117.12.8. Structured Nodes
	117.12.9. LIST Nodes
	117.12.9.1. Complex Collections

	117.12.10. MAP Nodes
	117.12.10.1. Complex Value

	117.12.11. Instance Id
	117.12.12. Conversions
	117.12.13. Extensions

	117.13. Security
	117.13.1. Principals
	117.13.2. Operational Permissions
	117.13.3. Protocol Adapters
	117.13.4. Local Manager
	117.13.5. Plugin Security
	117.13.6. Events and Permissions
	117.13.7. Dmt Principal Permission
	117.13.8. Dmt Permission
	117.13.9. Alert Permission
	117.13.10. Security Summary
	117.13.10.1. Dmt Admin Service and Notification Service
	117.13.10.2. Dmt Event Listener Service
	117.13.10.3. Data and Exec Plugin
	117.13.10.4. Local Manager
	117.13.10.5. Protocol Adapter

	117.14. org.osgi.service.dmt
	117.14.1. Summary
	117.14.2. public final class Acl
	117.14.2.1. public static final int ADD = 2
	117.14.2.2. public static final int ALL_PERMISSION = 31
	117.14.2.3. public static final int DELETE = 8
	117.14.2.4. public static final int EXEC = 16
	117.14.2.5. public static final int GET = 1
	117.14.2.6. public static final int REPLACE = 4
	117.14.2.7. public Acl(String acl)
	117.14.2.8. public Acl(String[] principals,int[] permissions)
	117.14.2.9. public synchronized Acl addPermission(String principal,int permissions)
	117.14.2.10. public synchronized Acl deletePermission(String principal,int permissions)
	117.14.2.11. public boolean equals(Object obj)
	117.14.2.12. public synchronized int getPermissions(String principal)
	117.14.2.13. public String[] getPrincipals()
	117.14.2.14. public int hashCode()
	117.14.2.15. public synchronized boolean isPermitted(String principal,int permissions)
	117.14.2.16. public synchronized Acl setPermission(String principal,int permissions)
	117.14.2.17. public synchronized String toString()

	117.14.3. public interface DmtAdmin
	117.14.3.1. public DmtSession getSession(String subtreeUri) throws DmtException
	117.14.3.2. public DmtSession getSession(String subtreeUri,int lockMode) throws DmtException
	117.14.3.3. public DmtSession getSession(String principal,String subtreeUri,int lockMode) throws DmtException

	117.14.4. public class DmtConstants
	117.14.4.1. public static final String DDF_LIST = "org.osgi/1.0/LIST"
	117.14.4.2. public static final String DDF_MAP = "org.osgi/1.0/MAP"
	117.14.4.3. public static final String DDF_SCAFFOLD = "org.osgi/1.0/SCAFFOLD"
	117.14.4.4. public static final String EVENT_PROPERTY_NEW_NODES = "newnodes"
	117.14.4.5. public static final String EVENT_PROPERTY_NODES = "nodes"
	117.14.4.6. public static final String EVENT_PROPERTY_SESSION_ID = "session.id"
	117.14.4.7. public static final String EVENT_TOPIC_ADDED = "org/osgi/service/dmt/DmtEvent/ADDED"
	117.14.4.8. public static final String EVENT_TOPIC_COPIED = "org/osgi/service/dmt/DmtEvent/COPIED"
	117.14.4.9. public static final String EVENT_TOPIC_DELETED = "org/osgi/service/dmt/DmtEvent/DELETED"
	117.14.4.10. public static final String EVENT_TOPIC_RENAMED = "org/osgi/service/dmt/DmtEvent/RENAMED"
	117.14.4.11. public static final String EVENT_TOPIC_REPLACED = "org/osgi/service/dmt/DmtEvent/REPLACED"
	117.14.4.12. public static final String EVENT_TOPIC_SESSION_CLOSED = "org/osgi/service/dmt/DmtEvent/SESSION_CLOSED"
	117.14.4.13. public static final String EVENT_TOPIC_SESSION_OPENED = "org/osgi/service/dmt/DmtEvent/SESSION_OPENED"

	117.14.5. public final class DmtData
	117.14.5.1. public static final DmtData FALSE_VALUE
	117.14.5.2. public static final int FORMAT_BASE64 = 128
	117.14.5.3. public static final int FORMAT_BINARY = 64
	117.14.5.4. public static final int FORMAT_BOOLEAN = 8
	117.14.5.5. public static final int FORMAT_DATE = 16
	117.14.5.6. public static final int FORMAT_DATE_TIME = 16384
	117.14.5.7. public static final int FORMAT_FLOAT = 2
	117.14.5.8. public static final int FORMAT_INTEGER = 1
	117.14.5.9. public static final int FORMAT_LONG = 8192
	117.14.5.10. public static final int FORMAT_NODE = 1024
	117.14.5.11. public static final int FORMAT_NULL = 512
	117.14.5.12. public static final int FORMAT_RAW_BINARY = 4096
	117.14.5.13. public static final int FORMAT_RAW_STRING = 2048
	117.14.5.14. public static final int FORMAT_STRING = 4
	117.14.5.15. public static final int FORMAT_TIME = 32
	117.14.5.16. public static final int FORMAT_XML = 256
	117.14.5.17. public static final DmtData NULL_VALUE
	117.14.5.18. public static final DmtData TRUE_VALUE
	117.14.5.19. public DmtData(String string)
	117.14.5.20. public DmtData(Date date)
	117.14.5.21. public DmtData(Object complex)
	117.14.5.22. public DmtData(String value,int format)
	117.14.5.23. public DmtData(int integer)
	117.14.5.24. public DmtData(float flt)
	117.14.5.25. public DmtData(long lng)
	117.14.5.26. public DmtData(boolean bool)
	117.14.5.27. public DmtData(byte[] bytes)
	117.14.5.28. public DmtData(byte[] bytes,boolean base64)
	117.14.5.29. public DmtData(byte[] bytes,int format)
	117.14.5.30. public DmtData(String formatName,String data)
	117.14.5.31. public DmtData(String formatName,byte[] data)
	117.14.5.32. public boolean equals(Object obj)
	117.14.5.33. public byte[] getBase64()
	117.14.5.34. public byte[] getBinary()
	117.14.5.35. public boolean getBoolean()
	117.14.5.36. public String getDate()
	117.14.5.37. public Date getDateTime()
	117.14.5.38. public float getFloat()
	117.14.5.39. public int getFormat()
	117.14.5.40. public String getFormatName()
	117.14.5.41. public int getInt()
	117.14.5.42. public long getLong()
	117.14.5.43. public Object getNode()
	117.14.5.44. public byte[] getRawBinary()
	117.14.5.45. public String getRawString()
	117.14.5.46. public int getSize()
	117.14.5.47. public String getString()
	117.14.5.48. public String getTime()
	117.14.5.49. public String getXml()
	117.14.5.50. public int hashCode()
	117.14.5.51. public String toString()

	117.14.6. public interface DmtEvent
	117.14.6.1. public static final int ADDED = 1
	117.14.6.2. public static final int COPIED = 2
	117.14.6.3. public static final int DELETED = 4
	117.14.6.4. public static final int RENAMED = 8
	117.14.6.5. public static final int REPLACED = 16
	117.14.6.6. public static final int SESSION_CLOSED = 64
	117.14.6.7. public static final int SESSION_OPENED = 32
	117.14.6.8. public String[] getNewNodes()
	117.14.6.9. public String[] getNodes()
	117.14.6.10. public Object getProperty(String key)
	117.14.6.11. public String[] getPropertyNames()
	117.14.6.12. public int getSessionId()
	117.14.6.13. public int getType()

	117.14.7. public interface DmtEventListener
	117.14.7.1. public static final String FILTER_EVENT = "osgi.filter.event"
	117.14.7.2. public static final String FILTER_PRINCIPAL = "osgi.filter.principal"
	117.14.7.3. public static final String FILTER_SUBTREE = "osgi.filter.subtree"
	117.14.7.4. public void changeOccurred(DmtEvent event)

	117.14.8. public class DmtException extends Exception
	117.14.8.1. public static final int ALERT_NOT_ROUTED = 5
	117.14.8.2. public static final int COMMAND_FAILED = 500
	117.14.8.3. public static final int COMMAND_NOT_ALLOWED = 405
	117.14.8.4. public static final int CONCURRENT_ACCESS = 4
	117.14.8.5. public static final int DATA_STORE_FAILURE = 510
	117.14.8.6. public static final int FEATURE_NOT_SUPPORTED = 406
	117.14.8.7. public static final int INVALID_URI = 3
	117.14.8.8. public static final int LIMIT_EXCEEDED = 413
	117.14.8.9. public static final int METADATA_MISMATCH = 2
	117.14.8.10. public static final int NODE_ALREADY_EXISTS = 418
	117.14.8.11. public static final int NODE_NOT_FOUND = 404
	117.14.8.12. public static final int PERMISSION_DENIED = 425
	117.14.8.13. public static final int REMOTE_ERROR = 1
	117.14.8.14. public static final int ROLLBACK_FAILED = 516
	117.14.8.15. public static final int SESSION_CREATION_TIMEOUT = 7
	117.14.8.16. public static final int TRANSACTION_ERROR = 6
	117.14.8.17. public static final int UNAUTHORIZED = 401
	117.14.8.18. public static final int URI_TOO_LONG = 414
	117.14.8.19. public DmtException(String uri,int code,String message)
	117.14.8.20. public DmtException(String uri,int code,String message,Throwable cause)
	117.14.8.21. public DmtException(String uri,int code,String message,Vector causes,boolean fatal)
	117.14.8.22. public DmtException(String[] path,int code,String message)
	117.14.8.23. public DmtException(String[] path,int code,String message,Throwable cause)
	117.14.8.24. public DmtException(String[] path,int code,String message,Vector causes,boolean fatal)
	117.14.8.25. public Throwable getCause()
	117.14.8.26. public Throwable[] getCauses()
	117.14.8.27. public int getCode()
	117.14.8.28. public String getMessage()
	117.14.8.29. public String getURI()
	117.14.8.30. public boolean isFatal()
	117.14.8.31. public void printStackTrace(PrintStream s)

	117.14.9. public class DmtIllegalStateException extends RuntimeException
	117.14.9.1. public DmtIllegalStateException()
	117.14.9.2. public DmtIllegalStateException(String message)
	117.14.9.3. public DmtIllegalStateException(Throwable cause)
	117.14.9.4. public DmtIllegalStateException(String message,Throwable cause)

