
The OSGi Alliance
OSGi Core

Release 7
April 2018

Copyright © OSGi Alliance (2000, 2018).
All Rights Reserved.

OSGi Specification License, Version 2.0

License Grant
OSGi Alliance ("OSGi") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited li-
cense (without the right to sublicense), under OSGi's applicable intellectual property rights to view, download,
and reproduce this OSGi Specification ("Specification") which follows this License Agreement ("Agreement"). You
are not authorized to create any derivative work of the Specification. However, to the extent that an implemen-
tation of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a
perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) ful-
ly implements the Specification including all its required interfaces and functionality; (ii) does not modify, sub-
set, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Ja-
va interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the
Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementa-
tion of the Specification. An implementation of the Specification must not claim to be a compliant implementa-
tion of the Specification unless it passes the OSGi Compliance Tests for the Specification in accordance with OS-
Gi processes. "OSGi Name Space" shall mean the public class or interface declarations whose names begin with
"org.osgi" or any recognized successors or replacements thereof.

OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-as-
sert and licensing commitments regarding patent claims necessary to implement the Specification, if any, un-
der the OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(www.osgi.org).

No Warranties and Limitation of Liability
THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION
OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

Covenant Not to Assert
As a material condition to this license you hereby agree, to the extent that you have any patent claims which are
necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.

General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertis-
ing or publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their re-
spective owners and are hereby recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

https://www.osgi .org
Comments about this specification can be raised at:

https://osgi .org/bugzi l la/

https://www.osgi.org
https://osgi.org/bugzilla/

OSGi Core Release 7 Page 3

Table of Contents

1 Introduction 9
1.1 OSGi Framework Overview. 9

1.2 Reader Level. 11

1.3 Conventions and Terms. 11

1.4 Version Information. 16

1.5 References. 17

1.6 Changes. 17

2 Security Layer 19
2.1 Introduction. 19

2.2 Security Overview. 19

2.3 Digitally Signed JAR Files. 20

2.4 Permissions. 29

2.5 References. 30

2.6 Changes. 31

3 Module Layer 33
3.1 Introduction. 33

3.2 Bundles. 33

3.3 Dependencies. 42

3.4 Execution Environment. 48

3.5 Class Loading Architecture. 50

3.6 Resolving Metadata. 52

3.7 Constraint Solving. 57

3.8 Resolving Process. 65

3.9 Runtime Class Loading. 67

3.10 Loading Native Code Libraries. 76

3.11 Localization. 82

3.12 Bundle Validity. 83

3.13 Requiring Bundles. 84

3.14 Fragment Bundles. 87

3.15 Extension Bundles. 90

3.16 Security. 92

3.17 References. 95

3.18 Changes. 97

4 Life Cycle Layer 99
4.1 Introduction. 99

4.2 Frameworks. 100

4.3 Bundles. 113

Page 4 OSGi Core Release 7

4.4 The Bundle Object. 113

4.5 The Bundle Context. 124

4.6 The System Bundle. 125

4.7 Events. 127

4.8 Security. 129

4.9 References. 132

4.10 Changes. 132

5 Service Layer 133
5.1 Introduction. 133

5.2 Services. 134

5.3 Service Scope. 140

5.4 Getting Service Objects. 141

5.5 Releasing Service Objects. 142

5.6 Service Events. 143

5.7 Stale References. 144

5.8 Filters. 145

5.9 Service Factory. 146

5.10 Prototype Service Factory. 146

5.11 Unregistering Services. 147

5.12 Multiple Version Export Considerations. 148

5.13 Security. 149

5.14 Changes. 149

6 Resource API Specification 151
6.1 Introduction. 151

6.2 Resources. 151

6.3 Namespaces. 152

6.4 Resolution. 153

6.5 Wiring. 155

7 Bundle Wiring API Specification 157
7.1 Introduction. 157

7.2 Using the Wiring API. 158

7.3 Bundle Wiring. 161

7.4 Fragments. 164

7.5 Framework Actions. 166

7.6 Container Scanning. 167

7.7 Security. 168

7.8 Changes. 169

8 Framework Namespaces Specification 171
8.1 Introduction. 171

8.2 osgi.ee Namespace. 172

OSGi Core Release 7 Page 5

8.3 osgi.wiring.package Namespace. 173

8.4 osgi.wiring.bundle Namespace. 174

8.5 osgi.wiring.host Namespace. 175

8.6 osgi.identity Namespace. 176

8.7 osgi.native Namespace. 177

8.8 References. 179

8.9 Changes. 179

9 Start Level API Specification 181
9.1 Introduction. 181

9.2 Start Level API. 181

9.3 The Concept of a Start Level. 182

9.4 Example Applications. 185

9.5 Security. 186

10 Framework API 187
10.1 org.osgi.framework. 187

10.2 org.osgi.framework.launch. 278

10.3 org.osgi.resource. 284

10.4 org.osgi.framework.wiring. 290

10.5 org.osgi.framework.startlevel. 304

10.6 org.osgi.framework.namespace. 308

10.7 org.osgi.annotation.versioning. 315

10.8 org.osgi.annotation.bundle. 316

50 Conditional Permission Admin Service Specification 325
50.1 Introduction. 325

50.2 Permission Management Model. 328

50.3 Effective Permissions. 333

50.4 Conditional Permissions. 334

50.5 Conditions. 335

50.6 The Permission Check. 336

50.7 Permission Management. 343

50.8 Implementing Conditions. 344

50.9 Standard Conditions. 346

50.10 Bundle Permission Resource. 347

50.11 Relation to Permission Admin. 348

50.12 Implementation Issues. 349

50.13 Security. 351

50.14 org.osgi.service.condpermadmin. 351

51 Permission Admin Service Specification 361
51.1 Introduction. 361

51.2 Permission Admin service. 362

Page 6 OSGi Core Release 7

51.3 Security. 363

51.4 org.osgi.service.permissionadmin. 363

52 URL Handlers Service Specification 367
52.1 Introduction. 367

52.2 Factories in java.net. 370

52.3 Framework Procedures. 370

52.4 Providing a New Scheme. 374

52.5 Providing a Content Handler. 375

52.6 Security Considerations. 375

52.7 org.osgi.service.url. 376

52.8 References. 379

53 Resolver Hook Service Specification 381
53.1 Introduction. 381

53.2 Resolve Operation. 382

53.3 The Resolve Operation. 386

53.4 Security. 388

53.5 org.osgi.framework.hooks.resolver. 388

54 Bundle Hook Service Specification 393
54.1 Introduction. 393

54.2 About the Hooks. 394

54.3 Bundle Event Hook. 394

54.4 Bundle Find Hook. 395

54.5 Bundle Collision Hook. 396

54.6 Security. 397

54.7 org.osgi.framework.hooks.bundle. 397

55 Service Hook Service Specification 401
55.1 Introduction. 401

55.2 Service Hooks. 402

55.3 Usage Scenarios. 403

55.4 Event Listener Hook. 407

55.5 Find Hook. 408

55.6 Listener Hook. 409

55.7 Architectural Notes. 411

55.8 Security. 412

55.9 org.osgi.framework.hooks.service. 412

55.10 References. 415

56 Weaving Hook Service Specification 417
56.1 Introduction. 417

56.2 Usage. 418

56.3 Weaving Hook. 420

OSGi Core Release 7 Page 7

56.4 Woven Class Listener. 422

56.5 Security. 424

56.6 org.osgi.framework.hooks.weaving. 425

56.7 References. 429

57 Data Transfer Objects Specification 431
57.1 Introduction. 431

57.2 Data Transfer Object. 432

57.3 Core Data Transfer Objects. 433

57.4 Obtaining Core Data Transfer Objects. 434

57.5 Security. 435

57.6 org.osgi.dto. 435

57.7 org.osgi.framework.dto. 436

57.8 org.osgi.framework.startlevel.dto. 438

57.9 org.osgi.framework.wiring.dto. 439

57.10 org.osgi.resource.dto. 442

57.11 References. 446

57.12 Changes. 446

58 Resolver Service Specification 447
58.1 Introduction. 447

58.2 The Resolve Context. 449

58.3 Resolver Service. 457

58.4 Security. 461

58.5 org.osgi.service.resolver. 461

58.6 References. 467

58.7 Changes. 467

701 Tracker Specification 469
701.1 Introduction. 469

701.2 Tracking. 470

701.3 Service Tracker. 472

701.4 Bundle Tracker. 474

701.5 Security. 478

701.6 org.osgi.util.tracker. 478

Page 8 OSGi Core Release 7

Introduction OSGi Framework Overview

OSGi Core Release 7 Page 9

1 Introduction
The OSGi™ Alliance was founded in March 1999. Its mission is to create open specifications for
the network delivery of managed services to local networks and devices. The OSGi organization is
the leading standard for next-generation Internet services to homes, cars, mobile phones, desktops,
small offices, and other environments.

The OSGi Core specification delivers an open, common architecture for service providers, develop-
ers, software vendors, gateway operators and equipment vendors to develop, deploy and manage ser-
vices in a coordinated fashion. It enables an entirely new category of smart devices due to its flexi-
ble and managed deployment of services. OSGi specifications target set-top boxes, service gateways,
cable modems, consumer electronics, PCs, industrial computers, cars, mobile phones, and more. De-
vices that implement the OSGi specifications will enable service providers like telcos, cable opera-
tors, utilities, and others to deliver differentiated and valuable services over their networks.

This is the sixth release of the OSGi Core specification developed by representatives from OSGi
member companies. The OSGi Core Release 7 mostly extends the existing APIs into new areas. The
few modifications to existing APIs are backward compatible so that applications for previous releas-
es should run unmodified on Release 7 Frameworks. The built-in version management mechanisms
allow bundles written for the new release to adapt to the old Framework implementations, if neces-
sary.

1.1 OSGi Framework Overview
The Framework forms the core of the OSGi Specifications. It provides a general-purpose, secure, and
managed Java framework that supports the deployment of extensible and downloadable applica-
tions known as bundles.

OSGi-compliant devices can download and install OSGi bundles, and remove them when they are
no longer required. The Framework manages the installation and update of bundles in an OSGi en-
vironment in a dynamic and scalable fashion. To achieve this, it manages the dependencies between
bundles and services in detail.

It provides the bundle developer with the resources necessary to take advantage of Java's platform
independence and dynamic code-loading capability in order to easily develop services for small-
memory devices that can be deployed on a large scale.

The functionality of the Framework is divided in the following layers:

• Security Layer
• Module Layer
• Life Cycle Layer
• Service Layer
• Actual Services

This layering is depicted in Figure 1.1.

OSGi Framework Overview Introduction

Page 10 OSGi Core Release 7

Figure 1.1 Layering

Hardware/OS

Execution Environment

Module

Life cycle

Service

Se
cu

rit
yBundles

The Security Layer is based on Java security but adds a number of constraints and fills in some of the
blanks that standard Java leaves open. It defines a secure packaging format as well as the runtime
interaction with the Java security layer. The Security Layer is described in Security Layer on page
19.

The Module Layer defines a modularization model for Java. It addresses some of the shortcomings
of Java's deployment model. The modularization layer has strict rules for sharing Java packages be-
tween bundles or hiding packages from other bundles. The Module Layer can be used without the
life cycle and Service Layer. The Life Cycle Layer provides an API to manage the bundles in the Mod-
ule Layer, while the Service Layer provides a communication model for the bundles. The Module
Layer is described in Module Layer on page 33.

The Life Cycle Layer provides a life cycle API to bundles. This API provides a runtime model for bun-
dles. It defines how bundles are started and stopped as well as how bundles are installed, updated
and uninstalled. Additionally, it provides a comprehensive event API to allow a management bun-
dle to control the operations of the OSGi framework. The Life Cycle Layer requires the Module Layer
but the Security Layer is optional. A more extensive description of the Life Cycle layer can be found
at Life Cycle Layer on page 99.

The Service Layer provides a dynamic, concise and consistent programming model for Java bun-
dle developers, simplifying the development and deployment of service bundles by de-coupling the
service's specification (Java interface) from its implementations. This model allows bundle develop-
ers to bind to services only using their interface specifications. The selection of a specific implemen-
tation, optimized for a specific need or from a specific vendor, can thus be deferred to run-time.

The framework uses the service layer to provide an extension mechanism, called hooks. Hooks are
services that are used by the framework to provide additional functionality.

A consistent programming model helps bundle developers cope with scalability issues in many dif-
ferent dimensions - critical because the Framework is intended to run on a variety of devices whose
differing hardware characteristics may affect many aspects of a service implementation. Consistent
interfaces insure that the software components can be mixed and matched and still result in stable
systems.

The Framework allows bundles to select an available implementation at run-time through the
Framework service registry. Bundles register new services, receive notifications about the state of
services, or look up existing services to adapt to the current capabilities of the device. This aspect
of the Framework makes an installed bundle extensible after deployment: new bundles can be in-
stalled for added features or existing bundles can be modified and updated without requiring the
system to be restarted.

The Service Layer is described in Service Layer on page 133.

The interactions between the layers is depicted in Figure 1.2.

Introduction Reader Level

OSGi Core Release 7 Page 11

Figure 1.2 Interactions between layers

Service

Life Cycle

Module

EE

manage

start

register
unregister

stop

class load

execute

Install
uninstallBu

nd
le

get
unget

1.2 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

The OSGi Specifications assume that the reader has at least one year of practical experience in writ-
ing Java programs. Experience with embedded systems and server environments is a plus. Applica-
tion developers must be aware that the OSGi environment is significantly more dynamic than tradi-
tional desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

1.3 Conventions and Terms

1.3.1 Typography
A fixed width, non-serif typeface (sample) indicates the term is a Java package, class, interface, or
member name. Text written in this typeface is always related to coding.

Emphasis (sample) is used the first time an important concept is introduced. Its explanation usually
follows directly after the introduction.

Conventions and Terms Introduction

Page 12 OSGi Core Release 7

When an example contains a line that must be broken into multiple lines, the « character is used.
Spaces must be ignored in this case. For example:

http://www.acme.com/sp/ «
file?abc=12

is equivalent to:

http://www.acme.com/sp/file?abc=12

1.3.2 General Syntax Definitions
In many cases in these specifications, a syntax must be described. This syntax is based on the follow-
ing symbols:

* Repetition of the previous element zero or
 more times, e.g. (',' element)*
+ Repetition one or more times
? Previous element is optional
(...) Grouping
'...' Literal
| Or
[...] Set (one of)
.. list, e.g. 1..5 is the list 1 2 3 4 5
<...> Externally defined token
~ Not

The following terminals are pre defined and used throughout the specifications:

ws ::= <see Character.isWhitespace>
digit ::= [0..9]
alpha ::= [a..zA..Z]
alphanum ::= alpha | digit
token ::= (alphanum | '_' | '-')+
number ::= digit+
jletter ::= <see [1] Java Language Specification
 for JavaLetter>
jletterordigit ::= <see [1] Java Language Specification
 for JavaLetterOrDigit>

qname ::= <see [1] Java Language Specification
 for fully qualified class names>
identifier ::= jletter jletterordigit *
extended ::= (alphanum | '_' | '-' | '.')+
quoted-string ::= '"' (~["\#x0D#x0A#x00] | '\"' | '\\')* '"'
argument ::= extended | quoted-string
parameter ::= directive | attribute
directive ::= extended ':=' argument
attribute ::= extended '=' argument

unique-name ::= identifier ('.' identifier)*
symbolic-name ::= token ('.' token)*
package-name ::= unique-name

path ::= special-chars+ | quoted-string
special-chars ::= ~["\#x0D#x0A#x00:=;,<see [1] Java Language Specification

Introduction Conventions and Terms

OSGi Core Release 7 Page 13

 for whitespace>]

Whitespaces between terminals are ignored unless specifically noted. Any value that contains a
space, a comma, colon, semi-colon, equal sign or any other character that is part of a terminal in the
grammar must be quoted.

1.3.3 Object Oriented Terminology
Concepts like classes, interfaces, objects, and services are distinct but subtly different. For example,
"LogService" could mean an instance of the class LogService , could refer to the class LogService , or
could indicate the functionality of the overall Log Service. Experts usually understand the mean-
ing from the context, but this understanding requires mental effort. To highlight these subtle differ-
ences, the following conventions are used.

When the class is intended, its name is spelled exactly as in the Java source code and displayed
in a fixed-width typeface: for example, the "HttpService class", "a method in the HttpContext
class" or "a javax.servlet .Servlet object". A class name is used in its fully qualified form, like
javax.servlet .Servlet , when the package is not obvious from the context, nor is it in one of the well
known java packages like java. lang , java. io , java.ut i l and java.net . Otherwise, the package is omitted
like in Str ing .

In many cases, a type can be used as a scalar but also a collection of that type or an array of that type.
In those cases, a simple + will be suffixed to the type. For example Str ing+ , indicates that a Str ing , a
Str ing[] , and a Collect ion<Str ing> are all valid forms.

Exception and permission classes are not followed by the word "object". Readability is improved
when the "object" suffix is avoided. For example, "to throw a Security Exception" and to "to have File
Permission" is more readable then "to have a Fi lePermission object".

Permissions can further be qualified with their actions. ServicePermission[com.acme.*,GET|
REGISTER] means a ServicePermission with the action GET and REGISTER for all service names start-
ing with com.acme . A ServicePermission[Producer|Consumer, REGISTER] means the ServicePer-
mission for the Producer or Consumer class with REGISTER action.

When discussing functionality of a class rather than the implementation details, the class name is
written as normal text. This convention is often used when discussing services. For example, "the
User Admin service" is more readable.

Some services have the word "Service" embedded in their class name. In those cases, the word "ser-
vice" is only used once but is written with an upper case S. For example, "the Log Service performs".

Service objects are registered with the OSGi Framework. Registration consists of the service object,
a set of properties, and a list of classes and interfaces implemented by this service object. The classes
and interfaces are used for type safety and naming. Therefore, it is said that a service object is regis-
tered under a class/interface. For example, "This service object is registered under PermissionAdmin ."

1.3.4 Diagrams
The diagrams in this document illustrate the specification and are not normative. Their purpose is
to provide a high-level overview on a single page. The following paragraphs describe the symbols
and conventions used in these diagrams.

Classes or interfaces are depicted as rectangles, as in Figure 1.3. Interfaces are indicated with the
qualifier <<interface>> as the first line. The name of the class/interface is indicated in bold when it
is part of the specification. Implementation classes are sometimes shown to demonstrate a possible
implementation. Implementation class names are shown in plain text. In certain cases class names
are abbreviated. This is indicated by ending the abbreviation with a full stop.

Conventions and Terms Introduction

Page 14 OSGi Core Release 7

Figure 1.3 Class and interface symbol

<<interface>>
Bundle
Context

<<class>>
Admin
Permission

UserAdmin
Implementation

class interface implementation class

If an interface or class is used as a service object, it will have a black triangle in the bottom right cor-
ner.

Figure 1.4 Service symbol

<<interface>>
Permission
Admin

Service are crucial interaction elements and they can occur many times in diagrams describing ser-
vices. Therefore, an alternative service symbol is the triangle. Triangles can be connected in differ-
ent ways, representing different meanings:

• Point - Connections to the point of a triangle indicate the registration. This makes the point of the
triangle point to the object that receives the method calls from the service users.

• Straight Side - Connections to the straight side indicate service clients. Clients call the methods of
the service.

• Angled Side - The angled side is reserved for service listeners.

Figure 1.5 Alternative Service symbol

Service
Provider

Service
Client

listen

Call Direction ->

registerget

Service
Listener

Inheritance (the extends or implements keyword in Java class definitions) is indicated with an ar-
row. Figure 1.6 shows that the AdminPermission class implements or extends the Permission class.

Figure 1.6 Inheritance (implements or extends) symbol

<<class>>
 Permission

<<class>>
Admin
Permission

Relations are depicted with a line. The cardinality of the relation is given explicitly when relevant.
Figure 1.7 shows that each (1) BundleContext object is related to 0 or more BundleListener objects,
and that each BundleListener object is related to a single BundleContext object. Relations usually
have some description associated with them. This description should be read from left to right and
top to bottom, and includes the classes on both sides. For example: "A BundleContext object delivers
bundle events to zero or more BundleListener objects."

Introduction Conventions and Terms

OSGi Core Release 7 Page 15

Figure 1.7 Relations symbol

<<interface>>
Bundle
Listener

<<interface>>
Bundle
Context

0..*delivers bundle events1

Associations are depicted with a dashed line. Associations are between classes, and an association
can be placed on a relation. For example, "every ServiceRegistrat ion object has an associated Ser-
viceReference object." This association does not have to be a hard relationship, but could be derived
in some way.

When a relationship is qualified by a name or an object, it is indicated by drawing a dotted line per-
pendicular to the relation and connecting this line to a class box or a description. Figure 1.8 shows
that the relationship between a UserAdmin class and a Role class is qualified by a name. Such an as-
sociation is usually implemented with a Dictionary or Map object.

Figure 1.8 Associations symbol

<<interface>>
Role

<<interface>>
UserAdmin 0..*1

name

Bundles are entities that are visible in normal application programming. For example, when a bun-
dle is stopped, all its services will be unregistered. Therefore, the classes/interfaces that are grouped
in bundles are shown on a grey rectangle as is shown in Figure 1.9.

Figure 1.9 Bundles

<<interface>>
Role

<<interface>>
UserAdmin 0..n1 has

name

UserAdminImpl RoleImplImplementation
bundle

Permission

0..n

1

1.3.5 Key Words
This specification consistently uses the words can, should, and must. Their meaning is well-defined
in:

• must - An absolute requirement. Both the Framework implementation and bundles have obliga-
tions that are required to be fulfilled to conform to this specification.

• should - Recommended. It is strongly recommended to follow the description, but reasons may
exist to deviate from this recommendation.

• may or can - Optional. Implementations must still be interoperable when these items are not im-
plemented.

1.3.6 Numbered Lists
When a specification uses a numbered list, unless otherwise specified, the intention is that the ac-
tions described by the items in the list happen in the numerical order of the items. From a Java con-

Version Information Introduction

Page 16 OSGi Core Release 7

currency point-of-view, this means that the actions described in lower numbered items happens-be-
fore the actions described in higher numbered items.

1.4 Version Information
This document specifies OSGi Core Release 7. This specification is backward compatible to all prior
releases.

All Security, Module, Life Cycle and Service Layers are part of the Framework Specification

Components in this specification have their own specification version, independent of the docu-
ment release number. The following table summarizes the packages and specification versions for
the different subjects.

When a component is represented in a bundle, a version is needed in the declaration of the Im-
port-Package or Export-Package manifest headers.

Table 1.1 Packages and versions OSGi Core

Item Package Version
Framework Specification (all layers) org.osgi .f ramework Version 1.9
Framework Launching org.osgi .f ramework. launch Version 1.2
6 Resource API Specification org.osgi . resource Version 1.0
7 Bundle Wiring API Specification org.osgi .f ramework.wir ing Version 1.2
8 Framework Namespaces Specification org.osgi .f ramework.namespace Version 1.1
9 Start Level API Specification org.osgi .f ramework.start level Version 1.0
50 Conditional Permission Admin Service Specifica-
tion

org.osgi .service.condpermadmin Version 1.1

51 Permission Admin Service Specification org.osgi .service.permissionadmin Version 1.2
52 URL Handlers Service Specification org.osgi .service.ur l Version 1.0
53 Resolver Hook Service Specification org.osgi .f ramework.hooks.resolver Version 1.0
54 Bundle Hook Service Specification org.osgi .f ramework.hooks.bundle Version 1.1
55 Service Hook Service Specification org.osgi .f ramework.hooks.service Version 1.1
56 Weaving Hook Service Specification org.osgi .f ramework.hooks.weaving Version 1.1
57 Data Transfer Objects Specification org.osgi .dto

org.osgi .f ramework.dto

org.osgi .f ramework.start level .dto

org.osgi .f ramework.wir ing.dto

org.osgi . resource.dto

Version 1.1

58 Resolver Service Specification org.osgi .service.resolver Version 1.1
701 Tracker Specification org.osgi .ut i l .t racker Version 1.5
Versioning Annotations org.osgi .annotat ion.versioning Version 1.1
Bundle Annotations org.osgi .annotat ion.bundle Version 1.0

A compliant framework implementation must implement all of the specifications in this document
except as outlined below.

• 50 Conditional Permission Admin Service Specification and 51 Permission Admin Service Specification
are mandatory only if 2 Security Layer is supported and a Security Manager is installed.

• 52 URL Handlers Service Specification is mandatory if the framework implementation system bun-
dle exports the org.osgi.service.url package.

Introduction References

OSGi Core Release 7 Page 17

• 701 Tracker Specification is optional.

1.5 References

[1] Java Language Specification
http://docs.oracle.com/javase/specs/

1.6 Changes
• Added Numbered Lists to specify the happens-before relationship between items in numbered lists.
• Added org.osgi.annotation.bundle.
• Resolver Service Specification moved to Core from OSGi Compendium, Chapter 136.

http://docs.oracle.com/javase/specs/

Changes Introduction

Page 18 OSGi Core Release 7

Security Layer Version 1.9 Introduction

OSGi Core Release 7 Page 19

2 Security Layer

Version 1.9

2.1 Introduction
The OSGi Security Layer is an optional layer that underlies the OSGi framework. The layer is based
on the Java security architecture. It provides the infrastructure to deploy and manage applications
that must run in fine-grained controlled environments.

2.1.1 Essentials

• Fine-grained - The control of applications running in an OSGi Framework must allow for detailed
control of those applications.

• Manageable - The security layer itself does not define an API to control the applications. The man-
agement of the security layer is left to the life cycle layer.

• Optional - The security layer is optional.

2.2 Security Overview
The Framework security model is based on the Java specification. If security checks are performed,
they must be done according to [3] Java Security Architecture. It is assumed that the reader is familiar
with this specification. The security layer is optional, see Optional Security on page 19.

2.2.1 Code Authentication
The OSGi framework can authenticate code in the following ways:

• By location
• By signer

At higher layers there are defined services that can manage the permissions that are associated with
the authenticated unit of code. These services are:

• Permission Admin service - Manages the permission based on full location strings.
• Conditional Permission Admin service - Manages the permissions based on a comprehensive condi-

tional model, where the conditions can test for location or signer.

For signing, this requires the JAR files to be signed; this is described in Digitally Signed JAR Files on
page 20.

2.2.2 Optional Security
The Java platform on which the Framework runs must provide the Java Security APIs necessary for
Java permissions. On resource-constrained platforms, these Java Security APIs may be stubs that al-
low the bundle classes to be loaded and executed, but the stubs never actually perform the security
checks. The behavior of these stubs must be as follows:

• checkPermission - Return without throwing a SecurityException .

Digitally Signed JAR Files Security Layer Version 1.9

Page 20 OSGi Core Release 7

• checkGuard - Return without throwing a SecurityException .
• impl ies - Return true .

This behavior allows code to run as if all bundles have AllPermission .

2.3 Digitally Signed JAR Files
This section defines in detail how JAR files must be signed. This section therefore overlaps with the
different JAR file specifications that are part of the different versions of Java. The reason for this du-
plication is that there are many aspects left as optional or not well-defined in these specifications. A
reference was therefore insufficient.

Digitally signing is a security feature that verifies the following:

• Authenticates the signer
• Ensures that the content has not been modified after it was signed by the principal.

In an OSGi Framework, the principals that signed a JAR become associated with that JAR. This asso-
ciation is then used to:

• Grant permissions to a JAR based on the authenticated principal
• Target a set of bundles by principal for a permission to operate on or with those bundles

For example, an Operator can grant the ACME company the right to use networking on their de-
vices. The ACME company can then use networking in every bundle they digitally sign and deploy
on the Operator's device. Also, a specific bundle can be granted permission to only manage the life
cycle of bundles that are signed by the ACME company.

Signing provides a powerful delegation model. It allows an Operator to grant a restricted set of per-
missions to a company, after which the company can create JARs that can use those permissions,
without requiring any intervention of, or communication with, the Operator for each particular
JAR. This delegation model is shown graphically in Figure 2.1.

Figure 2.1 Delegation model

Developer

Operator

Enterprise

OSGi
Framework

Employee

grants
permissions

uses

provides

installs

Digital signing is based on public key cryptography. Public key cryptography uses a system where
there are two mathematically related keys: a public and a private key. The public key is shared with
the world and can be dispersed freely, usually in the form of a certificate. The private key must be
kept a secret.

Messages signed with the private key can only be verified correctly with the public key. This can be
used to authenticate the signer of a message (assuming the public key is trusted, this is discussed in
Certificates on page 23).

The digital signing process used is based on Java JAR signing. The process of signing is repeated, re-
stricted and augmented here to improve the interoperability of OSGi bundles.

Security Layer Version 1.9 Digitally Signed JAR Files

OSGi Core Release 7 Page 21

2.3.1 JAR Structure and Manifest
A JAR can be signed by multiple signers. Each signer must store two resources in the JAR file. These
resources are:

• A signature instruction resource that has a similar format like the Manifest. It must have a .SF ex-
tension. This file provides digests for the complete manifest file.

• A PKCS#7 resource that contains the digital signature of the signature instruction resource. See
[10] Public Key Cryptography Standard #7 for information about its format.

These JAR file signing resources must be placed in the META-INF directory. For signing, the META-
INF directory is special because files in there are not signed in the normal way. These signing re-
sources must come directly after the MANIFEST.MF file, and before any other resources in a JAR
stream. If this is not the case, then a Framework should not accept the signatures and must treat
the bundle as unsigned. This ordering is important because it allows the receiver of the JAR file
to stream the contents without buffering. All the security information is available before any re-
sources are loaded. This model is shown in Figure 2.2.

Figure 2.2 Signer files in JAR

META-INF/
MANIFEST.MF
ACME.SF
ACME.RSA
DAFFY.SF
DAFFY.DSA

... other files

The signature instruction resource contains digests of the Manifest resource, not the actual resource
data itself. A digest is a one way function that computes a value from the bytes of a resource in such
a way that it is very difficult to create a set of bytes that matches that digest value.

The JAR Manifest must therefore contain one or more digests of the actual resources. These digests
must be placed in their name section of the manifest. The name of the digest header is constructed
with its algorithm followed by -Digest . An example is the SHA-256-Digest . It is recommended that
OSGi Framework implementations support the following digest algorithms.

• SHA-1 - Delivers a 160 bit hash. It is defined in [6] Secure Hash Standard.
• SHA-256 - Delivers a 256 bit hash. It is defined in [6] Secure Hash Standard.

The hash must be encoded with a Base 64 encoding. Base 64 encoding is defined in [7] RFC 1421 Pri-
vacy Enhancement for Internet Electronic Mail.

For example, a manifest could look like:

Manifest-Version: 1.0
Bundle-Name: DisplayManifest
↵
Name: x/A.class
SHA-256-Digest: 7CCToQk6yvRusxNl0uSwrv37UY/fdz6aHou29mbswsM=
↵
Name: x/B.class
SHA-256-Digest: C+0CG/cy13WD2sq8dRZm+dNWAHIjm4RQmUVeLLv7DVU=
↵

Graphically this looks like Figure 2.3.

Digitally Signed JAR Files Security Layer Version 1.9

Page 22 OSGi Core Release 7

Figure 2.3 Signer files in JAR

META-INF/

MANIFEST.MF

... other files

Manifest-Version: 1.0

Name: x/A.class
SHA-256-Digest: RJpDp+igoJ...

Name: x/B.class
SHA-256-Digest: 3EuIPcx414...

x/A.class

x/B.class

OSGi JARs must be signed by one or more signers that sign all resources except the ones in the
META-INF directory; the default behavior of the jarsigner tool. This is a restriction with respect to
standard Java JAR signing; there is no partial signing for an OSGi JAR. The OSGi specification only
supports fully signed bundles. The reason for this restriction is because partially signing can break
the protection of private packages. It also simplifies the security API because all code of a bundle is
using the same protection domain.

Signature files in nested JAR files (For example JARs on the Bundle-ClassPath) must be ignored.
These nested JAR files must share the same protection domain as their containing bundle. They
must be treated as if their resources were stored directly in the outer JAR.

Each signature is based on two resources. The first file is the signature instruction file; this file must
have a file name with an extension .SF . A signature file has the same syntax as the manifest, except
that it starts with Signature-Version: 1 .0 instead of Manifest-Version: 1 .0 .

The only relevant part of the signature resource is the digest of the Manifest resource. The name of
the header must be the name algorithm (e.g. SHA-256) followed by -Digest-Manifest . For example:

Signature-Version: 1 .0
SHA-256-Digest-Manifest: HmK7445BA7n5UYYI9xZKfSdMAPci44Jn7ZcmoyoiWoM=

The signature resource can contain name sections as well. However, these name sections should be
ignored.

If there are multiple signers, then their signature instruction resources can be identical if they use
the same digest algorithms. However, each signer must still have its own signature instruction file.
That is, it is not allowed to share the signature resource between signers.

The indirection of the signature instruction files digests is depicted in Figure 2.4 for two signers:
ACME and DAFFY .

Figure 2.4 Manifest, signature instruction files and digests in JAR

META-INF/

MANIFEST.MF

... other files

ACME.SF

DAFFY.SFDigest functions
Manifest entry

certificates

signature
with private key

certificates

ACME.RSA

DAFFY.DSA

Resource

signature
with private key

Security Layer Version 1.9 Digitally Signed JAR Files

OSGi Core Release 7 Page 23

2.3.2 Java JAR File Restrictions
OSGi bundles are always valid JAR files. However, there are a few restrictions that apply to bundles
that do not apply to JAR files.

• Bundles do not support partially signed bundles. The manifest must contain name sections for
all resources but should not have entries for resources in the META-INF directory. Signed entries
in the META-INF directory must be verified. Sub directories of META-INF must be treated like
any other JAR directory.

• The name sections in the signature files are ignored. Only the Manifest digest is used.

2.3.3 Valid Signature
A bundle can be signed with a signature by multiple signers. A signature contains a pair of a signa-
ture file, with a SF extension and a PKCS#7 resource that has the same name as the signature file but
with either an RSA or DSA extension.

Such a signature is valid when:

• The signature file has an entry for the META-INF/MANIFEST.MF resource.
• The manifest entry must contain a SHA-256 and/or SHA-1 digest for the complete manifest.
• All listed digests match the manifest.
• The PKCS#7 resource is a valid signature (either signed using RSA or DSA as indicated by the ex-

tension) for the signature resource.

For a complete bundle to be validly signed it is necessary that all signatures are valid. That is, if one
of the signatures is invalid, the whole bundle must be treated as unsigned.