	117.14.10. public interface DmtSession
	117.14.10.1. public static final int LOCK_TYPE_ATOMIC = 2
	117.14.10.2. public static final int LOCK_TYPE_EXCLUSIVE = 1
	117.14.10.3. public static final int LOCK_TYPE_SHARED = 0
	117.14.10.4. public static final int STATE_CLOSED = 1
	117.14.10.5. public static final int STATE_INVALID = 2
	117.14.10.6. public static final int STATE_OPEN = 0
	117.14.10.7. public void close() throws DmtException
	117.14.10.8. public void commit() throws DmtException
	117.14.10.9. public void copy(String nodeUri,String newNodeUri,boolean recursive) throws DmtException
	117.14.10.10. public void createInteriorNode(String nodeUri) throws DmtException
	117.14.10.11. public void createInteriorNode(String nodeUri,String type) throws DmtException
	117.14.10.12. public void createLeafNode(String nodeUri) throws DmtException
	117.14.10.13. public void createLeafNode(String nodeUri,DmtData value) throws DmtException
	117.14.10.14. public void createLeafNode(String nodeUri,DmtData value,String mimeType) throws DmtException
	117.14.10.15. public void deleteNode(String nodeUri) throws DmtException
	117.14.10.16. public void execute(String nodeUri,String data) throws DmtException
	117.14.10.17. public void execute(String nodeUri,String correlator,String data) throws DmtException
	117.14.10.18. public String[] getChildNodeNames(String nodeUri) throws DmtException
	117.14.10.19. public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException
	117.14.10.20. public int getLockType()
	117.14.10.21. public MetaNode getMetaNode(String nodeUri) throws DmtException
	117.14.10.22. public Acl getNodeAcl(String nodeUri) throws DmtException
	117.14.10.23. public int getNodeSize(String nodeUri) throws DmtException
	117.14.10.24. public Date getNodeTimestamp(String nodeUri) throws DmtException
	117.14.10.25. public String getNodeTitle(String nodeUri) throws DmtException
	117.14.10.26. public String getNodeType(String nodeUri) throws DmtException
	117.14.10.27. public DmtData getNodeValue(String nodeUri) throws DmtException
	117.14.10.28. public int getNodeVersion(String nodeUri) throws DmtException
	117.14.10.29. public String getPrincipal()
	117.14.10.30. public String getRootUri()
	117.14.10.31. public int getSessionId()
	117.14.10.32. public int getState()
	117.14.10.33. public boolean isLeafNode(String nodeUri) throws DmtException
	117.14.10.34. public boolean isNodeUri(String nodeUri)
	117.14.10.35. public void renameNode(String nodeUri,String newName) throws DmtException
	117.14.10.36. public void rollback() throws DmtException
	117.14.10.37. public void setDefaultNodeValue(String nodeUri) throws DmtException
	117.14.10.38. public void setNodeAcl(String nodeUri,Acl acl) throws DmtException
	117.14.10.39. public void setNodeTitle(String nodeUri,String title) throws DmtException
	117.14.10.40. public void setNodeType(String nodeUri,String type) throws DmtException
	117.14.10.41. public void setNodeValue(String nodeUri,DmtData data) throws DmtException

	117.14.11. public interface MetaNode
	117.14.11.1. public static final int AUTOMATIC = 2
	117.14.11.2. public static final int CMD_ADD = 0
	117.14.11.3. public static final int CMD_DELETE = 1
	117.14.11.4. public static final int CMD_EXECUTE = 2
	117.14.11.5. public static final int CMD_GET = 4
	117.14.11.6. public static final int CMD_REPLACE = 3
	117.14.11.7. public static final int DYNAMIC = 1
	117.14.11.8. public static final int PERMANENT = 0
	117.14.11.9. public boolean can(int operation)
	117.14.11.10. public DmtData getDefault()
	117.14.11.11. public String getDescription()
	117.14.11.12. public Object getExtensionProperty(String key)
	117.14.11.13. public String[] getExtensionPropertyKeys()
	117.14.11.14. public int getFormat()
	117.14.11.15. public double getMax()
	117.14.11.16. public int getMaxOccurrence()
	117.14.11.17. public String[] getMimeTypes()
	117.14.11.18. public double getMin()
	117.14.11.19. public String[] getRawFormatNames()
	117.14.11.20. public int getScope()
	117.14.11.21. public String[] getValidNames()
	117.14.11.22. public DmtData[] getValidValues()
	117.14.11.23. public boolean isLeaf()
	117.14.11.24. public boolean isValidName(String name)
	117.14.11.25. public boolean isValidValue(DmtData value)
	117.14.11.26. public boolean isZeroOccurrenceAllowed()

	117.14.12. public final class Uri
	117.14.12.1. public static final String PATH_SEPARATOR = "/"
	117.14.12.2. public static final char PATH_SEPARATOR_CHAR = 47
	117.14.12.3. public static final String ROOT_NODE = "."
	117.14.12.4. public static final char ROOT_NODE_CHAR = 46
	117.14.12.5. public static String decode(String nodeName)
	117.14.12.6. public static String encode(String nodeName)
	117.14.12.7. public static boolean isAbsoluteUri(String uri)
	117.14.12.8. public static boolean isValidUri(String uri)
	117.14.12.9. public static String mangle(String nodeName)
	117.14.12.10. public static String[] toPath(String uri)
	117.14.12.11. public static String toUri(String[] path)

	117.15. org.osgi.service.dmt.spi
	117.15.1. Summary
	117.15.2. public interface DataPlugin
	117.15.2.1. public static final String DATA_ROOT_URIS = "dataRootURIs"
	117.15.2.2. public static final String MOUNT_POINTS = "mountPoints"
	117.15.2.3. public TransactionalDataSession openAtomicSession(String[] sessionRoot,DmtSession session) throws DmtException
	117.15.2.4. public ReadableDataSession openReadOnlySession(String[] sessionRoot,DmtSession session) throws DmtException
	117.15.2.5. public ReadWriteDataSession openReadWriteSession(String[] sessionRoot,DmtSession session) throws DmtException

	117.15.3. public interface ExecPlugin
	117.15.3.1. public static final String EXEC_ROOT_URIS = "execRootURIs"
	117.15.3.2. public static final String MOUNT_POINTS = "mountPoints"
	117.15.3.3. public void execute(DmtSession session,String[] nodePath,String correlator,String data) throws DmtException

	117.15.4. public interface MountPlugin
	117.15.4.1. public void mountPointAdded(MountPoint mountPoint)
	117.15.4.2. public void mountPointRemoved(MountPoint mountPoint)

	117.15.5. public interface MountPoint
	117.15.5.1. public boolean equals(Object other)
	117.15.5.2. public String[] getMountPath()
	117.15.5.3. public int hashCode()
	117.15.5.4. public void postEvent(String topic,String[] relativeURIs,Dictionary properties)
	117.15.5.5. public void postEvent(String topic,String[] relativeURIs,String[] newRelativeURIs,Dictionary properties)

	117.15.6. public interface ReadableDataSession
	117.15.6.1. public void close() throws DmtException
	117.15.6.2. public String[] getChildNodeNames(String[] nodePath) throws DmtException
	117.15.6.3. public MetaNode getMetaNode(String[] nodePath) throws DmtException
	117.15.6.4. public int getNodeSize(String[] nodePath) throws DmtException
	117.15.6.5. public Date getNodeTimestamp(String[] nodePath) throws DmtException
	117.15.6.6. public String getNodeTitle(String[] nodePath) throws DmtException
	117.15.6.7. public String getNodeType(String[] nodePath) throws DmtException
	117.15.6.8. public DmtData getNodeValue(String[] nodePath) throws DmtException
	117.15.6.9. public int getNodeVersion(String[] nodePath) throws DmtException
	117.15.6.10. public boolean isLeafNode(String[] nodePath) throws DmtException
	117.15.6.11. public boolean isNodeUri(String[] nodePath)
	117.15.6.12. public void nodeChanged(String[] nodePath) throws DmtException

	117.15.7. public interface ReadWriteDataSession extends ReadableDataSession
	117.15.7.1. public void copy(String[] nodePath,String[] newNodePath,boolean recursive) throws DmtException
	117.15.7.2. public void createInteriorNode(String[] nodePath,String type) throws DmtException
	117.15.7.3. public void createLeafNode(String[] nodePath,DmtData value,String mimeType) throws DmtException
	117.15.7.4. public void deleteNode(String[] nodePath) throws DmtException
	117.15.7.5. public void renameNode(String[] nodePath,String newName) throws DmtException
	117.15.7.6. public void setNodeTitle(String[] nodePath,String title) throws DmtException
	117.15.7.7. public void setNodeType(String[] nodePath,String type) throws DmtException
	117.15.7.8. public void setNodeValue(String[] nodePath,DmtData data) throws DmtException

	117.15.8. public interface TransactionalDataSession extends ReadWriteDataSession
	117.15.8.1. public void commit() throws DmtException
	117.15.8.2. public void rollback() throws DmtException

	117.16. org.osgi.service.dmt.notification
	117.16.1. Summary
	117.16.2. public class AlertItem
	117.16.2.1. public AlertItem(String source,String type,String mark,DmtData data)
	117.16.2.2. public AlertItem(String[] source,String type,String mark,DmtData data)
	117.16.2.3. public DmtData getData()
	117.16.2.4. public String getMark()
	117.16.2.5. public String getSource()
	117.16.2.6. public String getType()
	117.16.2.7. public String toString()

	117.16.3. public interface NotificationService
	117.16.3.1. public void sendNotification(String principal,int code,String correlator,AlertItem[] items) throws DmtException

	117.17. org.osgi.service.dmt.notification.spi
	117.17.1. Summary
	117.17.2. public interface RemoteAlertSender
	117.17.2.1. public void sendAlert(String principal,int code,String correlator,AlertItem[] items) throws Exception

	117.18. org.osgi.service.dmt.security
	117.18.1. Summary
	117.18.2. public class AlertPermission extends Permission
	117.18.2.1. public AlertPermission(String target)
	117.18.2.2. public AlertPermission(String target,String actions)
	117.18.2.3. public boolean equals(Object obj)
	117.18.2.4. public String getActions()
	117.18.2.5. public int hashCode()
	117.18.2.6. public boolean implies(Permission p)
	117.18.2.7. public PermissionCollection newPermissionCollection()

	117.18.3. public class DmtPermission extends Permission
	117.18.3.1. public static final String ADD = "Add"
	117.18.3.2. public static final String DELETE = "Delete"
	117.18.3.3. public static final String EXEC = "Exec"
	117.18.3.4. public static final String GET = "Get"
	117.18.3.5. public static final String REPLACE = "Replace"
	117.18.3.6. public DmtPermission(String dmtUri,String actions)
	117.18.3.7. public boolean equals(Object obj)
	117.18.3.8. public String getActions()
	117.18.3.9. public int hashCode()
	117.18.3.10. public boolean implies(Permission p)
	117.18.3.11. public PermissionCollection newPermissionCollection()

	117.18.4. public class DmtPrincipalPermission extends Permission
	117.18.4.1. public DmtPrincipalPermission(String target)
	117.18.4.2. public DmtPrincipalPermission(String target,String actions)
	117.18.4.3. public boolean equals(Object obj)
	117.18.4.4. public String getActions()
	117.18.4.5. public int hashCode()
	117.18.4.6. public boolean implies(Permission p)
	117.18.4.7. public PermissionCollection newPermissionCollection()

	117.19. References

	Chapter 131. TR069 Connector Service Specification
	131.1. Introduction
	131.1.1. Essentials
	131.1.2. Entities
	131.1.3. Synopsis

	131.2. TR-069 Protocol Primer
	131.2.1. Architecture
	131.2.2. Object Model
	131.2.3. Parameter Names
	131.2.4. Parameter Type
	131.2.5. Parameter Attributes
	131.2.6. Objects and Tables
	131.2.7. RPCs
	131.2.8. Authentication
	131.2.9. Sessions and Transactions
	131.2.10. Events and Notifications
	131.2.11. Errors

	131.3. TR069 Connector
	131.3.1. Role
	131.3.2. Obtaining a TR069 Connector
	131.3.3. Supported RPCs
	131.3.4. Name Escaping
	131.3.5. Root
	131.3.6. DMT Traversal
	131.3.7. Synthetic Nodes
	131.3.7.1. Alias
	131.3.7.2. Number Of Entries

	131.3.8. Lazy and Sessions
	131.3.9. Data Types
	131.3.10. DMT to TR-069 Conversion
	131.3.10.1. Date
	131.3.10.2. Binary
	131.3.10.3. Number
	131.3.10.4. List

	131.3.11. TR-069 to Dmt Data Conversion
	131.3.11.1. Date
	131.3.11.2. Num
	131.3.11.3. Bool
	131.3.11.4. Binary
	131.3.11.5. List

	131.4. RPCs
	131.4.1. Get Parameter Values
	131.4.2. Set Parameter Values
	131.4.3. Get Parameter Names
	131.4.4. Add Object
	131.4.5. Delete Object

	131.5. Error and Fault Codes
	131.6. Managing the RMT
	131.7. Native TR-069 Object Models
	131.8. org.osgi.service.tr069todmt
	131.8.1. Summary
	131.8.2. public interface ParameterInfo
	131.8.2.1. public ParameterValue getParameterValue() throws TR069Exception
	131.8.2.2. public String getPath()
	131.8.2.3. public boolean isParameter()
	131.8.2.4. public boolean isWriteable()

	131.8.3. public interface ParameterValue
	131.8.3.1. public String getPath()
	131.8.3.2. public int getType()
	131.8.3.3. public String getValue()

	131.8.4. public interface TR069Connector
	131.8.4.1. public static final String PREFIX = "application/x-tr-069-"
	131.8.4.2. public static final int TR069_BASE64 = 64
	131.8.4.3. public static final int TR069_BOOLEAN = 32
	131.8.4.4. public static final int TR069_DATETIME = 256
	131.8.4.5. public static final int TR069_DEFAULT = 0
	131.8.4.6. public static final int TR069_HEXBINARY = 128
	131.8.4.7. public static final int TR069_INT = 1
	131.8.4.8. public static final int TR069_LONG = 4
	131.8.4.9. public static final String TR069_MIME_BASE64 = "application/x-tr-069-base64"
	131.8.4.10. public static final String TR069_MIME_BOOLEAN = "application/x-tr-069-boolean"
	131.8.4.11. public static final String TR069_MIME_DATETIME = "application/x-tr-069-dateTime"
	131.8.4.12. public static final String TR069_MIME_DEFAULT = "application/x-tr-069-default"
	131.8.4.13. public static final String TR069_MIME_EAGER = "application/x-tr-069-eager"
	131.8.4.14. public static final String TR069_MIME_HEXBINARY = "application/x-tr-069-hexBinary"
	131.8.4.15. public static final String TR069_MIME_INT = "application/x-tr-069-int"
	131.8.4.16. public static final String TR069_MIME_LONG = "application/x-tr-069-long"
	131.8.4.17. public static final String TR069_MIME_STRING = "application/x-tr-069-string"
	131.8.4.18. public static final String TR069_MIME_STRING_LIST = "application/x-tr-069-string-list"
	131.8.4.19. public static final String TR069_MIME_UNSIGNED_INT = "application/x-tr-069-unsignedInt"
	131.8.4.20. public static final String TR069_MIME_UNSIGNED_LONG = "application/x-tr-069-unsignedLong"
	131.8.4.21. public static final int TR069_STRING = 16
	131.8.4.22. public static final int TR069_UNSIGNED_INT = 2
	131.8.4.23. public static final int TR069_UNSIGNED_LONG = 8
	131.8.4.24. public String addObject(String path) throws TR069Exception
	131.8.4.25. public void close()
	131.8.4.26. public void deleteObject(String objectPath) throws TR069Exception
	131.8.4.27. public Collection<ParameterInfo> getParameterNames(String objectOrTablePath,boolean nextLevel) throws TR069Exception
	131.8.4.28. public ParameterValue getParameterValue(String parameterPath) throws TR069Exception
	131.8.4.29. public void setParameterValue(String parameterPath,String value,int type) throws TR069Exception
	131.8.4.30. public String toPath(String uri) throws TR069Exception
	131.8.4.31. public String toURI(String name,boolean create) throws TR069Exception

	131.8.5. public interface TR069ConnectorFactory
	131.8.5.1. public TR069Connector create(DmtSession session)

	131.8.6. public class TR069Exception extends RuntimeException
	131.8.6.1. public static final int INTERNAL_ERROR = 9002
	131.8.6.2. public static final int INVALID_ARGUMENTS = 9003
	131.8.6.3. public static final int INVALID_PARAMETER_NAME = 9005
	131.8.6.4. public static final int INVALID_PARAMETER_TYPE = 9006
	131.8.6.5. public static final int INVALID_PARAMETER_VALUE = 9007
	131.8.6.6. public static final int METHOD_NOT_SUPPORTED = 9000
	131.8.6.7. public static final int NON_WRITABLE_PARAMETER = 9008
	131.8.6.8. public static final int NOTIFICATION_REJECTED = 9009
	131.8.6.9. public static final int REQUEST_DENIED = 9001
	131.8.6.10. public static final int RESOURCES_EXCEEDED = 9004
	131.8.6.11. public TR069Exception(String message)
	131.8.6.12. public TR069Exception(String message,int faultCode,DmtException e)
	131.8.6.13. public TR069Exception(String message,int faultCode)
	131.8.6.14. public TR069Exception(DmtException e)
	131.8.6.15. public DmtException getDmtException()
	131.8.6.16. public int getFaultCode()

	131.9. References

	Chapter 135. Common Namespaces Specification
	135.1. Introduction
	135.1.1. Versioning

	135.2. osgi.extender Namespace
	135.2.1. Extenders and Framework Hooks

	135.3. osgi.contract Namespace
	135.3.1. Versioning

	135.4. osgi.service Namespace
	135.4.1. Versioning

	135.5. osgi.implementation Namespace
	135.6. org.osgi.namespace.contract
	135.6.1. Summary
	135.6.2. public final class ContractNamespace extends Namespace
	135.6.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.6.2.2. public static final String CONTRACT_NAMESPACE = "osgi.contract"

	135.7. org.osgi.namespace.extender
	135.7.1. Summary
	135.7.2. public final class ExtenderNamespace extends Namespace
	135.7.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.7.2.2. public static final String EXTENDER_NAMESPACE = "osgi.extender"

	135.8. org.osgi.namespace.service
	135.8.1. Summary
	135.8.2. public final class ServiceNamespace extends Namespace
	135.8.2.1. public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"
	135.8.2.2. public static final String SERVICE_NAMESPACE = "osgi.service"

	135.9. org.osgi.namespace.implementation
	135.9.1. Summary
	135.9.2. public final class ImplementationNamespace extends Namespace
	135.9.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.9.2.2. public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

	135.10. References
	135.11. Changes

	Chapter 139. EnOcean Device Service Specification
	139.1. Introduction
	139.2. Essentials
	139.3. Entities
	139.4. Operation Summary
	139.5. EnOcean Base Driver
	139.6. EnOcean Host
	139.7. EnOcean Device
	139.7.1. Generics
	139.7.2. Import Situation
	139.7.3. Export Situation
	139.7.4. Interface

	139.8. EnOcean Messages
	139.8.1. Mode of operation
	139.8.2. Identification
	139.8.3. Interface

	139.9. EnOcean Message Description
	139.10. EnOcean Channel
	139.11. EnOcean Channel Description
	139.11.1. EnOcean Data Channel Description
	139.11.2. EnOcean Flag Channel Description
	139.11.3. EnOcean Enumerated Channel Description

	139.12. EnOcean Remote Management
	139.12.1. EnOcean RPC
	139.12.2. EnOcean Handler

	139.13. Working With an EnOcean Device
	139.13.1. Service Tracking

	139.14. Event API
	139.14.1. MESSAGE_RECEIVED
	139.14.2. RPC_BROADCAST

	139.15. EnOcean Exceptions
	139.16. Security
	139.17. org.osgi.service.enocean
	139.17.1. Summary
	139.17.2. public interface EnOceanChannel
	139.17.2.1. public String getChannelId()
	139.17.2.2. public int getOffset()
	139.17.2.3. public byte[] getRawValue()
	139.17.2.4. public int getSize()
	139.17.2.5. public void setRawValue(byte[] rawValue)

	139.17.3. public interface EnOceanDevice
	139.17.3.1. public static final String CHIP_ID = "enocean.device.chip_id"
	139.17.3.2. public static final String DEVICE_CATEGORY = "EnOcean"
	139.17.3.3. public static final String ENOCEAN_EXPORT = "enocean.device.export"
	139.17.3.4. public static final String FUNC = "enocean.device.profile.func"
	139.17.3.5. public static final String MANUFACTURER = "enocean.device.manufacturer"
	139.17.3.6. public static final String RORG = "enocean.device.profile.rorg"
	139.17.3.7. public static final String SECURITY_LEVEL_FORMAT = "enocean.device.security_level_format"
	139.17.3.8. public static final String TYPE = "enocean.device.profile.type"
	139.17.3.9. public int getChipId()
	139.17.3.10. public byte[] getEncryptionKey()
	139.17.3.11. public int getFunc()
	139.17.3.12. public int[] getLearnedDevices()
	139.17.3.13. public int getManufacturer()
	139.17.3.14. public int getRollingCode()
	139.17.3.15. public int getRorg()
	139.17.3.16. public Map getRPCs()
	139.17.3.17. public int getSecurityLevelFormat()
	139.17.3.18. public int getType()
	139.17.3.19. public void invoke(EnOceanRPC rpc,EnOceanHandler handler)
	139.17.3.20. public void remove()
	139.17.3.21. public void setEncryptionKey(byte[] key)
	139.17.3.22. public void setFunc(int func)
	139.17.3.23. public void setLearningMode(boolean learnMode)
	139.17.3.24. public void setRollingCode(int rollingCode)
	139.17.3.25. public void setType(int type)

	139.17.4. public final class EnOceanEvent
	139.17.4.1. public static final String PROPERTY_EXPORTED = "enocean.message.is_exported"
	139.17.4.2. public static final String PROPERTY_MESSAGE = "enocean.message"
	139.17.4.3. public static final String PROPERTY_RPC = "enocean.rpc"
	139.17.4.4. public static final String TOPIC_MSG_RECEIVED = "org/osgi/service/enocean/EnOceanEvent/MESSAGE_RECEIVED"
	139.17.4.5. public static final String TOPIC_RPC_BROADCAST = "org/osgi/service/enocean/EnOceanEvent/RPC_BROADCAST"