2.3.4 Signing Algorithms
Several different available algorithms can perform digital signing. OSGi Framework implementa-
tions should support the following algorithms:

• DSA - The Digital Signature Algorithm. This standard is defined in [8] DSA. This is a USA govern-
ment standard for Digital Signature Standard. The signature resource name must have an exten-
sion of .DSA .

• RSA - Rivest, Shamir and Adleman. A public key algorithm that is very popular. It is defined in [9]
RSA. The extension of the signature resource name must be .RSA .

The signature files for RSA and DSA are stored in a PKCS#7 format. This is a format that has a struc-
ture as defined in [10] Public Key Cryptography Standard #7. The PKCS#7 standard provides access to
the algorithm specific signing information as well as the certificate with the public key of the sign-
er. The verification algorithm uses the public key to verify that:

• The digital signature matches the signature instruction resource.
• The signature was created with the private key associated with the certificate.

The complete signing structure is shown in Figure 2.4.

2.3.5 Certificates
A certificate is a general term for a signed document containing a name and public key information.
Such a certificate can take many forms but the OSGi JAR signing is based on the X.509 certificate for-
mat. It has been around for many years and is part of the OSI group of standards. X.509 is defined in
[2] X.509 Certificates.

An X.509 certificate contains the following elements:

Digitally Signed JAR Files Security Layer Version 1.9

Page 24 OSGi Core Release 7

• Subject Name - The subject name is a unique identifier for the object being certified. In the case of
a person this might include the name, nationality and e-mail address, the organization, and the
department within that organization. This identifier is a Distinguished Name, which is defined
in Distinguished Names on page 25.

• Issuer Name - The Issuer name is a Distinguished Name for the principal that signed this certifi-
cate.

• Certificate Extensions - A certificate can also include pictures, codification of fingerprints, passport
number, and other extensions.

• Public Key Information - A public key can be used with an encryption technique that requires its
private counterpart to decrypt, and vice versa. The public key can be shared freely, the private
key must be kept secret. The public key information specifies an algorithm identifier (such as
DSA or RSA) and the subject's public key.

• Validity - A Certificate can be valid for only a limited time.
• Certifying Authority Signature - The Certificate Authority signs the first elements and thereby adds

credibility to the certificate. The receiver of a certificate can check the signature against a set of
trusted certifying authorities. If the receiver trusts that certifying authority, it can trust the state-
ment that the certificate makes.

The structure of a certificate is depicted in Figure 2.5.

Figure 2.5 Structure of a certificate

private key from other certificate

subject DN

public key

issuer DN

signature

extensions

validity
digest

digital signing algorithm

Certificates can be freely dispersed; they do not contain any secret information. Therefore, the
PKCS#7 resource contains the signing certificate. It cannot be trusted at face value because the cer-
tificate is carried in the bundle itself. A perpetrator can easily create its own certificate with any con-
tent. The receiver can only verify that the certificate was signed by the owner of the public key (the
issuer) and that it has not been tampered with. However, before the statement in the certificate can
be trusted, it is necessary to authenticate the certificate itself. It is therefore necessary to establish a
trust model.

One trust model, supported but not required by the OSGi specifications, is placing the signing cer-
tificate in a repository. Any certificate in this repository is treated as trusted by default. However,
placing all possible certificates in this repository does not scale well. In an open model, a device
would have to contain hundreds of thousands of certificates. The management of the certificates
could easily become overwhelming.

The solution is to sign a certificate by another certificate, and this process can be repeated several
times. This delegation process forms a chain of certificates. All certificates for this chain are carried in
the PKCS#7 file: if one of those certificates can be found in the trusted repository, the other depen-
dent ones can be trusted, on the condition that all the certificates are valid. This model scales very
well because only a few certificates of trusted signers need to be maintained. This is the model used
in web browsers, as depicted in Figure 2.6.

Security Layer Version 1.9 Digitally Signed JAR Files

OSGi Core Release 7 Page 25

Figure 2.6 Certificate authorities fan out

Thawte
Signing

App
Cert

Thawte
Root

Trusted Repository

Signs

This specification does not specify access to the trusted repository. It is implementation specific
how this repository is populated and maintained.

2.3.6 Distinguished Names
An X.509 name is a Distinguished Name (DN). A DN is a highly structured name, officially identifying
a node in an hierarchical namespace. The DN concept was developed for the X.500 directory service
which envisioned a world wide namespace managed by PTTs. Today, the DN is used as an identifier
in a local namespace, as in a namespace designed by an Operator. For example, given a namespace
that looks like Figure 2.7, the DN identifying Bugs looks like:

cn=Bug,o=ACME,c=US

Figure 2.7 Country, Company, Person based namespace.

c=US

o=ACME

cn=Bugs

Root

US

ACME

FR

Obelix

Bugs

Root

C = Country

O =
Organization
O =
Organization

CN = Common
Name

1
*

1
*

1
*

The traversal of the namespace is reversed from the order in the DN, the first part specifies the least
significant but most specific part. That is, the order of the attribute assertions is significant. Two
DNs with the same attributes but different order are different DNs.

In the example, a node is searched in the root that has an attribute c (countryName) with a value
that is US . This node is searched for a child that has an attribute o (organizat ionName) with a value
of ACME . And the ACME node is searched for a child node with an attribute cn (commonName) that
has a value "Bugs Bunny" .

The tree based model is the official definition of a DN from the X.500 standards. However, in prac-
tice today, many DNs contain attributes that have no relation to a tree. For example, many DNs con-
tain comments and copyrights in the ou (organizat ionalUnit) attribute.

Digitally Signed JAR Files Security Layer Version 1.9

Page 26 OSGi Core Release 7

The DN from an X.509 certificate is expressed in a binary structure defined by ASN.1 (a type lan-
guage defined by ISO). However, the Distinguished Name is often used in interaction with hu-
mans. Sometimes, users of a system have to acknowledge the use of a certificate or an employ-
ee of an Operator must grant permissions based on a Distinguished Name of a customer. It is
therefore paramount that the Distinguished Name has a good human readable string represen-
tation. The expressiveness of the ASN.1 type language makes this non-trivial. This specification
only uses DN strings as defined in [1] RFC 2253Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names with a number of extensions that are specified by the
javax.security.auth.x500.X500Principal class in CANONICAL form.

However, the complexity of the encoding/decoding is caused by the use of rarely used types and fea-
tures (binary data, multi-valued RDNs, foreign alphabets, and attributes that have special matching
rules). These features must be supported by a compliant implementation but should be avoided by
users. In practice, these features are rarely used today.

The format of a string DN is as follows:

dn ::= rdn (',' rdn) *
rdn ::= attribute ('+' attribute) *
attribute ::= name '=' value
name ::= readable | oid
oid ::= number ('.' number) * // See 1.3.2
readable ::= <see attribute table>
value ::= <escaped string>

Spaces before and after the separators are ignored, spaces inside a value are significant but multiple
embedded spaces are collapsed into a single space. Wildcard asterisks ('* ' \u002A) are not allowed
in a value part. The following characters must be escaped with a reverse solidus (' \ ' \u005C):

 comma ',' \u002C
 plus '+' \u002B
 double quote '"' \u0022
 reverse solidus '\' \u005C
 less then '<' \u003C
 greater then '>' \u003E
 semicolon ';' \u003B

Reverse solidi (' \ ' \u005C) must already be escaped in Java strings, requiring 2 reverse solidi in Java
source code. For example:

 DN: cn = Bugs Bunny, o = ACME++, C=US
 Canonical form: cn=bugs bunny,o=acme\+\+,c=us
 Java String: "cn=Bugs Bunny,o=ACME\\+\\+,c=US"

The full Unicode character set is available and can be used in DNs. String objects must be normal-
ized and put in canonical form before being compared.

 DN: cn = Bugs Bunny, o = Ð Þ, C=US
 Canonical form: cn=bugs bunny,o=ð þ,c=us
 Java String: "cn = Bugs Bunny, o = Ð Þ, C=US"

The names of attributes (attributes types as they are also called) are actually translated into an Ob-
ject IDentifier (OID). An OID is a dotted decimal number, like 2.5.4.3 for the cn (commonName) at-
tribute name. It is therefore not possible to use any attribute name because the implementation
must know the aliasing as well as the comparison rules. Therefore only the attributes that are listed
in the following table are allowed (in short or long form):

commonName cn 2.5.4.3 ITU X.520

Security Layer Version 1.9 Digitally Signed JAR Files

OSGi Core Release 7 Page 27

surName sn 2.5.4.4
countryName c 2.5.4.6
localityName l 2.5.4.7
stateOrProvinceName st 2.5.4.8
organizationName o 2.5.4.10
organizationalUnitName ou 2.5.4.11
title 2.5.4.12
givenName 2.5.4.42
initials 2.5.4.43
generationQualifier 2.5.4.44
dnQualifier 2.5.4.46

streetAddress street RFC 2256
domainComponent dc RFC 1274
userid uid RFC 1274/2798?
emailAddress RFC 2985
serialNumber RFC 2985

The following DN:

2.5.4.3=Bugs Bunny,organizationName=ACME,2.5.4.6=US

Is therefore identical to:

cn=Bugs Bunny,o=ACME,c=US

The attribute types officially define a matching rule, potentially allowing cases sensitive and case
insensitive. The attributes in the previous list all match case insensitive. Therefore, an OSGi DN
must not depend on case sensitivity.

The X.500 standard supports multi-valued RDNs, however, their use is not recommended. See [12]
Understanding and Deploying LDAP Directory Services for the rationale of this recommendation. Mul-
ti-valued RDNs separate their constituents with a plus sign ('+ ' \u002B). Their order is not signifi-
cant. For example:

cn=Bugs Bunny+dc=x.com+title=Manager,o=ACME,c=US

Which is the same as

dc=x.com+cn=Bugs Bunny+title=Manager, o=ACME,c=US

2.3.7 Certificate Matching
Certificates are matched by their Subject DN. Before matching, DNs, they must first be put in canon-
ical form according to the algorithm specified in javax.security.auth.x500.X500Principal .

DNs can also be compared using wildcards. A wildcard asterisk ('* ' \u002A) replaces all possible val-
ues. Due to the structure of the DN, the comparison is more complicated than string-based wildcard
matching.

A wildcard can stand for a number of RDNs, or the value of a single RDN. DNs with a wildcard must
be canonicalized before they are compared. This means, among other things, that spaces must be ig-
nored, except in values.

The format of a wildcard DN match is:

CertificateMatch ::= dn-match (';' dn-match) *
dn-match ::= ('*' | rdn-match)
 (',' rdn-match) * | '-'

Digitally Signed JAR Files Security Layer Version 1.9

Page 28 OSGi Core Release 7

rdn-match ::= name '=' value-match
value-match ::= '*' | value-star
value-star ::= < value, requires escaped '*' and'-' >

The most simple case is a single wildcard; it must match any DN. A wildcard can also replace the
first list of RDNs of a DN. The first RDNs are the least significant. Such lists of matched RDNs can be
empty.

For example, a DN with a wildcard that matches all nodes descendant from the ACME node in Figure
2.7 on page 25, looks like:

*, o=ACME, c=US

This wildcard DN matches the following DNs:

cn = Bugs Bunny, o = ACME, c = US
ou = Carots, cn=Daffy Duck, o=ACME, c=US
street = 9C\, Avenue St. Drézéry, o=ACME, c=US
dc=www, dc=acme, dc=com, o=ACME, c=US
o=ACME, c=US

The following DNs must not match:

street = 9C\, Avenue St. Drézéry, o=ACME,c=FR
dc=www, dc=acme, dc=com, c=US

If a wildcard is used for a value of an RDN, the value must be exactly * . The wildcard must match
any value, and no substring matching must be done. For example:

cn=*,o=ACME,c=*

This DN with wildcard must match the following DNs:

cn=Bugs Bunny,o=ACME,c=US
cn = Daffy Duck , o = ACME , c = US
cn=Road Runner, o=ACME, c=NL

But not:

o=ACME, c=NL
dc=acme.com, cn=Bugs Bunny, o=ACME, c=US

Both forms of wildcard usage can be combined in a single matching DN. For example, to match any
DN that is from the ACME company worldwide, use:

, o=ACME, c=

Matching of a DN takes place in the context of a certificate. This certificate is part of a certificate
chain, see Certificates on page 23. Each certificate has a Subject DN and an Issuer DN. The Issuer
DN is the Subject DN used to sign the first certificate of the chain. DN matching can therefore be ex-
tended to match the signer. The semicolon (' ; ' \u003B) must be used to separate DNs in a chain.

The following example matches a certificate signed by Tweety Inc. in the US.

* ; ou=S & V, o=Tweety Inc., c=US

The wildcard matches zero or one certificates, however, sometimes it is necessary to match a longer
chain. The minus sign (' - ' \u002D) represents zero or more certificates, whereas the asterisk only
represents a single certificate. For example, to match a certificate where the Tweety Inc. is in the cer-
tificate chain, use the following expression:

Security Layer Version 1.9 Permissions

OSGi Core Release 7 Page 29

- ; *, o=Tweety Inc., c=US

The previous example matched if the Tweety Inc. certificate was trusted, or was signed by a trusted
certificate. Certain certificates are trusted because they are known by the Framework, how they are
known is implementation-defined.

2.4 Permissions
The OSGi Framework uses Java permissions for securing bundles. Each bundle is associated with
a set of permissions. During runtime, the permissions are queried when a permission is requested
through the Security Manager. If a Framework uses postponed conditions, then it must install its
own security manager, otherwise it can use any Security Manager.

The management of the bundle's permissions is handled through Conditional Permission Admin,
Permission Admin, or another security agent.

2.4.1 Implied Permissions
Implied permissions are permissions that the framework grants a bundle without any specific ac-
tion. These permissions are necessary for normal operation. For example, each bundle gets permis-
sions to read, write, and delete the bundle persistent storage area. The standard list of implied per-
missions is as follows:

• File Permission for the bundle persistent storage area, for the READ , WRITE , and DELETE actions.
• Property Permission with the READ action for org.osgi .f ramework.* .
• Admin Permission with the RESOURCE , METADATA , CLASS , and CONTEXT actions for the bundle

itself.
• Capability Permission REQUIRE for the osgi .ee namespace.
• Capability Permission REQUIRE for the osgi .nat ive namespace.
• Package Permission IMPORT for java.* .

2.4.2 Filter Based Permissions
OSGi supports a number of permissions that are granted when the target of the permissions is relat-
ed to a bundle. For example, Admin Permission can grant a bundle the permission to manage other
bundles. This is expressed by using a filter expression for the name of the permission. When the per-
mission is checked, the filter is evaluated with specific permission attributes as well as attributes
that describe the bundle's identity. For example, a bundle can get permission to get all services regis-
tered by bundles coming from a specific location:

ServicePermission("(location=https://www.acme.com/*)",GET)

This provides a very powerful model because it allows operators to let a group of bundles closely
collaborate without requiring ad hoc namespaces for services, packages, and bundles. Using the
signer or location as the target for a permission, will allow the maintenance of the permission man-
agement to be significantly reduced. It is not necessary to configure for individual bundles: the sign-
er or location is effectively used as a grouping mechanism.

The filter can contain the following keys:

• id - The bundle ID of a bundle. For example:

 (id=256)

• location - The location of a bundle. Filter wildcards for Strings are supported, allowing the value
to specify a set of bundles. For example:

References Security Layer Version 1.9

Page 30 OSGi Core Release 7

 (location=https://www.acme.com/download/*)

• signer - A Distinguished Name chain. See Certificate Matching on page 27 for more informa-
tion how Distinguished Names are matched. Wildcards in a DN are not matched according to
the filter string rules, but according to the rules defined for a DN chain. The wildcard asterisk ('* '
\u002A) must be escaped with a reverse solidus (' \ ' \u005C) to avoid being interpreted as a filter
wildcard. For example:

 (signer=*,o=ACME,c=NL)

• name - The symbolic name of a bundle. Filter wildcards for Strings are supported allowing the
value to specify a set of bundles. A single symbolic name may also map to a set of bundles. For ex-
ample:

 (name=com.acme.*)

The name parameter of the permission can also be a single wildcard asterisk ('* ' \u002A). In that
case all bundles must match.

2.4.2.1 Multiple Signers

A bundle can be signed by multiple signers, in that case the signer will match against any of the
signers' DN. Using multiple signers is both a feature as well as it is a possible threat. From a man-
agement perspective it is beneficial to be able to use signatures to handle the grouping. However, it
could also be used to maliciously manage a trusted bundle.

For example a trusted bundle signed by T , could later have a signature added by an untrusted par-
ty U . This will grant the bundle the permissions of both T and U, which ordinarily is a desirable fea-
ture. However, If the permissions associated with signer U also allow the management of bundles
signed by U , then U could unexpectedly gain the permission to manage this trusted bundle. For ex-
ample, it could now start and stop this trusted bundle. This unexpected effect of becoming eligible
to be managed should be carefully considered when multiple signers are used. The deny policies in
Conditional Permission Admin can be used to prevent this case from causing harm.

2.5 References

[1] RFC 2253Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names
http://www.ietf.org/rfc/rfc2253.txt

[2] X.509 Certificates
http://www.ietf.org/rfc/rfc2459.txt

[3] Java Security Architecture
https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

[4] Java Package Versioning Specification
https://docs.oracle.com/javase/8/docs/technotes/guides/versioning/index.html

[5] Manifest Format
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest

[6] Secure Hash Standard
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[7] RFC 1421 Privacy Enhancement for Internet Electronic Mail
http://www.ietf.org/rfc/rfc1421.txt

[8] DSA
http://www.itl.nist.gov/fipspubs/fip186.htm

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2459.txt
https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/versioning/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.ietf.org/rfc/rfc1421.txt
http://www.itl.nist.gov/fipspubs/fip186.htm

Security Layer Version 1.9 Changes

OSGi Core Release 7 Page 31

[9] RSA
http://www.ietf.org/rfc/rfc2313.txt which is superseded by http://www.ietf.org/rfc/rfc2437.txt

[10] Public Key Cryptography Standard #7
http://www.rsasecurity.com/rsalabs/node.asp?id=2129

[11] Unicode Normalization UAX # 15
http://www.unicode.org/reports/tr15/

[12] Understanding and Deploying LDAP Directory Services
ISBN 1-57870-070-1

2.6 Changes
• Updated references to current URLs.
• Removed MD5 and added SHA-256 digest algorithms.
• Added Package Permission IMPORT for java.* to the implied permissions. See Implied Permissions

on page 29.

http://www.ietf.org/rfc/rfc2313.txt
http://www.ietf.org/rfc/rfc2437.txt
http://www.rsasecurity.com/rsalabs/node.asp?id=2129
http://www.unicode.org/reports/tr15/

Changes Security Layer Version 1.9

Page 32 OSGi Core Release 7

Module Layer Version 1.9 Introduction

OSGi Core Release 7 Page 33

3 Module Layer

Version 1.9

3.1 Introduction
The standard Java platform provides only limited support for packaging, deploying, and validating
Java-based applications and components. Because of this, many Java-based projects, such as JBoss
and NetBeans, have resorted to creating custom module-oriented layers with specialized class load-
ers for packaging, deploying, and validating applications and components. The OSGi Framework
provides a generic and standardized solution for Java modularization.

3.2 Bundles
The Framework defines a unit of modularization, called a bundle. A bundle is comprised of Java
classes and other resources, which together can provide functions to end users. Bundles can share
Java packages among an exporter bundle and an importer bundle in a well-defined way. In the OSGi
framework, bundles are the only entities for deploying Java-based applications.

A bundle is deployed as a Java ARchive (JAR) file. JAR files are used to store applications and their re-
sources in a standard ZIP-based file format. This format is defined by [9] Zip File Format. Bundles nor-
mally share the Java Archive extension of . jar . However, there is a special MIME type reserved for
OSGi bundles that can be used to distinguish bundles from normal JAR files. This MIME type is:

application/vnd.osgi.bundle

The type is defined in [15] OSGi IANA Mime Type.

A bundle is a JAR file that:

• Contains the resources necessary to provide some functionality. These resources may be class
files for the Java programming language, as well as other data such as HTML files, help files,
icons, and so on. A bundle JAR file can also embed additional JAR files that are available as re-
sources and classes. This is however not recursive.

• Contains a manifest file describing the contents of the JAR file and providing information about
the bundle. This file uses headers to specify information that the Framework needs to install cor-
rectly and activate a bundle. For example, it states dependencies on other resources, such as Java
packages, that must be available to the bundle before it can run.

• Can contain optional documentation in the OSGI-OPT directory of the JAR file or one of its sub-
directories. Any information in this directory is optional. For example, the OSGI-OPT directory is
useful to store the source code of a bundle. Management systems may remove this information
to save storage space in the OSGi framework.

• Can be a multi-release JAR. See Multi-release JAR on page 41.

Once a bundle is resolved, its functionality is provided to other bundles installed in the OSGi frame-
work.

Bundles Module Layer Version 1.9

Page 34 OSGi Core Release 7

3.2.1 Bundle Manifest Headers
A bundle can carry descriptive information about itself in the manifest file that is contained in its
JAR file under the name of META-INF/MANIFEST.MF .

The Framework defines OSGi manifest headers such as Export-Package and Bundle-ClassPath,
which bundle developers use to supply descriptive information about a bundle. Manifest headers
must strictly follow the rules for manifest headers as defined in [10] Manifest Format.

A Framework implementation must:

• Process the main section of the manifest. Individual sections of the manifest are only used dur-
ing bundle signature verification.

• Ignore unrecognized manifest headers. The bundle developer can define additional manifest
headers as needed.

• Ignore unknown attributes and directives.

All specified manifest headers are listed in the following sections. All headers are optional, unless
specifically indicated.

3.2.1.1 Bundle-ActivationPolicy: lazy

The Bundle-ActivationPolicy specifies how the framework should activate the bundle once started.
See Activation Policies on page 117.

3.2.1.2 Bundle-Activator: com.acme.fw.Activator

The Bundle-Activator header specifies the name of the class used to start and stop the bundle. See
Starting Bundles on page 115.

3.2.1.3 Bundle-Category: osgi, test, nursery

The Bundle-Category header holds a comma-separated list of category names.

3.2.1.4 Bundle-ClassPath: /jar/http.jar,.

The Bundle-ClassPath header defines a comma-separated list of JAR file path names or directories
(inside the bundle) containing classes and resources. The full stop ('.' \u002E) specifies the root di-
rectory of the bundle's JAR. The full stop is also the default. See Bundle Class Path on page 67.

3.2.1.5 Bundle-ContactAddress: 2400 Oswego Road, Austin, TX 74563

The Bundle-ContactAddress header provides the contact address of the vendor.

3.2.1.6 Bundle-Copyright: OSGi (c) 2002

The Bundle-Copyright header contains the copyright specification for this bundle.

3.2.1.7 Bundle-Description: Network Firewall

The Bundle-Description header defines a short description of this bundle.

3.2.1.8 Bundle-Developers: pkriens; email=pkriens@osgi.org; name="Peter Kriens"; organization="OSGi Alliance"

The Bundle-Developers header provides an optional machine readable form of information about
the developers of the bundle. This header is purely informational and must not be processed by the
OSGi Framework.

The syntax for this header is as follows:

Bundle-Developers ::= developer (',' developer) *
developer ::= identifier (';' developer-attr) *

Module Layer Version 1.9 Bundles

OSGi Core Release 7 Page 35

identifier ::= argument
developer-attr ::= email | name | organization |
 organization-url | roles | timezone
email ::= 'email' '=' <email>
name ::= 'name' '=' argument
organization ::= 'organization' '=' argument
organization-url ::= 'organizationUrl' '=' <url>
roles ::= 'roles' '=' argument
timezone ::= 'timezone' '=' argument

This header has the following attributes:

• email - (optional) The email address of the developer.
• name - (optional) The name of the developer.
• organizat ion - (optional) The name of the organization of the developer.
• organizat ion-url - (optional) The URL for the organization of the developer.
• roles - (optional) The roles of the developer. This is a comma separated list of role names.
• t imezone - (optional) The time zone of where the developer resides. The time zone can be an id

such as America/New_York or a numerical offset in hours from UTC.

See [26] Maven POM Reference, Developers for more information. Tools can use the information in this
header for POM generation.

3.2.1.9 Bundle-DocURL: http://www.example.com/Firewall/doc

The Bundle-DocURL headers must contain a URL pointing to documentation about this bundle.

3.2.1.10 Bundle-Icon: /icons/acme-logo.png;size=64

The optional Bundle-Icon header provides a list of URLs to icons representing this bundle in differ-
ent sizes. The following attribute is permitted:

• size - (integer) Specifies the size of the icon in pixels horizontal. It is recommended to always in-
clude a 64x64 icon.

The URLs are interpreted as relative to the bundle. That is, if a URL with a scheme is provided, then
this is taken as an absolute URL. Otherwise, the path points to an entry in the JAR file, taking any at-
tached fragments into account. Implementations that want to use this header should at least sup-
port the Portable Network Graphics (PNG) format, see [18] Portable Network Graphics (PNG) Specifica-
tion (Second Edition).

3.2.1.11 Bundle-License: Apache-2.0; link="http://opensource.org/licenses/apache2.0.php"

The Bundle-License header provides an optional machine readable form of license information. The
purpose of this header is to automate some of the license processing required by many organiza-
tions like for example license acceptance before a bundle is used. The header is structured to pro-
vide the use of unique license naming to merge acceptance requests, as well as links to human read-
able information about the included licenses. This header is purely informational for management
agents and must not be processed by the OSGi Framework.

The syntax for this header is as follows:

Bundle-License ::= '<<EXTERNAL>>' |
 (license (',' license) *)
license ::= license-identifier (';' license-attr) *
license-attr ::= description | link
description ::= 'description' '=' string

Bundles Module Layer Version 1.9

Page 36 OSGi Core Release 7

link ::= 'link' '=' <url>

This header has the following attributes:

• l icense-identi f ier - Provides a globally unique identifier for this license, preferably world wide,
but it should at least be unique with respect to the other clauses. The magic identifier <<EXTER-
NAL>> is used to indicate that this artifact does not specify any license information but that li-
censing information is provided in some other way. This is also the default value of this header.

This identifier should be one of the identifiers defined by [25] Software Package Data Exchange
(SPDX) License List. Clients of this bundle can assume that licenses with the same identifier refer
to the same license. This can for example be used to minimize the click through licenses.

Alternatively, the identifier can be the canonical URL of the license, it must not be localized by
the translator. This URL does not have to exist but must not be used for later versions of the li-
cense. It is recommended to use URLs from [19] Open Source Initiative. Other licenses should use
the following structure, but this is not mandated:

http://<domain-name>/licenses/
 <license-name>-<version>.<extension>

• descr ipt ion - (optional) Provide the description of the license. This is a short description that is
usable in a list box on a UI to select more information about the license.

• l ink - (optional) Provide a URL to a page that defines or explains the license. If this link is absent,
the name field is used for this purpose. The URL is relative to the root of the bundle. That is, it is
possible to refer to a file inside the bundle.

If the Bundle-License statement is absent, then this does not mean that the bundle is not licensed.
Licensing could be handled outside the bundle and the <<EXTERNAL>> form should be assumed.
This header is informational and may not have any legal bearing. Consult a lawyer before using this
header to automate licensing processing.

3.2.1.12 Bundle-Localization: OSGI-INF/l10n/bundle

The Bundle-Localization header contains the location in the bundle where localization files can be
found. The default value is OSGI-INF/l10n/bundle . Translations are by default therefore OSGI-INF/
l10n/bundle_de.propert ies , OSGI-INF/l10n/bundle_nl .propert ies , etc. See Manifest Localization on
page 83.

3.2.1.13 Bundle-ManifestVersion: 2

The Bundle-ManifestVersion header defines that the bundle follows the rules of this specification.
The Bundle-ManifestVersion header determines whether the bundle follows the rules of this specifi-
cation. It is 1 (the default) for Release 3 Bundles, 2 for Release 4 and later. Future version of the OSGi
framework can define higher numbers for this header.

3.2.1.14 Bundle-Name: Firewall

The Bundle-Name header defines a readable name for this bundle. This should be a short, hu-
man-readable name that can contain spaces.

3.2.1.15 Bundle-NativeCode: /lib/http.DLL; osname = QNX; osversion = 3.1

The Bundle-NativeCode header contains a specification of native code libraries contained in this
bundle. See Loading Native Code Libraries on page 76.

3.2.1.16 Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0

The Bundle-RequiredExecutionEnvironment contains a comma-separated list of execution environ-
ments that must be present on the OSGi framework. See Execution Environment on page 48. This
header is deprecated.

Module Layer Version 1.9 Bundles

OSGi Core Release 7 Page 37

3.2.1.17 Bundle-SCM: url=https://github.com/bndtools/bnd, connection=scm:git:https://github.com/bndtools/
bnd.git, developerConnection=scm:git:git@github.com:bndtools/bnd.git

The Bundle-SCM header provides an optional machine readable form of information about the
source code of the bundle. This header is purely informational and must not be processed by the OS-
Gi Framework.

The syntax for this header is as follows:

Bundle-SCM ::= scm-attr (',' scm-attr) *
scm-attr ::= url | connection | developer-connection | tag
url ::= 'url' '=' <url>
connection ::= 'connection' '=' <uri>
developer-connection ::= 'developerConnection' '=' <uri>
tag ::= 'tag' '=' argument

This header has the following attributes:

• url - (optional) The URL to browse the source code repository.
• connection - (optional) The scm: URI for read access to the source code repository.
• developer-connection - (optional) The scm: URI for write access to the source code repository.
• tag - (optional) The tag within the source code repository.

See [27] Maven POM Reference, SCM for more information. Tools can use the information in this
header for POM generation.

3.2.1.18 Bundle-SymbolicName: com.acme.daffy

The Bundle-SymbolicName header specifies a non-localizable name for this bundle. The bundle
symbolic name together with a version must identify a unique bundle though it can be installed
multiple times in a framework. The bundle symbolic name should be based on the reverse domain
name convention, see Bundle-SymbolicName on page 53. This header must be set.

3.2.1.19 Bundle-UpdateLocation: http://www.acme.com/Firewall/bundle.jar

The Bundle-UpdateLocation header specifies a URL where an update for this bundle should come
from. If the bundle is updated, this location should be used, if present, to retrieve the updated JAR
file.

3.2.1.20 Bundle-Vendor: OSGi Alliance

The Bundle-Vendor header contains a human-readable description of the bundle vendor.

3.2.1.21 Bundle-Version: 1.1

The Bundle-Version header specifies the version of this bundle. See Version on page 38. The de-
fault value is 0.0.0

3.2.1.22 DynamicImport-Package: com.acme.plugin.*

The DynamicImport-Package header contains a comma-separated list of package names that should
be dynamically imported when needed. See Dynamic Import Package on page 69.

3.2.1.23 Export-Package: org.osgi.util.tracker;version=1.3

The Export-Package header contains a declaration of exported packages. See Export-Package on page
55.

3.2.1.24 Export-Service: org.osgi.service.log.LogService

Deprecated.

Bundles Module Layer Version 1.9

Page 38 OSGi Core Release 7

3.2.1.25 Fragment-Host: org.eclipse.swt; bundle-version="[3.0.0,4.0.0)"

The Fragment-Host header defines the host bundles for this fragment. See Fragment-Host on page
88

3.2.1.26 Import-Package: org.osgi.util.tracker,org.osgi.service.io;version=1.4

The Import-Package header declares the imported packages for this bundle. See Import-Package on
page 54.

3.2.1.27 Import-Service: org.osgi.service.log.LogService

Deprecated

3.2.1.28 Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2

Specifies that a bundle provides a set of Capabilities, see Dependencies on page 42.

3.2.1.29 Require-Bundle: com.acme.chess

The Require-Bundle header specifies that all exported packages from another bundle must be im-
ported, effectively requiring the public interface of another bundle. See Require-Bundle on page
84

3.2.1.30 Require-Capability: osgi.ee; filter:="(&(osgi.ee=AcmeMin)(version=1.1))"

Specifies that a bundle requires other bundles to provide a capability, see Dependencies on page
42.

3.2.2 Custom Headers
The manifest is an excellent place to provide metadata belonging to a bundle. This is true for the OS-
Gi Alliance but it is also valid for other organizations. For historic reasons, the OSGi Alliance claims
the default namespace, specifically headers that indicate OSGi related matters like names that con-
tain Bundle, Import, Export, etc. Organizations that want to use headers that do not clash with OS-
Gi Alliance defined names or bundle header names from other organizations should prefix custom
headers with x- , for example x-LazyStart .

Organizations external to the OSGi Alliance can request header names in the OSGi namespace. The
OSGi Alliance maintains a registry of such names at [16] OSGi Header Registry.

The Header annotation can be used on a class or package to specify a header for a bundle. This an-
notation can be processed by bundle assembly tools to generate the specified header information in
the bundle's manifest.

3.2.3 Header Value Syntax
Each Manifest header has its own syntax. In all descriptions, the syntax is defined with [11] W3C
EBNF. These following sections define a number of commonly used terminals.

3.2.4 Common Header Syntax
Many Manifest header values share a common syntax. This syntax consists of:

header ::= clause (',' clause) *
clause ::= path (';' path) *
 (';' parameter) * // See 1.3.2

A parameter can be either a directive or an attribute. A directive is an instruction that has some im-
plied semantics for the Framework. An attribute is used for matching and comparison purposes.

3.2.5 Version
Version specifications are used in several places. A version has the following grammar:

Module Layer Version 1.9 Bundles

OSGi Core Release 7 Page 39

version ::=
 major('.' minor ('.' micro ('.' qualifier)?)?)?

major ::= number // See 1.3.2
minor ::= number
micro ::= number
qualifier ::= (alphanum | '_' | '-')+

A version must not contain any white space. The default value for a version is 0.0.0 .

Versions are supported in the API with the Version class.

The Version annotation can be used in package-info. java source files to document the version of a
package. This annotation can be processed by bundle assembly tools when generating the version
information for a bundle's Export-Package manifest header.

3.2.6 Version Ranges
A version range describes a range of versions using a mathematical interval notation. See [12] Mathe-
matical Convention for Interval Notation. The syntax of a version range is:

version-range ::= interval | atleast
interval ::= ('[' | '(') floor ',' ceiling (']' | ')')
atleast ::= version
floor ::= version
ceiling ::= version

If a version range is specified as a single version, it must be interpreted as the range [version,∞) . The
default for a non-specified version range is 0, which maps to [0.0.0,∞) .

Note that the use of a comma in the version range requires it to be enclosed in double quotes. For ex-
ample:

Import-Package: com.acme.foo;version="[1.23,2)", «
 com.acme.bar;version="[4.0, 5.0)"

In the following table, for each specified range in the left-hand column, a version x is considered to
be a member of the range if the predicate in the right-hand column is true.

Table 3.1 Examples of version ranges

Example Predicate
[1.2.3, 4.5.6) 1.2.3 <= x < 4.5.6
[1.2.3, 4.5.6] 1.2.3 <= x <= 4.5.6
(1.2.3, 4.5.6) 1.2.3 < x < 4.5.6
(1.2.3, 4.5.6] 1.2.3 < x <= 4.5.6
1.2.3 1.2.3 <= x

Version Ranges are supported in the API with the VersionRange class.

3.2.7 Filter Syntax
The OSGi specifications use filter expressions extensively. Filter expressions allow for a concise de-
scription of a constraint. The syntax of a filter string is based upon the string representation of LDAP
search filters as defined in [5] A String Representation of LDAP Search Filters. It should be noted that
RFC 2254: A String Representation of LDAP Search Filters supersedes RFC 1960, but only adds exten-
sible matching and is not applicable to this OSGi Framework API.

Bundles Module Layer Version 1.9

Page 40 OSGi Core Release 7

The string representation of an LDAP search filter uses a prefix format and is defined by the follow-
ing grammar:

filter ::= '(' filter-comp ')'
filter-comp ::= and | or | not | operation
and ::= '&' filter-list
or ::= '|' filter-list
not ::= '!' filter
filter-list ::= filter | filter filter-list
operation ::= simple | present | substring
simple ::= attr filter-type value
filter-type ::= equal | approx | greater-eq | less-eq
equal ::= '='
approx ::= '~='
greater-eq ::= '>='
less-eq ::= '<='
present ::= attr '=*'
substring ::= attr '=' initial any final
initial ::= () | value
any ::= '*' star-value
star-value ::= () | value '*' star-value
final ::= () | value
value ::= <see text>
attr ::= <see text>

attr is a string representing an attribute key or name. Attribute names are not case sensitive; that is,
cn and CN both refer to the same attribute. attr must not contain the characters '=', '>', '<', '~', '(' or ')'.
attr may contain embedded spaces but leading and trailing spaces must be ignored.

value is a string representing the value, or part of one, which will be compared against a value in the
filtered properties.

If value must contain one of the characters reverse solidus (' \ ' \u005C), asterisk ('* ' \u002A), paren-
theses open (' (' \u0028) or parentheses close (') ' \u0029), then these characters should be preceded
with the reverse solidus (' \ ' \u005C) character. Spaces are significant in value . Space characters are
defined by Character. isWhiteSpace() .

Although both the substr ing and present productions can produce the attr=* construct, this con-
struct is used only to denote a presence filter.

The substr ing production only works for attributes that are of type Str ing , Collect ion of Str ing or
Str ing[] . In all other cases the result must be fa lse .

The evaluation of the approximate match (' ~= ') filter type is implementation specific but should at
least ignore case and white space differences. Codes such as Soundex or other smart closeness com-
parisons could be used.

Values specified in the filter are compared to values in the properties against which the filter is eval-
uated. The comparison of these values is not straightforward. Strings compare differently than num-
bers, and it is also possible for a property to have multiple values.

Property keys are case insensitive. The object class of the property's value defines the comparison
type. The properties values should be of the following types:

Module Layer Version 1.9 Bundles

OSGi Core Release 7 Page 41

Figure 3.1 Primary Property Types

type ::= scalar | collection | array
scalar ::= String | Integer | Long | Float
 | Double | Byte | Short
 | Character | Boolean
primitive ::= int | long | float | double | byte
 | short | char | boolean
array ::= <Array of primitive>
 | <Array of scalar>
collection ::= <Collection of scalar>

The following rules apply for comparison:

• String - Use String comparison
• Integer, Long, Float, Double, Byte, Short, Character objects and primitives - Use numerical comparison.

The value should be trimmed of any extraneous white space before the comparison.
• Boolean objects - Use comparison defined by Boolean.valueOf(value).booleanValue() . The value

should be trimmed of any extraneous white space before this conversion is applied.
• Array or Collection elements - Comparison is determined by the object type of the element

Array and Collection elements may be a mix of scalar types. Array and Collection elements may al-
so be nul l . If the type of the property value is not one of the above types, then it could be possible to
create an instance of the above type. The following conversions must be tried in the given order:

1. A public static method on the required type called valueOf that returns an instance of the given
type and takes a single Str ing argument.

2. A public constructor taking a single Str ing argument.

If one of these methods is available then the Framework must construct a temporary object by pass-
ing the value as the Str ing argument. If the constructor/function is not directly accessible then the
invocation should use the setAccessible method to make it accessible.

The resulting object must be used to compare with the property value according to the following
comparison rules:

• Comparable objects - Comparison through the Comparable interface
• Other objects - Equality comparison

If none of the above comparison rules apply, then the result of the comparison is fa lse .

A filter matches a property with multiple values if it matches at least one of those values. For exam-
ple:

Dictionary dict = new Hashtable();
dict.put("cn", new String[] { "a", "b", "c" });

The dict will match against a filter with (cn=a) as well as (cn=b) .

Service properties are often defined to take a type, a collection of that type, or an array of that type.
In those cases, a simple + will be suffixed to the type name. For example Str ing+ , indicates that a
Str ing , a Str ing[] , and a Collect ion<Str ing> are all valid forms.

Filters are supported in the API with the Fi l ter type. Filters can be created with the
FrameworkUti l .createFi l ter(Str ing) method or the BundleContext .createFi l ter(Str ing) method.

3.2.8 Multi-release JAR
A bundle JAR file can be a multi-release JAR. See [28] Multi-release JAR File. When a bundle is a mul-
ti-release JAR, that is, the manifest contains

Dependencies Module Layer Version 1.9

Page 42 OSGi Core Release 7

Multi-Release: true

then the Framework must look for a supplemental manifest file, OSGI-INF/MANIFEST.MF , in the
versioned directories. For example:

META-INF/versions/9/OSGI-INF/MANIFEST.MF

The Framework must first look in the versioned directory for the major version of the current Java
platform and then prior versioned directories in descending order. The first supplemental manifest
file found must be used and the Framework must replace the values of the following manifest head-
ers in the manifest with the values of these headers, if present, in the supplemental manifest file.

• Import-Package
• Require-Capabi l i ty

Any other headers in the supplemental manifest file must be ignored.

The Framework APIs which provide access to the bundle metadata, such as getHeaders() and
BundleRevis ion and BundleWir ing , must present the supplemented manifest information. That is,
the main manifest with the replacement values from a supplemental manifest, if any, for the run-
ning Java platform version.

Both fragment bundles as well as non-fragment bundles can be multi-release JARs.

Support for multi-release JARs must only be active on Java 9 and later. On Java 8 and earlier, the JAR
must be treated as a non-multi-release JAR.

3.3 Dependencies
OSGi dependency handling is based on a very general model that describes the dependency relation-
ships. This model consists of a small number of primitive concepts:

• Environment - A container or framework that installs Resources.
• Resource - An abstraction for an artifact that needs to become installed in some way to provide its

intended function. A Bundle is modeled by a Resource but for example a display or secure USB
key store can also be Resources.

• Namespace - Defines what it means for the Environment when a requirement and capability
match in a given Namespace.

• Capability - Describing a feature or function of the Resource when installed in the Environment.
A capability has attributes and directives.

• Requirement - An assertion on the availability of a capability in the Environment. A requirement
has attributes and directives. The f i l ter directive contains the filter to assert the attributes of the
capability in the same Namespace.

The relations between these entities are depicted in Figure 3.2.

Module Layer Version 1.9 Dependencies

OSGi Core Release 7 Page 43

Figure 3.2 Core Requirement/Capability model

<<interface>>
Resource

<<interface>>
 requirement

<<interface>>
Capability

Namespace

Environment

A Resource in general has dependencies on other Resources or can satisfy other Resource's depen-
dencies. Dependency types can vary wildly, a Bundle can require packages from another Bundle (Im-
port-Package), or a Fragment needs a host Bundle (Fragment-Host), or a Bundle requires access to
a high resolution display. The OSGi Core specification demonstrates that it is possible to describe
these varying types of dependencies with dedicated headers, optimized for each case. However, this
model requires that every type of dependency will go through a specification process, limiting the
usefulness for parties not participating in this process. Therefore, this specification provides a gener-
ic dependency model based on Namespaces. A Namespace is the type of a dependency. For example,
the osgi .wir ing.package Namespace defines the semantics for Import-Package and Export-Package
headers by specifying a number of attributes and directives. Attributes are used for matching and di-
rectives provide information about the semantics of the Namespace. For example, in the case of the
osgi .wir ing.host Namespace (Fragments) the capability's attributes are:

• osgi .wir ing.host - (Str ing) The host's name.
• bundle-version - (Version) The host's version.
• * - Any other attributes are allowed.

The OSGi Framework Namespaces are defined in classes, see Framework Namespaces Specification on
page 171.

The purpose of a Namespace is to create an attribute/directive based language that describes a de-
pendency in a generic way unrelated to the specific dependency type. A number of Namespaces
have been defined by the OSGi Alliance in this and other specifications. OSGi namespaces start with
the reserved osgi . prefix. For example, the osgi .ee namespace defines a capability for specifying an
execution environment. A Namespace can also be defined by other organizations and individuals.
To minimize name clashes it is recommended to use the reverse domain name rule used for pack-
ages and bundle symbolic names. It is also recommended to register these Namespaces with the OS-
Gi Alliance, see [17] OSGi Namespace Registry to prevent clashes.

Given a Namespace, it is possible to declare a capability of that Namespace. A capability provides the
values for the attributes and directives defined in the Namespace. For example, it is possible to trans-
late the Export-Package header to a capability in the osgi .wir ing package Namespace.

Given a capability, it is possible to specify a requirement. A requirement has a filter that can match
the attributes of the capability, if so, the requirement is satisfied. Requirements are always associat-
ed with a given Namespace, like the capability, and can therefore only be satisfied by Capabilities
in the same Namespace. A requirement is satisfied when its filter, as specified with the f i l ter direc-
tive, matches a capability's attributes. The filter language specification can be found in Filter Syntax

Dependencies Module Layer Version 1.9

Page 44 OSGi Core Release 7

on page 39. A requirement can be mandatory or optional, as set with its resolut ion directive. A re-
quirement can have single or mult iple cardinality, indicating it requires at least one or more Capabil-
ities.

A Resource that declares requirements can only provide its intended functionality when its manda-
tory requirements are satisfied by one or more Capabilities, which in general means they come from
other Resources. A Resource that has all its mandatory requirements satisfied is said to be resolved
and must provide the functionality described by its Capabilities. A capability can only satisfy a re-
quirement if its Resource is resolved.

The process of matching up requirements to capabilities is called resolving. In this process, the re-
solver must create Wires that link requirements to Capabilities. Both the Wire and the requirement/
Capability have a reference to a Resource. In certain cases the requirement/ capability can be de-
clared in one Resource but wired from another Resource. Therefore, a requirement/ capability can
have a declared Resource, which is the Resource that declares it. However, when a Resource is wired
the Wire has a provider or requirer Resource which can differ from the corresponding declared Re-
source. When the declared Resource differs from the provider/requirer it is called hosting. This sepa-
ration is caused by Fragments; with Fragments some requirements and Capabilities are hosted and
others remain part of the Fragment.

Only requirements that are effective must be wired. Each requirement is intended for a certain state
of the system. For example, the OSGi Framework only resolves requirements when the requirement
has the effect ive directive set to resolve .

Once a set of Resources are resolved the Environment, for example the OSGi Framework for bun-
dles, creates a Wiring per Resource to hold the resolved state. This state includes the Wires as well as
all Capabilities and requirements, regardless if they are wired or not.

The Wires between a requirement and a capability must be created according to the semantics im-
plied by their Namespace. The Wires coming out of a resolve operation can be used during run time
as specified in their Namespace. For example, the osgi .wir ing.* Namespaces are used to control the
Class Loading, see Bundle Wiring API Specification on page 157. However, they can also serve other
purposes as outlined by their Namespace. For example, a Wire could specify a Dependency Injection
source and target.

Interfaces for the generic model are defined in Resource API Specification on page 151. The Bundle
Wiring API Specification on page 157 chapter describes the Wiring API that is based on this gener-
ic package. The generic API is intended for other specifications that want to be compatible with the
generic OSGi Core framework's Capability /Requirement model.

3.3.1 Bundles
All bundles depend on one or more external entities and this is expressed as requirements and Capa-
bilities. Once a bundle is resolved, it assumes that those dependencies are satisfied. The Require-Ca-
pability and Provide-Capability headers are manifest headers that declare generic requirements and
Capabilities in any Namespace. However, a number of manifest headers in the OSGi specifications
are actually requirements on Capabilities specified by other OSGi manifest headers. For example,
an Import-Package clause is a requirement on the capability specified by an Export-Package clause.
The attributes on an Import-Package clause are treated as assertions on the attributes of the corre-
sponding Export-Package clause. This specification therefore contains a number of Namespaces for
these OSGi manifest headers: osgi .wir ing.bundle , osgi .wir ing.package , and osgi .wir ing.host . These
namespaces influence the resolver and define the class loading process. For example, a Require-Bun-
dle clause is a requirement that ensures that the exported packages of the required bundle are avail-
able to the requirer's class loader.

The OSGi resolving process is described in Resolving Process on page 65. The diagramming tech-
nique of the Requirement/Capability model is depicted in Figure 3.3, the details of the wiring are
further explained in Bundle Wiring API Specification on page 157.

Module Layer Version 1.9 Dependencies

OSGi Core Release 7 Page 45

Figure 3.3 Requirements and Capabilities and their Wiring

Capability

Requirement

Requirement/Capability

Runtimefragmenthost

Bundle

3.3.2 Example Use Case
A bundle has Windows 7 specific Java code and requires a display that has a resolution of at least
1000x1000 pixels. It also relies on a bundle providing an IP-number-to-location table.

These dependencies on the environment and another bundle can be expressed with the require-
ment header in the bundle as follows:

Require-Capability:
 com.microsoft; filter:="(&(api=win32)(version=7))",
 com.acme.display; filter:="(&(width>=1000)(height>=1000))",
 com.acme.ip2loc

Each clause lives in a namespace, for example com.microsoft . A namespace defines the semantics of
the attributes as well as optional rules.

The deployer of the environment sets the following launching property when starting the frame-
work:

org.osgi.framework.system.capabilities.extra= «
 com.acme.display; width:Long=1920; height:Long=1080; interlace=p, «
 com.microsoft; edition=home; version:Version=7; api=win32

The framework will be able to satisfy the display requirement but it cannot satisfy the ip2loc table
requirement. The deployer can then install the bundle with the ip2loc table. This bundle specifies
the following header:

Provide-Capability: com.acme.ip2loc; version:Version=1.2

After installing and resolving this bundle, the framework can resolve the original bundle because
there is now a provider of the ip2loc table.

3.3.3 Bundle Capabilities
A generic capability for a Bundle is defined with the Provide-Capability header. This header has the
following syntax:

Provide-Capability ::= capability (',' capability)*
capability ::= name-space
 (';' directive | typed-attr)*
name-space ::= symbolic-name
typed-attr ::= extended (':' type)? '=' argument
type ::= scalar | list

Dependencies Module Layer Version 1.9

Page 46 OSGi Core Release 7

scalar ::= 'String' | 'Version' | 'Long'
 | 'Double'
list ::= 'List' ('<' scalar '>')?

The Capabi l i ty annotation can be used on a class or package to specify a capability to be provided by
the bundle. This annotation can be processed by bundle assembly tools to add the capability to the
Provide-Capability header in the bundle's manifest.

The header has the following directives architected:

• effect ive - (resolve) Specifies the time a capability is available, either resolve (default) or another
name. The OSGi framework resolver only considers Capabilities without an effect ive directive or
effect ive:=resolve . Capabilities with other values for the effect ive directive can be considered by
an external agent.

• uses - The uses directive lists package names that are used by this capability. This information is
intended to be used for uses constraints, see Package Constraints on page 60.

Namespaces can define additional directives and attributes.

3.3.4 Bundle Capability Attributes
Attributes can be typed. Typing is important because it defines how attributes compare. Comparing
two versions as strings does not provide the proper comparison semantics for versions. In similar
vein, lexicographical ordering is different than numeric ordering.

Types are specified between the attribute name and the equal sign ('= ' \u003D), the separator is a
colon (' : ' \u003A). For example:, for a Long:

attr:Long=24

If no type is specified, the Str ing type is assumed.

The parsing rules of the corresponding type's Str ing constructor are then used to create a new in-
stance that is placed in the capability's map. Numeric types must trim white space around the value,
for other types spaces around the argument are not ignored, however, white space is skipped by the
manifest parsing rules. That is:

attr:Long= 23 , //ok
attr:Version=" 23 ", // error
attr:Long=" 23 ", // ok, because nummeric

Multi-valued attributes can be constructed with the List type. The List type can specify a scalar type
for the list elements. If no element type is specified, Str ing is assumed. Parsing of the corresponding
argument list must be done according to the following rules:

• Element values in the list are separated by commas (',' \u002C).
• White space around an element value must be trimmed for non-Str ing element types.
• Commas or reverse solidi (' \ ' \u005C) that are part of an element value must be escaped by pre-

fixing them with a reverse solidus. In practice, this requires escaping with two reverse solidi be-
cause a reverse solidus must already be escaped in strings.

The whole argument must be surrounded by quotes because the comma is a significant token in the
manifest grammar.

The version attribute requires the Version type to be specified to be compared as a Version rather
than as a String:

version:Version=1.23

Module Layer Version 1.9 Dependencies

OSGi Core Release 7 Page 47

For example:

Provide-Capability: «
 com.acme.dictionary; from:String=nl; to=de; version:Version=3.4, «
 com.acme.dictionary; from:String=de; to=nl; version:Version=4.1, «
 com.acme.ip2location;country:List="nl,be,fr,uk";version:Version=1.3, «
 com.acme.seps; tokens:List<String>="\\,,;,\\\""

3.3.5 System Bundle Capabilities
Capabilities can also be provided by the system bundle by specifying the following launch proper-
ties:

org.osgi.framework.system.capabilities
org.osgi.framework.system.capabilities.extra

The format for these system properties is identical to the Provide-Capability header. A framework
must parse these properties and use them in the resolving process as if provided by the system bun-
dle.

There are two properties so that the framework can specify its default Capabilities in
org.osgi .f ramework.system.capabi l i t ies while the deployer can specify specific deployment Capa-
bilities in the org.osgi .f ramework.system.capabi l i t ies.extra system property. Frameworks can often
deduce many Capabilities from their environment.

The following is an example capability header for the system bundle as defined by the deployer:

map.put("org.osgi.framework.system.capabilities.extra",
 "com.acme.screen; width:Long=640; height:Long=480; card=GeForce");

3.3.6 Bundle Requirements
The Bundle's Require-Capability header has the following grammar:

Require-Capability ::= requirement (',' requirement)*
requirement ::= name-space (';' directive | typed-attr)*

Requirements have attributes that can be set with the Require-Capability header. The purpose of
these attributes are to provide further information about the requirement; they are not assertions as
they are in the Import-Package, Require-Bundle, and Fragment-Host headers. The attributes of these
headers are mapped to the f i l ter directive in their corresponding namespaces.

The Requirement annotation can be used on a class or package to specify a capability to be required
by the bundle. This annotation can be processed by bundle assembly tools to add the requirement to
the Require-Capability header in the bundle's manifest.

The following directives are architected for the Require-Capability header:

• effect ive - (resolve) Specifies the time a requirement is considered, either resolve (default) or an-
other name. The OSGi framework resolver only considers requirements without an effect ive di-
rective or effect ive:=resolve . Other requirements can be considered by an external agent. Addi-
tional names for the effect ive directive should be registered with the OSGi Alliance.

• resolut ion - (mandatory|optional) A mandatory requirement forbids the bundle to resolve when
the requirement is not satisfied; an optional requirement allows a bundle to resolve even if the
requirement is not satisfied. No wirings are created when this requirement cannot be resolved,
this can result in Class Not Found Exceptions when the bundle attempts to use a package that
was not resolved because it was optional . The default is mandatory .

• f i l ter - (Fi l ter) A filter expression that is asserted on the Capabilities belonging to the given name-
space. The matching of the filter against the capability is done on one capability at a time. A fil-

Execution Environment Module Layer Version 1.9

Page 48 OSGi Core Release 7

ter like (&(a=1)(b=2)) matches only a capability that specifies both attributes at the required val-
ue, not two capabilities that each specify one of the attributes correctly. A filter is optional, if no
filter directive is specified the requirement always matches. The attribute names in the filter ex-
pression are used to locate capability attributes in a case sensitive manner.

• cardinal ity - (single|mult iple) Indicates if the requirement can be wired a single time or multiple
times. The default is single.

Additional directives are ignored during resolving. Attributes on the requirement clause are also ig-
nored.

3.4 Execution Environment
The Java environment provides all packages in the java.* namespace. Prior to Java SE 9, this name-
space was not well defined and could be different for different runtime environments. For example,
Java SE 5 is not equal to Java SE 7 and an Android environment has substantial differences to a Ja-
va SE environment. However, Java SE 6 is backward compatible for Java SE 5, Java SE 1.4, Java SE 1.3
and Java SE 1.2. That is, applications written for Java SE 1.3 must run unchanged on a Java SE 5 envi-
ronment.

These differences and backward compatibilities can not be captured using versions because they are
variations. For example, [22] Google Android is a variation of a Java SE 5 environment, as is [23] Google
App Engine and [24] Google Web Toolkit. All these variations have a different set of packages, types,
and methods in the java.* namespace.

Starting in Java SE 9, the platform has been modularized and its packages organized into a set of
modules. Depending upon how the platform is configured for execution, some modules and their
contained packages may not be present at runtime. However, Java SE 9 provides a standard way to
interrogate the Java platform for the packages currently available at runtime. Therefore, the Frame-
work must set the org.osgi .f ramework.system.packages launching property, see Launching Proper-
ties on page 102, to the list of Java platform packages currently available at runtime.

For Java platform versions prior to Java SE 9, the Framework must also set the
org.osgi .f ramework.system.packages launching property to the list of Java platform packages gen-
erally known to be available at runtime. Since there is no standard way to interrogate the Java plat-
form for the packages currently available at runtime, a Framework implementation may use a pre-
defined list of packages for the Java platform version.

In additional to specifying the version of the execution environment via an osgi .ee requirement,
see osgi.ee Namespace on page 172, a Bundle may also import java.* packages using the Im-
port-Package header. Imports of java.* packages by a bundle will be used during the resolution
process, see Resolving Process on page 65, to ensure the bundle has visibility to the requested
packages by wiring the bundle's import of a java.* package to the export of the java.* package by
the Framework's system bundle. However, a bundle always loads classes in java.* packages via par-
ent delegation. See Parent Delegation on page 70. Therefore, a bundle is not required to import a
java.* package to have visibility to the classes in the package, if the package is present in the current
runtime. It only needs to import a java.* package to have the resolution process ensure the package
is available from the execution environment. This can avoid a NoClassDefFoundError during execu-
tion of the bundle due to a missing java.* package required by the bundle.

3.4.1 Bundle-RequiredExecutionEnvironment
The Bundle-RequiredExecutionEnvironment manifest header provides the same function as the
osgi.ee Namespace on page 172. It allows a bundle to depend on the execution environment. This
header is deprecated but must be fully supported by a compliant framework. Bundles should not
mix these headers but use either an osgi .ee requirement or this header. If both are used, both con-
straints must be met to resolve.

Module Layer Version 1.9 Execution Environment

OSGi Core Release 7 Page 49

The syntax of this header is a list of comma-separated names of execution environments.

Bundle-RequiredExecutionEnvironment ::= ee-name (',' ee-name)*

ee-name ::= bree | <ee name>
bree ::= token ('-' version)? ('/' token ('-' version)?)?

For example:

Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0, «
 OSGi/Minimum-1.1

If a bundle includes this header in the manifest then the bundle must only use methods with signa-
tures that are contained within a proper subset of all mentioned execution environments. Bundles
should list all (known) execution environments on which it can run the bundle.

A bundle can only resolve if the framework is running on a VM which implements one of the list-
ed required execution environments. Frameworks should recognize that the current VM can imple-
ment multiple execution environments. For example, Java 6 is backward compatible with Java 5 and
a bundle requiring the Java 6 execution environment must resolve on a Java 6 VM.

The Bundle-RequiredExecutionEnvironment header can not prevent a bundle from installing.

The org.osgi .f ramework.executionenvironment launching property defines the current execution
environment with a comma separated list of execution environment names. If not set, the frame-
work must provide an appropriate value. This property is also deprecated, its function is replaced
with org.osgi .f ramework.system.capabi l i t ies[.extra] .

An example:

org.osgi.framework.executionenvironment =
 JavaSE-1.5, J2SE-1.4, JavaSE-1.4, JavaSE-1.3, OSGi/Minimum-1.1

Frameworks must convert a Bundle-RequiredExecutionEnvironment header to a requirement in the
osgi .ee namespace when used in the Wiring API, see Bundle Wiring API Specification on page 157.
Since the header uses opaque names for the execution environments there is no guaranteed algo-
rithm to map the ee-name to a Require-Capability header. However, the suggested names so far for
popular execution environments do have a structure that can be used to create such a header, this
pattern was reflected in the bree term. The structure of the bree term for the existing recommenda-
tions is:

n1 ('-' v)? ('/' n2 ('-' v)?)?

For example:

CDC-1.0/Foundation-1.0
OSGi/Minimum-1.2
J2SE-1.4
JavaSE-1.4

Each bree term that matches this pattern can thus be converted into an equivalent osgi .ee Re-
quire-Capability filter. First variable n1 must be replaced with JavaSE when it is J2SE since the Re-
quire-Capability header uses a single name for the Java Standard Edition. The f i l ter directive can
then be constructed from n1 , v , and n2 . If n2 is not defined or v is not defined then the parenthesized
parts in which they participate are not used in the expansion.

bree-filter ::= '(&(osgi.ee=' n1 ('/' n2)? ')' ('(version=' v ')')? ')'

Class Loading Architecture Module Layer Version 1.9

Page 50 OSGi Core Release 7

If the bree term cannot be parsed into the given constituents then the filter must look like:

filter ::= '(osgi.ee=' <ee name> ')'

Some examples:

CDC-1.0/Foundation-1.0 (&(osgi.ee=CDC/Foundation)(version=1.0))
OSGi/Minimum-1.2 (&(osgi.ee=OSGi/Minimum)(version=1.2))
J2SE-1.4 (&(osgi.ee=JavaSE)(version=1.4))
JavaSE-1.6 (&(osgi.ee=JavaSE)(version=1.6))
AA/BB-1.7 (&(osgi.ee=AA/BB)(version=1.7))
V1-1.5/V2-1.6 (osgi.ee=V1-1.5/V2-1.6)
MyEE-badVersion (osgi.ee=MyEE-badVersion)

Each element of the Bundle-RequiredExecutionEnvironment is ORed together in the final osgi .ee
requirement's f i l ter directive. For example:

Bundle-RequiredExecutionEnvironment:
 CDC-1.0/Foundation-1.0,
 OSGi/Minimum-1.2,
 J2SE-1.4,
 JavaSE-1.6,
 AA/BB-1.7,
 V1-1.5/V2-1.6,
 MyEE-badVersion

This must be converted into the following Require-Capability:

Require-Capability:osgi.ee; filter:="(|
 (&(osgi.ee=CDC/Foundation)(version=1.0))
 (&(osgi.ee=OSGi/Minimum)(version=1.2))
 (&(osgi.ee=JavaSE)(version=1.4))
 (&(osgi.ee=JavaSE)(version=1.6))
 (&(osgi.ee=AA/BB)(version=1.7))
 (osgi.ee=V1-1.5/V2-1.6)
 (osgi.ee=MyEE-badVersion)
)"

Every org.osgi . resource.Resource representing a Bundle which has a Bundle-RequiredExecu-
tionEnvironment header must have the converted osgi .ee requirement in the list returned by
getRequirements(Str ing) for the osgi .ee namespace. In cases where the bundle already has a re-
quirement for the osgi .ee namespace no merging is done, the bundle will simply have an additional
osgi .ee requirement added.

3.5 Class Loading Architecture
Many bundles can share a single virtual machine (VM), see [1] Java Virtual Machine Specification.
Within this VM, bundles can hide packages and classes from other bundles, as well as share pack-
ages with other bundles.

The key mechanism to hide and share packages is the Java class loader that loads classes from a sub-
set of the bundle-space using well-defined rules. Each bundle has a single class loader. That class
loader forms a class loading delegation network with other bundles as shown in Figure 3.4.

Module Layer Version 1.9 Class Loading Architecture

OSGi Core Release 7 Page 51

Figure 3.4 Delegation model

Bundle
class loader

Bundle
class loader

Bundle
class loader

Bundle
class loader

exporterimporter

Parent/System
class loader

System Bundle
class loader

The class loader can load classes and resources from:

• Boot class path - The boot class path contains the java.* packages and its implementation pack-
ages.

• Framework class path - The Framework usually has a separate class loader for the Framework im-
plementation classes as well as key service interface classes.

• Bundle Space - The bundle space consists of the JAR file that is associated with the bundle, plus
any additional JAR that are closely tied to the bundle, like fragments, see Fragment Bundles on page
87.

A class space is then all classes reachable from a given bundle's class loader. Thus, a class space for a
given bundle can contain classes from:

• The parent class loader (normally java.* packages from the boot class path)
• Imported packages
• Required bundles
• The bundle's class path (private packages)
• Attached fragments

A class space must be consistent, such that it never contains two classes with the same fully quali-
fied name (to prevent Class Cast Exceptions). However, separate class spaces in an OSGi Platform
may contain classes with the same fully qualified name. The modularization layer supports a model
where multiple versions of the same class are loaded in the same VM.

Figure 3.5 shows the class space for a Bundle A. The right top of Bundle A is not in the class space be-
cause it illustrates that sometimes packages inside a bundle are not accessible to the Bundle itself
when an export is substituted.

Resolving Metadata Module Layer Version 1.9

Page 52 OSGi Core Release 7

Figure 3.5 Class Space

private
public

public

private

public
private

public
Bundle A

Bundle B

Bundle C

Class Space for bundle A

The Framework therefore has a number of responsibilities related to class loading. Before a bundle is
used, it must resolve the constraints that a set of bundles place on the sharing of packages. Then se-
lect the best possibilities to create a wiring. See Resolving Process on page 65 for further informa-
tion. The runtime aspects are described in Runtime Class Loading on page 67.

3.5.1 Resolving
The Framework must resolve bundles. Resolving is the process where any external dependencies are
satisfied and then importers are wired to exporters. Resolving is a process of satisfying constraints;
constraints that are provided by the Dependencies on page 42 section and constraints by the dif-
ferent manifest headers like Import/Export Package, Require-Bundle, and Fragment-Host. The resolv-
ing process must take place before any code from a bundle can be loaded or executed.

A wire is an actual connection between an exporter and an importer, which are both bundles. A wire
is associated with a number of constraints that are defined by its importer's and exporter's manifest
headers. A valid wire is a wire that has satisfied all its constraints. Figure 3.6 depicts the class struc-
ture of the wiring model. Not all constraints result in a wire.

Figure 3.6 Example class structure of wiring

Bundle Wire Constraint

Package Instance

imports

exports

1 *

1 *
constrained by1 *

1

*
for

...
...

3.6 Resolving Metadata
The following sections define the manifest headers that provide the metadata for the resolver.

Module Layer Version 1.9 Resolving Metadata

OSGi Core Release 7 Page 53

3.6.1 Bundle-ManifestVersion
A bundle manifest must express the version of the OSGi manifest header syntax in the Bundle-Man-
ifestVersion header. Bundles exploiting this version of the Framework specification (or later) must
specify this header. The syntax of this header is as follows:

 Bundle-ManifestVersion ::= number //See 1.3.2

The Framework bundle manifest version must be '2'. Bundle manifests written to previous specifica-
tions' manifest syntax are taken to have a bundle manifest version of '1', although there is no way to
express this in such manifests. Therefore, any other value than 2 for this header is invalid unless the
Framework explicitly supports such a later version.

OSGi Framework implementations should support bundle manifests without a Bundle-ManifestVer-
sion header and assume Framework 1.2 compatibility at the appropriate places.

Version 2 bundle manifests must specify the bundle symbolic name. They need not specify the bun-
dle version because the version header has a default value.

3.6.2 Bundle-SymbolicName
The Bundle-SymbolicName manifest header is a mandatory header. The bundle symbolic name and
bundle version identify a unique bundle. This does not always imply that this pair is unique in a
framework, in certain cases the same bundle can be installed multiple times in the same framework,
see Bundle Identifiers on page 113.

A bundle gets its unique Bundle-SymbolicName from the developer. The Bundle-Name manifest
header provides a human-readable name for a bundle and is therefore not replaced by this header.

The Bundle-SymbolicName manifest header must conform to the following syntax:

Bundle-SymbolicName ::= symbolic-name
 (';' parameter) * // See 1.3.2

The framework must recognize the following directives for the Bundle-SymbolicName header:

• singleton - Indicates that the bundle can only have a single version resolved in an environment.
A value of true indicates that the bundle is a singleton bundle. The default value is fa lse . The
Framework must resolve at most one bundle when multiple versions of a singleton bundle with
the same symbolic name are installed. Singleton bundles do not affect the resolution of non-sin-
gleton bundles with the same symbolic name.

• f ragment-attachment - Defines how fragments are allowed to be attached, see the fragments in
Fragment Bundles on page 87. The following values are valid for this directive:
• always - (Default) Fragments can attach at any time while the host is resolved or during the

process of resolving.
• never - No fragments are allowed.
• resolve-t ime - Fragments must only be attached during resolving.

• mandatory - Provide a list of mandatory attributes. If these attributes are not specifically used in
the requirement (Require-Bundle, Fragment-Host) then this bundle must not match. See Manda-
tory Attributes on page 63.

The header allows the use of arbitrary attributes that can be required by the Require-Bundle and
Fragment-Host headers. The following attribute is predefined:

• bundle-version - The value of the Bundle-Version header or 0 if no such header is present. Explic-
itly setting this attribute is an error.