	139.17.5. public class EnOceanException extends Exception
	139.17.5.1. public static final short ESP_RET_NOT_SUPPORTED = 2
	139.17.5.2. public static final short ESP_RET_OPERATION_DENIED = 4
	139.17.5.3. public static final short ESP_RET_WRONG_PARAM = 3
	139.17.5.4. public static final short ESP_UNEXPECTED_FAILURE = 1
	139.17.5.5. public static final short INVALID_TELEGRAM = 240
	139.17.5.6. public static final short SUCCESS = 0
	139.17.5.7. public EnOceanException(String errordesc)
	139.17.5.8. public EnOceanException(int errorCode,String errorDesc)
	139.17.5.9. public EnOceanException(int errorCode)
	139.17.5.10. public int errorCode()

	139.17.6. public interface EnOceanHandler
	139.17.6.1. public void notifyResponse(EnOceanRPC original,byte[] payload)

	139.17.7. public interface EnOceanHost
	139.17.7.1. public static final Object HOST_ID
	139.17.7.2. public static final int REPEATER_LEVEL_OFF = 0
	139.17.7.3. public static final int REPEATER_LEVEL_ONE = 1
	139.17.7.4. public static final int REPEATER_LEVEL_TWO = 2
	139.17.7.5. public String apiVersion() throws EnOceanException
	139.17.7.6. public String appVersion() throws EnOceanException
	139.17.7.7. public int getBaseID() throws EnOceanException
	139.17.7.8. public int getChipId(String servicePID) throws EnOceanException
	139.17.7.9. public int getRepeaterLevel() throws EnOceanException
	139.17.7.10. public void reset() throws EnOceanException
	139.17.7.11. public void setBaseID(int baseID) throws EnOceanException
	139.17.7.12. public void setRepeaterLevel(int level) throws EnOceanException

	139.17.8. public interface EnOceanMessage
	139.17.8.1. public byte[] getBytes()
	139.17.8.2. public int getDbm()
	139.17.8.3. public int getDestinationId()
	139.17.8.4. public int getFunc()
	139.17.8.5. public byte[] getPayloadBytes()
	139.17.8.6. public int getRorg()
	139.17.8.7. public int getSecurityLevelFormat()
	139.17.8.8. public int getSenderId()
	139.17.8.9. public int getStatus()
	139.17.8.10. public int getSubTelNum()
	139.17.8.11. public int getType()

	139.17.9. public interface EnOceanRPC
	139.17.9.1. public static final String FUNCTION_ID = "enocean.rpc.function_id"
	139.17.9.2. public static final String MANUFACTURER_ID = "enocean.rpc.manufacturer_id"
	139.17.9.3. public int getFunctionId()
	139.17.9.4. public int getManufacturerId()
	139.17.9.5. public String getName()
	139.17.9.6. public byte[] getPayload()
	139.17.9.7. public int getSenderId()
	139.17.9.8. public void setSenderId(int chipId)

	139.18. org.osgi.service.enocean.descriptions
	139.18.1. Summary
	139.18.2. public interface EnOceanChannelDescription
	139.18.2.1. public static final String CHANNEL_ID = "enocean.channel.description.channel_id"
	139.18.2.2. public static final String TYPE_DATA = "enocean.channel.description.data"
	139.18.2.3. public static final String TYPE_ENUM = "enocean.channel.description.enum"
	139.18.2.4. public static final String TYPE_FLAG = "enocean.channel.description.flag"
	139.18.2.5. public static final String TYPE_RAW = "enocean.channel.description.raw"
	139.18.2.6. public Object deserialize(byte[] bytes)
	139.18.2.7. public String getType()
	139.18.2.8. public byte[] serialize(Object obj)

	139.18.3. public interface EnOceanChannelDescriptionSet
	139.18.3.1. public EnOceanChannelDescription getChannelDescription(String channelId)

	139.18.4. public interface EnOceanChannelEnumValue
	139.18.4.1. public String getDescription()
	139.18.4.2. public int getStart()
	139.18.4.3. public int getStop()

	139.18.5. public interface EnOceanDataChannelDescription extends EnOceanChannelDescription
	139.18.5.1. public int getDomainStart()
	139.18.5.2. public int getDomainStop()
	139.18.5.3. public double getRangeStart()
	139.18.5.4. public double getRangeStop()
	139.18.5.5. public String getUnit()

	139.18.6. public interface EnOceanEnumChannelDescription extends EnOceanChannelDescription
	139.18.6.1. public EnOceanChannelEnumValue[] getPossibleValues()

	139.18.7. public interface EnOceanFlagChannelDescription extends EnOceanChannelDescription
	139.18.8. public interface EnOceanMessageDescription
	139.18.8.1. public EnOceanChannel[] deserialize(byte[] bytes)
	139.18.8.2. public String getMessageDescription()
	139.18.8.3. public byte[] serialize(EnOceanChannel[] channels)

	139.18.9. public interface EnOceanMessageDescriptionSet
	139.18.9.1. public EnOceanMessageDescription getMessageDescription(int rorg,int func,int type,int extra)

	139.19. References

	Chapter 141. Device Abstraction Layer Specification
	141.1. Introduction
	141.1.1. Entities

	141.2. Device Category
	141.3. Device Service
	141.3.1. Device Service Properties
	141.3.2. Device Registration
	141.3.3. Reference Devices
	141.3.4. Device Status Transitions
	141.3.4.1. Removed
	141.3.4.2. Offline
	141.3.4.3. Online
	141.3.4.4. Processing
	141.3.4.5. Not Initialized
	141.3.4.6. Not Configured

	141.4. Function Service
	141.4.1. Function Service Properties
	141.4.2. Function Registration
	141.4.3. Function Interface
	141.4.4. Function Operations
	141.4.5. Function Properties
	141.4.6. Function Property Events

	141.5. Security
	141.5.1. Device Permission
	141.5.2. Required Permissions

	141.6. org.osgi.service.dal
	141.6.1. Summary
	141.6.2. public interface Device
	141.6.2.1. public static final String DEVICE_CATEGORY = "DAL"
	141.6.2.2. public static final String SERVICE_DESCRIPTION = "dal.device.description"
	141.6.2.3. public static final String SERVICE_DRIVER = "dal.device.driver"
	141.6.2.4. public static final String SERVICE_FIRMWARE_VENDOR = "dal.device.firmware.vendor"
	141.6.2.5. public static final String SERVICE_FIRMWARE_VERSION = "dal.device.firmware.version"
	141.6.2.6. public static final String SERVICE_HARDWARE_VENDOR = "dal.device.hardware.vendor"
	141.6.2.7. public static final String SERVICE_HARDWARE_VERSION = "dal.device.hardware.version"
	141.6.2.8. public static final String SERVICE_MODEL = "dal.device.model"
	141.6.2.9. public static final String SERVICE_NAME = "dal.device.name"
	141.6.2.10. public static final String SERVICE_REFERENCE_UIDS = "dal.device.reference.UIDs"
	141.6.2.11. public static final String SERVICE_SERIAL_NUMBER = "dal.device.serial.number"
	141.6.2.12. public static final String SERVICE_STATUS = "dal.device.status"
	141.6.2.13. public static final String SERVICE_STATUS_DETAIL = "dal.device.status.detail"
	141.6.2.14. public static final String SERVICE_TYPES = "dal.device.types"
	141.6.2.15. public static final String SERVICE_UID = "dal.device.UID"
	141.6.2.16. public static final Integer STATUS_DETAIL_BROKEN
	141.6.2.17. public static final Integer STATUS_DETAIL_COMMUNICATION_ERROR
	141.6.2.18. public static final Integer STATUS_DETAIL_CONFIGURATION_ERROR
	141.6.2.19. public static final Integer STATUS_DETAIL_CONFIGURATION_UNAPPLIED
	141.6.2.20. public static final Integer STATUS_DETAIL_CONNECTING
	141.6.2.21. public static final Integer STATUS_DETAIL_DATA_INSUFFICIENT
	141.6.2.22. public static final Integer STATUS_DETAIL_DUTY_CYCLE
	141.6.2.23. public static final Integer STATUS_DETAIL_FIRMWARE_UPDATING
	141.6.2.24. public static final Integer STATUS_DETAIL_INACCESSIBLE
	141.6.2.25. public static final Integer STATUS_DETAIL_INITIALIZING
	141.6.2.26. public static final Integer STATUS_DETAIL_REMOVING
	141.6.2.27. public static final Integer STATUS_NOT_CONFIGURED
	141.6.2.28. public static final Integer STATUS_NOT_INITIALIZED
	141.6.2.29. public static final Integer STATUS_OFFLINE
	141.6.2.30. public static final Integer STATUS_ONLINE
	141.6.2.31. public static final Integer STATUS_PROCESSING
	141.6.2.32. public static final Integer STATUS_REMOVED
	141.6.2.33. public Object getServiceProperty(String propKey)
	141.6.2.34. public String[] getServicePropertyKeys()
	141.6.2.35. public void remove() throws DeviceException

	141.6.3. public class DeviceException extends IOException
	141.6.3.1. public static final int COMMUNICATION_ERROR = 1
	141.6.3.2. public static final int NO_DATA = 4
	141.6.3.3. public static final int NOT_INITIALIZED = 3
	141.6.3.4. public static final int TIMEOUT = 2
	141.6.3.5. public static final int UNKNOWN = 0
	141.6.3.6. public DeviceException()
	141.6.3.7. public DeviceException(String message)
	141.6.3.8. public DeviceException(String message,Throwable cause)
	141.6.3.9. public DeviceException(String message,Throwable cause,int code)
	141.6.3.10. public int getCode()

	141.6.4. public class DevicePermission extends BasicPermission
	141.6.4.1. public static final String REMOVE = "remove"
	141.6.4.2. public DevicePermission(String filter,String action)
	141.6.4.3. public DevicePermission(Device device,String action)
	141.6.4.4. public boolean equals(Object obj)
	141.6.4.5. public String getActions()
	141.6.4.6. public int hashCode()
	141.6.4.7. public boolean implies(Permission p)
	141.6.4.8. public PermissionCollection newPermissionCollection()

	141.6.5. public interface Function
	141.6.5.1. public static final String SERVICE_DESCRIPTION = "dal.function.description"
	141.6.5.2. public static final String SERVICE_DEVICE_UID = "dal.function.device.UID"
	141.6.5.3. public static final String SERVICE_OPERATION_NAMES = "dal.function.operation.names"
	141.6.5.4. public static final String SERVICE_PROPERTY_NAMES = "dal.function.property.names"
	141.6.5.5. public static final String SERVICE_REFERENCE_UIDS = "dal.function.reference.UIDs"
	141.6.5.6. public static final String SERVICE_TYPE = "dal.function.type"
	141.6.5.7. public static final String SERVICE_UID = "dal.function.UID"
	141.6.5.8. public static final String SERVICE_VERSION = "dal.function.version"
	141.6.5.9. public OperationMetadata getOperationMetadata(String operationName)
	141.6.5.10. public PropertyMetadata getPropertyMetadata(String propertyName)
	141.6.5.11. public Object getServiceProperty(String propKey)
	141.6.5.12. public String[] getServicePropertyKeys()