For example:

Resolving Metadata Module Layer Version 1.9

Page 54 OSGi Core Release 7

Bundle-SymbolicName: com.acme.foo;singleton:=true

3.6.3 Bundle-Version
Bundle-Version is an optional header; the default value is 0.0.0 .

Bundle-Version ::= version // See 3.2.5

If the minor or micro version components are not specified, they have a default value of 0 . If the
qualifier component is not specified, it has a default value of the empty string ("").

Versions are comparable. Their comparison is done numerically and sequentially on the major , mi-
nor , and micro components and lastly using the String class compareTo method for the qual i f ier .

A version is considered equal to another version if the major, minor, micro, and the qualifier compo-
nents are equal (using Str ing method compareTo).

Example:

Bundle-Version: 22.3.58.build-345678

3.6.4 Import-Package
The Import-Package header defines the constraints on the imports of shared packages. The syntax of
the Import-Package header is:

Import-Package ::= import (',' import)*
import ::= package-names (';' parameter)*
package-names ::= package-name
 (';' package-name)* // See 1.3.2

The header allows many packages to be imported. An import definition is the description of a single
package for a bundle. The syntax permits multiple package names, separated by semi-colons, to be
described in a short form.

Import package directives are:

• resolut ion - Indicates that the packages must be resolved if the value is mandatory, which is the
default. If mandatory packages cannot be resolved, then the bundle must fail to resolve. A value
of optional indicates that the packages are optional. See Optional Packages on page 60.

The developer can specify arbitrary matching attributes. See Attribute Matching on page 63. The
following arbitrary matching attributes are predefined:

• version - A version-range to select the exporter's package version. The syntax must follow Ver-
sion Ranges on page 39. For more information on version selection, see Semantic Versioning on
page 58. If this attribute is not specified, it is assumed to be [0.0.0, ∞) .

• specif icat ion-version - This attribute is an alias of the version attribute only to ease migration
from earlier versions. If the version attribute is present, the values must be equal.

• bundle-symbol ic-name - The bundle symbolic name of the exporting bundle. In the case of a
fragment bundle, this will be the host bundle's symbolic name.

• bundle-version - A version-range to select the bundle version of the exporting bundle. The de-
fault value is [0.0.0, ∞) . See Semantic Versioning on page 58. In the case of a fragment bundle,
the version is from the host bundle.

In order to be allowed to import a package, a bundle must have PackagePermission[<package-
name>, IMPORT] . See PackagePermission for more information.

An error aborts an installation or update when:

Module Layer Version 1.9 Resolving Metadata

OSGi Core Release 7 Page 55

• A directive or attribute appears multiple times, or
• There are multiple import definitions for the same package, or
• The version and specification-version attributes do not match.

Example of a correct definition:

Import-Package: com.acme.foo;com.acme.bar; «
 version="[1.23,1.24]"; «
 resolution:=mandatory

3.6.5 Export-Package
The syntax of the Export-Package header is similar to the Import-Package header; only the directives
and attributes are different.

Export-Package ::= export (',' export)*
export ::= package-names (';' parameter)*
package-names ::= package-name // See 1.3.2
 (';' package-name)*

The header allows many packages to be exported. An export definition is the description of a single
package export for a bundle. The syntax permits the declaration of multiple packages in one clause
by separating the package names with a semi-colon. Multiple export definitions for the same pack-
age are allowed for example, when different attributes are needed for different importers. The Export
annotation can be applied to a package to specify the package is to be exported. This annotation can
be processed by bundle assembly tools to add the annotated package to the Export-Package header
in the bundle's manifest.

Export directives are:

• uses - A comma-separated list of package names that are used by the exported package. Note that
the use of a comma in the value requires it to be enclosed in double quotes. If this exported pack-
age is chosen as an export, then the resolver must ensure that importers of this package wire to
the same versions of the package in this list. See Package Constraints on page 60.

• mandatory - A comma-separated list of attribute names. Note that the use of a comma in the val-
ue requires it to be enclosed in double quotes. A bundle importing the package must specify the
mandatory attributes, with a value that matches, to resolve to the exported package. See Manda-
tory Attributes on page 63.

• include - A comma-separated list of class names that must be visible to an importer. Note that
the use of a comma in the value requires it to be enclosed in double quotes. For class filtering, see
Class Filtering on page 63.

• exclude -A comma-separated list of class names that must be invisible to an importer. Note that
the use of a comma in the value requires it to be enclosed in double quotes. For class filtering, see
Class Filtering on page 63.

The following attributes are part of this specification:

• version - The version of the named packages with syntax as defined in Version on page 38. It
defines the version of the associated packages. The default value is 0.0.0 .

• specif icat ion-version - An alias for the version attribute only to ease migration from earlier ver-
sions. If the version attribute is present, the values must be equal.

Additionally, arbitrary matching attributes may be specified. See Attribute Matching on page 63.

The Framework will automatically associate each package export definition with the following at-
tributes:

Resolving Metadata Module Layer Version 1.9

Page 56 OSGi Core Release 7

• bundle-symbol ic-name - The bundle symbolic name of the exporting bundle. In the case of a
fragment bundle, this is the host bundle's symbolic name.

• bundle-version - The bundle version of the exporting bundle. In the case of a fragment bundle,
this is the host bundle's version.

An installation or update must be aborted when any of the following conditions is true:

• a directive or attribute appears multiple times
• the bundle-symbol ic-name or bundle-version attribute is specified in the Export-Package header.

An export definition does not imply an automatic import definition. A bundle that exports a pack-
age and does not import that package will get that package via its bundle class path. Such an export-
ed only package can be used by other bundles, but the exporting bundle does not accept a substitu-
tion for this package from another bundle.

In order to export a package, a bundle must have PackagePermission[<package>, EXPORTONLY] .

Example:

Export-Package: com.acme.foo;com.acme.bar;version=1.23

3.6.6 Importing Exported Packages
Bundles that collaborate require the same class loader for types used in the collaboration. If multiple
bundles export packages with collaboration types then they will have to be placed in disjoint class-
spaces, making collaboration impossible. Collaboration is significantly improved when bundles are
willing to import exported packages; these imports will allow a framework to substitute exports for
imports.

Though substitution is recommended to increase collaboration, it is not always possible. Importing
exported packages can only work when those packages are pure API and not encumbered with im-
plementation details. Import of exported packages should only be done when:

• The exported package does not use private packages. If an exported package uses private pack-
ages then it might not be substitutable and is therefore not clean API.

• There is at least one private package that references the exported package. If no such reference
exist, there is no purpose in importing it.

In practice, importing exported packages can only be done with clean API-implementation separa-
tion. OSGi services are carefully designed to be as standalone as possible. Many libraries intertwine
API and implementation in the same package making it impossible to substitute the API packages.

Importing an exported package must use a version range according to its compatibility require-
ments, being either a consumer or a provider of that API. See Semantic Versioning on page 58 for
more information.

3.6.7 Interpretation of Legacy Bundles
Bundles that are not marked with a Bundle-ManifestVersion that equals 2 or more must treat the
headers according the definitions in the Release 3. More specifically, the Framework must map the
Release 3 headers to the appropriate Release 4 headers:

• Import-Package - An import definition must change the specif icat ion-version attribute to the ver-
sion attribute. An import definition without a specification version needs no replacement since
the default version value of 0.0.0 gives the same semantics as Release 3.

• Export-Package - An export definition must change the specif icat ion-version attribute to the
version attribute. The export definition must be appended with the uses directive. The uses di-
rective must contain all imported and exported packages for the given bundle. Additionally, if

Module Layer Version 1.9 Constraint Solving

OSGi Core Release 7 Page 57

there is no import definition for this package, then an import definition for this package with
the package version must be added.

• DynamicImport-Package - A dynamic import definition is unmodified.

A bundle manifest which mixes legacy syntax with bundle manifest version 2 syntax is in error and
must cause the containing bundle to fail to install.

The specif icat ion-version attribute is a deprecated synonym for the version attribute in bundle
manifest version 2 headers.

3.7 Constraint Solving
The OSGi Framework package resolver provides a number of mechanisms to match imports to ex-
ports. The following sections describe these mechanisms in detail.

3.7.1 Diagrams and Syntax
Wires create a graph of nodes. Both the wires as well as nodes (bundles) carry a significant amount
of information. In the next sections, the following conventions are used to explain the many details.

Bundles are named A , B , C ,... That is, uppercase characters starting from the character A . Packages are
named p , q , r , s , t ,... In other words, lower case characters starting from p . If a version is important, it
is indicated with a dash followed by the version: q-1.0 . The syntax A.p means the package definition
(either import or export) of package p by bundle A .

Import definitions are graphically shown by a white box. Export definitions are displayed with a
black box. Packages that are not exported or imported are called private packages. They are indicat-
ed with diagonal lines.

Bundles are a set of connected boxes. Constraints are written on the wires, which are represented by
lines.

Figure 3.7 Legend of wiring instance diagrams, and example

export

wire

B bundle name

p-1.2.3

 version=[1,2)

importuses

p optional import

p private package

require bundle

q-2.2.2

bundle
fragment host

For example:

A: Import-Package: p; version="[1,2)"
 Export-Package: q; version=2.2.2; uses:=p
 Require-Bundle: C
B: Export-Package: p; version=1.5.1
C: Export-Package: r

Figure 3.8 shows the same setup graphically.

Constraint Solving Module Layer Version 1.9

Page 58 OSGi Core Release 7

Figure 3.8 Example bundle diagram

q-2.2.2

p

B

A

version=[1,2)

p-1.5.1

s
Cr

3.7.2 Version Constraints
Version constraints are a mechanism whereby an import definition can declare a precise version or
a version range for matching an export definition.

An import definition must specify a version range as the value for its version attribute, and the ex-
porter must specify a version as the value for its version attribute. Matching is done with the rules
for version range matches as described in Version Ranges on page 39.

For example, the following import and export definition resolve correctly because the version range
in the import definition matches the version in the export definition:

A: Import-Package: p; version="[1,2)"
B: Export-Package: p; version=1.5.1

Figure 3.9 graphically shows how a constraint can exclude an exporter.

Figure 3.9 Version Constrained

BA

C

 version=[1,2)p p-1.5.1

p-2.4.3

3.7.3 Semantic Versioning
Version ranges encode the assumptions about binary compatibility. Though the OSGi frameworks do
not enforce a specific encoding for a compatibility policy, it is strongly recommended to use the fol-
lowing semantics.

Traditionally, compatibility has always been between two parties. One is the consumer of the code
and the other is the provider of the code. API based design introduces a third party in the compati-
bility policy:

• The API itself
• The provider of the API
• The consumer of the API

A provider of an API is closely bound to that API. Virtually any change to that API makes a provider
implementation incompatible with the new version of the API. However, API changes have more
leeway from the perspective of a consumer of that API. Many API changes can be made backward

Module Layer Version 1.9 Constraint Solving

OSGi Core Release 7 Page 59

compatible for consumers but hardly any API change can be made backward compatible for a
provider of that API.

A provider of an API should therefore import that API with a smaller range than a consumer of that
API. This policy can be encoded in a version range. The rules are summarized as follows:

• major - Changes for an incompatible update for both a consumer and a provider of an API.
• minor - Changes for a backward compatible update for a consumer but not for a provider.
• micro - A change that does not affect the API, for example, a typo in a comment or a bug fix in an

implementation.

Both consumers and providers should use the version they are compiled against as their base ver-
sion. It is recommended to ignore the micro part of the version because systems tend to become
very rigid if they require the latest bug fix to be deployed all the time. For example, when compiled
against version 4.2.1.V201007221030 , the base version should be 4.2 .

A consumer of an API should therefore import a range that starts with the base version and ends
with the next major change, for example: [4.2,5) . A provider of an API should import a range that
starts with the base version up to the next minor change, for example: [4.2,4.3) .

3.7.4 Type Roles for Semantic Versioning
As mentioned in Semantic Versioning on page 58, there are two roles for clients of an API package:
API consumers and API providers. API consumers use the API and API providers implement the API.
For the types in an API, it is important that the API clearly document which of those types are only
to be implemented or extended by API providers and which of those types can be implemented or
extended by API consumers. For example, listener interfaces are generally implemented by API con-
sumers and instances of them passed to API providers.

API providers are sensitive to changes in types implemented or extended by both API consumers
and API providers. An API provider must implement any new changes in API provider types and
must understand and likely invoke any new changes in API consumer types. An API consumer can
generally ignore compatible changes in API provider types unless it wants to invoke the new func-
tion. But an API consumer is sensitive to changes in API consumer types and will probably need
modification to implement the new function. For example, in the org.osgi .f ramework package, the
BundleContext type is implemented by the Framework which is the API provider. Adding a new
method to BundleContext will require all Framework implementations to be updated to implement
the new method. Bundles, which are the API consumers, do not have to change unless they wish to
call the new method. However, the BundleActivator type is implemented by bundles and adding a
new method to BundleActivator will require all bundles implementing this interface to be modified
to implement the new method and will also require all Framework implementations to be modified
to utilize the new method. Thus the BundleContext type has an API provider role and the BundleAc-
t ivator type has an API consumer role in the org.osgi .f ramework API package.

Since there are generally many API consumer and few API providers, API evolution must be very
careful when considering changes to API consumer types while being more relaxed about changes
to API provider types. This is because you will need to change the few API providers to support an
updated API but you do not want to require the many existing API consumers to change when an
API is updated. API consumers should only need to change when the API consumer wants to take
advantage of new API.

The ProviderType and ConsumerType annotations can be used in source files to document the roles
of types in a package. API types marked ProviderType must not be implemented or extended by API
consumers. These annotations can be processed by bundle assembly tools that support Semantic
Versioning when generating the version range information for a bundle's Import-Package manifest
header.

Constraint Solving Module Layer Version 1.9

Page 60 OSGi Core Release 7

3.7.5 Optional Packages
A bundle can indicate that it does not require a package to resolve correctly, but it may use the pack-
age if it is available. For example, logging is important, but the absence of a log service should not
prevent a bundle from running.

Optional imports can be specified in the following ways:

• Dynamic Imports - The DynamicImport-Package header is intended to look for an exported pack-
age when that package is needed. The key use case for dynamic import is the Class forName
method when a bundle does not know in advance the class name it may be requested to load.

• Resolution Directive - The resolution directive on an import definition specifying the value option-
al . A bundle may successfully resolve if a suitable optional package is not present.

The key difference between these two mechanisms is when the wires are made. An attempt is made
to establish a wire for a dynamic import every time there is an attempt to load a class in that pack-
age, whereas the wire for a resolution optional package may only be established when the bundle is
resolved.

The resolut ion directive of the import definition can take the value mandatory or optional .

• mandatory - (Default) Indicates that the package must be wired for the bundle to resolve.
• optional - Indicates that the importing bundle may resolve without the package being wired. If

the package is not wired, the class loading will treat this package as if it is not imported.

The following example will resolve even though bundle B does not provide the correct version (the
package will not be available to the code when bundle A is resolved).

A: Import-Package: p; «
 resolution:=optional; «
 version=1.6
B: Export-Package: p; «
 q; «
 version=1.5.0

Figure 3.10 Optional import

BA p p-1.5.0

q-1.5.0

 version=1.6

The implementation of a bundle that uses optional packages must be prepared to handle the fact
that the packages may not be available: that is, an exception can be thrown when there is a refer-
ence to a class from a missing package. This can be prevented by including a fallback package on the
bundle's class path. When an optional package cannot be resolved, any attempts by the bundle to
load classes from it will follow normal bundle class loading search order as if the import never exist-
ed. It will load it from the bundle's class path or in the end through dynamic class loading when set
for that bundle and package.

3.7.6 Package Constraints
Classes can depend on classes in other packages. For example, when they extend classes from anoth-
er package, or these other classes appear in method signatures. It can therefore be said that a pack-
age uses other packages. These inter-package dependencies are modeled with the uses directive on
the Export-Package header.

Module Layer Version 1.9 Constraint Solving

OSGi Core Release 7 Page 61

For example, org.osgi .service.http depends on the package javax.servlet because it is used in the
API. The export definition of the org.osgi .service.http must therefore contain the uses directive
with the javax.servlet package as its value.

Class space consistency can only be ensured if a bundle has only one exporter for each
package. For example, the Http Service implementation requires servlets to extend the
javax.servlet .http.HttpServlet base class. If the Http Service bundle would import version 2.4 and
the client bundle would import version 2.1 then a class cast exception is bound to happen. This is
depicted in Figure 3.11.

Figure 3.11 Uses directive in B, forces A to use javax.servlet from D

org.osgi.service.http

javax.servlet.http
B

javax.servlet.http; 2.4 Djavax.servlet.http; 2.1C

p

A org.osgi.service.http

javax.servlet.http

If a bundle imports a package from an exporter then the export definition of that package can imply
constraints on a number of other packages through the uses directive. The uses directive lists the
packages that the exporter depends upon and therefore constrains the resolver for imports. These
constraints ensure that a set of bundles share the same class loader for the same package.

When an importer imports a package with uses constraints, the resolver must wire the import to
the exporter named in the uses constraint. This exporter may in turn imply additional constraints,
and so on. The act of wiring a single import of a package to an exporter can therefore imply a large
set of constraints. The term implied package constraints refers to the complete set of constraints con-
structed from recursively traversing the wires. Implied package constraints are not automatic im-
ports; rather, implied package constraints only constrain how an import definition must be wired.

For example, in Figure 3.12, bundle A imports package p . Assume this import definition is wired to
bundle B . Due to the uses directive (the ellipse symbols indicates the uses directive) this implies a
constraint on package q .

Further, assuming that the import for package q is wired to bundle C , then this implies a constraint
on the import of package r and s . Continuing, assuming C.s and C.r are wired to bundle D and E re-
spectively. These bundles both add package t to the set of implied packages for bundle A.

Constraint Solving Module Layer Version 1.9

Page 62 OSGi Core Release 7

Figure 3.12 Implied Packages

p

q

p

t

q

r

s

s

t

r

t

t

t

BA

C

EDF

To maintain class space consistency, the Framework must ensure that none of its bundle imports
conflicts with any of that bundle's implied packages.

For the example, this means that the Framework must ensure that the import definition of A.t is
wired to package D.t . Wiring this import definition to package F.t violates the class space consis-
tency. This violation occurs because bundle A could be confronted with objects with the same class
name but from the class loaders of bundle D and F . This would potentially create ClassCastExcep-
t ions . Alternatively, if all bundles are wired to F.t , then the problem also goes away.

Another scenario with this case is depicted in Figure 3.11. Bundle A imports the Http Service classes
from bundle B . Bundle B has grouped the org.osgi .service.http and the javax.servlet and bundle A is
therefore constrained to wire javax.servlet to the same exporter as bundle B .

As an example of a situation where the uses directive makes resolving impossible consider the fol-
lowing setup that is correctly resolved:

A: Import-Package: q; version="[1.0,1.0]"
 Export-Package: p; uses:="q,r",r
B: Export-Package: q; version=1.0
C: Export-Package: q; version=2.0

These specific constraints can be resolved because the import A.q can be wired to the export B.q but
not C.q due to the version constraint.

Adding a bundle D will now not be possible:

D: Import-Package: p, q; version=2.0

Package D.p must be wired to package A.p because bundle A is the only exporter. However, this im-
plies the use of package q due the uses directive in the package A.q import. Package A.q is wired to
B.q-1.0 . However, import package D.q requires version 2.0 and can therefore not be resolved with-
out violating the class space constraint.

This scenario is depicted in Figure 3.13.

Module Layer Version 1.9 Constraint Solving

OSGi Core Release 7 Page 63

Figure 3.13 Uses directive and resolving

BA

p

q-1.0q

Cr
q-2.0

p

q

D

version=1.0

version=2

3.7.7 Attribute Matching
Attribute matching is a generic mechanism to allow the importer and exporter to influence the
matching process in a declarative way. In order for an import definition to be resolved to an export
definition, the values of the attributes specified by the import definition must match the values of
the attributes of the export definition. By default, a match is not prevented if the export definition
contains attributes that do not occur in the import definition. The mandatory directive in the export
definition can reverse this by listing all attributes that the Framework must match in the import de-
finition. Any attributes specified in the DynamicImport-Package is ignored during the resolve phase
but can influence runtime class loading.

For example, the following statements will match.

A: Import-Package: com.acme.foo;company=ACME
B: Export-Package: com.acme.foo; «
 company="ACME"; «
 security=false

Attribute values are compared string wise except for the version and bundle-version attributes
which use version range comparisons. Leading and trailing white space in attribute values must be
ignored.

Attribute matching also works for the Require-Bundle and Fragment-Host headers; the attributes to
be matched are specified on the Bundle-SymbolicName header.

3.7.8 Mandatory Attributes
There are two types of attributes: mandatory and optional. Mandatory attributes must be specified in
the import definition to match. Optional attributes are ignored when they are not referenced by the
importer. Attributes are optional by default.

The exporter can specify mandatory attributes with the mandatory directive in the export defini-
tion. This directive contains a comma-separated list of attribute names that must be specified by the
importer to match.

For example, the following import definition must not match the export definition because security
is a mandatory attribute:

A: Import-Package: com.acme.foo;company=ACME

B: Export-Package: com.acme.foo; «
 company="ACME"; «
 security=false; «
 mandatory:=security

3.7.9 Class Filtering
An exporter can limit the visibility of the classes in a package with the include and exclude direc-
tives on the export definition. The value of each of these directives is a comma-separated list of class
names. Note that the use of a comma in the value requires it to be enclosed in double quotes.

Constraint Solving Module Layer Version 1.9

Page 64 OSGi Core Release 7

Class names must not include their package name and do not end with .c lass . That is, the class
com.acme.foo.Daffy is named Daffy in either list. The class name can include multiple wildcard as-
terisks ('* ' \u002A).

The default for the include directive is an asterisk ('* ' \u002A) (wildcard matching all names), and
for the exclude directive, so that no classes are excluded, an empty list that matches no names. If in-
clude or exclude directive are specified, the corresponding default is overridden.

A class is only visible if it is:

• Matched with an entry in the included list, and
• Not matched with an entry in the excluded list.

In all other cases, loading or finding fails, and a Class Not Found Exception is thrown for a class load.
The ordering of include and exclude is not significant.

The following example shows an export statement, and a list of files with their visibility status.

Export-Package: com.acme.foo; include:="Qux*,BarImpl"; «
 exclude:=QuxImpl

com/acme/foo
 QuxFoo visible
 QuxBar visible
 QuxImpl excluded
 BarImpl visible

Care must be taken when using filters. For example, a new version of a module that is intended to be
backward compatible with an earlier version should not filter out classes that were not filtered out
by the earlier version. In addition, when modularizing existing code, filtering out classes from an ex-
ported package may break users of the package.

For example, packages defined by standard bodies often require an implementation class in the stan-
dardized package to have package access to the specification classes.

package org.acme.open;
public class Specified {
 static Specified implementation;
 public void foo() { implementation.foo(); }
}

package org.acme.open;
public class Implementation {
 public void initialize(Specified implementation) {
 Specified.implementation = implementation;
 }
}

The Implementation class must not be available to external bundles because it allows the imple-
mentation to be set. By excluding the Implementation class, only the exporting bundle can see this
class. The export definition for this header could look like:

Export-Package: org.acme.open; exclude:=Implementation

3.7.10 Provider Selection
Provider selection allows the importer to select which bundles can be considered as exporters.
Provider selection is used when there is no specification contract between the importer and the ex-

Module Layer Version 1.9 Resolving Process

OSGi Core Release 7 Page 65

porter. The importer tightly couples itself to a specific exporter, typically the bundle that was used
for testing. To make the wiring less brittle, the importer can optionally specify a range of bundle ver-
sions that will match.

An importer can select an exporter with the import attributes bundle-symbol ic-name and bun-
dle-version . The Framework automatically provides these attributes for each export definition.
These attributes must not be specified in an export definition.

The export definition bundle-symbol ic-name attribute will contain the bundle symbolic name as
specified in the Bundle-Symbol icName header without any parameters. The export definition bun-
dle-version attribute is set to the value of the Bundle-Version header or its default of 0.0.0 when ab-
sent.

The bundle-symbol ic-name is matched as an attribute. The bundle-version attribute is matched us-
ing the version range rules as defined in Version Ranges on page 39. The import definition must
be a version range and the export definition is a version.

For example, the following definitions will match:

A: Bundle-SymbolicName: A
 Import-Package: com.acme.foo; «
 bundle-symbolic-name=B; «
 bundle-version="[1.41,2.0.0)"

B: Bundle-SymbolicName: B
 Bundle-Version: 1.41
 Export-Package: com.acme.foo

The following statements will not match because bundle B does not specify a version and thus de-
faults to 0.0.0:

A: Bundle-SymbolicName: A
 Import-Package: com.acme.foo; «
 bundle-symbolic-name=B; «
 bundle-version="[1.41,2.0.0)"

B: Bundle-SymbolicName: B
 Export-Package: com.acme.foo;version=1.42

Selecting an exporter by symbolic name can result in brittleness because of hard coupling of the
package to the bundle. For example, if the exporter eventually needs to be refactored into multiple
separate bundles, all importers must be changed. Other arbitrary matching attributes do not have
this disadvantage as they can be specified independently of the exporting bundle.

The brittleness problem of the bundle symbolic name in bundle refactoring can be partly overcome
by writing a façade bundle using the same bundle symbolic name as the original bundle.

3.8 Resolving Process
Resolving is the process that creates a wiring between bundles. Constraints on the wires are statical-
ly defined by:

• Any mandatory requirement must be matched to at least one capability in the same namespace
provided by any of the resolved bundles, including itself and the system bundle.

• The required execution environments as defined by the Bundle-RequiredExecutionEnvironment
header.

• Native code

Resolving Process Module Layer Version 1.9

Page 66 OSGi Core Release 7

• Import and export packages (the DynamicImport-Package header is ignored in this phase)
• Required bundles, which import all exported packages from a bundle as defined in Requiring Bun-

dles on page 84.
• Fragments, which provide their contents and definitions to the host as defined in Fragment Bun-

dles on page 87

A bundle can only be resolved when a number of constraints are satisfied:

• Execution Environment - The underlying VM implements at least one of the execution environ-
ments listed in the Bundle-RequiredExecutionEnvironment header. See osgi.ee Namespace on page
172.

• Native code - The native code dependencies specified in the Bundle-NativeCode header must be re-
solved. See Loading Native Code Libraries on page 76.

The resolving process is then a constraint-solving algorithm that can be described in terms of re-
quirements on wiring relations. The resolving process is an iterative process that searches through
the solution space.

A bundle can be resolved if the following conditions are met:

• All its mandatory requirements are satisfied
• All its mandatory imports are wired
• All its mandatory required bundles are available and their exports wired

A wire is only created when the following conditions are met:

• The importer's version range matches the exporter's version. See Semantic Versioning on page
58.

• The importer specifies all mandatory attributes from the exporter. See Mandatory Attributes on
page 63.

• All the importer's attributes match the attributes of the corresponding exporter. See Attribute
Matching on page 63

• Implied packages referring to the same package as the wire are wired to the same exporter. See
Package Constraints on page 60.

• The wire is connected to a valid exporter.

The following list defines the preferences, if multiple choices are possible, in order of decreasing pri-
ority:

• A resolved exporter must be preferred over an unresolved exporter.
• An exporter with a higher version is preferred over an exporter with a lower version.
• An exporter with a lower bundle ID is preferred over a bundle with a higher ID.

3.8.1 Importing and Exporting the Same Package
If a bundle has both import and export definitions for the same package, then the Framework needs
to decide which to choose.

It must first try to resolve the overlapping import definition. The following outcomes are possible:

• External - If this resolves to an export statement in another bundle, then the overlapping export
definition in this bundle is discarded.

• Internal - If it is resolved to an export statement in this bundle, then the overlapping import defi-
nition in this bundle is discarded.

• Unresolved - There is no matching export definition. In this case the framework is free to discard
either the overlapping export definition or overlapping import definition in this bundle. If the

Module Layer Version 1.9 Runtime Class Loading

OSGi Core Release 7 Page 67

export definition is discarded and the import definition is not optional then the bundle will fail
to resolve.

The above only applies to the import and export package definitions of a bundle. For namespaces
other than osgi .wir ing.package , a requirement definition of a bundle may be wired to a capability
definition of that same bundle.

3.9 Runtime Class Loading
Each bundle installed in the Framework must not have an associated class loader until after it is re-
solved. After a bundle is resolved, the Framework must create one class loader for each bundle that
is not a fragment. The framework may delay creation of the class loader until it is actually needed.

One class loader per bundle allows all resources within a bundle to have package level access to all
other resources in the bundle within the same package. This class loader provides each bundle with
its own namespace, to avoid name conflicts, and allows resource sharing with other bundles.

This class loader must use the wiring as calculated in the resolving process to find the appropriate
exporters. If a class is not found in the imports, additional headers in the manifest can control the
searching of classes and resources in additional places.

The following sections define the factors that influence the runtime class loading and then define
the exact search order the Framework must follow when a class or resource is loaded.

3.9.1 Bundle Class Path
JAR, ZIP, directories, etc. are called containers. Containers contain entries organized in hierarchical
paths. During runtime, an entry from a bundle can actually come from different containers because
of attached fragments. The order in which an entry can be found is significant because it can shad-
ow other entries. For a bundle, the search order for a named entry is:

• First the container of the (host) bundle
• Then the (optional) fragment containers in ascending id order

This search order is called the entry path. A resource (or class) is not loaded via the entry path, but it
is loaded through the bundle class path. The bundle class path provides an additional indirection on
top of the entry path. It defines an ordered list of container paths. Each container path can be found
on the entry path.

Each container, independent of any other containers, can be a multi-release container. See Multi-re-
lease Container on page 69.

The full stop ('.' \u002E) container path is a synonym for the solidus (' / ' \u002F) or the root of a con-
tainer. The full stop is the default value for a bundle or fragment if no Bundle-ClassPath header is
specified.

The Bundle-ClassPath manifest header must conform to the following syntax:

Bundle-ClassPath ::= entry (',' entry)*
entry ::= target (';' target)* (';' parameter) *
target ::= path | '.' // See 1.3.2

The Framework must ignore any unrecognized parameters.

The content of the effective bundle class path is constructed from the bundle's Bundle-ClassPath
header, concatenated with the Bundle-ClassPath headers of any fragments, in ascending bundle id
order. The effective Bundle-ClassPath is calculated during resolve time, however, a dynamically at-
tached fragment can append elements at the end if the Framework supports dynamically attached
fragments.

Runtime Class Loading Module Layer Version 1.9

Page 68 OSGi Core Release 7

An element from the bundle's Bundle-ClassPath header refers to the first match when searched
through the entry path, while a fragment's Bundle-ClassPath can refer only to an entry in its own
container.

An example can illustrate this:

A: Bundle-ClassPath: .,resource.jar
B: Fragment-Host: A

The previous example uses an effective bundle class path of:

/, resource.jar, B:/

The first element / is the root of a container. The bundle always has a root and can therefore always
be found in the (host) bundle. The second element is first looked up in the host bundle's container,
and if not found, the entry is looked up in the container of B . The Framework must use the first en-
try that matches. The last element in the effective bundle class path is the / from fragment B ; the / is
the default because there is no Bundle-ClassPath specified. However, a fragment can only refer to an
internal entry. This full stop therefore refers to the root of the container of fragment B . Assuming,
fragment B contains an entry for resource. jar and bundle A does not, then the search order must be:

A:/
B:resource.jar
B:/

The Framework must ignore a container path in the bundle class-path if the container cannot be lo-
cated when it is needed, which can happen at any time after the bundle is resolved. However, the
Framework should publish a Framework Event of type INFO once with an appropriate message for
each entry that cannot be located at all.

An entry on the Bundle-ClassPath can refer to a directory in the container. However, it is not always
possible to establish the directory's existence. For example, directories can be omitted in JAR/ZIP
files. In such a case, a Framework must probe the directory to see if any resources can be found in
this directory. That is, even if the directory construct is absent in the container, if resources can be
found assuming this directory, than it must still be chosen for the Bundle-ClassPath.

A host bundle can allow a fragment to insert code ahead of its own code by naming a container in
its Bundle-ClassPath that will be provided by a fragment. Fragments can never unilaterally insert
code ahead of their host's bundle class path. The following example illustrates the possibilities of
the bundle class path in more detail:

A: Bundle-SymbolicName: A
 Bundle-ClassPath: /,required.jar,optional,default.jar
 content ...
 required.jar
 default.jar
B: Bundle-SymbolicName: B
 Bundle-ClassPath: fragment.jar
 Fragment-Host: A
 content ...
 optional/
 content ...
 fragment.jar

The names of the bundle class path elements indicate their intention. The required. jar is a container
that provides mandatory functionality, it is packaged in bundle A. The optional container is a direc-
tory containing optional classes, and the default . jar is a JAR entry with backup code. In this exam-
ple, the effective bundle class path is:

Module Layer Version 1.9 Runtime Class Loading

OSGi Core Release 7 Page 69

A:/
A:required.jar
B:optional
A:default.jar
B:fragment.jar

This will expand to the following (logical) search order for a resource X.class :

 A:/X.class
 A:required.jar!X.class
 B:optional/X.class
 A:default.jar!X.class
 B:fragment.jar!X.class

The exclamation mark (!) indicates a load from a JAR resource.

3.9.1.1 Multi-release Container

A container can be a multi-release container . A multi-release container supports versioned directories
as specified in [28] Multi-release JAR File. When a container is a multi-release container, that is, the
container has a META-INF/MANIFEST.MF manifest which specifies

Multi-Release: true

then the Framework must search the container's versioned directories when attempting to locate an
entry in the container.

Support for multi-release containers must only be active on Java 9 and later. On Java 8 and earlier,
the container must be treated as a non-multi-release container.

3.9.2 Dynamic Import Package
Dynamic imports are matched to export definitions (to form package wirings) during class loading,
and therefore do not affect module resolution. Dynamic imports apply only to packages for which
no wire has been established and no definition could be found in any other way. Dynamic import is
used as a last resort.

DynamicImport-Package ::= dynamic-description
 (',' dynamic-description)*
dynamic-description ::= wildcard-names (';' parameter)*
wildcard-names ::= wildcard-name (';' wildcard-name)*
wildcard-name ::= package-name
 | (package-name '.*') // See 1.3.2
 | '*'

No directives are architected by the Framework for DynamicImport-Package. Arbitrary matching at-
tributes may be specified. The following matching attributes are architected by the Framework:

• version -- A version range to select the version of an export definition. The default value is 0.0.0 .
• bundle-symbol ic-name - The bundle symbolic name of the exporting bundle.
• bundle-version - a version range to select the bundle version of the exporting bundle. The default

value is 0.0.0 .

Packages may be named explicitly or by using wild-carded expressions such as org.foo.* and * . The
wildcard can stand for any suffix, including multiple sub-packages. If a wildcard is used, then the
package identified by the prefix must not be included. That is, org.foo.* will include all sub-pack-
ages of org.foo but it must not include package org.foo itself.

Runtime Class Loading Module Layer Version 1.9

Page 70 OSGi Core Release 7

Dynamic imports must be searched in the order in which they are specified. The order is particular-
ly important when package names with wildcards are used. The order will then determine the order
in which matching occurs. This means that the more specific package specifications should appear
before the broader specifications. For example, the following DynamicImport-Package header indi-
cates a preference for packages supplied by ACME:

DynamicImport-Package: *;vendor=acme, *

If multiple packages need to be dynamically imported with identical parameters, the syntax permits
a list of packages, separated by semicolons, to be specified before the parameters.

During class loading, the package of the class being loaded is compared against the specified list
of (possibly wild-carded) package names. Each matching package name is used in turn to attempt
to wire to an export using the same rules as Import-Package. If a wiring attempt is successful (tak-
ing any uses constraints into account), the search is forwarded to the exporter's class loader where
class loading continues. The wiring must not subsequently be modified, even if the class cannot be
loaded. This implies that once a package is dynamically resolved, subsequent attempts to load class-
es or resources from that package are treated as normal imports.

In order for a DynamicImport-Package to be resolved to an export statement, all attributes of the dy-
namic import definition must match the attributes of the export statement. All mandatory arbitrary
attributes (as specified by the exporter, see Mandatory Attributes on page 63) must be specified in
the dynamic import definition and match.

Once a wire is established, any uses constraints from the exporter must be obeyed for further dy-
namic imports.

Dynamic imports are very similar to optional packages, see Optional Packages on page 60, but dif-
fer in the fact that they are handled after the bundle is resolved.

3.9.3 Parent Delegation
The Framework must always delegate any package that starts with java. to the parent class loader.

Certain Java virtual machines, also Oracle's VMs, appear to make the erroneous assumption that the
delegation to the parent class loader always occurs. This implicit assumption of strictly hierarchical
class loader delegation can result in NoClassDefFoundErrors . This happens if the virtual machine
implementation expects to find its own implementation classes from any arbitrary class loader, re-
quiring that packages loaded from the boot class loader not be restricted to only the java.* packages.

Other packages that must be loaded from the boot class loader can therefore be specified with the
System property:

org.osgi.framework.bootdelegation

This property must contain a list with the following format:

org.osgi.framework.bootdelegation ::= boot-description
 (',' boot-description)*
boot-description ::= package-name // See 1.3.2
 | (package-name '.*')
 | '*'

The .* wildcard means deep matching, that is, com.acme.* , matches any sub-package of package
com.acme , however, it does not match com.acme . Packages that match this list must be loaded from
the parent class loader. The java.* prefix is always implied; it does not have to be specified.

The single wildcard means that the Framework must always delegate to the parent class loader first,
which is the same as the Release 3 behavior. For example, when running on an Oracle JVM, it may
be necessary to specify a value like:

Module Layer Version 1.9 Runtime Class Loading

OSGi Core Release 7 Page 71

org.osgi.framework.bootdelegation=sun.*,com.sun.*

With such a property value, the Framework must delegate all java.* , sun.* , and com.sun.* packages
to the parent class loader.

3.9.4 Overall Search Order
Frameworks must adhere to the following rules for class or resource loading. When a bundle's class
loader is requested to load a class or find a resource, the search must be performed in the following
order:

1. If the class or resource is in a java.* package, the request is delegated to the parent class loader;
otherwise, the search continues with the next step. If the request is delegated to the parent class
loader and the class or resource is not found, then the search terminates and the request fails.

2. If the class or resource is from a package included in the boot delegation list
(org.osgi .f ramework.bootdelegation), then the request is delegated to the parent class loader. If
the class or resource is found there, the search ends.

3. If the class or resource is in a package that is imported using Import-Package or was imported
dynamically in a previous load, then the request is delegated to the exporting bundle's class
loader; otherwise the search continues with the next step. If the request is delegated to an ex-
porting class loader and the class or resource is not found, then the search terminates and the re-
quest fails.

4. If the class or resource is in a package that is imported from one or more other bundles using Re-
quire-Bundle, the request is delegated to the class loaders of the other bundles, in the order in
which they are specified in this bundle's manifest. This entails a depth-first strategy; all required
bundles are searched before the bundle class path is used. If the class or resource is not found,
then the search continues with the next step.

5. Search the bundle's embedded class path, see Bundle Class Path on page 67. If the class or re-
source is not found, then continue with the next step.

6. If the class or resource is in a package that is exported by the bundle or the package is imported
by the bundle (using Import-Package or Require-Bundle), then the search ends and the class or
resource is not found.

7. Otherwise, if the class or resource is in a package that is imported using DynamicImport-Pack-
age, then a dynamic import of the package is now attempted. An exporter must conform to any
implied package constraints. If an appropriate exporter is found, a wire is established so that fu-
ture loads of the package are handled in step 3. If a dynamic wire is not established, then the re-
quest fails.

8. If the dynamic import of the package is established, the request is delegated to the exporting
bundle's class loader. If the request is delegated to an exporting class loader and the class or re-
source is not found, then the search terminates and the request fails.

When delegating to another bundle class loader, the delegated request enters this algorithm at step
4.

The following non-normative flow chart illustrates the search order described above:

Runtime Class Loading Module Layer Version 1.9

Page 72 OSGi Core Release 7

Figure 3.14 Flow chart for class loading (non-normative)

java.*?
Delegate to
parent class loader

yes

imported? Delegate to
wire’s exporter

yes

no

dynamic
import?

no

Search Required
bundles

found?

Search bundle
class path

yes

no

found? yes

found?

no

yes

found?

no

yes

no

Start

Failure

Success

Search fragments
bundle class path

found?

no

yes

no

Delegate to
wire’s exporter

found yes

no

boot
delegation?

Delegate to
parent class loader

yes found? yes

no

1

2

3

4

5

6

8

9

no

package
exported?

7 yes

Module Layer Version 1.9 Runtime Class Loading

OSGi Core Release 7 Page 73

3.9.5 Parent Class Loader
The set of implicitly visible packages are all java.* packages, since these packages are required by
the Java runtime, and using multiple versions at the same time is not easy. For example, all objects
must extend the same Object class.

A bundle must not declare exports for java.* packages; doing so is an error and any such bundle
must fail to install or update. A bundle may declare imports for java.* packages; but this is for res-
olution purposes only. All other packages visible through the parent class loader must be hidden
from executing bundles.

However, the Framework must explicitly export relevant packages from the parent class loader. The
system property

org.osgi .f ramework.system.packages

contains the export packages descriptions for the system bundle. This property employs the stan-
dard Export-Package manifest header syntax:

org.osgi.framework.system.packages ::= package-description
 (',' package-description)*

Some classes on the boot class path assume that they can use any class loader to load other class-
es on the boot class path, which is not true for a bundle class loader. Framework implementations
should attempt to load these classes from the boot class path.

The system bundle (bundle ID zero) is used to export non-java.* packages from the parent class
loader. Export definitions from the system bundle are treated like normal exports, meaning that
they can have version numbers, and are used to resolve import definitions as part of the normal
bundle resolving process. Other bundles may provide alternative implementations of the same
packages.

The set of export definitions for the parent class loader can either be set by this property or calcu-
lated by the Framework. The export definitions must have the bundle-symbol ic-name and bun-
dle-version attributes with the implementation-specific bundle symbolic name and bundle version
value of the system bundle.

Exposing packages from the parent class loader in this fashion must also take into account any uses
directives of the underlying packages. For example, the definition of javax.crypto.spec must declare
its usage of javax.crypto. interfaces and javax.crypto .

3.9.6 Resource Loading
A resource in a bundle can be accessed through the class loader of that bundle but it can also be ac-
cessed with the getResource(Str ing) , getEntry(Str ing) , f indEntr ies(Str ing,Str ing,boolean) and oth-
er methods or the methods on the Bundle Wiring API Specification on page 157. All these methods
return a URL object or an Enumeration object of URL objects. The URLs are called bundle entry URLs.
The schemes for the URLs returned by these methods can differ and are implementation dependent.

Bundle entry URLs are normally created by the Framework, however, in certain cases bundles need
to manipulate the URL to find related resources. The Framework is therefore required to ensure that:

• Bundle entry URLs must be hierarchical (See [13] RFC 2396 Uniform Resource Identifiers URI: Gener-
ic Syntax)

• Usable as a context for constructing another URL.
• The java.net.URLStreamHandler class used for a bundle entry URL must be available to the

java.net.URL class to setup a URL that uses the protocol scheme defined by the Framework.
• The getPath method for a bundle entry URL must return an absolute path (a path that starts with

'/') to a resource or entry in a bundle. For example, the URL returned from getEntry("myimages/
test .gi f ") must have a path of /myimages/test .gi f .

Runtime Class Loading Module Layer Version 1.9

Page 74 OSGi Core Release 7

For example, a class can take a URL to an index.html bundle resource and map URLs in this resource
to other files in the same JAR directory.

public class BundleResource implements HttpContext{
 URL root; // to index.html in bundle
 URL getResource(String resource) {
 return new URL(root, resource);
 }
 ...
}

3.9.7 Bundle Cycles
Multiple required bundles can export the same package. Bundles which export the same package in-
volved in a require bundle cycle can lead to lookup cycles when searching for classes and resources
from the package. Consider the following definitions:

A: Require-Bundle: B, C
C: Require-Bundle: D

These definitions are depicted in Figure 3.15.

Figure 3.15 Depth First search with Require Bundle

A

B C

D

p

p p

p

Each of the bundles exports the package p . In this example, bundle A requires bundle B , and bun-
dle C requires bundle D . When bundle A loads a class or resource from package p , then the required
bundle search order is the following: B , D , C , A . This is a depth first search order because required
bundles are searched before the bundle class path is searched (see step 4). The required bundles are
searched in the order that they appear in the Require-Bundle header. The depth first search order can
introduce endless search cycles if the dependency graph has a cycle in it.

Using the previous setup, a cycle can be introduced if bundle D requires bundle A as depicted in Fig-
ure 3.16.

D: Require-Bundle: A

Module Layer Version 1.9 Runtime Class Loading

OSGi Core Release 7 Page 75

Figure 3.16 Cycles

A

B C

D

p

p p

p

When the class loader for bundle A loads a class or resource from package p then the bundle search
order would be the following: B, B, B,... if cycles were not taken into account.

Since a cycle was introduced each time bundle D is reached the search will recurs back to A and
start over. The framework must prevent such dependency cycles from causing endless recursive
lookups.

To avoid endless looping, the Framework must mark each bundle upon first visiting it and not ex-
plore the required bundles of a previously visited bundle. Using the visited pattern on the depen-
dency graph above will result in the following bundle search order: B , D , C , A .

3.9.8 Code Executed Before Started
Packages exported from a bundle are exposed to other bundles as soon as the bundle has been re-
solved. This condition could mean that another bundle could call methods in an exported package
before the bundle exporting the package is started.

3.9.9 Finding an Object's Bundle
There are scenarios where a bundle is required in code that has no access to a Bundle Context. For
this reason, the framework provides the following methods:

• Framework Util - Through the FrameworkUti l class with the getBundle(Class) method. The frame-
work provides this method to allow code to find the bundle of an object without having the per-
mission to get the class loader. The method returns null when the class does not originate from a
bundle.

• Class Loader - An OSGi framework must ensure that the class loader of a class that comes from
a bundle implements the BundleReference interface. This allows legacy code to find an object's
bundle by getting its class loader and casting it to a BundleReference object, which provides ac-
cess to the Bundle. However, this requires the code to have the permission to access the class
loader. The following code fragment shows how to obtain a Bundle object from any object.

ClassLoader cl = target.getClassLoader();
if (cl instanceof BundleReference) {
 BundleReference ref = (BundleReference) cl;
 Bundle b = ref.getBundle();
 ...
}

In an OSGi system, not all objects belong to the framework. It is therefore possible to get hold of a
class loader that does not implement the BundleReference interface, for example the boot class path
loader.

Loading Native Code Libraries Module Layer Version 1.9

Page 76 OSGi Core Release 7

3.10 Loading Native Code Libraries
Dependency on native code is expressed in the Bundle-NativeCode header. The framework must ver-
ify this header and satisfy its dependencies before it attempts to resolve the bundle. However, a bun-
dle can be installed without an exception if the header is properly formatted according to its syntax.
If the header contains invalid information, or can not be satisfied, errors will be reported during re-
solving.

A Java VM has a special way of handling native code. When a class loaded by a bundle's class loader
attempts to load a native library, by calling System.loadLibrary , the f indLibrary method of the
bundle's class loader must be called to return the file path in which the Framework has made the
requested native library available. The parameter to the f indLibrary method is the name of the li-
brary in operating system independent form, like http . The bundle class loader can use the mapLi-
braryName method from the VM to map this name to an operating system dependent name, like
l ibhttp.so .

The bundle's class loader must attempt to find the native library by examining the selected native
code clauses, if any, of the bundle associated with the class loader and each attached fragment. Frag-
ments are examined in ascending bundle ID order. If the library is not referenced in any of the se-
lected native code clauses then nul l must be returned which allows the parent class loader to search
for the native library.

The bundle must have the required RuntimePermission [loadLibrary. < l ibrary name>] in order to
load native code in the OSGi framework.

The Bundle-NativeCode manifest header must conform to the following syntax:

Bundle-NativeCode ::= nativecode
 (',' nativecode)* (',' optional) ?
nativecode ::= path (';' path)* // See 1.3.2
 (';' parameter)*
optional ::= '*'

When locating a path in a bundle the Framework must attempt to locate the path relative to the
root of the bundle that contains the corresponding native code clause in its manifest header.

The following attributes are architected:

• osname - Name of the operating system. The value of this attribute must be the name of the op-
erating system upon which the native libraries run. A number of canonical names are defined in
Table 4.3.

• osversion - The operating system version. The value of this attribute must be a version range as
defined in Version Ranges on page 39.

• processor - The processor architecture. The value of this attribute must be the name of the
processor architecture upon which the native libraries run. A number of canonical names are de-
fined in Table 4.2.

• language - The ISO code for a language. The value of this attribute must be the name of the lan-
guage for which the native libraries have been localized.

• select ion-fi l ter - A selection filter. The value of this attribute must be a filter expression that in-
dicates if the native code clause should be selected or not.

If a selection-filter attribute contains an invalid filter, then the bundle must fail to install with a
Bundle Exception of type NATIVECODE_ERROR . The following is a typical example of a native code
declaration in a bundle's manifest:

Bundle-NativeCode: lib/http.dll ; lib/zlib.dll; «
 osname = Windows95 ; «

Module Layer Version 1.9 Loading Native Code Libraries

OSGi Core Release 7 Page 77

 osname = Windows98 ; «
 osname = WindowsNT ; «
 processor = x86 ; «
 selection-filter = «
 "(com.acme.windowing=win32)"; «
 language = en ; «
 language = se , «
 lib/solaris/libhttp.so ; «
 osname = Solaris ; «
 osname = SunOS ; «
 processor = sparc, «
 lib/linux/libhttp.so ; «
 osname = Linux ; «
 processor = mips; «
 selection-filter = «
 "(com.acme.windowing=gtk)"

If multiple native code libraries need to be installed on one platform, they must all be specified in
the same clause for that platform.

If a Bundle-NativeCode clause contains duplicate parameter entries, the corresponding values must
be OR 'ed together. This feature must be carefully used because the result is not always obvious. This
is highlighted by the following example:

// The effect of this header has probably
// not the intended effect!
Bundle-NativeCode: lib/http.DLL ; «
 osname = Windows95 ; «
 osversion = "3.1" ; «
 osname = WindowsXP ; «
 osversion = "5.1" ; «
 processor = x86

The above example implies that the native library will load on Windows XP 3.1 and later, which was
probably not intended. The single clause should be split in two clauses:

Bundle-NativeCode: lib/http.DLL ; «
 osname = Windows95 ; «
 osversion = 3.1; «
 processor = x86, «
 lib/http.DLL ; «
 osname = WindowsXP ; «
 osversion = 5.1; «
 processor = x86

Any paths specified in the matching clause must be present in the bundle or any of its attached
fragments for a bundle to resolve. The framework must report a Bundle Exception with the
NATIVECODE_ERROR as error code when the bundle can not be resolved due to a native code prob-
lem.

If the optional '*' is specified at the end of the Bundle-NativeCode manifest header, the bundle will
still resolve even if the Bundle-NativeCode header has no matching clauses.

The following is a typical example of a native code declaration in a bundle's manifest with an op-
tional clause:

Bundle-NativeCode: lib/win32/winxp/optimized.dll; «
 lib/win32/native.dll ; «

Loading Native Code Libraries Module Layer Version 1.9

Page 78 OSGi Core Release 7

 osname = WindowsXP ; «
 processor = x86 , «
 lib/win32/native.dll ; «
 osname = Windows95 ; «
 osname = Windows98 ; «
 osname = WindowsNT ; «
 osname = Windows2000; «
 processor = x86 , «
 *

Frameworks must convert a Bundle-NativeCode header to a requirement in the osgi .nat ive name-
space when used in the Wiring API, see Bundle Wiring API Specification on page 157. Each native
code clause specified in a Bundle-NativeCode header is converted into a filter component for the
osgi .nat ive requirement filter directive using the following architected matching attributes:

• osgi .nat ive.osname - Uses the approximate equals (~=) filter type to evaluate the value specified
by the osname Bundle-NativeCode attribute.

• osgi .nat ive.osversion - Create a VersionRange using the value specified by the osversion Bun-
dle-NativeCode attribute and then create a filter string out of the VersionRange .

• osgi .nat ive.processor - Uses the approximate equals (~=) filter type to evaluate the value speci-
fied by the processor Bundle-NativeCode attribute.

• osgi .nat ive. language - Uses the approximate equals (~=) filter type to evaluate the value specified
by the language Bundle-NativeCode attribute.

In cases where the same Bundle-NativeCode attribute is specified multiple times within the same
clause then the filter components for each value for that attribute are ORed together. For example,
if osname attribute is specified as both "Windows95" and "Windows7" then the resulting filter will
contain:

(|
 (osgi.native.osname~=Windows95)
 (osgi.native.osname~=Windows7)
)

If the select ion-fi l ter Bundle-NativeCode attribute is specified then the specified filter is included as
a component of the native code clauses AND filter type. Consider the following Bundle-NativeCode
header which contains a single clause:

Bundle-NativeCode: «
 lib/http.dll; lib/zlib.dll; «
 osname=Windows95; «
 osname=Windows98; «
 osname=WindowsNT; «
 processor=x86; «
 selection-filter="(com.acme.windowing=win32)"; «
 language=en; «
 language=se

This clause would get translated into the following AND filter type:

Require-Capability: «
 osgi.native; «
 filter:=" «
 (& «
 (| «

Module Layer Version 1.9 Loading Native Code Libraries

OSGi Core Release 7 Page 79

 (osgi.native.osname~=Windows95) «
 (osgi.native.osname~=Windows98) «
 (osgi.native.osname~=WindowsNT) «
) «
 (osgi.native.processor~=x86) «
 (| «
 (osgi.native.language~=en) «
 (osgi.native.language~=se) «
) «
 (com.acme.windowing=win32) «
)"

The Bundle-NativeCode header may specify multiple clauses, each having their own list of native
code paths and set of matching attributes. Instead of using a separate osgi .nat ive requirement for
each Bundle-NativeCode clause, the complete Bundle-NativeCode header is specified as a single
osgi .nat ive requirement. This is done by using an OR filter type using all of the individual Bun-
dle-NativeCode clause filter components (as specified above) as components of a single filter direc-
tive. Consider the following Bundle-NativeCode header which contains three clauses:

Bundle-NativeCode: «
 lib/http.dll; lib/zlib.dll; «
 osname=Windows95; «
 osname=Windows98; «
 osname=WindowsNT; «
 processor=x86; «
 selection-filter = "(com.acme.windowing=win32)"; «
 language=en; «
 language=se, «
 lib/solaris/libhttp.so; «
 osname=Solaris; «
 osname=SunOS; «
 processor=sparc, «
 lib/linux/libhttp.so; «
 osname=Linux; «
 processor=mips; «
 selection-filter="(com.acme.windowing=gtk)"

This Bundle-NativeCode header would get translated into the following osgi .nat ive filter directive:

(|
 (&
 (|
 (osgi.native.osname~=Windows95)
 (osgi.native.osname~=Windows98)
 (osgi.native.osname~=WindowsNT)
)
 (osgi.native.processor~=x86)
 (|
 (osgi.native.language~=en)
 (osgi.native.language~=se)
)
 (com.acme.windowing=win32)
)
 (&
 (|
 (osgi.native.osname~=Solaris)

Loading Native Code Libraries Module Layer Version 1.9

Page 80 OSGi Core Release 7

 (osgi.native.osname~=SunOs)
)
 (osgi.native.processor~=sparc)
)
 (&
 (osgi.native.osname~=Linux)
 (osgi.native.processor~=mips)
 (com.acme.windowing=gtk)
)
)

If the optional '*' is specified at the end of the Bundle-NativeCode manifest header, then the native
code for the bundle is considered to be optional. When the Framework converts a Bundle-Native-
Code header into an osgi .nat ive requirement which is designated as optional then the requirement
resolution directive must be set to optional

3.10.1 Native Code Algorithm
In the description of this algorithm, [x] represents the value of the launching property x (see Launch-
ing Properties on page 102) and ~= represents the match operation. The match operation is a case
insensitive comparison. Certain properties can be aliased. In those cases, the manifest header should
contain the generic name for that property but the Framework should attempt to include aliases
when it matches.

The Framework must select the native code clause using the following algorithm:

1. Only select the native code clauses for which the following expressions all evaluate to true.
• osname ~= [org.osgi .f ramework.os.name] or osname is not specified
• processor ~= [org.osgi .f ramework.processor] or processor is not specified
• osversion range includes [org.osgi .f ramework.os.version] or osversion is not specified
• language ~= [org.osgi .f ramework. language] or language is not specified
• select ion-fi l ter evaluates to true when using the values of the launching properties or selec-

t ion-fi l ter is not specified
2. If no native clauses were selected in step 1, this algorithm is terminated. A Bundle Exception is

thrown if the optional clause is not present.
3. The selected clauses are now sorted in the following priority order:

• osversion : floor of the osversion range in descending order, osversion not specified
• language : language specified, language not specified
• Position in the Bundle-NativeCode manifest header: lexical left to right.

4. The first clause of the sorted clauses from step 3 must be used as the selected native code clause.

If a native code library in a selected native code clause cannot be found within the bundle then the
bundle is still allowed to resolve. A missing native code library will result in an error being thrown
at runtime when the bundle attempts to load the native code (for example, by invoking the method
System.loadLibrary).

If the selected clause contains multiple libraries with the same base file name then only the lexi-
cally left most library with that base file name will be used. For example, if the selected clause con-
tains the libraries l ib1/http.dl l ; l ib2/http.dl l ; l ib3/foo.dl l ; a/b/c/http.dl l then only http.dl l in l ib1
and foo.dl l will be used.

Designing a bundle native code header can become quickly complicated when different operating
systems, libraries, and languages are used. The best practice for designing the header is to place all
parameters in a table. Every targeted environment is then a row in that table. See Table 3.2 for an ex-
ample.

Module Layer Version 1.9 Loading Native Code Libraries

OSGi Core Release 7 Page 81

Table 3.2 Native code table

Libraries os
na

m
e

os
ve

rs
io

n

pr
oc

es
so

r

la
ng

ua
ge

fil
te

r

nativecodewin32.dll, delta.dll win32 x86 en
nativecodegtk.so l inux x86 en (com.acme.windowing=gtk)
nativecodeqt.so l inux x86 en (com.acme.windowing=qt)

This table makes it easier to detect missing combinations. This table is then mapped to the Bun-
dle-NativeCode header in the following code example.

Bundle-NativeCode: nativecodewin32.dll; «
 delta.dll; «
 osname=win32; «
 processor=x86; «
 language=en, «
 nativecodegtk.so; «
 osname=linux; «
 processor=x86; «
 language=en; «
 selection-filter= «
 "(com.acme.windowing=gtk)", «
 nativecodeqt.so; «
 osname=linux; «
 processor=x86; «
 language=en; «
 selection-filter = «
 "(com.acme.windowing=qt)"

3.10.2 Considerations Using Native Libraries
There are some restrictions on loading native libraries due to the nature of class loaders. In order
to preserve namespace separation in class loaders, only one class loader can load a native library as
specified by an absolute path. Loading of a native library file by multiple class loaders (from multi-
ple bundles, for example) will result in a linkage error.

Care should be taken to use multiple libraries with the same file name but in a different directory in
the JAR. For example, foo/http.dl l and bar/http.dl l . The Framework must only use the first library
and ignore later defined libraries with the same name. In the example, only foo/http.dl l will be visi-
ble.

A native library is unloaded only when the class loader that loaded it has been garbage collected.

When a bundle is uninstalled or updated, any native libraries loaded by the bundle remain in mem-
ory until the bundle's class loader is garbage collected. The garbage collection will not happen until
all references to objects in the bundle have been garbage collected, and all bundles importing pack-
ages from the updated or uninstalled bundle are refreshed. This implies that native libraries loaded
from the system class loader always remain in memory because the system class loader is never
garbage collected.

It is not uncommon that native code libraries have dependencies on other native code libraries. This
specification does not support these dependencies, it is assumed that native libraries delivered in
bundles should not rely on other native libraries.

Localization Module Layer Version 1.9

Page 82 OSGi Core Release 7

3.11 Localization
A bundle contains a significant amount of information that is human-readable. Some of this infor-
mation may require different translations depending on the user's language, country, and any spe-
cial variant preferences, a.k.a. the locale. This section describes how a bundle can provide common
translations for the manifest and other configuration resources depending on a locale.

Bundle localization entries share a common base name. To find a potential localization entry, an un-
derscore ('_ ' \u005F) is added plus a number of suffixes, separated by another underscore, and final-
ly appended with the suffix .propert ies . The suffixes are defined in java.ut i l .Locale . The order for
the suffixes this must be:

• language
• country
• variant

For example, the following files provide manifest translations for English, Dutch (Belgium and the
Netherlands) and Swedish.

OSGI-INF/l10n/bundle_en.properties
OSGI-INF/l10n/bundle_nl_BE.properties
OSGI-INF/l10n/bundle_nl_NL.properties
OSGI-INF/l10n/bundle_sv.properties

The Framework searches for localization entries by appending suffixes to the localization base
name according to a specified locale and finally appending the .propert ies suffix. If a translation is
not found, the locale must be made more generic by first removing the variant, then the country
and finally the language until an entry is found that contains a valid translation. For example, look-
ing up a translation for the locale en_GB_welsh will search in the following order:

OSGI-INF/l10n/bundle_en_GB_welsh.properties
OSGI-INF/l10n/bundle_en_GB.properties
OSGI-INF/l10n/bundle_en.properties
OSGI-INF/l10n/bundle.properties

This allows localization files for more specific locales to override localizations from less specific lo-
calization files.

3.11.1 Finding Localization Entries
Localization entries can be contained in the bundle or delivered in fragments. The framework must
search for localization entries using the following search rules based on the bundle type:

• f ragment bundle - If the bundle is a resolved fragment, then the search for localization data must
delegate to the attached host bundle with the highest version. If the fragment is not resolved,
then the framework must search the fragment's JAR for the localization entry.

• other bundle - The framework must first search in the bundle's JAR for the localization entry. If
the entry is not found and the bundle has fragments, then the attached fragment JARs must be
searched for the localization entry.

The bundle's class loader is not used to search for localization entries. Only the contents of the bun-
dle and its attached fragments are searched. The bundle will still be searched for localization entries
even if the full stop ('.' \u002E) is not in the bundle class path.

Module Layer Version 1.9 Bundle Validity

OSGi Core Release 7 Page 83

3.11.2 Manifest Localization
Localized values are stored in property resources within the bundle. The default base name of the
bundle localization property files is OSGI-INF/l10n/bundle . The Bundle-Localization manifest head-
er can be used to override the default base name for the localization files. This location is relative to
the root of the bundle and bundle fragments.

A localization entry contains key/value entries for localized information. All headers in a bundle's
manifest can be localized. However, the Framework must always use the non-localized versions of
headers that have Framework semantics.

A localization key can be specified as the value of a bundle's manifest header using the following
syntax:

header-value ::= '%'text
text ::= < any value which is both a valid manifest headervalue
 and a valid property key name >

For example, consider the following bundle manifest entries:

Bundle-Name: %acme bundle
Bundle-Vendor: %acme corporation
Bundle-Description: %acme description
Bundle-Activator: com.acme.bundle.Activator
Acme-Defined-Header: %acme special header

User-defined headers can also be localized. Spaces in the localization keys are explicitly allowed.

The previous example manifest entries could be localized by the following entries in the manifest
localization entry OSGI-INF/l10n/bundle.properties.

bundle.properties
acme\ bundle=The ACME Bundle
acme\ corporation=The ACME Corporation
acme\ description=The ACME Bundle provides all of the ACME\ services
acme\ special\ header=user-defined Acme Data

The above manifest entries could also have French localizations in the manifest localization entry
OSGI-INF/l10n/bundle_fr_FR.propert ies .

3.12 Bundle Validity
If the Bundle-ManifestVersion is not specified, then the bundle manifest version defaults to 1, and
certain Release 4 syntax, such as a new manifest header, is ignored rather than causing an error. Re-
lease 3 bundles must be treated according to the Release 3 specification.

The following (non-exhaustive) list of errors causes a bundle to fail to install:

• Missing Bundle-SymbolicName.
• Duplicate attribute or duplicate directive (except in the Bundle-Native code clause).
• Multiple imports of a given package.
• Export of java.* packages.
• Export-Package, Bundle-SymbolicName, or Fragment-Host with a mandatory attribute that is not

defined.
• Installing or updating a bundle to a bundle that has the same symbolic name and version as an-

other installed bundle (unless this is allowed, see Bundle Identifiers on page 113).

Requiring Bundles Module Layer Version 1.9

Page 84 OSGi Core Release 7

• Any syntactic error (for example, improperly formatted version or bundle symbolic name, unrec-
ognized directive value, etc.).

• Specification-version and version specified together (for the same package(s)) but with different
values on manifest headers that treat them as synonyms. For example:

 Import-Package p;specification-version=1;version=2

would fail to install, but:

 Import-Package p;specification-version=1,q;version=2

would not be an error.
• The manifest lists a OSGI-INF/permissions.perm file but no such file is present.
• Bundle-ManifestVersion value not equal to 2, unless the Framework specifically recognizes the

semantics of a later release.
• Requiring the same bundle symbolic name more than once.

3.13 Requiring Bundles
The Framework supports a mechanism where bundles can be directly wired to other bundles. The
following sections define the relevant headers and then discuss the possible scenarios. At the end,
some of the (sometimes unexpected) consequences of using Require-Bundle are discussed.

3.13.1 Require-Bundle
The Require-Bundle manifest header contains a list of required bundle symbolic names, with op-
tional attribute assertions. These bundles are searched after the imports are searched but before the
bundle's class path is searched. Fragment or extension bundles cannot be required.

The framework must take all exported packages from a required bundle, including any packages ex-
ported by attached fragments, and wire these packages to the requiring bundle.

The Require-Bundle manifest header must conform to the following syntax:

Require-Bundle ::= bundle-description
 (',' bundle-description)*
bundle-description ::= symbolic-name // See 1.3.2
 (';' parameter)*

The following directives can be used in the Require-Bundle header:

• vis ibi l i ty - If the value is private (default), then all visible packages from the required bundles
are not re-exported. If the value is reexport then bundles that require this bundle will transitive-
ly have access to these required bundle's exported packages. That is, if bundle A requires bundle
B , and bundle B requires bundle C with vis ibi l i ty :=reexport then bundle A will have access to all
bundle C 's exported packages as if bundle A had required bundle C .

• resolut ion - If the value is mandatory (default) then the required bundle must exist for this bun-
dle to resolve. If the value is optional , the bundle will resolve even if the required bundle does
not exist.

The following matching attribute is architected by the Framework:

• bundle-version - The value of this attribute is a version range to select the bundle version of the
required bundle. See Version Ranges on page 39. The default value is [0.0.0,∞) .

The Bundle-SymbolicName header can specify further arbitrary attributes that must be matched be-
fore a bundle is eligible.

Module Layer Version 1.9 Requiring Bundles

OSGi Core Release 7 Page 85

A specific symbolic name can only be required once, listing the same symbolic name multiple times
must be regarded as an install error.

Requiring bundles must get wired to all exported packages of all their required bundles including
exported packages from their attached fragments. This means that any mandatory attributes on
these exports must be ignored. However, if a required bundle's exported package is substituted for
an imported package, then the requiring bundles must get wired to the same exported package that
the required bundle is wired to ensure class space consistency.

For example, assume that bundle A exports and imports package p and bundle B requires bundle A :

Bundle A
Export-Package: p;x=1;mandatory:=x
Import-Package: p

Bundle B
Require-Bundle: A

In this constellation, bundle B will get package p from the same source as bundle A. Bundle A can
get the package from itself if it is chosen as an exporter for p, but it can also get the package from an-
other bundle because it also imports it. In all cases, bundle B must use exactly the same exporter for
package p as bundle A .

A given package may be available from more than one of the required bundles. Such packages are
named split packages because they derive their contents from different bundles. If these different
bundles provide the same classes unpredictable shadowing of classes can arise, see Issues With Re-
quiring Bundles on page 86. However, split packages without shadowing are explicitly permitted.

For example, take the following setup:

A: Require-Bundle: B
 Export-Package: p
B: Export-Package: p;partial=true;mandatory:=partial

If bundle C imports package p , it will be wired to package A.p , however the contents will come from
B.p > A.p . The mandatory attribute on bundle B 's export definition ensures that bundle B is not ac-
cidentally selected as exporter for package p . Split packages have a number drawbacks that are dis-
cussed in Issues With Requiring Bundles on page 86.

Resources and classes from a split package must be searched in the order in which the required bun-
dles are specified in the Require-Bundle header.

As an example, assume that a bundle requires a number of required bundles and a number of lan-
guage resources (also bundles) that are optional.