	141.6.6. public abstract class FunctionData implements Comparable
	141.6.6.1. public static final String DESCRIPTION = "description"
	141.6.6.2. public static final String FIELD_METADATA = "metadata"
	141.6.6.3. public static final String FIELD_TIMESTAMP = "timestamp"
	141.6.6.4. public FunctionData(Map fields)
	141.6.6.5. public FunctionData(long timestamp,Map metadata)
	141.6.6.6. public int compareTo(Object o)
	141.6.6.7. public boolean equals(Object other)
	141.6.6.8. public Map getMetadata()
	141.6.6.9. public long getTimestamp()
	141.6.6.10. public int hashCode()

	141.6.7. public class FunctionEvent extends Event
	141.6.7.1. public static final String EVENT_CLASS = "org/osgi/service/dal/FunctionEvent/"
	141.6.7.2. public static final String EVENT_PACKAGE = "org/osgi/service/dal/"
	141.6.7.3. public static final String FUNCTION_UID = "dal.function.UID"
	141.6.7.4. public static final String PROPERTY_NAME = "dal.function.property.name"
	141.6.7.5. public static final String PROPERTY_VALUE = "dal.function.property.value"
	141.6.7.6. public static final String TOPIC_PROPERTY_CHANGED = "org/osgi/service/dal/FunctionEvent/PROPERTY_CHANGED"
	141.6.7.7. public FunctionEvent(String topic,Dictionary properties)
	141.6.7.8. public FunctionEvent(String topic,Map properties)
	141.6.7.9. public FunctionEvent(String topic,String functionUID,String propName,FunctionData propValue)
	141.6.7.10. public String getFunctionPropertyName()
	141.6.7.11. public FunctionData getFunctionPropertyValue()
	141.6.7.12. public String getFunctionUID()

	141.6.8. public interface OperationMetadata
	141.6.8.1. public static final String DESCRIPTION = "description"
	141.6.8.2. public Map getMetadata()
	141.6.8.3. public PropertyMetadata[] getParametersMetadata()
	141.6.8.4. public PropertyMetadata getReturnValueMetadata()

	141.6.9. public interface PropertyMetadata
	141.6.9.1. public static final String ACCESS = "access"
	141.6.9.2. public static final int ACCESS_EVENTABLE = 4
	141.6.9.3. public static final int ACCESS_READABLE = 1
	141.6.9.4. public static final int ACCESS_WRITABLE = 2
	141.6.9.5. public static final String DESCRIPTION = "description"
	141.6.9.6. public static final String UNITS = "units"
	141.6.9.7. public FunctionData[] getEnumValues(String unit)
	141.6.9.8. public FunctionData getMaxValue(String unit)
	141.6.9.9. public Map getMetadata(String unit)
	141.6.9.10. public FunctionData getMinValue(String unit)
	141.6.9.11. public FunctionData getStep(String unit)

	141.6.10. public final class SIUnits
	141.6.10.1. public static final String AMPERE = "A"
	141.6.10.2. public static final String AMPERE_PER_METER = "A/m"
	141.6.10.3. public static final String AMPERE_PER_SQUARE_METER = "A/m\u00b2"
	141.6.10.4. public static final String ANGSTROM = "\u212b"
	141.6.10.5. public static final String BAR = "bar"
	141.6.10.6. public static final String BARN = "b"
	141.6.10.7. public static final String BECQUEREL = "Bq"
	141.6.10.8. public static final String BEL = "B"
	141.6.10.9. public static final String CANDELA = "cd"
	141.6.10.10. public static final String CANDELA_PER_SQUARE_METER = "cd/m\u00b2"
	141.6.10.11. public static final String COULOMB = "C"
	141.6.10.12. public static final String COULOMB_PER_CUBIC_METER = "C/m\u00b3"
	141.6.10.13. public static final String COULOMB_PER_KILOGRAM = "C/kg"
	141.6.10.14. public static final String COULOMB_PER_SQUARE_METER = "C/m\u00b2"
	141.6.10.15. public static final String CUBIC_METER = "m\u00b3"
	141.6.10.16. public static final String CUBIC_METER_PER_KILOGRAM = "m\u00b3/kg"
	141.6.10.17. public static final String DAY = "d"
	141.6.10.18. public static final String DECIBEL = "dB"
	141.6.10.19. public static final String DEGREE = "\u00b0"
	141.6.10.20. public static final String DEGREE_CELSIUS = "\u2103"
	141.6.10.21. public static final String DYNE = "dyn"
	141.6.10.22. public static final String ERG = "erg"
	141.6.10.23. public static final String FARAD = "F"
	141.6.10.24. public static final String FARAD_PER_METER = "F/m"
	141.6.10.25. public static final String GAL = "Gal"
	141.6.10.26. public static final String GAUSS = "G"
	141.6.10.27. public static final String GRAY = "Gy"
	141.6.10.28. public static final String GRAY_PER_SECOND = "Gy/s"
	141.6.10.29. public static final String HECTARE = "ha"
	141.6.10.30. public static final String HENRY = "H"
	141.6.10.31. public static final String HENRY_PER_METER = "H/m"
	141.6.10.32. public static final String HERTZ = "Hz"
	141.6.10.33. public static final String HOUR = "h"
	141.6.10.34. public static final String JOULE = "J"
	141.6.10.35. public static final String JOULE_PER_CUBIC_METER = "J/m\u00b3"
	141.6.10.36. public static final String JOULE_PER_KELVIN = "J/\u212a"
	141.6.10.37. public static final String JOULE_PER_KILOGRAM = "J/kg"
	141.6.10.38. public static final String JOULE_PER_KILOGRAM_KELVIN = "J/(kg \u212a)"
	141.6.10.39. public static final String JOULE_PER_MOLE = "J/mol"
	141.6.10.40. public static final String JOULE_PER_MOLE_KELVIN = "J/(mol \u212a)"
	141.6.10.41. public static final String KATAL = "kat"
	141.6.10.42. public static final String KATAL_PER_CUBIC_METER = "kat/m\u00b3"
	141.6.10.43. public static final String KELVIN = "\u212a"
	141.6.10.44. public static final String KILOGRAM = "kg"
	141.6.10.45. public static final String KILOGRAM_PER_CUBIC_METER = "kg/m\u00b3"
	141.6.10.46. public static final String KILOGRAM_PER_SQUARE_METER = "kg/m\u00b2"
	141.6.10.47. public static final String KNOT = "kn"
	141.6.10.48. public static final String LITER = "l"
	141.6.10.49. public static final String LUMEN = "lm"
	141.6.10.50. public static final String LUX = "lx"
	141.6.10.51. public static final String MAXWELL = "Mx"
	141.6.10.52. public static final String METER = "m"
	141.6.10.53. public static final String METER_PER_SECOND = "m/s"
	141.6.10.54. public static final String METER_PER_SECOND_SQUARED = "m/s\u00b2"
	141.6.10.55. public static final String MILLIMETER_OF_MERCURY = "mmHg"
	141.6.10.56. public static final String MOLE = "mol"
	141.6.10.57. public static final String MOLE_PER_CUBIC_METER = "mol/m\u00b3"
	141.6.10.58. public static final String NAUTICAL_MILE = "M"
	141.6.10.59. public static final String NEPER = "Np"
	141.6.10.60. public static final String NEWTON = "N"
	141.6.10.61. public static final String NEWTON_METER = "N m"
	141.6.10.62. public static final String NEWTON_PER_METER = "N/m"
	141.6.10.63. public static final String OERSTED = "Oe"
	141.6.10.64. public static final String OHM = "\u2126"
	141.6.10.65. public static final String PASCAL = "Pa"
	141.6.10.66. public static final String PASCAL_SECOND = "Pa s"
	141.6.10.67. public static final String PHOT = "ph"
	141.6.10.68. public static final String PLANE_ANGLE_MINUTE = "\u2032"
	141.6.10.69. public static final String PLANE_ANGLE_SECOND = "\u2033"
	141.6.10.70. public static final String POISE = "P"
	141.6.10.71. public static final String PREFIX_ATTO = "a"
	141.6.10.72. public static final String PREFIX_CENTI = "c"
	141.6.10.73. public static final String PREFIX_DECA = "da"
	141.6.10.74. public static final String PREFIX_DECI = "d"
	141.6.10.75. public static final String PREFIX_EXA = "E"
	141.6.10.76. public static final String PREFIX_FEMTO = "f"
	141.6.10.77. public static final String PREFIX_GIGA = "G"
	141.6.10.78. public static final String PREFIX_HECTO = "h"
	141.6.10.79. public static final String PREFIX_KILO = "k"
	141.6.10.80. public static final String PREFIX_MEGA = "M"
	141.6.10.81. public static final String PREFIX_MICRO = "\u00b5"
	141.6.10.82. public static final String PREFIX_MILLI = "m"
	141.6.10.83. public static final String PREFIX_NANO = "n"
	141.6.10.84. public static final String PREFIX_PICO = "p"
	141.6.10.85. public static final String PREFIX_YOCTO = "y"
	141.6.10.86. public static final String PREFIX_YOTTA = "Y"
	141.6.10.87. public static final String PREFIX_ZEPTO = "z"
	141.6.10.88. public static final String PREFIX_ZETTA = "Z"
	141.6.10.89. public static final String RADIAN = "rad"
	141.6.10.90. public static final String RADIAN_PER_SECOND = "rad/s"
	141.6.10.91. public static final String RADIAN_PER_SECOND_SQUARED = "rad/s\u00b2"
	141.6.10.92. public static final String RECIPROCAL_METER = "m\u207b\u00b9"
	141.6.10.93. public static final String SECOND = "s"
	141.6.10.94. public static final String SIEMENS = "S"
	141.6.10.95. public static final String SIEVERT = "Sv"
	141.6.10.96. public static final String SQUARE_METER = "m\u00b2"
	141.6.10.97. public static final String STERADIAN = "sr"
	141.6.10.98. public static final String STILB = "sb"
	141.6.10.99. public static final String STOKES = "St"
	141.6.10.100. public static final String TESLA = "T"
	141.6.10.101. public static final String TIME_MINUTE = "min"
	141.6.10.102. public static final String TONNE = "t"
	141.6.10.103. public static final String VOLT = "V"
	141.6.10.104. public static final String VOLT_PER_METER = "V/m"
	141.6.10.105. public static final String WATT = "W"
	141.6.10.106. public static final String WATT_PER_METER_KELVIN = "W/(m \u212a)"
	141.6.10.107. public static final String WATT_PER_SQUARE_METER = "W/m\u00b2"
	141.6.10.108. public static final String WATT_PER_SQUARE_METER_STERADIAN = "W/(m\u00b2 sr)"
	141.6.10.109. public static final String WATT_PER_STERADIAN = "W/sr"
	141.6.10.110. public static final String WEBER = "Wb"