Require-Bundle: com.acme.facade;visibility:=reexport, «
 com.acme.bar.one;visibility:=reexport, «
 com.acme.bar.two;visibility:=reexport, «
 com.acme.bar._nl;visibility:=reexport;resolution:=optional, «
 com.acme.bar._en;visibility:=reexport;resolution:=optional

A bundle may both import packages (via Import-Package) and require one or more bundles (via Re-
quire-Bundle), but if a package is imported via Import-Package, it is not also visible via Require-Bun-
dle: Import-Package takes priority over Require-Bundle, and packages which are exported by a re-
quired bundle and imported via Import-Package must not be treated as split packages.

In order to be allowed to require a named bundle, the requiring bundle must have
BundlePermission[<bundle symbol ic name>, REQUIRE] , where the bundle symbolic name is the
name of the bundle that is required. The required bundle must be able to provide the bundle and
must therefore have BundlePermission[<bundle symbol ic name>, PROVIDE] , where the name des-

Requiring Bundles Module Layer Version 1.9

Page 86 OSGi Core Release 7

ignates the requiring bundle. In the case a fragment bundle requires another bundle, the Bundle Per-
mission must be checked against the fragment bundle's Protection Domain.

3.13.2 Split Package Compatibility
A package is a split package whenever there are multiple sources for the package; only bundles using
the Require-Bundle header can have split packages.

A source is a bundle that provides the given package. Both the required bundles as well as the re-
quiring bundle can act as a source. The required bundles and the requiring bundle can only con-
tribute their exported packages.

Exported split packages from two bundles are compatible if the package sources for one are a subset
of the other.

3.13.3 Issues With Requiring Bundles
The preferred way of wiring bundles is to use the Import-Package and Export-Package headers be-
cause they couple the importer and exporter to a much lesser extent. Bundles can be refactored to
have a different package composition without causing other bundles to fail.

The Require-Bundle header provides a way for a bundle to bind to all the exports of another bundle,
regardless of what those exports are. Though this can seem convenient at first, it has a number of
drawbacks:

• Split Packages - Classes from the same package can come from different bundles with Require
bundle, such a package is called a split package. Split packages have the following drawbacks:
• Completeness - Split packages are open ended, it is difficult to guarantee that all the intended

pieces of a split package have actually been included.
• Ordering - If the same classes are present in more than one required bundle, then the ordering

of Require-Bundle is significant. A wrong ordering can cause hard to trace errors, similar to
the traditional class path model of Java.

• Performance - A class must be searched in all providers when packages are split. This potential-
ly increases the number of times that a ClassNotFoundException must be thrown which can
potentially introduce a significant overhead.

• Confusing - It is easy to find a setup where there is lots of potential for confusion. For example,
the following setup is non-intuitive.

 A: Export-Package: p;uses:=q
 Import-Package: q
 B: Export-Package: q
 C: Export-Package: q
 D: Require-Bundle: B, C
 Import-Package: p

Figure 3.17 Split packages and package constraints

A

D

Bqq

p

Cqp

Potential
conflict1

2

Module Layer Version 1.9 Fragment Bundles

OSGi Core Release 7 Page 87

In this example, bundle D merges the split package q from bundles B and bundle C , however, im-
porting package p from bundle A puts a uses constraint on package p for package q . This implies
that bundle D can see the valid package q from bundle B but also the invalid package q from bun-
dle C . This wiring is allowed because in almost all cases there will be no problem. However, the
consistency can be violated in the rare case when package C.q contains classes that are also in
package B.q .

• Mutable Exports - The feature of vis ibi l i ty :=reexport that the export signature of the requiring
bundle can unexpectedly change depending on the export signature of the required bundle.

• Shadowing - The classes in the requiring bundle that are shadowed by those in a required bundle
depend on the export signature of the required bundle and the classes the required bundle con-
tains. (By contrast, Import-Package, except with resolut ion:=optional , shadows whole packages
regardless of the exporter.)

3.14 Fragment Bundles
Fragments are bundles that can be attached to one or more host bundles by the Framework. Attaching
is done as part of resolving: the Framework appends the relevant definitions of the fragment bun-
dles to the host's definitions before the host is resolved. Fragments are therefore treated as part of
the host, including any permitted headers; they must not have their own class loader though frag-
ments must have their own Protection Domain.

Fragments can be attached to multiple hosts with the same symbolic name but different versions. If
multiple fragments with the same symbolic name match the same host, then the Framework must
only select one fragment, this must be the fragment with the highest version.

A key use case for fragments is providing translation files for different locales. This allows the trans-
lation files to be treated and shipped independently from the main application bundle.

When an attached fragment is updated, the content of the previous fragment must remain attached
to its host bundles. The new content of the updated fragment must not be allowed to attach to the
host bundles until the Framework is restarted or the host bundle is refreshed. During this time, an
attached fragment will have two versions: the old version, attached to the old version of the host,
and a new fragment bundle that can get attached to a new version or to a different host bundle. The
exact configuration can be discovered with the Bundle Wiring API Specification on page 157.

When attaching a fragment bundle to a host bundle the Framework must perform the following
steps:

1. Append the import definitions for the Fragment bundle that do not conflict with an import def-
inition of the host to the import definitions of the host bundle. A Fragment can provide an im-
port statement for a private package of the host. The private package in the host is hidden in
that case.

2. Append the Require-Bundle entries of the fragment bundle that do not conflict with a Re-
quire-Bundle entry of the host to the Require-Bundle entries of the host bundle.

3. Append the export definitions of a Fragment bundle to the export definitions of the host bundle
unless the exact definition (directives and attributes must match) is already present in the host.
Fragment bundles can therefore add additional exports for the same package name. The bun-
dle-version attributes and bundle-symbol ic-name attributes will reflect the host bundle.

4. Append the Provide-Capability clauses of the fragment to the Provide-Capability clauses of the
host

5. Append the Require-Capability clauses of the fragment to the Require-Capability clauses of the
host

Fragment Bundles Module Layer Version 1.9

Page 88 OSGi Core Release 7

A host and a fragment conflict when they cannot resolve to provide a consistent class space. If a con-
flict is found, the Fragment bundle is not attached to the host bundle.

A Fragment bundle must enter the resolved state only if it has been successfully attached to at least
one host bundle.

During runtime, the fragment's JAR is searched after the host's bundle class path as described in
Fragments During Runtime on page 88.

A Fragment bundle can not be required by another bundle with the Require-Bundle header.

3.14.1 Fragment-Host
The Fragment-Host manifest header links the fragment to its potential hosts. It must conform to the
following syntax:

Fragment-Host ::= bundle-description
bundle-description ::= symbolic-name
 (';' parameter)* // See 1.3.2

The following directives are architected by the Framework for Fragment-Host:

• extension - Indicates this extension is a system or boot class path extension. It is only applica-
ble when the Fragment-Host is the System Bundle. This is discussed in Extension Bundles on page
90. The following values are supported:
• f ramework - The fragment bundle is a Framework extension bundle (default).
• bootclasspath - The fragment bundle is a boot class path extension bundle.

The fragment must be the bundle symbolic name of the implementation specific system bundle
or the alias system.bundle . The Framework should fail to install an extension bundle when the
bundle symbolic name is not referring to the system bundle.

The following attributes are architected by the Framework for Fragment-Host:

• bundle-version - The version range to select the host bundle. If a range is used, then the frag-
ment can attach to multiple hosts. See Semantic Versioning on page 58. The default value is
[0.0.0,∞) .

The Fragment-Host header can assert arbitrary attributes that must be matched before a host is eligi-
ble.

When a fragment bundle is attached to a host bundle, it logically becomes part of it. All classes and
resources within the fragment bundle must be loaded using the class loader (or Bunde object) of its
host bundle. The fragment bundles of a host bundle must be attached to a host bundle in the order
that the fragment bundles are installed, which is in ascending bundle ID order. If an error occurs
during the attachment of a fragment bundle then the fragment bundle must not be attached to the
host. A fragment bundle must enter the resolved state only if it has been successfully attached to
one or more host bundles.

In order for a host bundle to allow fragments to attach, the host bundle must have
BundlePermission[<bundle symbol ic name>,HOST] . In order to be allowed to attach to a host bun-
dle, a fragment bundle must have BundlePermission[<bundle symbol ic name>,FRAGMENT] .

3.14.2 Fragments During Runtime
All class or resource loading of a fragment is handled through the host's class loader or Bundle ob-
ject, a fragment must never have its own class loader, it therefore fails the class and resource loading
methods of the Bundle object. Fragment bundles are treated as if they are an intrinsic part of their
hosts.

Module Layer Version 1.9 Fragment Bundles

OSGi Core Release 7 Page 89

Though a fragment bundle does not have its own class loader, it still must have a separate Protection
Domain when it is not an extension fragment. Each fragment can have its own permissions linked
to the fragment bundle's location and signer.

A host bundle's class path is searched before a fragment's class path. This implies that packages can
be split over the host and any of its fragments. Searching the fragments must be done in ascending
bundle ID order. This is the order that the fragment bundles were installed.

Figure 3.18 Resource/class searching with fragments

A

p

p

r

pB

s

qC

21

qq

q

D

r

p

t t

A.p export is chosen

Figure 3.18 shows a setup with two fragments. Bundle B is installed before bundle C and both bundle
B and bundle C attach to bundle A . The following table shows where different packages originate in
this setup. Note that the order of the append (>) is significant.

Table 3.3 Effect of fragments on searching

Package Requested From Remark
p A.p > B.p Bundle A exports package p , therefore, it will search its

class path for p . This class path consists of the JAR and
then its Fragment bundles.

q D.q The import does not handle split packages and pack-
age q is imported from bundle D . Therefore, C.q is not
found.

r A.r > B.r Package r is not imported and therefore comes from
the class path.

s C.s
t B.t > C.t

In the example above, if package p had been imported from bundle D , the table would have looked
quite different. Package p would have come from bundle D , and bundle A 's own contents as well as
the contents of bundle B would have been ignored.

If package q had bundle D , then the class path would have to be searched, and A.q would have con-
sisted of A.q > C.q .

Fragments must remain attached to a host as long as the host remains resolved. When a host bundle
becomes unresolved, then all its attached Fragment bundles must be detached from the host bundle.
When a fragment bundle becomes unresolved the Framework must:

• Detach it from the host
• Re-resolve the host bundles

Extension Bundles Module Layer Version 1.9

Page 90 OSGi Core Release 7

• Reattach the remaining attached fragment bundles.

A Fragment bundle can become unresolved by calling the
refreshBundles(Col lect ion,FrameworkListener. . .) method.

3.14.3 Illegal Manifest Header for Fragment Bundles
The following list contains the headers that must not be used in a fragment bundle:

• Bundle-Activator

3.15 Extension Bundles
Extension bundles can deliver optional parts of the Framework implementation. The contents of ex-
tension bundles cannot be provided by the normal bundles because they need to be loaded by the
framework implementation.

Framework extensions are necessary to provide implementation aspects of the Framework. For ex-
ample, a Framework vendor could supply the optional services like Permission Admin service and
Start Level API with Framework extension bundles.

An extension bundle should use the bundle symbolic name of the implementation system bundle,
or it can use the alias of the system bundle, which is system.bundle .

The following example uses the Fragment-Host manifest header to specify an extension bundle for
any Framework implementation.

Fragment-Host: system.bundle

The following example uses the Fragment-Host manifest header to specify an extension bundle for a
specific Framework implementation.

Fragment-Host: com.acme.impl.framework

The following describe the life cycle of an extension bundle:

1. When an extension bundle is installed it enters the INSTALLED state.
2. The extension bundle is allowed to enter the RESOLVED state at the frameworks discretion. For

example, a framework may choose to immediately resolve the extension after it has entered the
INSTALLED state. If all requirements of an extension bundle are satisfied then resolving the ex-
tension bundle must not require a framework restart.

3. If a RESOLVED extension bundle is refreshed then the framework must shutdown and
the framework must be re-launched. In this case a Framework Event is fired of type
STOPPED_SYSTEM_REFRESHED .

4. When a RESOLVED extension bundle is updated or UNINSTALLED , it is not allowed to re-en-
ter the RESOLVED state. If the extension bundle is refreshed then the Framework must shut-
down and the framework must be re-launched. In this case a Framework Event is fired of type
STOPPED_SYSTEM_REFRESHED .

It is valid to update an extension bundle to a bundle of another type. If the old extension bundle is
resolved then it must be attached as a fragment to the system bundle. When this bundle is updat-
ed the old content of the bundle must remain attached to the system bundle until the system bun-
dle is refreshed or the extension bundle is refreshed (using the Wiring API). This must initiate and
Framework shutdown and restart. When the framework comes back up the new content of the bun-
dle may be resolved.

All Bundle events should be dispatched for extension bundles as for ordinary bundles.

Module Layer Version 1.9 Extension Bundles

OSGi Core Release 7 Page 91

3.15.1 Illegal Manifest Headers for Extension Bundles
An extension bundle must throw a Bundle Exception if it is installed or updated and it specifies any
of the following headers.

• Require-Bundle
• Bundle-NativeCode
• DynamicImport-Package
• Bundle-Activator

Extension bundles are permitted to specify an Export-Package header. Any exported packages spec-
ified by an extension bundle must be hosted (exported) by the System Bundle when the extension
bundle is resolved.

Extension bundles are permitted to specify Import-Package and Require-Capability headers to de-
clare dependencies on packages and capabilities.

3.15.2 Resolving Extensions
Extension bundles may specify requirements on packages (Import-Package) and capabilities (Re-
quire-Capability). An extension bundle is allowed to become resolved when all of its mandatory re-
quirements are wired to valid packages or capabilities.

Extension bundle requirements may only be wired to packages and capabilities provided by the sys-
tem bundle or another extension bundle that is also attached to the system bundle. All other capa-
bilities are considered invalid for resolving an extension bundle. This ensures that the system bun-
dle wiring never hosts a requirement from an extension bundle which is wired to a capability host-
ed by another bundle other than the system bundle.

3.15.3 Class Path Treatment
A extension bundle's JAR is appended to the class path of the Framework. Extension bundles that
are resolved together must have their JAR appended in the order in which the extension bundles are
installed: that is, ascending bundle ID order.

3.15.4 Extension Bundle Activator
A extension may hook into the Framework initialization and shutdown process by specifying an
Extension Bundle Activator. The BundleActivator interface defines methods that the Framework in-
vokes when the Framework is initialized and shutdown.

To inform the OSGi environment of a fully qualified class name serving as its Extension Bundle
Activator, a framework extension developer must declare an ExtensionBundle-Activator manifest
header in the framework extension bundle's manifest file. The following is an example of an Exten-
sionBundle-Activator:

ExtensionBundle-Activator: com.acme.Activator

The class acting as an Extension Bundle Activator must implement the BundleActivator interface,
be declared public, and have a public default constructor so an instance of it may be created with
Class.newInstance .

Supplying an Extension Bundle Activator is optional and only valid for Extension Bundles. For nor-
mal Bundles and Fragments, the ExtensionBundle-Activator must be ignored.

3.15.4.1 Framework Initialization and Shutdown

An Extension Bundle Activator allows a framework extension to hook into the Framework initial-
ization and shutdown process. Initializing the Framework on page 109 describes how the start
method for Extension Bundle Activators is called during Framework initialization. Stopping a Frame-

Security Module Layer Version 1.9

Page 92 OSGi Core Release 7

work on page 110 describes how the stop method for Extension Bundle Activators is called during
Framework shutdown.

3.15.4.2 Installing

When an extension bundle is installed, a Framework must allow the extension to become resolved
dynamically, without a Framework restart. When an extension bundle is resolved dynamically after
Framework initialization, then the Extension Bundle Activator start method must be called as soon
as the extension bundle is resolved. This must happen before the Bundle Event of type RESOLVED is
fired for the extension bundle.

3.15.4.3 Update and Uninstall

Unlike normal bundles, updating or uninstalling an extension bundle does not take effect until the
Framework is shutdown and restarted. The original content of the extension bundle must remain
attached to the system bundle and the Extension Bundle Activator must not have its stop method
called until the Framework is shutdown.

3.15.5 Support Properties
Frameworks must implement fragments, require bundle, and extensions. They must therefore set
the following properties to true .

• org.osgi .supports.framework.requirebundle
• org.osgi .supports.framework.fragments
• org.osgi .supports.framework.extension

3.16 Security

3.16.1 Extension Bundles
In an environment that has Java security enabled the Framework must perform an additional secu-
rity check before allowing an extension bundle to be installed. In order for an extension bundle to
successfully install, the Framework must check that the extension bundle has All Permissions as-
signed to it. This means that the permissions of an extension bundle must be setup before the exten-
sion bundle is installed.

AllPermission must be granted to extension bundles because they will be loaded under the Protec-
tion Domain of either the boot class path or the Framework implementation. Both of these Protec-
tion Domains have All Permissions granted to them. Attempting to install an extension bundle that
has not already been granted All Permissions must result in a Bundle Exception.

The installer of an extension bundle must have AdminPermission[<extension
bundle>,EXTENSIONLIFECYCLE] to install an extension bundle.

3.16.2 Bundle Permission
Most package sharing permissions are based on Package Permission. However, fragments and re-
quired bundles use the bundle symbolic name to handle sharing. The Bundle Permission is used to
control this type of package sharing.

The name parameter of the Bundle Permission is a bundle symbolic name. The symbolic name is
used as the identifier for the target bundle. A wild card (".*" \u002E,\u002A) is permitted at the end
of the name.

For example, for fragment bundle A to attach to its host bundle B then fragment bundle A requires
BundlePermission("B", " f ragment") so that A is permitted to target host bundle B . The direction of
the actions is depicted in Figure 3.19.

Module Layer Version 1.9 Security

OSGi Core Release 7 Page 93

Figure 3.19 Permissions and bundle sharing

A

p

p
s

qB

t

C
q A, fragment

B, host

C, provide
A, require

The following actions are architected:

• provide - Permission to provide packages to the target bundle.
• require - Permission to require packages from the target bundle.
• host - Permission to attach to the target fragment bundle.
• f ragment - Permission to attach as a fragment to the target host bundle.

When a fragment contains a Require-Bundle header, the Framework must check the permission
against the domain of the fragment.

3.16.3 Package Permission
Bundles can only import and export packages for which they have the required permission. A Pack-
agePermission must be valid across all versions of a package.

A PackagePermission has two parameters:

• The name, either the name of the target package (with a possible wildcard character at the end)
or a filter expression that can verify the exporting bundle. A filter expression can test for the
package name with the package.name key. A filter can only be used for an IMPORT action. Filters
are described in Filter Based Permissions on page 29.

• The action, either IMPORT or EXPORTONLY .

For example, the following Package Permission permits to import any package from a bundle down-
loaded from ACME:

PackagePermission("(location=http://www.acme.com/*",IMPORT)

When a fragment adds imports and exports to the host, the framework must check the protection
domain of the fragment and not of the related host.

3.16.4 Resource Permissions
A Framework must always give a bundle the RESOURCE, METADATA, and CLASS AdminPermission
actions to access the resources contained within:

• Itself
• Any attached fragments
• Any resources from imported packages

A resource in a bundle may also be accessed by using certain methods on Bundle . The caller of these
methods must have AdminPermission[bundle, RESOURCE] .

If the caller does not have the necessary permission, a resource is not accessible and nul l must be re-
turned. Otherwise, a URL object to the resource must be returned. These URLs are called bundle re-
source URLs. Once the URL object is returned, no further permission checks are performed when the
contents of the resource are accessed. The URL object must use a scheme defined by the Framework
implementation.

Bundle resource URLs are normally created by the Framework, however, in certain cases bundles
need to manipulate the URL to find related resources. For example, a URL can be constructed to a re-
source that is in the same directory as a given resource.

Security Module Layer Version 1.9

Page 94 OSGi Core Release 7

URLs that are not constructed by the Framework must follow slightly different security rules due
to the design of the java.net.URL class. Not all constructors of the URL class interact with the URL
Stream Handler classes (the implementation specific part). Other constructors call at least the
parseURL method in the URL Stream Handler where the security check can take place. This design
makes it impossible for the Framework check the permissions during construction of a bundle re-
source URL.

The following constructors use the parseURL method and are therefore checked when a bundle re-
source URL is constructed.

URL(String spec)
URL(URL context, String spec)
URL(URL context, String spec, URLStreamHandler handler)

When one of these constructors is called for a bundle resource URL, the implementation of the
Framework must check the caller for the necessary permissions in the parseURL method. If the
caller does not have the necessary permissions then the parseURL method must throw a Securi-
ty Exception. This will cause a Malformed URL Exception to be thrown by the URL constructor. If
the caller has the necessary permissions, then the URL object is setup to access the bundle resource
without further checks.

The following java.net.URL constructors do not call the parseURL method in the URL Stream Han-
dler, making it impossible for the Framework to verify the permission during construction.

URL(String protocol, String host, int port,String file)
URL(String protocol, String host, int port, String file, URLStreamHandlerhandler)
URL(String protocol, String host, String file)

Bundle resource URLs that are created with these constructors cannot perform the permission
check during creation and must therefore delay the permission check. When the content of
the URL is accessed, the Framework must throw a Security Exception if the caller does not have
AdminPermission[bundle, RESOURCE] for the bundle referenced by the URL.

3.16.5 Capability Permission
The Capability Permission provides a means to limit access to certain Capabilities when security is
on. A Capability Permission is a Filter based Permission, as described in Filter Based Permissions on
page 29, giving access to the following additional property:

• capabi l i ty.namespace - The namespace of the requirement or provided capability.

The filter can also assert information from the target bundle. The target bundle is always the bundle
that provides the capability. This means that a requirer can be restricted to receive a capability from
a specific bundle.

Capabilities in a namespace for which the resolving bundle has no permission are not available to
other bundles. Requirements in a namespace for which a bundle has no permission can never be sat-
isfied.

The Capability Permission has the following actions:

• REQUIRE - Imply permission to require the given namespace. The target bundle that can be as-
serted in the filter is the bundle providing the capability.

• PROVIDE - Imply permission to provide a capability in the given namespace, the target bundle is
the bundle that is checked for the permission.

The Capability Permission has the following constructors:

• Capabi l i tyPermission(Str ing,Str ing) - Constructor to set the filter and actions. This constructor is
also used to verify the provide action.

Module Layer Version 1.9 References

OSGi Core Release 7 Page 95

• Capabi l i tyPermission(Str ing,Map,Bundle,Str ing) - Special constructor to verify the permission
against the namespace. The bundle is the bundle providing the capability.

3.16.6 Permission Checks
Since multiple bundles can export permission classes with the same class name, the Framework
must make sure that permission checks are performed using the correct class. For example, a bundle
that calls the checkPermission method provides an instance of the Permission class:

void foo(String name) {
 checkPermission(new FooPermission(name,"foo"));
}

This class of this Permission instance comes from a particular source. Permissions can only be tested
against instances that come from the same source.

Therefore, the Framework needs to look up permissions based on class rather than class name. When
it needs to instantiate a permission it must use the class of the permission being checked to do the
instantiation. This is a complication for Framework implementers; bundle programmers are not af-
fected.

Consider the following example:

 Bundle A
 Import-Package: p
 Export-Package: q
 Bundle B
 Import-Package: p

• Bundle A uses a p.FooService . Usage of this class checks q.FooPermission whenever one of its
methods is invoked.

• Bundle B has a FooPermission in its Protection Domain in a (Conditional) Permission Info object.
• Bundle B invokes a method in the FooService that was given by bundle A .
• The FooService calls the checkPermission method with a new FooPermission instance.
• The Framework must use a FooPermission object that is from the same class loader as the given

FooPermission object before it can call the impl ies method. In this case, the FooPermission class
comes from package A.q .

After the permission check, bundle B will have a FooPermission instantiated using a class from a
package it does not import. It is therefore possible that the Framework has to instantiate multiple
variations of the FooPermission class to satisfy the needs of different bundles.

3.17 References

[1] Java Virtual Machine Specification
https://docs.oracle.com/javase/specs/

[2] The Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982
http://www.ietf.org/rfc/rfc822.txt

[3] The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
http://www.ietf.org/rfc/rfc2068.txt

[4] Java Language Specification
https://docs.oracle.com/javase/specs/

https://docs.oracle.com/javase/specs/
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc2068.txt
https://docs.oracle.com/javase/specs/

References Module Layer Version 1.9

Page 96 OSGi Core Release 7

[5] A String Representation of LDAP Search Filters
RFC 1960, UMich, 1996
http://www.ietf.org/rfc/rfc1960.txt

[6] Java Security Architecture
https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

[7] Java Package Versioning Specification
https://docs.oracle.com/javase/8/docs/technotes/guides/versioning/index.html

[8] Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

[9] Zip File Format
The Zip file format as defined by the java.util.zip package.

[10] Manifest Format
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest

[11] W3C EBNF
http://www.w3c.org/TR/REC-xml#sec-notation

[12] Mathematical Convention for Interval Notation
http://planetmath.org/encyclopedia/Interval.html

[13] RFC 2396 Uniform Resource Identifiers URI: Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[14] Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

[15] OSGi IANA Mime Type
http://www.iana.org/assignments/media-types/application/vnd.osgi.bundle

[16] OSGi Header Registry
https://www.osgi.org/bundle-headers-reference/

[17] OSGi Namespace Registry
https://www.osgi.org/capability-namespaces-reference/

[18] Portable Network Graphics (PNG) Specification (Second Edition)
http://www.w3.org/TR/2003/REC-PNG-20031110/

[19] Open Source Initiative
http://www.opensource.org/

[20] OSGi Semantic Versioning
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf

[21] Specification References
https://www.osgi.org/developer/specifications/reference/

[22] Google Android
http://developer.android.com/index.html

[23] Google App Engine
https://cloud.google.com/appengine/

[24] Google Web Toolkit
http://www.gwtproject.org/

[25] Software Package Data Exchange (SPDX) License List
https://spdx.org/licenses/

http://www.ietf.org/rfc/rfc1960.txt
https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/versioning/index.html
http://lcweb.loc.gov/standards/iso639-2/langhome.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest
http://www.w3c.org/TR/REC-xml#sec-notation
http://planetmath.org/encyclopedia/Interval.html
http://www.ietf.org/rfc/rfc2396.txt
http://lcweb.loc.gov/standards/iso639-2/langhome.html
http://www.iana.org/assignments/media-types/application/vnd.osgi.bundle
https://www.osgi.org/bundle-headers-reference/
https://www.osgi.org/capability-namespaces-reference/
http://www.w3.org/TR/2003/REC-PNG-20031110/
http://www.opensource.org/
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/developer/specifications/reference/
http://developer.android.com/index.html
https://cloud.google.com/appengine/
http://www.gwtproject.org/
https://spdx.org/licenses/

Module Layer Version 1.9 Changes

OSGi Core Release 7 Page 97

[26] Maven POM Reference, Developers
https://maven.apache.org/pom.html#Developers

[27] Maven POM Reference, SCM
https://maven.apache.org/pom.html#SCM

[28] Multi-release JAR File
https://docs.oracle.com/javase/9/docs/specs/jar/jar.html#Multi-release

3.18 Changes
• Updated Bundle-License: Apache-2.0; link="http://opensource.org/licenses/apache2.0.php" on page

35 to recommend using license identifiers from [25] Software Package Data Exchange (SPDX)
License List.

• Added Bundle-Developers: pkriens; email=pkriens@osgi.org; name="Peter Kriens"; organization="OSGi
Alliance" on page 34 to hold information about the bundle's developers.

• Added Bundle-SCM: url=https://github.com/bndtools/bnd, connection=scm:git:https://github.com/bnd-
tools/bnd.git, developerConnection=scm:git:git@github.com:bndtools/bnd.git on page 37 to hold in-
formation about the bundle's software configuration management system.

• Updated to reference the new bundle annotations in org.osgi.annotation.bundle.
• Removed specification for bootclasspath extension bundles.
• Added FrameworkEvent type STOPPED_SYSTEM_REFRESHED.
• Allow extension bundles to specify package and capability requirements.
• Mandate support for dynamically resolving extension bundles.
• Added support for multi-release JARs. See Multi-release JAR on page 41.
• Bundles may now import java.* packages to ensure the Java platform provides the required ja-

va.* packages. See Execution Environment on page 48. Importing a java.* package only affects
bundle resolution and wiring. Classes in java.* packages are always loaded from the parent class
loader. See Parent Delegation on page 70.

https://maven.apache.org/pom.html#Developers
https://maven.apache.org/pom.html#SCM
https://docs.oracle.com/javase/9/docs/specs/jar/jar.html#Multi-release

Changes Module Layer Version 1.9

Page 98 OSGi Core Release 7

Life Cycle Layer Version 1.9 Introduction

OSGi Core Release 7 Page 99

4 Life Cycle Layer

Version 1.9

4.1 Introduction
The Life Cycle Layer provides an API to control the security and life cycle operations of bundles. The
layer is based on the module and security layer.

4.1.1 Essentials

• Complete - The Life Cycle layer must implement an API that fully covers the installation, starting,
stopping, updating, uninstallation, and monitoring of bundles.

• Reflective - The API must provide full insight into the actual state of the Framework.
• Secure - It must be possible to use the API in a secure environment using fine-grained permis-

sions. However, security must be optional.
• Manageable - It must be possible to manage a OSGi framework remotely.
• Launching - It must be able to launch an implementation of a framework in a standardized way.

4.1.2 Entities

• Bundle - Represents an installed bundle in the Framework.
• Bundle Context - A bundle's execution context within the Framework. The Framework passes this

to a Bundle Activator when a bundle is started or stopped.
• Bundle Activator - An interface implemented by a class in a bundle that is used to start and stop

that bundle.
• Bundle Event - An event that signals a life cycle operation on a bundle. This event is received via a

(Synchronous) Bundle Listener.
• Framework Event - An event that signals an error or Framework state change. The event is re-

ceived via a Framework Listener.
• Bundle Listener - A listener to Bundle Events.
• Synchronous Bundle Listener - A listener to synchronously delivered Bundle Events.
• Framework Listener - A listener to Framework events.
• Bundle Exception - An Exception thrown when Framework operations fail.
• System Bundle - A bundle that represents the Framework.
• Framework - An interface implemented by an object that represents the actual framework. It al-

lows external management of a Framework.
• Framework Factory - An interface implemented by Framework providers that allows the creation

of a framework object.

Frameworks Life Cycle Layer Version 1.9

Page 100 OSGi Core Release 7

Figure 4.1 Class diagram org.osgi .f ramework Life Cycle Layer

<<interface>>
Bundle

<<interface>>
Bundle
Context

Framework Impl

<<interface>>
Synchr.Bundle
Listener

<<class>>
Framework
Event

<<interface>>
Framework
Listener

<<interface>>
Bundle
Listener

<<class>>
Bundle
Exception

implementation
code of bundle

<<interface>>
Constants

<<interface>>
Bundle
Activator

class loader

Bundle Controller
Impl

<<class>>
Bundle Event

activated with

class loaded by

activated by

0,1

1
1

1

11

1

1..n

0..n 0..n

management representation
code mngmt

Framework
Factory Impl

<<interface>>
Framework
Factory

0..n

1

<<interface>>
Framework

1 1

4.2 Frameworks
This section outlines how a launcher can launch a framework implementation and then manage it,
regardless of the implementation type of the framework. This allows a launcher to embed an OSGi
framework without having to provide code that differs between different implementations.

4.2.1 Launching and Controlling a Framework
Code that wants to use one of the OSGi Framework implementations must provide the chosen
framework implementation on the class path, or create a special class loader that loads the code and
resources from that implementation. How this is achieved, is outside this specification.

A framework implementation must provide a factory class. A factory class is an indirection to create
a framework implementation object. The implementation factory class must implement the Frame-
workFactory interface. The launcher can use the following ways to get this class name:

• Service Provider Configuration model, see Java Service Provider Configuration Support on page
112,

Life Cycle Layer Version 1.9 Frameworks

OSGi Core Release 7 Page 101

• Get it from some configuration and use Class.forName , or
• Hardcode the name.

The FrameworkFactory interface has a single method: newFramework(Map) . The map provides the
sole configuration properties for the framework object. The result of this method is a framework ob-
ject, this object implements the Framework interface. The Framework interface extends the Bundle
interface and adds methods to handle the issues unique to launching a framework. The framework
object can be seen as the system bundle, though the framework object and the system bundle do not
have to be identical, implementations are allowed to implement them in different objects.

Before the framework object can be used, the launcher must first initialize it by calling the in it
method. After initialization, the framework object can provide a valid Bundle Context and has
registered any framework services, but any installed bundles must be in the INSTALLED state. The
launcher can then configure the framework object by installing bundles, interacting with the frame-
work services, or registering launcher services. The launcher can also start bundles, but these bun-
dles will not be started until the framework object becomes ACTIVE .

After the framework object is properly configured, the launcher can start it by calling the start
method. The framework object will become ACTIVE, and it will move the startlevel (if present) to
the configured start level. This can then resolve and start any installed bundle. After a framework
has become ACTIVE , it can be stopped from the framework object, or through the system bundle.

The launcher can wait for a framework object to be stopped with the waitForStop method. This
method will block until the framework is completely stopped and return a Framework event indi-
cating the cause of the stop. After the framework object has been shutdown, and the waitForStop
method has returned, all installed bundles will be in the INSTALLED state. The same framework ob-
ject can be re-initialized, and started again, any number of times.

The action diagram in Figure 4.2 shows a typical session. A new framework is created and initial-
ized. The launcher then gets the Bundle Context, installs a bundle and starts the framework. It then
gets a service, calls a method and then waits for the framework to stop. The service waits some time
and calls stop on the System Bundle. The dotted lines indicate some non-specified interactions that
are implementation dependent.

Figure 4.2 Action Diagram for Framework Launching

launcher a Framework
Factory

Framework Bundle
Context

newFramework

init

getBundleContext

installBundle

a Service

getServiceReference

start

getService

foo()

waitForStop

stop

Frameworks Life Cycle Layer Version 1.9

Page 102 OSGi Core Release 7

If security is enabled, then the launcher and the framework require All Permission. If All Permission
is not available, then the framework must throw a Security Exception.

The following code shows how a framework can be launched.

void launch(String factoryName, File[] bundles)
 throws Exception {
 Map p = new HashMap();
 p.put("org.osgi.framework.storage",
 System.getProperty("user.home")
 + File.separator+"osgi");

 FrameworkFactory factory =
 (FrameworkFactory) Class.forName(factoryName)
 .newInstance();
 Framework framework = factory.newFramework(p);
 framework.init();

 BundleContext context = framework.getBundleContext();

 for (File bundle : bundles)
 context.installBundle(bundle.toURL().toString());

 framework.start();
 framework.waitForStop(0);
}

4.2.2 Launching Properties
The Map object given as a parameter to the newFramework method provides the configuration proper-
ties to the framework. This parameter may be nul l , in that case the framework must be started with
reasonable defaults for the environment it is started in. For example, the framework should export
the JRE packages as system packages and it should store its bundles in an appropriate place. The
framework must not look in the System properties for configuration properties, the specified con-
figuration properties are complete.

The configuration properties may contain any implementation specific properties. The properties
in Table 4.1 must be supported by all conformant frameworks.

The configuration properties plus any defaults set by the framework and the fixed properties set by
the framework all together form the launching properties for the framework.

Table 4.1 Framework Launching Properties

Property Name Description
org.osgi .f ramework.«

 bootdelegation

Set the boot delegation mask, see Parent Delegation on page 70.

Life Cycle Layer Version 1.9 Frameworks

OSGi Core Release 7 Page 103

Property Name Description
org.osgi .f ramework.«

 bsnversion

Allow installation of multiple bundles with the same bundle
symbolic name or restrict this. The property can have the fol-
lowing values:

• single - A combination of equal bundle symbolic name and
equal version is unique in the framework. Installing a sec-
ond bundle with the same bundle symbolic name and ver-
sion is an error.

• mult iple - The combination of bundle symbolic name and
version is not unique in the framework.

• managed - (Default) Using a Bundle Collision Hook to filter
any non-colliding bundles, see Bundle Hook Service Specifica-
tion on page 393.

org.osgi .f ramework.«

 bundle.parent

This property is used to specify what class loader is used for
boot delegation. That is, java.* and the packages specified on
the org.osgi .f ramework.bootdelegation . All other packages
must be accessed through a wire.

This property can have the following values:

• boot - The boot class loader of the VM. This is the default.
• app - The application class loader
• ext - The extension class loader
• f ramework - The class loader of the framework

org.osgi .f ramework.«

 command.execpermission

Specifies an optional OS specific command to set file permis-
sions on a bundle's native code. This is required on some oper-
ating systems to use native libraries. For example, on a UNIX
style OS you could have the following value:

org.osgi.framework.command.execpermission=«
 "chmod +rx ${abspath}"

The ${abspath} macro will be substituted for the actual file
path.

org.osgi .f ramework.«

 executionenvironment

A comma-separated list of provided execution environments
(EE). All methods of each listed EE must be present on the OSGi
framework. For example, this property could contain:

CDC-1.1/Foundation-1.1,OSGi/Minimum-1.2

A OSGi framework implementation must provide all the sig-
natures that are defined in the mentioned EEs. Thus, the ex-
ecution environment for a specific OSGi framework Server
must be the combined set of all signatures of all EEs in the
org.osgi .f ramework.executionenvironment property.

This property is deprecated; its function is replaced with
org.osgi .f ramework.system.capabi l i t ies[.extra] .

org.osgi .f ramework. language The language used by the framework for the selection of na-
tive code. If not set, the framework must provide a value. See
[7] Codes for the Representation of Names of Languages for valid val-
ues.

Frameworks Life Cycle Layer Version 1.9

Page 104 OSGi Core Release 7

Property Name Description
org.osgi .f ramework. l ibrary.«

 extensions

A comma separated list of additional library file ex-
tensions that must be used when searching for native
code. If not set, then only the library name returned by
System.mapLibraryName(Str ing) will be used. This list of ex-
tensions is needed for certain operating systems which allow
more than one extension for native libraries. For example, the
AIX operating system allows library extensions of .a and .so ,
but System.mapLibraryName(Str ing) will only return names
with the .a extension. For example:

org.osgi.framework.library.extensions= a,so,dll

org.osgi .f ramework.os.name The name of the operating system as used in the native code
clause. If not set, then the framework must provide a default
value. Table 4.3 defines a list of operating system names. New
operating system names are made available on the OSGi web
site, see [11] OSGi Reference Names. Names should be matched
case insensitive.

org.osgi .f ramework.os.version The version of the operating system as used in the native code
clause. If not set, then the framework must provide a default
value. If the operating system reported version does not fit the
standard version syntax (e.g. 2.4.32-kwt), then the launcher
should define this launching property with a valid version val-
ue.

org.osgi .f ramework.processor The name of the processor as used in the native code clause. If
not set, then the framework must provide a value. Table 4.2 de-
fines a list of processor names. New processors are made avail-
able on the OSGi web site, see [11] OSGi Reference Names. Names
should be matched case insensitive.

org.osgi .f ramework.security Specifies the type of security manager the framework must use.
If not specified then the framework will not set the VM securi-
ty manager. The following type is architected:

• osgi - Enables a security manager that supports all securi-
ty aspects of the OSGi Core specifications (including post-
poned conditions).

If specified, and there is a security manager already installed,
then a SecurityException must be thrown when the Frame-
work is initialized.

For example:

org.osgi.framework.security = osgi

org.osgi .f ramework.start level .«

 beginning

Specifies the beginning start level of the framework. See Start
Level API Specification on page 181 for more information.

org.osgi.framework.startlevel.beginning = 3

Life Cycle Layer Version 1.9 Frameworks

OSGi Core Release 7 Page 105

Property Name Description
org.osgi .f ramework.storage A valid file path in the file system to a directory. If the speci-

fied directory does not exist then the framework must create
the directory. If the specified path exists, but is not a directory,
or if the framework fails to create the storage directory, then
the framework initialization must fail with an exception being
thrown. The framework is free to use this directory as it sees fit,
for example, completely erase all files and directories in it. If
this property is not set, the framework must set this property to
a reasonable platform default.

org.osgi .f ramework.storage.«

 clean

Specifies if and when the storage area for the framework
should be cleaned. If no value is specified, the framework stor-
age area will not be cleaned. The possible values is:

• onFirst Init - The framework storage area will be cleaned be-
fore the Framework bundle is initialized for the first time.
Subsequent inits, starts or updates of the Framework bundle
will not result in cleaning the framework storage area.

For example:

org.osgi.framework.storage.clean = onFirstInit

It could seem logical to provide delete on exit and clean at ini-
tialization. However, restrictions in common Java VM imple-
mentations make it impossible to provide this functionality re-
liably.

org.osgi .f ramework.system.«

 capabi l i t ies

Specifies the capabilities of the environment in the grammar
specified for the Provide-Capabi l i ty header, see Dependencies on
page 42. These capabilities must be provided from the system
bundle. If this property is not set, the framework must calcu-
late this header based on the environment. It should at least set
the following namespaces:

• osgi .ee
• osgi .nat ive

Deployers should use the
org.osgi .f ramework.system.capabi l i t ies.extra property.

org.osgi .f ramework.system.«

 capabi l i t ies.extra

Capabilities defined in this property are added to the
org.osgi .f ramework.system.capabi l i t ies property. The purpose
of the extra property is to be set by the deployer. The grammar
for this property is identical to the other capabilities property.

org.osgi .f ramework.system.«

 packages

The packages that must be exported from the System Bundle.
If not set, the framework must provide a reasonable default for
the current execution environment. See Execution Environment
on page 48.

Frameworks Life Cycle Layer Version 1.9

Page 106 OSGi Core Release 7

Property Name Description
org.osgi .f ramework.system.«

 packages.extra

Packages specified in this property are added to the
org.osgi .f ramework.system.packages property and therefore
have the same syntax. This allows the configurator to only de-
fine the additional packages and leave the standard execution
environment packages to be defined by the framework. For ex-
ample:

org.osgi.framework.system.packages.extra=«
 org.acme.foo; version=1.2, org.acme.foo.impl

org.osgi .f ramework.trust .«

 repositor ies

This property is used to configure trust repositories for the
framework. The value is path of files. The file paths are separat-
ed by the pathSeparator defined in the Fi le class. Each file path
should point to a key store. The Framework must support the
JKS type but can support other key store types. The framework
will use the key stores as trust repositories to authenticate cer-
tificates of trusted signers. The key stores must only be used as
read-only trust repositories to access public keys. The keystore
must not have a password. For example:

org.osgi.framework.trust.repositories = «
 /var/trust/keystore.jks:~/.cert/certs.jks

org.osgi .f ramework.«

 windowsystem

Provide the name of the current window system. This can be
used by the native code clause, Native Code Algorithm on page
80. If not set, the framework should provide a value that de-
pends on the current environment.

Table 4.2 Processor Names

Name Aliases Description
68k Motorola 68000
ARM Intel Strong ARM. Deprecated because

it does not specify the endianness. See
the following two rows.

arm_le Intel Strong ARM Little Endian
mode

arm_be Intel String ARM Big Endian mode
Alpha Compaq (ex DEC)
ia64n Hewlett Packard 32 bit
ia64w Hewlett Packard 64 bit mode
Ignite psc1k PTSC
Mips SGI
PArisc Hewlett Packard
PowerPC power ppc Motorola/IBM Power PC
PowerPC-64 ppc64 IBM Power PC 64-bit Big Endian

mode
PowerPC-64-LE ppc64le IBM Power PC 64-bit Little Endian

mode
Sh4 Hitachi
Sparc Sun Microsystems
Sparcv9 Sun Microsystems

Life Cycle Layer Version 1.9 Frameworks

OSGi Core Release 7 Page 107

Name Aliases Description
S390 IBM Mainframe 31 bit
S390x IBM Mainframe 64-bit
V850E NEC V850E
x86 pentium i386 i486 i586 i686 Intel & AMD 32 bit
x86-64 amd64 em64t x86_64 AMD/Intel 64 bit x86 architecture

Table 4.3 Operating System Names

Name Aliases Description
AIX IBM
DigitalUnix Compaq
Embos Segger Embedded Software Solu-

tions
Epoc32 SymbianOS Symbian OS
FreeBSD Free BSD
HPUX hp-ux Hewlett Packard
IR IX Silicon Graphics
Linux Open source
MacOS "Mac OS" Apple
MacOSX "Mac OS X" Apple
NetBSD Open source
Netware Novell
OpenBSD Open source
OS2 OS/2 IBM
QNX procnto QNX
Solar is SunOS Sun Microsystems
VxWorks WindRiver Systems
Windows95 Win95 "Windows 95" Win32 Microsoft
Windows98 Win98 "Windows 98" Win32 Microsoft
WindowsNT WinNT "Windows NT" "Windows NT

(unknown)" Win32
Microsoft

WindowsCE WinCE "Windows CE" Microsoft
Windows2000 Win2000 "Windows 2000" Win32 Microsoft
Windows2003 Win2003 "Windows 2003" Win32

"Windows Server 2003"
Microsoft

WindowsXP WinXP "Windows XP" Win32 Microsoft
WindowsVista WinVista "Windows Vista" Win32 Microsoft
Windows7 Win7 "Windows 7" Win32 Microsoft
Windows8 Win8 "Windows 8" "Windows 8.1"

"Windows 8.2" "Windows 8.3"
Win32

Microsoft

Windows10 Win10 "Windows 10" Win32 Microsoft
WindowsServer2008 "Windows Server 2008" "Windows

2008" Windows2008 Win2008
Win32

Microsoft

WindowsServer2008R2 "Windows Server 2008 R2" "Win-
dows 2008 R2" Windows2008R2
Win2008R2 Win32

Microsoft

Frameworks Life Cycle Layer Version 1.9

Page 108 OSGi Core Release 7

Name Aliases Description
WindowsServer2012 "Windows Server 2012" "Win-

dows 2012" Windows2012 Win2012
Win32

Microsoft

WindowsServer2012R2 "Windows Server 2012 R2" "Win-
dows 2012 R2" Windows2012R2
Win2012R2 Win32

Microsoft

WindowsServer2015 "Windows Server 2015" "Windows
2015" Windows2015 Win2015 Win32

Microsoft

WindowsServer2015R2 "Windows Server 2015 R2" "Win-
dows 2015 R2" Windows2015R2
Win2015R2 Win32

Microsoft

WindowsServer2016 "Windows Server 2016" "Win-
dows 2016" Windows2016 Win2016
Win32

Microsoft

z/OS IBM

The properties in the following table are the fixed properties of the framework. The values of these
properties are established by the framework implementation and added to the launching properties.
If these properties are set in the configuration properties, the framework must ignore them.

Table 4.4 Fixed Framework Launching Properties

Property name Description
org.osgi .f ramework.version The specification version number implemented by the Frame-

work implementation. The specification version number of this
specification is 1.9.

org.osgi .f ramework.vendor The vendor of the Framework implementation.
org.osgi .f ramework.uuid Unique id for the framework instance, see Framework UUID on

page 112.
org.osgi .supports.«

 framework.extension

Support for framework extensions is mandatory, must therefore
be set to true , see Extension Bundles on page 90.

org.osgi .supports.«

 bootclasspath.extension

Must be set to true or fa lse , see Requiring Bundles on page 84.

org.osgi .supports.«

 framework.fragment

Support for fragment bundles is mandatory, must therefore be set
to true , see Fragment Bundles on page 87.

org.osgi .supports.«

 framework.requirebundle

Support for Require Bundle is mandatory, must therefore be set to
true , see Requiring Bundles on page 84.

All launching properties are available through the getProperty(Str ing) method. See Environment
Properties on page 125.

4.2.3 Life Cycle of a Framework
Once the frameworks is created, it must be in the INSTALLED state. In this state, the framework is
not active and there is no valid Bundle Context. From this point on, the framework object can go
through its life cycle with the following methods.

• in it - If the framework object is not active, then this method moves the framework object into the
STARTING state.

• start - Ensure that the framework is in the ACTIVE state. This method can be called only on the
framework because there are no bundles running yet.

Life Cycle Layer Version 1.9 Frameworks

OSGi Core Release 7 Page 109

• update - Stop the framework. This returns the Framework event STOPPED_UPDATE or
STOPPED_BOOTCLASSPATH_MODIFIED to the waitForStop method and then restarts the frame-
work to its previous state. The launcher should then take the appropriate action and then call
the waitForStop method again or reboot the VM. The update method can be called on the frame-
work or on the system bundle. If the framework is not active, this has no effect.

• stop - Move the framework into the RESOLVED state via the STOPPING state. This will return a
Framework STOPPED event from the waitForStop method. The Framework's Bundle Context is
no longer valid. The framework must be initialized again to get a new, valid Bundle Context. The
stop method can be called on the framework or on the system bundle.

• uninstal l - Must not be called, will throw an Exception when called.

Figure 4.3 on page 109 shows how the previous methods traverse the state diagram.

Figure 4.3 State diagram Framework

INSTALLED

STARTING

STOPPING

ACTIVE

init

newFramework

RESOLVED

update

init, start

stop

update
stop start

stop

init
start

stop
update

updatestart

init
start

stop
update

init

4.2.4 Initializing the Framework
Before the framework can be used, it must be initialized. Initialization is caused by one of the in it
methods or implicitly by the start method. An initialized framework is operational, but none of its
bundles are active. This is reflected in the STARTING state. As long as the framework is in this state,
new bundles can be installed without any installed code interfering. Existing bundles must all be in
the INSTALLED or RESOLVED state. In this state, the framework will run at start level 0.

A framework object can be initialized multiple times. After initialization:

• Event handling is enabled
• The security manager is configured
• Start level is set to 0
• The framework object has a valid Bundle Context
• Any installed bundle is in the INSTALLED or RESOLVED state
• Framework services are available
• The framework state is STARTING
• Has a valid UUID
• The system bundle can adapt to any of its defined types

Frameworks Life Cycle Layer Version 1.9

Page 110 OSGi Core Release 7

• All resolved extension bundle activators start methods have been called

4.2.4.1 Start Extension Activators

The Extension Bundle Activator start method is called to inform the framework extension that the
Framework is initializing, see Extension Bundle Activator on page 91.

During the initialization process a framework must attempt to resolve all installed Framework Ex-
tensions. All resolve operations that occur during initialization must be scoped to only include the
system bundle and the extension bundles. This is necessary to avoid resolution operations which
change the wiring of normal bundles before all of the Extension Bundle Activators have been called.

The last step during Framework initialization is to call the start method of each Extension Bundle
Activator declared by resolved framework extensions. While calling Extension Bundle Activator
start methods the framework must be in the STARTING state and have a valid bundle context. Any
exception thrown by an Extension Bundle Activator start method must be wrapped in a BundleEx-
ception and broadcast as an ERROR .

4.2.4.2 Init Framework Listeners

The Framework in it(FrameworkListener. . .) method may be called with a list of framework listeners.
Any framework events broadcast during the initialization process must be delivered to the speci-
fied framework listeners in the order they are specified before returning from the in it method. After
returning from in it , the specified listeners are no longer notified of framework events. This allows
a launcher to initialize a Framework with an init framework listener in order to detect errors from
framework extension activators.

4.2.5 Starting the Framework
After the framework has been initialized, it can be started with the start method. This start method
must be called on the framework object. The start method moves the framework into the ACTIVE
state. If the framework was not initialized, it must be initialized first.

In the active state, all installed bundles previously recorded as being started must be started as de-
scribed in the Bundle.start method. Any exceptions that occur during startup must be wrapped in
a BundleException and then published as a Framework ERROR event. Bundles, and their different
states, are discussed in The Bundle Object on page 113. If the Framework implements the option-
al Start Level specification, this behavior can be different. See Start Level API Specification on page
181. Any bundles that specify an activation policy must be treated according to their activation
policy, see Activation Policies on page 117.

After the system bundle enters the ACTIVE state, a Framework STARTED event is broadcast.

4.2.6 Stopping a Framework
Shutdown can be initiated by stopping the system bundle, covered in The System Bundle on page
125 or calling the stop method on the framework object. When the framework is shut down,
it first enters the STOPPING state. All ACTIVE bundles are stopped as described in the Bundle.stop
method, except that their persistently recorded start state is kept unchanged. Any exceptions that
occur during shutdown must be wrapped in a BundleException and then published as a Frame-
work event of type FrameworkEvent.ERROR . If the Framework implements the optional Start Level
specification, this behavior can be different. See Start Level API Specification on page 181. During
the shutdown, bundles with a lazy policy must not be activated even when classes are loaded from
them and they are not yet activated.

The framework then moves to start level 0, calls stop on the Extension Bundle Activators (see Stop
Extension Activators on page 111), stops event handling and releases any resources (like threads,
class loaders, etc.) it held. The framework then enters the RESOLVED state and destroys the Bundle
Context. The last action is to notify any threads that are waiting in the waitForStop method. The
Framework must be re-initialized if it needs to be used again.

Life Cycle Layer Version 1.9 Frameworks

OSGi Core Release 7 Page 111

After a framework object is stopped and in the resolved state, it can be initialized and started again.
Framework implementations must ensure that holding on to a framework object does not consume
significant resources.

4.2.6.1 Stop Extension Activators

The Extension Bundle Activator stop method is called to inform the framework extension that the
Framework is shutting down, see Extension Bundle Activator on page 91. Before disabling event han-
dling during the Framework shutdown process, the framework must call the stop method for each
Extension Bundle Activator that was started successfully. While calling Extension Bundle Activator
stop methods, the framework must be in the STOPPING state and have a valid bundle context. Any
exception thrown by an Extension Bundle Activator stop method must be wrapped in a BundleEx-
ception and broadcast as an ERROR .

The framework must guarantee that if the start method has executed successfully for an Extension
Bundle Activator, that same BundleActivator object must be called on its stop method when the
framework is shutdown. After calling the stop method, that particular BundleActivator object must
never be used again. An Extension Bundle Activators that threw an exception during start must not
be called on shutdown.

4.2.7 Embedding a Framework
The launcher is not running as an OSGi bundle, it is a plain Java application. However, often this
launcher needs to communicate with the bundles inside the framework. The launcher can use the
Bundle Context of the framework object to get and register services. However, it must ensure that
there is class compatibility between its objects and objects from the bundle. A framework will not
automatically share packages between the launcher code and the bundles. Packages must be explic-
itly exported from the parent class loader. The org.osgi .f ramework.system.packages.extra is specif-
ically designed to hold any application packages that needs to be shared between the OSGi bundles
and the application. Packages in that property are added to the system packages of the framework,
which are packages exported by the system bundle from its parent loader. Care should be taken to
ensure that all these system packages are visible to the class loader that loaded the framework.

The OSGi Framework is running in a multi-threaded environment. After the framework is started, it
will start bundles and these bundles will be activated. Activated bundles normally start background
threads or react on events from other bundles. That is, after the start method returns, the framework
has moved to the ACTIVE state and many bundles can be busy on different threads. At this point,
the framework object can be stopped by the launcher through the framework object, or by a bundle
through the System Bundle's stop method.

The waitForStop(long) method on the framework object is included to handle any launcher
cleanup that is required after the framework has completely stopped. It blocks until the framework
has been completely shutdown. It returns one of the following Framework events to indicate the
reason for stopping:

• STOPPED - This framework object has been shutdown. It can be restarted.
• STOPPED_UPDATE - This Framework object has been updated. The framework will begin to

restart. The framework will return to its state before it was updated, either ACTIVE or STARTING .
• STOPPED_BOOTCLASSPATH_MODIFIED - This framework object has been stopped because a

boot class path extension bundle has been installed or updated. The VM must be restarted in or-
der for the changed boot class path to take affect.

• ERROR - The Framework encountered an error while shutting down or an error has occurred that
forced the framework to shutdown.

• WAIT_TIMEDOUT - This method has timed out and returned before this Framework has stopped.

Frameworks Life Cycle Layer Version 1.9

Page 112 OSGi Core Release 7

4.2.8 Framework UUID
Each framework must have a unique identity every time before the framework is started. This iden-
tity is reflected in the framework property:

org.osgi.framework.uuid

The value of this property must reflect a string defined in [14] IETF RFC 1422 A Universally Unique
IDentifier (UUID) URN Namespace with the urn:uuid: prefix. For example:

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

The Java UUID class is capable of generating such a UUID. However, as long as the external repre-
sentation is maintained frameworks are free to create a unique global id in another way.

Setting this property in the configuration properties has no effect, the framework must override it.

4.2.9 Daemon Threads
A Java VM will automatically exit when there are only daemon threads running. This can create the
situation where the VM exits when the Framework uses only daemon threads and all threads creat-
ed by bundles are also daemon threads. A Framework must therefore ensure that the VM does not
exit when there are still active bundles. One way to achieve this, is to keep at least one non-daemon
thread alive at all times.

4.2.10 Java Service Provider Configuration Support
The Java Service Provider Configuration model, as described in [13] Java Service Provider Configura-
tion, provides a way to obtain the name of the framework factory by reading a resource in the JAR.
In this specification, it is assumed that the framework implementation is on the class path. The
name is obtained by reading the content of the configuration resource with the path META-INF/ser-
vices/org.osgi .f ramework. launch.FrameworkFactory.

For example, if the com.acme.osgi framework has a factory class com.acme.osgi .Factory , then it
should have the following resource:

META-INF/services/org.osgi.framework.launch.FrameworkFactory

And the contents should be:

ACME Impl. for OSGi framework
com.acme.osgi.Factory

In contrast with the [13] Java Service Provider Configuration, there must only be one class name listed
in the resource. However, launchers should be aware that the class path could contain multiple re-
sources with the same name.

Java 6 has introduced the java.ut i l .ServiceLoader class that simplifies creating objects through these
types of factories. The following code assumes there is a framework implementation JAR on the
class path:

ServiceLoader<FrameworkFactory> sl =
 ServiceLoader.load(FrameworkFactory.class);

Iterator<FrameworkFactory> it = sl.iterator();
if (it.hasNext()) {
 Framework fw = it.next().newFramework(null);
 ...
}

Life Cycle Layer Version 1.9 Bundles

OSGi Core Release 7 Page 113

4.3 Bundles
A bundle represents a JAR file that is executed in an OSGi Framework. The class loading aspects of
this concept were specified in the Module Layer. However, the Module Layer does not define how a
bundle is installed, updated, and uninstalled. These life cycle operations are defined here.

The installation of a bundle can only be performed by another bundle or through implementation
specific means (for example as a command line parameter of the Framework implementation).

A Bundle is started through its Bundle Activator. Its Bundle Activator is identified by the Bundle-Ac-
tivator manifest header. The given class must implement the BundleActivator interface. This inter-
face has a start and stop method that is used by the bundle programmer to register itself as listener
and start any necessary threads. The stop method must clean up and stop any running threads.

Upon the activation of a bundle, it receives a Bundle Context. The Bundle Context interface's meth-
ods can roughly be divided in the following categories:

• Information - Access to information about the rest of the Framework.
• Life Cycle - The possibility to install other bundles.
• Service Registry - The service registry is discussed in Service Layer on page 133.

4.4 The Bundle Object
For each bundle installed in the OSGi framework, there is an associated Bundle object. The Bundle
object for a bundle can be used to manage the bundle's life cycle. This is usually done with a Man-
agement Agent, which is also a Bundle.

4.4.1 Bundle Identifiers
A bundle is identified by a number of names that vary in their scope:

• Bundle identifier - A long that is a Framework assigned unique identifier for the full lifetime of a
bundle, even if it is updated or the Framework is restarted. Its purpose is to distinguish bundles
in a Framework. Bundle identifiers are assigned in ascending order to bundles when they are in-
stalled. The method getBundleId() returns a bundle's identifier.

• Bundle location - A name assigned by the management agent (Operator) to a bundle during the in-
stallation. This string is normally interpreted as a URL to the JAR file but this is not mandatory.
Within a particular Framework, a location must be unique. A location string uniquely identifies
a bundle and must not change when a bundle is updated. The getLocation() method retrieves
the location of a bundle.

• Bundle Symbolic Name and Bundle Version - A name and version assigned by the developer. The
combination of Bundle Version and Bundle Symbolic Name is a globally unique identifier for a
bundle. The getSymbol icName() method returns the assigned bundle name. The Bundle getVer-
sion() method returns the version. Though the pair is unique, it is possible to install the same
bundle multiple times if the org.osgi .f ramework.bsnversion framework launching property is
set to managed or mult iple , see also Bundle Collision Hook on page 396.

4.4.2 Bundle State
A bundle can be in one of the following states:

• INSTALLED - The bundle has been successfully installed.
• RESOLVED - All Java classes that the bundle needs are available. This state indicates that the bun-

dle is either ready to be started or has stopped.

The Bundle Object Life Cycle Layer Version 1.9

Page 114 OSGi Core Release 7

• STARTING - The bundle is being started, the BundleActivator.start method will be called, and this
method has not yet returned. When the bundle has a lazy activation policy, the bundle will re-
main in the STARTING state until the bundle is activated. See Activation Policies on page 117 for
more information.

• ACTIVE - The bundle has been successfully activated and is running; its Bundle Activator start
method has been called and returned.

• STOPPING - The bundle is being stopped. The BundleActivator.stop method has been called but
the stop method has not yet returned.

• UNINSTALLED - The bundle has been uninstalled. It cannot move into another state.

Figure 4.4 State diagram Bundle

INSTALLEDUNINSTALLED

STARTING

STOPPING

ACTIVE

re
so

lve

stop

install

RESOLVED

update

start

refresh

lazy activation

uninstall

un
in

st
al

l
re

fre
sh

up
da

te

When a bundle is installed, it is stored in the persistent storage of the Framework and remains there
until it is explicitly uninstalled. Whether a bundle has been started or stopped must be recorded
in the persistent storage of the Framework. A bundle that has been persistently recorded as started
must be started whenever the Framework starts until the bundle is explicitly stopped. The Start Lev-
el API influences the actual starting and stopping of bundles. See Start Level API Specification on page
181.

The Bundle interface defines a getState() method for returning a bundle's state.

If this specification uses the term active to describe a state, then this includes the STARTING and
STOPPING states.

Bundle states are expressed as a bit-mask though a bundle can only be in one state at any time. The
following code sample can be used to determine if a bundle is in the STARTING , ACTIVE , or STOP-
PING state:

if ((b.getState() & (STARTING | ACTIVE| STOPPING)) != 0)
 doActive()

4.4.3 Installing Bundles
The BundleContext interface, which is given to the Bundle Activator of a bundle, defines the follow-
ing methods for installing a bundle:

• instal lBundle(Str ing) - Installs a bundle from the specified location string (which should be a
URL).

• instal lBundle(Str ing, InputStream) - Installs a bundle from the specified InputStream object.

A bundle must be valid before it is installed, otherwise the install must fail. The validity of a bundle
is discussed in Bundle Validity on page 83.

If the to be installed bundle has a bundle symbolic name and version pair that is already installed in
the framework then the installation is only valid when the org.osgi .f ramework.bsnversion frame-

Life Cycle Layer Version 1.9 The Bundle Object

OSGi Core Release 7 Page 115

work launching property is set to mult iple or managed . See Bundle Collision Hook on page 396 for
more information.

Every bundle is uniquely identified by its location string. If an installed bundle is using the specified
location, the instal lBundle methods must return the Bundle object for that installed bundle and not
install a new bundle.

The Framework must assign a unique bundle identifier that is higher than any previous bundle
identifier.

The installation of a bundle in the Framework must be:

• Persistent - The bundle must remain installed across Framework and Java VM invocations until it
is explicitly uninstalled.

• Atomic - The install method must completely install the bundle or, if the installation fails, the OS-
Gi framework must be left in the same state as it was in before the method was called.

Once a bundle has been installed, a Bundle object is created and all remaining life cycle operations
must be performed upon this object. The returned Bundle object can be used to start, stop, update,
and uninstall the bundle.

4.4.4 Resolving Bundles
A bundle can enter the RESOLVED state when the Framework has successfully resolved the bundle's
dependencies as described in the manifest. These dependencies are described in Resolving Process on
page 65.

4.4.5 Starting Bundles
A bundle can be started by calling one of the start methods on its Bundle object or the Framework
can automatically start the bundle if the bundle is ready and the autostart setting of the bundle indi-
cates that it must be started.

A bundle is ready if following conditions are all met:

• The bundle can be resolved
• If the optional Start Level API is used, then the bundle's start level is met.

Once a bundle is started, a bundle must be activated, see Activation on page 116, to give control
to the bundle so that it can initialize. This activation can take place immediately (eager activation),
or upon the first class load from the bundle (lazy activation). A started bundle may need to be auto-
matically started again by the framework after a restart or changes in the start level. The framework
therefore maintains a persistent autostart setting for each bundle. This autostart setting can have the
following values:

• Stopped - The bundle should not be started.
• Started with eager activation - The bundle must be started once it is ready and it must then be ea-

gerly activated.
• Started with declared activation - The bundle must be started once it is ready and it must then be ac-

tivated according to its declared activation policy. See Activation Policies on page 117.

The Bundle interface defines the start(int) method for starting a bundle and controlling the au-
tostart setting. The start(int) method takes an integer option, the following values have been de-
fined for this option:

• 0 - Start the bundle with eager activation and set the autostart setting to Started with eager activa-
tion. If the bundle was already started with the lazy activation policy and is awaiting activation,
then it must be activated immediately.

The Bundle Object Life Cycle Layer Version 1.9

Page 116 OSGi Core Release 7

• START_TRANSIENT - Identical to 0 in behavior, however, the autostart setting must not be altered.
If the bundle can not be started, for example, the bundle is not ready, then a Bundle Exception
must be thrown.

• START_ACTIVATION_POLICY - Start the bundle using the activation policy declared in the
manifest's Bundle-ActivationPolicy header and set the autostart setting to Started with declared ac-
tivation.

• START_ACTIVATION_POLICY | START_TRANSIENT - Start the bundle with the bundle's declared
activation policy but do not alter the autostart setting.

The Framework must attempt to resolve the bundle, if not already resolved, when trying to start the
bundle. If the bundle fails to resolve, the start method must throw a BundleException . In this case,
the bundle's autostart setting must still be set unless START_TRANSIENT is used.

When the start method returns without an exception, the state of the bundle will either be AC-
TIVE or STARTING , depending on the declared activation policy and whether it was used. If the
start method throws an exception, then the bundle will not be in either of these states and the stop
method will not be called for this Bundle Activator instance.

The start() method calls start(0) .

The optional Start Level API influences the actual order of starting and stopping of bundles. See
Start Level API Specification on page 181' Fragment bundles can not be started and must cause a
Bundle Exception when there is an attempt to start them.

4.4.6 Activation
A bundle is activated by calling its Bundle Activator object, if one exists. The BundleActivator inter-
face defines methods that the Framework invokes when it starts and stops the bundle.

To inform the OSGi environment of the fully qualified class name serving as its Bundle Activator, a
bundle developer must declare a Bundle-Activator manifest header in the bundle's manifest file. The
Framework must instantiate a new object of this class and cast it to a BundleActivator instance. It
must then call the BundleActivator.start method to start the bundle.

The following is an example of a Bundle-Activator manifest header:

Bundle-Activator: com.acme.Activator

A class acting as a Bundle Activator must implement the BundleActivator interface, be de-
clared publ ic , and have a public default constructor so an instance of it may be created with
Class.newInstance .

Supplying a Bundle Activator is optional. For example, a library bundle that only exports a number
of packages does not need to define a Bundle Activator. In addition, other mechanism exists to ob-
tain control and get a Bundle Context, like for example the Service Component Runtime.

The BundleActivator interface defines these methods for starting and stopping a bundle:

• start(BundleContext) - This method can allocate resources that a bundle needs, start threads, reg-
ister services, and more. If this method does not register any services, the bundle can register ser-
vices it needs later: for example, in a callback or an external event, as long as it is in the ACTIVE
state. If the start(BundleContext) method throws an exception, the Framework must mark the
bundle as stopped and send out STOPPING and STOPPED events but it must not call the Bundle
Activator stop(BundleContext) method. The start method must therefore be careful to clean up
any resources it creates in the start method when it throws an exception.

• stop(BundleContext) - This method must undo all the actions of the
BundleActivator.start(BundleContext) method. However, it is unnecessary to unregister ser-
vices or Framework listeners, because they must be cleaned up by the Framework anyway. This
method is only called when the bundle has reached the ACTIVE state. That is, when the start
method has thrown exception, the stop method is never called for the same instance.

Life Cycle Layer Version 1.9 The Bundle Object

OSGi Core Release 7 Page 117

A Bundle Activator must be created when a Bundle is started, implying the creation of a class loader.
For larger systems, this greedy strategy can significantly increase startup times and unnecessarily in-
crease the memory footprint. Mechanisms such as the Service Component Runtime and activation
policies can mitigate these problems.

Fragment bundles must not have a Bundle Activator specified.

4.4.6.1 Activation Policies

The activation of a bundle can also be deferred to a later time from its start using an activation policy.
This policy is specified in the Bundle-ActivationPolicy header with the following syntax:

Bundle-ActivationPolicy ::= policy (';' directive)*
policy ::= 'lazy'

The only policy defined is the lazy activation policy. If no Bundle-ActivationPolicy header is speci-
fied, the bundle will use eager activation.