	141.7. References

	Chapter 142. Device Abstraction Layer Functions Specification
	142.1. Introduction
	142.2. Functions
	142.2.1. BooleanControl
	142.2.2. BooleanSensor
	142.2.3. MultiLevelControl
	142.2.4. MultiLevelSensor
	142.2.5. Meter
	142.2.6. Alarm
	142.2.7. Keypad
	142.2.8. WakeUp

	142.3. Functions Data
	142.3.1. BooleanData
	142.3.2. LevelData
	142.3.3. AlarmData
	142.3.4. KeypadData

	142.4. org.osgi.service.dal.functions
	142.4.1. Summary
	142.4.2. public interface Alarm extends Function
	142.4.2.1. public static final String PROPERTY_ALARM = "alarm"

	142.4.3. public interface BooleanControl extends Function
	142.4.3.1. public static final String OPERATION_INVERSE = "inverse"
	142.4.3.2. public static final String OPERATION_SET_FALSE = "setFalse"
	142.4.3.3. public static final String OPERATION_SET_TRUE = "setTrue"
	142.4.3.4. public static final String PROPERTY_DATA = "data"
	142.4.3.5. public BooleanData getData() throws DeviceException
	142.4.3.6. public void inverse() throws DeviceException
	142.4.3.7. public void setData(boolean data) throws DeviceException
	142.4.3.8. public void setFalse() throws DeviceException
	142.4.3.9. public void setTrue() throws DeviceException

	142.4.4. public interface BooleanSensor extends Function
	142.4.4.1. public static final String PROPERTY_DATA = "data"
	142.4.4.2. public BooleanData getData() throws DeviceException

	142.4.5. public interface Keypad extends Function
	142.4.5.1. public static final String PROPERTY_KEY = "key"

	142.4.6. public interface Meter extends Function
	142.4.6.1. public static final String FLOW_IN = "in"
	142.4.6.2. public static final String FLOW_OUT = "out"
	142.4.6.3. public static final String PROPERTY_CURRENT = "current"
	142.4.6.4. public static final String PROPERTY_TOTAL = "total"
	142.4.6.5. public static final String SERVICE_FLOW = "dal.meter.flow"
	142.4.6.6. public LevelData getCurrent() throws DeviceException
	142.4.6.7. public LevelData getTotal() throws DeviceException

	142.4.7. public interface MultiLevelControl extends Function
	142.4.7.1. public static final String PROPERTY_DATA = "data"
	142.4.7.2. public LevelData getData() throws DeviceException
	142.4.7.3. public void setData(BigDecimal level,String unit) throws DeviceException

	142.4.8. public interface MultiLevelSensor extends Function
	142.4.8.1. public static final String PROPERTY_DATA = "data"
	142.4.8.2. public LevelData getData() throws DeviceException

	142.4.9. public interface Types
	142.4.9.1. public static final String COLD = "cold"
	142.4.9.2. public static final String CONTACT = "contact"
	142.4.9.3. public static final String DOOR = "door"
	142.4.9.4. public static final String FIRE = "fire"
	142.4.9.5. public static final String FLOW = "flow"
	142.4.9.6. public static final String GAS = "gas"
	142.4.9.7. public static final String HEAT = "heat"
	142.4.9.8. public static final String HUMIDITY = "humidity"
	142.4.9.9. public static final String LIGHT = "light"
	142.4.9.10. public static final String LIQUID = "liquid"
	142.4.9.11. public static final String MOTION = "motion"
	142.4.9.12. public static final String NOISINESS = "noisiness"
	142.4.9.13. public static final String OCCUPANCY = "occupancy"
	142.4.9.14. public static final String POWER = "power"
	142.4.9.15. public static final String PRESSURE = "pressure"
	142.4.9.16. public static final String RAIN = "rain"
	142.4.9.17. public static final String SMOKE = "smoke"
	142.4.9.18. public static final String TEMPERATURE = "temperature"
	142.4.9.19. public static final String WATER = "water"
	142.4.9.20. public static final String WINDOW = "window"

	142.4.10. public interface WakeUp extends Function
	142.4.10.1. public static final String PROPERTY_AWAKE = "awake"
	142.4.10.2. public static final String PROPERTY_WAKE_UP_INTERVAL = "wakeUpInterval"
	142.4.10.3. public LevelData getWakeUpInterval() throws DeviceException
	142.4.10.4. public void setWakeUpInterval(BigDecimal interval,String unit) throws DeviceException

	142.5. org.osgi.service.dal.functions.data
	142.5.1. Summary
	142.5.2. public class AlarmData extends FunctionData
	142.5.2.1. public static final String FIELD_SEVERITY = "severity"
	142.5.2.2. public static final String FIELD_TYPE = "type"
	142.5.2.3. public static final int SEVERITY_CRITICAL = 3
	142.5.2.4. public static final int SEVERITY_MAJOR = 2
	142.5.2.5. public static final int SEVERITY_MINOR = 1
	142.5.2.6. public static final int SEVERITY_UNDEFINED = 0
	142.5.2.7. public static final int TYPE_ACCESS_CONTROL = 1
	142.5.2.8. public static final int TYPE_BURGLAR = 2
	142.5.2.9. public static final int TYPE_COLD = 3
	142.5.2.10. public static final int TYPE_GAS_CO = 4
	142.5.2.11. public static final int TYPE_GAS_CO2 = 5
	142.5.2.12. public static final int TYPE_HARDWARE_FAIL = 7
	142.5.2.13. public static final int TYPE_HEAT = 6
	142.5.2.14. public static final int TYPE_POWER_FAIL = 8
	142.5.2.15. public static final int TYPE_SMOKE = 9
	142.5.2.16. public static final int TYPE_SOFTWARE_FAIL = 10
	142.5.2.17. public static final int TYPE_TAMPER = 11
	142.5.2.18. public static final int TYPE_UNDEFINED = 0
	142.5.2.19. public static final int TYPE_WATER = 12
	142.5.2.20. public AlarmData(Map fields)
	142.5.2.21. public AlarmData(long timestamp,Map metadata,int severity,int type)
	142.5.2.22. public int compareTo(Object o)
	142.5.2.23. public boolean equals(Object o)
	142.5.2.24. public int getSeverity()
	142.5.2.25. public int getType()
	142.5.2.26. public int hashCode()
	142.5.2.27. public String toString()

	142.5.3. public class BooleanData extends FunctionData
	142.5.3.1. public static final String FIELD_VALUE = "value"
	142.5.3.2. public BooleanData(Map fields)
	142.5.3.3. public BooleanData(long timestamp,Map metadata,boolean value)
	142.5.3.4. public int compareTo(Object o)
	142.5.3.5. public boolean equals(Object o)
	142.5.3.6. public boolean getValue()
	142.5.3.7. public int hashCode()
	142.5.3.8. public String toString()

	142.5.4. public class KeypadData extends FunctionData
	142.5.4.1. public static final String FIELD_KEY_CODE = "keyCode"
	142.5.4.2. public static final String FIELD_KEY_NAME = "keyName"
	142.5.4.3. public static final String FIELD_SUB_TYPE = "subType"
	142.5.4.4. public static final String FIELD_TYPE = "type"
	142.5.4.5. public static final int SUB_TYPE_PRESSED_DOUBLE = 3
	142.5.4.6. public static final int SUB_TYPE_PRESSED_DOUBLE_LONG = 4
	142.5.4.7. public static final int SUB_TYPE_PRESSED_LONG = 2
	142.5.4.8. public static final int SUB_TYPE_PRESSED_NORMAL = 1
	142.5.4.9. public static final int TYPE_PRESSED = 0
	142.5.4.10. public static final int TYPE_RELEASED = 1
	142.5.4.11. public KeypadData(Map fields)
	142.5.4.12. public KeypadData(long timestamp,Map metadata,int type,int subType,int keyCode,String keyName)
	142.5.4.13. public int compareTo(Object o)
	142.5.4.14. public boolean equals(Object o)
	142.5.4.15. public int getKeyCode()
	142.5.4.16. public String getKeyName()
	142.5.4.17. public int getSubType()
	142.5.4.18. public int getType()
	142.5.4.19. public int hashCode()
	142.5.4.20. public String toString()

	142.5.5. public class LevelData extends FunctionData
	142.5.5.1. public static final String FIELD_LEVEL = "level"
	142.5.5.2. public static final String FIELD_UNIT = "unit"
	142.5.5.3. public LevelData(Map fields)
	142.5.5.4. public LevelData(long timestamp,Map metadata,BigDecimal level,String unit)
	142.5.5.5. public int compareTo(Object o)
	142.5.5.6. public boolean equals(Object o)
	142.5.5.7. public BigDecimal getLevel()
	142.5.5.8. public String getUnit()
	142.5.5.9. public int hashCode()
	142.5.5.10. public String toString()

	Chapter 143. Network Interface Information Service Specification
	143.1. Introduction
	143.1.1. Entities

	143.2. NetworkAdapter Service
	143.2.1. Network Interface Type

	143.3. NetworkAddress Service
	143.3.1. IP Address Version
	143.3.2. IP address scope

	143.4. A Controller Example
	143.5. Security
	143.6. org.osgi.service.networkadapter
	143.6.1. Summary
	143.6.2. public interface NetworkAdapter
	143.6.2.1. public static final byte[] EMPTY_BYTE_ARRAY
	143.6.2.2. public static final String EMPTY_STRING = ""
	143.6.2.3. public static final String[] EMPTY_STRING_ARRAY
	143.6.2.4. public static final String LAN = "LAN"
	143.6.2.5. public static final String NETWORKADAPTER_DISPLAYNAME = "networkAdapter.displayName"
	143.6.2.6. public static final String NETWORKADAPTER_HARDWAREADDRESS = "networkAdapter.hardwareAddress"
	143.6.2.7. public static final String NETWORKADAPTER_IS_LOOPBACK = "networkAdapter.isLoopback"
	143.6.2.8. public static final String NETWORKADAPTER_IS_POINTTOPOINT = "networkAdapter.isPointToPoint"
	143.6.2.9. public static final String NETWORKADAPTER_IS_UP = "networkAdapter.isUp"
	143.6.2.10. public static final String NETWORKADAPTER_IS_VIRTUAL = "networkAdapter.isVirtual"
	143.6.2.11. public static final String NETWORKADAPTER_NAME = "networkAdapter.name"
	143.6.2.12. public static final String NETWORKADAPTER_PARENT = "networkAdapter.parent"
	143.6.2.13. public static final String NETWORKADAPTER_SUBINTERFACE = "networkAdapter.subInterface"
	143.6.2.14. public static final String NETWORKADAPTER_SUPPORTS_MULTICAST = "networkAdapter.supportsMulticast"
	143.6.2.15. public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"
	143.6.2.16. public static final String WAN = "WAN"
	143.6.2.17. public String getDisplayName()
	143.6.2.18. public byte[] getHardwareAddress()
	143.6.2.19. public int getMTU() throws SocketException
	143.6.2.20. public String getName()
	143.6.2.21. public String getNetworkAdapterType()
	143.6.2.22. public boolean isLoopback() throws SocketException
	143.6.2.23. public boolean isPointToPoint() throws SocketException
	143.6.2.24. public boolean isUp() throws SocketException
	143.6.2.25. public boolean isVirtual()
	143.6.2.26. public boolean supportsMulticast() throws SocketException

	143.6.3. public interface NetworkAddress
	143.6.3.1. public static final Integer EMPTY_INTEGER
	143.6.3.2. public static final String IPADDRESS = "ipAddress"
	143.6.3.3. public static final String IPADDRESS_SCOPE = "ipAddress.scope"
	143.6.3.4. public static final String IPADDRESS_SCOPE_GLOBAL = "GLOBAL"
	143.6.3.5. public static final String IPADDRESS_SCOPE_HOST = "HOST"
	143.6.3.6. public static final String IPADDRESS_SCOPE_LINKED_SCOPED_UNICAST = "LINKED_SCOPED_UNICAST"
	143.6.3.7. public static final String IPADDRESS_SCOPE_LINKLOCAL = "LINKLOCAL"
	143.6.3.8. public static final String IPADDRESS_SCOPE_LOOPBACK = "LOOPBACK"
	143.6.3.9. public static final String IPADDRESS_SCOPE_PRIVATE_USE = "PRIVATE_USE"
	143.6.3.10. public static final String IPADDRESS_SCOPE_SHARED = "SHARED"
	143.6.3.11. public static final String IPADDRESS_SCOPE_UNIQUE_LOCAL = "UNIQUE_LOCAL"
	143.6.3.12. public static final String IPADDRESS_SCOPE_UNSPECIFIED = "UNSPECIFIED"
	143.6.3.13. public static final String IPADDRESS_VERSION = "ipAddress.version"
	143.6.3.14. public static final String IPADDRESS_VERSION_4 = "IPV4"
	143.6.3.15. public static final String IPADDRESS_VERSION_6 = "IPV6"
	143.6.3.16. public static final String NETWORKADAPTER_PID = "networkAdapter.pid"
	143.6.3.17. public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"
	143.6.3.18. public static final String SUBNETMASK_LENGTH = "subnetmask.length"
	143.6.3.19. public InetAddress getInetAddress()
	143.6.3.20. public String getIpAddress()
	143.6.3.21. public String getIpAddressScope()
	143.6.3.22. public String getIpAddressVersion()
	143.6.3.23. public String getNetworkAdapterPid()
	143.6.3.24. public String getNetworkAdapterType()
	143.6.3.25. public int getSubnetMaskLength()

	143.7. References

	Chapter 144. Resource Monitoring Specification
	144.1. Introduction
	144.2. Essentials
	144.3. Entities
	144.4. Operation Summary
	144.5. Resource Context
	144.6. System Resource Context
	144.7. Framework Resource Context
	144.8. Resource Monitor
	144.9. Resource Monitor Factory
	144.10. CPU Monitor
	144.11. Memory Monitor
	144.12. Socket Monitor
	144.13. Disk Storage Monitor
	144.14. Thread Monitor
	144.15. Resource Listener
	144.16. Resource Event
	144.17. Resource Context Listener
	144.18. Resource Context Event
	144.19. Resource Monitoring Service
	144.20. Resource Monitoring Client
	144.21. Security
	144.22. org.osgi.service.resourcemonitoring
	144.22.1. Summary
	144.22.2. public interface ResourceContext
	144.22.2.1. public void addBundle(long bundleId) throws ResourceContextException
	144.22.2.2. public void addResourceMonitor(ResourceMonitor resourceMonitor) throws ResourceContextException
	144.22.2.3. public boolean equals(Object resourceContext)
	144.22.2.4. public long[] getBundleIds()
	144.22.2.5. public ResourceMonitor getMonitor(String resourceType) throws ResourceContextException
	144.22.2.6. public ResourceMonitor[] getMonitors() throws ResourceContextException
	144.22.2.7. public String getName()
	144.22.2.8. public int hashCode()
	144.22.2.9. public void removeBundle(long bundleId) throws ResourceContextException
	144.22.2.10. public void removeBundle(long bundleId,ResourceContext destination) throws ResourceContextException
	144.22.2.11. public void removeContext(ResourceContext destination) throws ResourceContextException
	144.22.2.12. public void removeResourceMonitor(ResourceMonitor resourceMonitor) throws ResourceContextException

	144.22.3. public class ResourceContextEvent
	144.22.3.1. public static final int BUNDLE_ADDED = 2
	144.22.3.2. public static final int BUNDLE_REMOVED = 3
	144.22.3.3. public static final int RESOURCE_CONTEXT_CREATED = 0
	144.22.3.4. public static final int RESOURCE_CONTEXT_REMOVED = 1
	144.22.3.5. public ResourceContextEvent(int pType,ResourceContext pResourceContext)
	144.22.3.6. public ResourceContextEvent(int pType,ResourceContext pResourceContext,long pBundleId)
	144.22.3.7. public boolean equals(Object var0)
	144.22.3.8. public long getBundleId()
	144.22.3.9. public ResourceContext getContext()
	144.22.3.10. public int getType()
	144.22.3.11. public int hashCode()
	144.22.3.12. public String toString()

	144.22.4. public class ResourceContextException extends Exception
	144.22.4.1. public ResourceContextException(String msg)
	144.22.4.2. public ResourceContextException(String msg,Throwable t)

	144.22.5. public interface ResourceContextListener
	144.22.5.1. public static final String RESOURCE_CONTEXT = "resource.context"
	144.22.5.2. public void notify(ResourceContextEvent event)

	144.22.6. public class ResourceEvent
	144.22.6.1. public static final int ERROR = 2
	144.22.6.2. public static final int NORMAL = 0
	144.22.6.3. public static final int WARNING = 1
	144.22.6.4. public ResourceEvent(int pType,ResourceContext pContext,boolean pIsUpperThreshold,Comparable pValue)
	144.22.6.5. public boolean equals(Object var0)
	144.22.6.6. public ResourceContext getContext()
	144.22.6.7. public int getType()
	144.22.6.8. public Comparable getValue()
	144.22.6.9. public int hashCode()
	144.22.6.10. public boolean isUpperThreshold()
	144.22.6.11. public String toString()

	144.22.7. public interface ResourceListener
	144.22.7.1. public static final String LOWER_ERROR_THRESHOLD = "lower.error.threshold"
	144.22.7.2. public static final String LOWER_WARNING_THRESHOLD = "lower.warning.threshold"
	144.22.7.3. public static final String RESOURCE_CONTEXT = "resource.context"
	144.22.7.4. public static final String RESOURCE_TYPE = "resource.type"
	144.22.7.5. public static final String UPPER_ERROR_THRESHOLD = "upper.error.threshold"
	144.22.7.6. public static final String UPPER_WARNING_THRESHOLD = "upper.warning.threshold"
	144.22.7.7. public Comparable getLowerErrorThreshold()
	144.22.7.8. public Comparable getLowerWarningThreshold()
	144.22.7.9. public Comparable getUpperErrorThreshold()
	144.22.7.10. public Comparable getUpperWarningThreshold()
	144.22.7.11. public void notify(ResourceEvent event)

	144.22.8. public interface ResourceMonitor
	144.22.8.1. public void delete() throws ResourceMonitorException
	144.22.8.2. public void disable() throws ResourceMonitorException
	144.22.8.3. public void enable() throws ResourceMonitorException
	144.22.8.4. public boolean equals(Object resourceMonitor)
	144.22.8.5. public ResourceContext getContext()
	144.22.8.6. public long getMonitoredPeriod()
	144.22.8.7. public String getResourceType()
	144.22.8.8. public long getSamplingPeriod()
	144.22.8.9. public Comparable getUsage() throws ResourceMonitorException
	144.22.8.10. public int hashCode()
	144.22.8.11. public boolean isDeleted()
	144.22.8.12. public boolean isEnabled()

	144.22.9. public class ResourceMonitorException extends Exception
	144.22.9.1. public ResourceMonitorException(String msg)
	144.22.9.2. public ResourceMonitorException(String msg,Throwable t)

	144.22.10. public interface ResourceMonitorFactory
	144.22.10.1. public static final String RESOURCE_TYPE_PROPERTY = "org.osgi.resourcemonitoring.ResourceType"
	144.22.10.2. public ResourceMonitor createResourceMonitor(ResourceContext resourceContext) throws ResourceMonitorException
	144.22.10.3. public String getType()

	144.22.11. public interface ResourceMonitoringService
	144.22.11.1. public static final String FRAMEWORK_CONTEXT_NAME = "framework"
	144.22.11.2. public static final String RES_TYPE_CPU = "resource.type.cpu"
	144.22.11.3. public static final String RES_TYPE_DISK_STORAGE = "resource.type.disk.storage"
	144.22.11.4. public static final String RES_TYPE_MEMORY = "resource.type.memory"
	144.22.11.5. public static final String RES_TYPE_SOCKET = "resource.type.socket"
	144.22.11.6. public static final String RES_TYPE_THREADS = "resource.type.threads"
	144.22.11.7. public static final String SYSTEM_CONTEXT_NAME = "system"
	144.22.11.8. public ResourceContext createContext(String name,ResourceContext template)
	144.22.11.9. public ResourceContext getContext(String name)
	144.22.11.10. public ResourceContext getContext(long bundleId)
	144.22.11.11. public String[] getSupportedTypes()
	144.22.11.12. public ResourceContext[] listContext()

	144.23. org.osgi.service.resourcemonitoring.monitor
	144.23.1. Summary
	144.23.2. public interface CPUMonitor extends ResourceMonitor
	144.23.2.1. public long getCPUUsage()

	144.23.3. public interface DiskStorageMonitor extends ResourceMonitor
	144.23.3.1. public long getUsedDiskStorage()

	144.23.4. public interface MemoryMonitor extends ResourceMonitor
	144.23.4.1. public long getMemoryUsage()

	144.23.5. public interface SocketMonitor extends ResourceMonitor
	144.23.5.1. public long getSocketUsage()

	144.23.6. public interface ThreadMonitor extends ResourceMonitor
	144.23.6.1. public int getAliveThreads()

	144.24. References

	Chapter 145. USB Information Device Category Specification
	145.1. Introduction
	145.1.1. Entities

	145.2. USBInfoDevice Service
	145.2.1. Device Access Category
	145.2.2. Service Properties based upon USB Specification
	145.2.3. Additional Service Properties
	145.2.4. Match scale

	145.3. Security
	145.4. org.osgi.service.usbinfo
	145.4.1. Summary
	145.4.2. public interface USBInfoDevice
	145.4.2.1. public static final String DEVICE_CATEGORY = "USBInfo"
	145.4.2.2. public static final int MATCH_CLASS = 10
	145.4.2.3. public static final int MATCH_MODEL = 40
	145.4.2.4. public static final int MATCH_PROTOCOL = 30
	145.4.2.5. public static final int MATCH_SUBCLASS = 20
	145.4.2.6. public static final int MATCH_VERSION = 50
	145.4.2.7. public static final String USB_ADDRESS = "usbinfo.address"
	145.4.2.8. public static final String USB_BALTERNATESETTING = "usbinfo.bAlternateSetting"
	145.4.2.9. public static final String USB_BCDDEVICE = "usbinfo.bcdDevice"
	145.4.2.10. public static final String USB_BCDUSB = "usbinfo.bcdUSB"
	145.4.2.11. public static final String USB_BDEVICECLASS = "usbinfo.bDeviceClass"
	145.4.2.12. public static final String USB_BDEVICEPROTOCOL = "usbinfo.bDeviceProtocol"
	145.4.2.13. public static final String USB_BDEVICESUBCLASS = "usbinfo.bDeviceSubClass"
	145.4.2.14. public static final String USB_BINTERFACECLASS = "usbinfo.bInterfaceClass"
	145.4.2.15. public static final String USB_BINTERFACENUMBER = "usbinfo.bInterfaceNumber"
	145.4.2.16. public static final String USB_BINTERFACEPROTOCOL = "usbinfo.bInterfaceProtocol"
	145.4.2.17. public static final String USB_BINTERFACESUBCLASS = "usbinfo.bInterfaceSubClass"
	145.4.2.18. public static final String USB_BMAXPACKETSIZE0 = "usbinfo.bMaxPacketSize0"
	145.4.2.19. public static final String USB_BNUMCONFIGURATIONS = "usbinfo.bNumConfigurations"
	145.4.2.20. public static final String USB_BNUMENDPOINTS = "usbinfo.bNumEndpoints"
	145.4.2.21. public static final String USB_BUS = "usbinfo.bus"
	145.4.2.22. public static final String USB_IDPRODUCT = "usbinfo.idProduct"
	145.4.2.23. public static final String USB_IDVENDOR = "usbinfo.idVendor"
	145.4.2.24. public static final String USB_INTERFACE = "usbinfo.Interface"
	145.4.2.25. public static final String USB_MANUFACTURER = "usbinfo.Manufacturer"
	145.4.2.26. public static final String USB_PRODUCT = "usbinfo.Product"
	145.4.2.27. public static final String USB_SERIALNUMBER = "usbinfo.SerialNumber"

	145.5. References

	Chapter 146. Serial Device Service Specification
	146.1. Introduction
	146.1.1. Entities

	146.2. SerialDevice Service
	146.3. SerialEventListener Service
	146.4. USB Serial Example
	146.5. Security
	146.6. org.osgi.service.serial
	146.6.1. Summary
	146.6.2. public final class SerialConstants
	146.6.2.1. public static final int BAUD_115200 = 115200
	146.6.2.2. public static final int BAUD_14400 = 14400
	146.6.2.3. public static final int BAUD_19200 = 19200
	146.6.2.4. public static final int BAUD_38400 = 38400
	146.6.2.5. public static final int BAUD_57600 = 57600
	146.6.2.6. public static final int BAUD_9600 = 9600
	146.6.2.7. public static final int BAUD_AUTO = -1
	146.6.2.8. public static final int DATABITS_5 = 5
	146.6.2.9. public static final int DATABITS_6 = 6
	146.6.2.10. public static final int DATABITS_7 = 7
	146.6.2.11. public static final int DATABITS_8 = 8
	146.6.2.12. public static final int FLOWCONTROL_NONE = 0
	146.6.2.13. public static final int FLOWCONTROL_RTSCTS_IN = 1
	146.6.2.14. public static final int FLOWCONTROL_RTSCTS_OUT = 2
	146.6.2.15. public static final int FLOWCONTROL_XONXOFF_IN = 4
	146.6.2.16. public static final int FLOWCONTROL_XONXOFF_OUT = 8
	146.6.2.17. public static final int PARITY_EVEN = 2
	146.6.2.18. public static final int PARITY_MARK = 3
	146.6.2.19. public static final int PARITY_NONE = 0
	146.6.2.20. public static final int PARITY_ODD = 1
	146.6.2.21. public static final int PARITY_SPACE = 4
	146.6.2.22. public static final int STOPBITS_1 = 1
	146.6.2.23. public static final int STOPBITS_1_5 = 3
	146.6.2.24. public static final int STOPBITS_2 = 2

	146.6.3. public interface SerialDevice
	146.6.3.1. public static final String DEVICE_CATEGORY = "Serial"
	146.6.3.2. public static final String SERIAL_COMPORT = "serial.comport"
	146.6.3.3. public SerialPortConfiguration getConfiguration()
	146.6.3.4. public InputStream getInputStream() throws IOException
	146.6.3.5. public OutputStream getOutputStream() throws IOException
	146.6.3.6. public boolean isCTS()
	146.6.3.7. public boolean isDSR()
	146.6.3.8. public boolean isDTR()
	146.6.3.9. public boolean isRTS()
	146.6.3.10. public void setConfiguration(SerialPortConfiguration configuration) throws SerialDeviceException
	146.6.3.11. public void setDTR(boolean dtr) throws SerialDeviceException
	146.6.3.12. public void setRTS(boolean rts) throws SerialDeviceException

	146.6.4. public class SerialDeviceException extends Exception
	146.6.4.1. public static final int PORT_IN_USE = 1
	146.6.4.2. public static final int UNKNOWN = 0
	146.6.4.3. public static final int UNSUPPORTED_OPERATION = 2
	146.6.4.4. public SerialDeviceException(int type,String message)
	146.6.4.5. public int getType()

	146.6.5. public interface SerialEvent
	146.6.5.1. public static final int DATA_AVAILABLE = 1
	146.6.5.2. public String getComPort()
	146.6.5.3. public int getType()

	146.6.6. public interface SerialEventListener
	146.6.6.1. public static final String SERIAL_COMPORT = "serial.comport"
	146.6.6.2. public void notifyEvent(SerialEvent event)

	146.6.7. public class SerialPortConfiguration
	146.6.7.1. public SerialPortConfiguration(int baudRate,int dataBits,int flowControl,int parity,int stopBits)
	146.6.7.2. public SerialPortConfiguration(int baudRate)
	146.6.7.3. public SerialPortConfiguration()
	146.6.7.4. public int getBaudRate()
	146.6.7.5. public int getDataBits()
	146.6.7.6. public int getFlowControl()
	146.6.7.7. public int getParity()
	146.6.7.8. public int getStopBits()

	Chapter 702. XML Parser Service Specification
	702.1. Introduction
	702.1.1. Essentials
	702.1.2. Entities
	702.1.3. Operations

	702.2. JAXP
	702.3. XML Parser service
	702.4. Properties
	702.5. Getting a Parser Factory
	702.6. Adapting a JAXP Parser to OSGi
	702.6.1. JAR Based Services
	702.6.2. XMLParserActivator
	702.6.3. Adapting an Existing JAXP Compatible Parser

	702.7. Usage of JAXP
	702.8. Security
	702.9. org.osgi.util.xml
	702.9.1. Summary
	702.9.2. public class XMLParserActivator implements BundleActivator, ServiceFactory
	702.9.2.1. public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.2. public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.3. public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"
	702.9.2.4. public static final String PARSER_VALIDATING = "parser.validating"
	702.9.2.5. public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"
	702.9.2.6. public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"
	702.9.2.7. public XMLParserActivator()
	702.9.2.8. public Object getService(Bundle bundle,ServiceRegistration registration)
	702.9.2.9. public void setDOMProperties(DocumentBuilderFactory factory,Hashtable props)
	702.9.2.10. public void setSAXProperties(SAXParserFactory factory,Hashtable properties)
	702.9.2.11. public void start(BundleContext context) throws Exception
	702.9.2.12. public void stop(BundleContext context) throws Exception
	702.9.2.13. public void ungetService(Bundle bundle,ServiceRegistration registration,Object service)

	702.10. References

	Chapter 705. Promises Specification
	705.1. Introduction
	705.1.1. Essentials
	705.1.2. Entities

	705.2. Promise
	705.3. Deferred
	705.4. Callbacks
	705.4.1. Runnable
	705.4.2. Success and Failure

	705.5. Chaining Promises
	705.6. Monad
	705.7. Functional Interfaces
	705.8. Promises Class
	705.9. Security
	705.10. org.osgi.util.promise
	705.10.1. Summary
	705.10.2. public class Deferred<T>
	705.10.2.1. public Deferred()
	705.10.2.2. public void fail(Throwable failure)
	705.10.2.3. public Promise<T> getPromise()
	705.10.2.4. public void resolve(T value)
	705.10.2.5. public Promise<Void> resolveWith(Promise<? extends T> with)

	705.10.3. public class FailedPromisesException extends RuntimeException
	705.10.3.1. public FailedPromisesException(Collection<Promise<?>> failed,Throwable cause)
	705.10.3.2. public Collection<Promise<?>> getFailedPromises()

	705.10.4. public interface Failure
	705.10.4.1. public void fail(Promise<?> resolved) throws Exception

	705.10.5. public interface Promise<T>
	705.10.5.1. public Promise<T> fallbackTo(Promise<? extends T> fallback)
	705.10.5.2. public Promise<T> filter(Predicate<?> predicate)
	705.10.5.3. public Promise<R> flatMap(Function<?,Promise<? extends R>> mapper)
	705.10.5.4. public Throwable getFailure() throws InterruptedException
	705.10.5.5. public T getValue() throws InvocationTargetException, InterruptedException
	705.10.5.6. public boolean isDone()
	705.10.5.7. public Promise<R> map(Function<?,? extends R> mapper)
	705.10.5.8. public Promise<T> onResolve(Runnable callback)
	705.10.5.9. public Promise<T> recover(Function<Promise<?>,? extends T> recovery)
	705.10.5.10. public Promise<T> recoverWith(Function<Promise<?>,Promise<? extends T>> recovery)
	705.10.5.11. public Promise<R> then(Success<?,? extends R> success,Failure failure)
	705.10.5.12. public Promise<R> then(Success<?,? extends R> success)

	705.10.6. public class Promises
	705.10.6.1. public static Promise<List<T>> all(Collection<Promise<S>> promises)
	705.10.6.2. public static Promise<List<T>> all(Promise<? extends T> ... promises)
	705.10.6.3. public static Promise<T> failed(Throwable failure)
	705.10.6.4. public static Promise<T> resolved(T value)

	705.10.7. public interface Success<T,R>
	705.10.7.1. public Promise<R> call(Promise<T> resolved) throws Exception

	705.11. org.osgi.util.function
	705.11.1. Summary
	705.11.2. public interface Function<T,R>
	705.11.2.1. public R apply(T t)

	705.11.3. public interface Predicate<T>
	705.11.3.1. public boolean test(T t)

	705.12. References