4.4.6.2 Lazy Activation Policy

A lazy activation policy indicates that the bundle, once started, must not be activated until it re-
ceives the first request to load a class. This request can originate either during normal class load-
ing or via the Bundle loadClass method. Resource loading and a request for a class that is re-direct-
ed to another bundle must not trigger the activation. The first request is relative to the bundle class
loader, a bundle will not be lazily started if it is stopped and then started again without being re-
freshed in the mean time.

This change from the default eager activation policy is reflected in the state of the bundle and its
events. When a bundle is started using a lazy activation policy, the following steps must be taken:

• A Bundle Context is created for the bundle.
• The bundle state is moved to the STARTING state.
• The LAZY_ACTIVATION event is fired.
• The system waits for a class load from the bundle to occur.
• The normal STARTING event is fired.
• The bundle is activated.
• The bundle state is moved to ACTIVE .
• The STARTED event is fired.

If the activation fails because the Bundle Activator start method has thrown an exception, the bun-
dle must be stopped without calling the Bundle Activator stop method. These steps are pictured in a
flow chart in Figure 4.5. This flow chart also shows the difference in activation policy of the normal
eager activation and the lazy activation.

The Bundle Object Life Cycle Layer Version 1.9

Page 118 OSGi Core Release 7

Figure 4.5 Starting with eager activation versus lazy activation

lazy activation?
event

LAZY_ACTIVATION

activate
the bundle

state=ACTIVE

event
STARTING

started?

state=STARTING

no

yes

yes

event
STARTED

exception? noyes

no

state=STOPPING
event

STOPPING

event
STOPPED

state=RESOLVED

Wait for class
load trigger

The lazy activation policy allows a Framework implementation to defer the creation of the bundle
class loader and activation of the bundle until the bundle is first used; potentially saving resources
and initialization time during startup.

By default, any class loaded from the bundle can trigger the lazy activation, however, resource loads
must not trigger the activation. The lazy activation policy can define which classes cause the activa-
tion with the following directives:

• include - A list of package names that must trigger the activation when a class is loaded from any
of these packages. The default is all package names present in the bundle.

• exclude - A list of package names that must not trigger the activation of the bundle when a class
is loaded from any of these packages. The default is no package names.

For example:

Bundle-ActivationPolicy: lazy; «
 include:="com.acme.service.base,com.acme.service.help"

When a class load triggers the lazy activation, the Framework must first define the triggering class.
This definition can trigger additional lazy activations. These activations must be deferred until all
transitive class loads and defines have finished. Thereafter, the activations must be executed in the
reverse order of detection. That is, the last detected activation must be executed first. Only after

Life Cycle Layer Version 1.9 The Bundle Object

OSGi Core Release 7 Page 119

all deferred activations are finished must the class load that triggered the activation return with
the loaded class. If an error occurs during this process, it should be reported as a Framework ERROR
event. However, the class load must succeed normally. A bundle that fails its lazy activation should
not be activated again until the framework is restarted or the bundle is explicitly started by calling
the Bundle start method.

4.4.6.3 Restoring State After Refresh or Update

The refresh operation, see Refreshing on page 167, and the update methods can cause other bun-
dles to be stopped. Started bundles can be in the ACTIVE state or waiting to be activated, depending
on their activation policy. The following rules must be applied when restoring the state after an up-
date or refresh:

• An ACTIVE or STARTING bundle must be started transiently after an update or refresh operation to
not change its persistent autostart state.

• If the bundle was in the STARTING state due to lazy activation, the bundle's activation policy
should be used when starting the bundle.

4.4.7 Stopping Bundles
The Bundle interface defines the stop(int) method for stopping a bundle. This calls the stop method
when the bundle is in the ACTIVE state and sets the bundle's state to RESOLVED . The stop(int) takes
an integer option. The following value has been defined for this option:

• 0 - If the bundle was activated, then deactivate the bundle and sets the autostart setting for this
bundle to Stopped.

• STOP_TRANSIENT - If the bundle was activated, then deactivate the bundle. Does not alter the au-
tostart setting for this bundle.

The stop() method calls stop(0) .

The optional Start Level API influences the actual order of starting and stopping of bundles. See
Start Level API Specification on page 181.

Attempting to stop a Fragment bundle must result in a Bundle Exception.

4.4.8 Deactivation
The BundleActivator interface defines a stop(BundleContext) method, which is invoked by the
Framework to stop a bundle. This method must release any resources allocated since activation.
All threads associated with the stopping bundle should be stopped immediately. The threaded code
may no longer use Framework-related objects (such as services and BundleContext objects) once the
stop method returns.

If the stopping bundle had registered any services or Framework listeners during its lifetime, then
the Framework must automatically unregister all registered services and Framework listeners when
the bundle is stopped. It is therefore unnecessary from the Framework's point of view to unregister
any services or Framework listeners in the stop method.

The Framework must guarantee that if a BundleActivator . start method has executed successfully,
that same BundleActivator object must be called with its BundleActivator .stop method when the
bundle is deactivated. After calling the stop method, that particular BundleActivator object must
never be used again.

Packages exported by a stopped bundle continue to be available to other bundles. This continued ex-
port implies that other bundles can execute code from a stopped bundle, and the designer of a bun-
dle should assure that this is not harmful. Exporting interfaces only is one way to prevent such un-
wanted execution when the bundle is not started. Generally, to ensure they cannot be executed, in-
terfaces should not contain executable code.

The Bundle Object Life Cycle Layer Version 1.9

Page 120 OSGi Core Release 7

4.4.9 Updating Bundles
The Bundle interface defines two methods for updating a bundle:

• update() - This method updates a bundle.
• update(InputStream) - This method updates a bundle from the specified InputStream object.

The update process supports migration from one revision of a bundle to a newer revision of the
same bundle. The capabilities provided by the new revision must be immediately available to the
Framework. If the old bundle revision has an is InUse() bundle wiring then all capabilities provided
by the old bundle wiring must remain available for existing bundles and future resolves until the
bundle is refreshed, see Refreshing on page 167, or the Framework is restarted. Otherwise the capa-
bilities provided by the old revision must be removed.

After the update operation is complete, the framework must attempt to move the bundle to the
same state as it was before the operation taking the activation policy into account, without chang-
ing the autostart setting. This is described in more detail in Restoring State After Refresh or Update on
page 119.

An updater of a bundle must have AdminPermission[<bundle>,L IFECYCLE] for both the installed
bundle as well as the new bundle. The parameters of AdminPermission are explained in Admin Per-
mission on page 129.

4.4.10 Uninstalling Bundles
The Bundle interface defines the uninstal l () method for uninstalling a bundle from the Framework.
This method causes the Framework to notify other bundles that the bundle is being uninstalled, and
sets the bundle's state to UNINSTALLED . To whatever extent possible, the Framework must remove
any resources related to the bundle. This method must always uninstall the bundle from the persis-
tent storage of the Framework.

If the uninstalled bundle has one or more revisions with is InUse() bundle wirings then all capabili-
ties provided by the old in use bundle wirings must remain available for existing bundles and future
resolves until the bundle is refreshed, see Refreshing on page 167, or the Framework is restarted.
Otherwise the capabilities provided by the old revision must be removed.

4.4.11 Detecting Bundle Modifications
The Bundle object provides a convenient way to detect modifications in a bundle. The Framework
must keep the time that a bundle is modified by any of the life cycle operations or, in the case of
multi-release JARs, by changing the version of Java platform being used. See Multi-release JAR on
page 41. The getLastModified() method will return the last time the bundle was effectively modi-
fied. This last modified time must be stored persistently.

The method must return the number of milliseconds since midnight Jan. 1, 1970 UTC with the con-
dition that a modification must always result in a higher value than the previous last modified time
of any bundle.

The getLastModified() method is very useful when a bundle is caching resources from another bun-
dle and needs to refresh the cache when the other bundle is effectively modified. A modification in
the other bundle can happen while the caching bundle is not active. The last modified time is there-
fore a convenient way to track modifications in bundles.

4.4.12 Retrieving Manifest Headers
The Bundle interface defines two methods to return manifest header information: getHeaders() and
getHeaders(Str ing) .

Life Cycle Layer Version 1.9 The Bundle Object

OSGi Core Release 7 Page 121

• getHeaders() - Returns a Dictionary object that contains the bundle's manifest headers and val-
ues as key/value pairs. The values returned are localized according to the default locale returned
by java.ut i l .Locale.getDefault .

• getHeaders(Str ing) - Returns a Dictionary object that contains the bundle's manifest headers and
values as key/value pairs. The returned values are localized using the specified locale. The locale
may take the following values:
• nul l - The default locale returned by java.ut i l .Locale.getDefault is used. This makes this

method identical to the getHeaders() method.
• Empty string - The dictionary will contain the raw (unlocalized) manifest headers including

any leading '%'.
• A Specific Locale - The given locale is used to localize the manifest headers.

If the bundle is a multi-release JAR, see Multi-release JAR on page 41, then the returned manifest
header information must be the supplemented manifest information. That is, the main manifest
with the replacement values from a supplemental manifest, if any, for the current Java platform ver-
sion.

Localization is performed according to the description in Localization on page 82. If no translation is
found for a specific key, the Dictionary returned by Bundle.getHeaders will return the raw values as
specified in the manifest header values without the leading '%' character.

These methods require AdminPermission[<bundle>, METADATA] because some of the manifest head-
er information may be sensitive, such as the packages listed in the Export-Package header. Bundles
always have permission to read their own headers.

The getHeaders methods must continue to provide the manifest header information after the bun-
dle enters the UNINSTALLED state. After the bundle has been uninstalled, this method will only re-
turn manifest headers that are raw or localized for the default locale at the time the bundle was
uninstalled.

A framework implementation must use only the raw (unlocalized) manifest headers when process-
ing manifest headers. Localizations must not influence the operations of the Framework.

4.4.13 Loading Classes
In certain cases, it is necessary to load classes as if they were loaded from inside the bundle. The
loadClass(Str ing) method gives access to the bundle class loader. This method can be used to:

• Load plugins from another bundle
• Start an application model activator
• Interact with legacy code

For example, an application model could use this feature to load the initial class from the bundle
and start it according to the rules of the application model.

void appStart() {
 Class initializer = bundle.loadClass(activator);
 if (initializer != null) {
 App app = (App) initializer.newInstance();
 app.activate();
 }
}

Loading a class from a bundle can cause it to be activated if the bundle uses a lazy activation policy.

4.4.14 Access to Resources
The resources from a bundle can come from different sources. They can come from the raw JAR file,
Fragment bundles, imported packages, or the bundle class path. Different use cases require a dif-

The Bundle Object Life Cycle Layer Version 1.9

Page 122 OSGi Core Release 7

ferent resource search strategy. The Bundle interface provides a number of methods that access re-
sources but use different strategies. The following search strategies are supported:

• Class Space - The getResource(Str ing) and getResources(Str ing) provide access to resources that
is consistent with the class space as described in Overall Search Order on page 71. Following the
search order can make certain parts of the JAR files inaccessible. These methods require that the
bundle is resolved. If the bundle is not resolved, the Framework must attempt to resolve it.

The search order can hide certain directories of the JAR file. Split packages are taken into ac-
count; therefore, resources with the same package names can come from different JARs. If the
bundle is unresolved (or cannot be resolved), the getResource and getResources methods must
only load resources from the bundle class path. This search strategy should be used by code that
wants to access its own resources. Calling either method can cause the creation of a class loader
and force the bundle to become resolved.

• JAR File - The getEntry(Str ing) and getEntryPaths(Str ing) methods provide access to the re-
sources in the bundle's JAR file. No searching is involved, only the raw JAR file is taken into ac-
count. The purpose of these methods is to provide low-level access without requiring that the
bundle is resolved.

• Bundle Space - The f indEntr ies(Str ing,Str ing,boolean) is an intermediate form. Useful when con-
figuration or setup information is needed from another bundle. It considers Fragment bundles
but it must never create a class loader or use the bundle class path. The method provides access
to all directories in the associated JAR files.

For example, consider the following setup:

A: Require-Bundle: D
 Import-Package: q,t
 Export-Package: t
B: Export-Package: q,t
C: Fragment-Host: A
D: Export-Package: s

This setup is depicted in Figure 4.6.

Figure 4.6 Setup for showing the difference between getResource and getEntry

B
A

p

qq

s

p

r

D

C

t

t

t

The following table shows the effect of getting a resource from this setup when bundle A is resolved.

Table 4.5 Differences between getResource, getEntry, and findEntries for resolved bundle A

Resource getResource getEntry findEntries
q B.q nul l nul l
p A.p > C.p A.p A.p > C.p
r C.r nul l C.r

Life Cycle Layer Version 1.9 The Bundle Object

OSGi Core Release 7 Page 123

Resource getResource getEntry findEntries
s D.s nul l nul l
t B.t A.t A.t

The following table shows the same cases as the previous table but now for an unresolved bundle A .

Table 4.6 Differences between getResource, getEntry, and findEntries for an unresolved bundle A

Resource getResource getEntry findEntries
q nul l nul l nul l
p A.p A.p A.p
r nul l nul l nul l
s nul l nul l nul l
t A.t A.t A.t

4.4.15 Permissions of a Bundle
The Bundle interface defines a method for returning information pertaining to a bundle's permis-
sions: hasPermission(Object) . This method returns true if the bundle's Protection Domain has the
specified permission, and fa lse if it does not, or if the object specified by the argument is not an in-
stance of java.security.Permission . Fragments also have their own Protection Domain.

The parameter type is Object so that the Framework can be implemented on Java platforms that do
not support Java based security.

See The Permission Check on page 336 for more information about the permission checks.

4.4.16 Access to a Bundle's Bundle Context
Bundles that have been started have a Bundle Context. This object is a capability; it is intended to be
used only by the bundle. However, there are a number of cases where bundles must act on behalf of
other bundles. For example, the Service Component Runtime registers services on behalf of other
bundles. The framework therefore provides access to another bundle's context via the getBundle-
Context() method. If there is no Bundle Context for that Bundle because the bundle is a fragment
bundle or the bundle state is not in { STARTING, ACTIVE, STOPPING } , then nul l must be returned.

This method is potentially harmful because it allows any bundle to act as any other bundle. In a se-
cure system, the method is protected by requiring AdminPermission[*,CONTEXT] .

4.4.17 Adaptations
The adapt(Class) method allows the Bundle to be adapted to different types. The purpose of this
method is to provide more specialized access to the Bundle object, access that is not always needed
by most clients of the interface. For example, the adapt method can be used to adapt a Bundle object
to the current BundleWir ing object (if resolved). The adapt method is used as follows:

BundleWiring bw = aBundle.adapt(BundleWiring.class);

The following table shows the minimum list of types that can be used in the adapt method. Howev-
er, implementations and specifications can extend this list.

Table 4.7 Minimum set of classes that can be adapted from Bundle

Class Description
AccessControlContext The Access Control Context for this bundle according to Permis-

sions of a Bundle on page 123.
BundleContext The Bundle Context for this bundle.
BundleRevis ion The current Bundle Revision for this bundle, see Bundle Wiring

API Specification on page 157.

The Bundle Context Life Cycle Layer Version 1.9

Page 124 OSGi Core Release 7

Class Description
BundleRevis ions All existing Bundle Revision objects for this bundle, see Bundle

Wiring API Specification on page 157.
BundleStartLevel The Bundle Start Level for this bundle, see Start Level API Specifi-

cation on page 181.
BundleWir ing The Bundle Wiring for the current Bundle Revision, see Bundle

Wiring API Specification on page 157.
Framework The Framework object from the launching API if this bundle is

the System Bundle, see Frameworks on page 100.
FrameworkStartLevel The Framework Start Level if this is the System Bundle, see Start

Level API Specification on page 181.
FrameworkWir ing The Framework Wiring if this bundle is the System Bundle. See

Bundle Wiring API Specification on page 157.

4.5 The Bundle Context
The relationship between the Framework and its installed bundles is realized by the use of Bundle-
Context objects. A BundleContext object represents the execution context of a single bundle within
the OSGi framework, and acts as a proxy to the underlying Framework.

A BundleContext object is created by the Framework when a bundle is started. The bundle can use
this private BundleContext object for the following purposes:

• Installing new bundles into the OSGi environment. See Installing Bundles on page 114.
• Interrogating other bundles installed in the OSGi environment. See Getting Bundle Information on

page 124.
• Obtaining a persistent storage area. See Persistent Storage on page 125.
• Retrieving service objects of registered services. See Service References on page 135.
• Registering services in the Framework service. See Registering Services on page 135.
• Subscribing or unsubscribing to events broadcast by the Framework. See Listeners on page 127.

When a bundle is started, the Framework creates a BundleContext object and provides this object as
an argument to the start(BundleContext) method of the bundle's Bundle Activator. Each bundle is
provided with its own BundleContext object; these objects should not be passed between bundles,
since the BundleContext object is related to the security and resource allocation aspects of a bundle.

After the stop(BundleContext) method has returned, the BundleContext object must no longer be
used. Framework implementations must throw an exception if the BundleContext object is used af-
ter a bundle is stopped.

The BundleContext object is only valid during the { STARTING, ACTIVE, STOPPING } states of a bun-
dle. However, the BundleContext object becomes invalid after stop(BundleContext) returns (if the
bundle has a Bundle Activator). The BundleContext object becomes invalid before disposing of any
remaining registered services and releasing any remaining services in use. Since those activities can
result in other bundles being called (for example, Service Listeners for UNREGISTERING events and
Service Factories for unget operations), those other bundles can observe the stopping bundle in the
STOPPING state but with an invalid BundleContext object.

4.5.1 Getting Bundle Information
The BundleContext interface defines methods to retrieve information about bundles installed in the
OSGi framework:

• getBundle() - Returns the single Bundle object associated with the BundleContext object.

Life Cycle Layer Version 1.9 The System Bundle

OSGi Core Release 7 Page 125

• getBundles() - Returns an array of the bundles currently installed in the Framework.
• getBundle(long) - Returns the Bundle object specified by the unique identifier, or nul l if no

matching bundle is found.

Bundle access is not restricted; any bundle can enumerate the set of installed bundles. Information
that can identify a bundle, however (such as its location, or its header information), is only provided
to callers that have AdminPermission[<bundle>,METADATA] .

4.5.2 Persistent Storage
The Framework should provide a private persistent storage area for each installed bundle on plat-
forms with some form of file system support.

The BundleContext interface defines access to this storage in terms of the Fi le class, which supports
platform-independent definitions of file and directory names.

The BundleContext interface defines a method to access the private persistent storage area:
getDataFi le(Str ing) . This method takes a relative file name as an argument. It translates this file
name into an absolute file name in the bundle's persistent storage area. It then returns a Fi le object.
This method returns nul l if there is no support for persistent storage.

The Framework must automatically provide the bundle with Fi lePermission[<storage area>, READ
| WRITE | DELETE] to allow the bundle to read, write, and delete files in that storage area.

If EXECUTE permissions is required, then a relative path name can be used in the File Permission
definition. For example, Fi lePermission[bin/*,EXECUTE] specif ies that the sub-directory in the
bundle's private data area may contain executables. This only provides execute permission within
the Java environment and does not handle the potential underlying operating system issues related
to executables.

This special treatment applies only to Fi lePermission objects assigned to a bundle. Default permis-
sions must not receive this special treatment. A Fi lePermission for a relative path name assigned via
the setDefaultPermission method must be ignored.

4.5.3 Environment Properties
The BundleContext interface defines a method for returning information pertaining to Framework
properties: getProperty(Str ing) . This method can be used to return the Framework launching prop-
erties; see Launching Properties on page 102. This method will examine the System properties if the
requested property is not available in the launching properties.

4.6 The System Bundle
In addition to normal bundles, the Framework itself is represented as a bundle. The bundle repre-
senting the Framework is referred to as the system bundle. Through the system bundle, the Frame-
work may register services that can be used by other bundles. Examples of such a service is the Con-
ditional Permission Admin service.

The system bundle resembles the framework object when a framework is launched, but implemen-
tations are not required to use the same object for the framework object and the system bundle.
However, both objects must have bundle id 0, same location, and bundle symbolic name.

The system bundle is listed in the set of installed bundles returned by BundleContext.getBundles() ,
although it differs from other bundles in the following ways:

• The system bundle is always assigned a bundle identifier of zero (0).
• The system bundle getLocation method returns the string: "System Bundle", as defined in the

Constants interface.

The System Bundle Life Cycle Layer Version 1.9

Page 126 OSGi Core Release 7

• The system bundle has a bundle symbolic name that is unique for a specific version. However,
the name system.bundle must be recognized as an alias to this implementation-defined name.

• The system bundle's life cycle cannot be managed like normal bundles. Its life cycle methods
must behave as follows:
• start - Does nothing because the system bundle is already started.
• stop - Returns immediately and shuts down the Framework on another thread.
• update - Returns immediately, then stops and restarts the Framework on another thread.
• uninstall - The Framework must throw a BundleException indicating that the system bundle

cannot be uninstalled.

See Frameworks on page 100 for more information about the starting and stopping of the
Framework.

4.6.1 System Bundle Information
The capabilities of the system bundle are obtained by adapting the system bundle to a BundleWir ing
as described in Adaptations on page 123. This is in preference to parsing the system bundle's head-
ers.

The system bundle's Bundle.getHeaders method returns a Dictionary object with implementa-
tion-specific manifest headers. The following headers of this OSGi specification can be returned in
this dictionary. Headers not mentioned in this table should not be used.

Table 4.8 Supported headers in the system bundle getHeaders method

Header Type Description
Bundle-ContactAddress optional Recommended to provide the framework

vendor's contact address.
Bundle-Copyright optional Recommended to provide the framework's copy-

right information.
Bundle-Descr ipt ion optional Recommended description of the framework.
Bundle-DocURL optional Recommended documentation URL pointing to

further information about the framework.
Bundle-Icon optional Recommended pointer to a preferably PNG icon

representing this framework.
Bundle-Local izat ion optional Recommended localization information.
Bundle-License optional License information about this framework im-

plementation.
Bundle-ManifestVersion mandatory The maximum version of the manifest version

understood by this framework.
Bundle-Name optional Recommended human readable name of this

framework.
Bundle-Required«

 ExecutionEnvironment

mandatory Mandatory: the list of execution environments
supported by this framework. This header is dep-
recated, see osgi.ee Namespace on page 172.

Bundle-Symbol icName mandatory The implementation name for this framework.
Bundle-Vendor optional Recommended vendor information
Bundle-Version mandatory The version of this framework implementation.
Export-Package mandatory Contains packages that are exported by the

Framework like org.osgi .f ramework but al-
so the packages listed in the framework prop-
erty org.osgi .f ramework.system.packages or
org.osgi .f ramework.system.packages.extra .

Life Cycle Layer Version 1.9 Events

OSGi Core Release 7 Page 127

4.7 Events
The OSGi Framework Life Cycle layer supports the following types of events:

• BundleEvent - Reports changes in the life cycle of bundles.
• FrameworkEvent - Reports that the Framework is started, start level has changed, packages have

been refreshed, or that an error has been encountered.

The actual event that is reported is available with the getType method. The integer that is returned
from this method can be one of the constant names that are described in the class. However, events
can, and will be, extended in the future. Unrecognized event types should be ignored.

4.7.1 Listeners
A listener interface is associated with each type of event. The following list describes these listeners.

• BundleListener and SynchronousBundleListener - Called with an event of type BundleEvent
when a bundle's life cycle information has been changed.

SynchronousBundleListener objects are called synchronously during the processing of the event
and must be called before any BundleListener object is called. The following events are sent by
the Framework after it has moved to a different state:
• INSTALLED - Sent after a bundle is installed. The state is now Bundle INSTALLED state.
• RESOLVED - Sent when the Framework has resolved a bundle. The state is now the Bundle

RESOLVED state.
• LAZY_ACTIVATION - The bundle has specified an activation policy; its activation is deferred

to a later point in time. The state is set to the Bundle STARTING state. This is only sent to Syn-
chronousBundleListener objects.

• STARTING - Sent when the Framework is about to activate a bundle. This is only sent to Syn-
chronousBundleListener objects. The state is now the Bundle STARTING state.

• STARTED - Sent when the Framework has started a bundle. The state is now the Bundle AC-
TIVE state.

• STOPPING - Sent when the Framework is about to stop a bundle or the start method of the
Bundle Activator has thrown an exception and the bundle is stopped. This event indicates
that the Bundle Context will be destroyed. This event is only sent to SynchronousBundleLis-
tener objects.

• STOPPED - Sent when the Framework has stopped a bundle.
• UNINSTALLED - Sent when the Framework has uninstalled a bundle
• UNRESOLVED - Sent when the Framework detects that a bundle becomes unresolved; this

could happen when the bundle is refreshed or updated. When a set of bundles are refreshed
using the Wiring API then each bundle in the set must have an UNRESOLVED BundleEvent
published. The UNRESOLVED BundleEvent must be published after all the bundles in the set
have been stopped and, in the case of a synchronous bundle listener, before any of the bundles
in the set are re-started. RESOLVED and UNRESOLVED do not have to paired.

• UPDATED - Sent after a bundle is updated.

• FrameworkListener - Called with an event of type FrameworkEvent . Framework events are of
type:
• ERROR - Important error that requires the immediate attention of an operator.
• INFO - General information that is of interest in special situations.
• PACKAGES_REFRESHED - The Framework has refreshed the packages.
• STARTED - The Framework has performed all initialization and is running in normal mode.

Events Life Cycle Layer Version 1.9

Page 128 OSGi Core Release 7

• STARTLEVEL_CHANGED - Is sent by the Framework after a new start level has been set and
processed.

• STOPPED - Sent by the Framework because of a stop operation on the system bundle.
• STOPPED_BOOTCLASSPATH_MODIFIED - Sent by the Framework because of a stop operation

on the system bundle and a boot class path extension bundle has been installed or updated.
• STOPPED_UPDATE - Sent by the Framework because of an update operation on the system

bundle. The Framework will be restarted after this event is fired.
• WARNING - A warning to the operator that is not crucial but may indicate a potential error sit-

uation.
• WAIT_TIMEDOUT - Returned from the waitForStop method when the Framework did not stop

before the given wait time-out expired.

BundleContext interface methods are defined which can be used to add and remove each type of lis-
tener.

Events can be asynchronously delivered, unless otherwise stated, meaning that they are not neces-
sarily delivered by the same thread that generated the event. The thread used to call an event listen-
er is not defined.

The Framework must publish a FrameworkEvent.ERROR if a callback to an event listener
generates an unchecked exception - except when the callback happens while delivering a
FrameworkEvent.ERROR (to prevent an infinite loop).

Synchronous events have the unfortunate effect that, in rare cases, events can be delivered out of
order to a listener. For example, a Service Event UNREGISTERING can be delivered before its corre-
sponding Service Event REGISTERED . One pathological case is when a service listener (for example a
Service Tracker) unregisters a service that it receives in the REGISTERED event for. If there are listen-
ers queued behind the pathological listener then they see the unregistering before they see the regis-
tration.

4.7.2 Delivering Events
If the Framework delivers an event asynchronously, it must:

• Collect a snapshot of the listener list at the time the event is published (rather than doing so in
the future just prior to event delivery), but before the event is delivered, so that listeners do not
enter the list after the event happened.

• Ensure, at the time the snapshot is taken, that listeners on the list still belong to active bundles at
the time the event is delivered.

• It is possible to use more than one thread to deliver events. If this is the case then each handler
must receive the events in the same order as the events were posted. This ensures that handlers
see events in the expected order.

If the Framework did not capture the current listener list when the event was published, but instead
waited until just prior to event delivery, then the following error could occur: a bundle could have
started and registered a listener, and then the bundle could see its own BundleEvent. INSTALLED
event.

The following three scenarios illustrate this concept.

1. Scenario one event sequence:
• Event A is published.
• Listener 1 is registered.
• Asynchronous delivery of Event A is attempted.

Expected Behavior: Listener 1 must not receive Event A, because it was not registered at the time
the event was published.

Life Cycle Layer Version 1.9 Security

OSGi Core Release 7 Page 129

2. Scenario two event sequence:
• Listener 2 is registered.
• Event B is published.
• Listener 2 is unregistered.
• Asynchronous delivery of Event B is attempted.

Expected Behavior: Listener 2 receives Event B, because Listener 2 was registered at the time
Event B was published.

3. Scenario three event sequence:
• Listener 3 is registered.
• Event C is published.
• The bundle that registered Listener 3 is stopped.
• Asynchronous delivery of Event C is attempted.

Expected Behavior: Listener 3 must not receive Event C, because its Bundle Context object is in-
valid.

4.7.3 Synchronization Pitfalls
Generally, a bundle that calls a listener should not hold any Java monitors. This means that neither
the Framework nor the originator of a synchronous event should be in a monitor when a callback is
initiated.

The purpose of a Java monitor is to protect the update of data structures. This should be a small
region of code that does not call any code the effect of which cannot be overseen. Calling the OS-
Gi Framework from synchronized code can cause unexpected side effects. One of these side effects
might be deadlock. A deadlock is the situation where two threads are blocked because they are wait-
ing for each other.

Time-outs can be used to break deadlocks, but Java monitors do not have time-outs. Therefore, the
code will hang forever until the system is reset (Java has deprecated all methods that can stop a
thread). This type of deadlock is prevented by not calling the Framework (or other code that might
cause callbacks) in a synchronized block.

If locks are necessary when calling other code, use the Java monitor to create semaphores that can
time-out and thus provide an opportunity to escape a deadlocked situation.

4.8 Security

4.8.1 Admin Permission
The Admin Permission is a permission used to grant the right to manage the Framework with the
option to restrict this right to a subset of bundles, called targets. For example, an Operator can give a
bundle the right to only manage bundles of a signer that has a subject name of ACME:

org.osgi.framework.AdminPermission(
 "(signer=*, o=ACME, c=us)", ...)

The actions of the Admin Permission are fine-grained. They allow the deployer to assign only the
permissions that are necessary for a bundle. For example, an HTTP implementation could be grant-
ed access to all resources of all bundles.

org.osgi.framework.AdminPermission("*",
 "resource")

Code that needs to check Admin Permission must always use the constructor that takes a bundle as
parameter: AdminPermission(Bundle,Str ing) with a single action.

Security Life Cycle Layer Version 1.9

Page 130 OSGi Core Release 7

For example, the implementation of the loadClass method must check that the caller has access to
the class space:

public class BundleImpl implements Bundle{

 Class loadClass(String name) {
 securityManager.checkPermission(
 new AdminPermission(this,"class"));
 ...
 }
}

The Admin Permission takes a filter as its name. Filter based permissions are described in Filter Based
Permissions on page 29.

4.8.1.1 Actions

The action parameter of Admin Permission will specify the subset of privileged administrative op-
erations that are allowed by the Framework. The actions that are architected are listed in the follow-
ing table. Future versions of the specification, as well as additional system services, can add addi-
tional actions. The given set should therefore not be assumed to be a closed set.

Table 4.9 Admin Permission actions

Action Used in
METADATA Bundle.getHeaders

Bundle.getLocation
RESOURCE Bundle.getResource

Bundle.getResources

Bundle.getEntry

Bundle.getEntryPaths

Bundle.f indEntr ies

Bundle resource/entry URL creation
CLASS Bundle. loadClass
LIFECYCLE BundleContext. instal lBundle

Bundle.update

Bundle.uninstal l
EXECUTE Bundle.start

Bundle.stop

BundleStartLevel .setBundleStartLevel
LISTENER BundleContext.addBundleListener for SynchronousBundleListener

BundleContext.removeBundleListener for SynchronousBundleListener
EXTENSIONLIFECYLE BundleContext. instal lBundle for extension bundles

Bundle.update for extension bundles

Bundle.uninstal l for extension bundles
RESOLVE FrameworkWir ing.refreshBundles

FrameworkWir ing.resolveBundles
STARTLEVEL FrameworkStartLevel .setStartLevel

FrameworkStartLevel .set Init ia lBundleStartLevel

Life Cycle Layer Version 1.9 Security

OSGi Core Release 7 Page 131

Action Used in
CONTEXT Bundle.getBundleContext
WEAVE WovenClass.setBytes

WovenClass.getDynamicImports

The special action "*" will represent all actions.

Each bundle must be given AdminPermission(<bundle identi f ier> ,
"resource,metadata,c lass,context") so that it can access its own resources and context. This is an
implicit permission that must be automatically given to all bundles by the Framework.

4.8.2 Privileged Callbacks
The following interfaces define bundle callbacks that are invoked by the Framework:

• BundleActivator
• ServiceFactory
• BundleListener , ServiceListener , and FrameworkListener
• Framework hook services

When any of these callbacks are invoked by the Framework, the bundle that caused the callback
may still be on the stack. For example, when one bundle installs and then starts another bundle, the
installer bundle may be on the stack when the BundleActivator.start method of the installed bundle
is called. Likewise, when a bundle registers a service object, it may be on the stack when the Frame-
work calls back the serviceChanged method of all qualifying ServiceListener objects.

Whenever any of these bundle callbacks try to access a protected resource or operation, the access
control mechanism should consider not only the permissions of the bundle receiving the callback,
but also those of the Framework and any other bundles on the stack. This means that in these call-
backs, bundle programmers normally would use doPriv i leged calls around any methods protected
by a permission check (such as getting or registering service objects).

In order to reduce the number of doPriv i leged calls by bundle programmers, the Framework
must perform a doPriv i leged call around any bundle callbacks. The Framework should have
java.security.Al lPermission . Therefore, a bundle programmer can assume that the bundle is not fur-
ther restricted except for its own permissions.

Bundle programmers do not need to use doPriv i leged calls in their implementations of any call-
backs registered with and invoked by the Framework.

For any other callbacks that are registered with a service object and therefore get invoked by the ser-
vice-providing bundle directly, doPriv i leged calls must be used in the callback implementation if
the bundle's own privileges are to be exercised. Otherwise, the callback must fail if the bundle that
initiated the callback lacks the required permissions.

A framework must never load classes in a doPriv i leged region, but must instead use the current
stack. This means that static initializers and constructors must not assume that they are privileged.
Any privileged code in a static initializer must be guarded with a doPriv i leged region in the static
initializer. Likewise, a framework must not instantiate a BundleActivator object in a doPriv i leged re-
gion, but must instead use the current stack. This means that the BundleActivator constructor must
not assume that it is privileged.

4.8.3 Lazy Activation
The activation policy, see Activation Policies on page 117, can indirectly cause the activation of
a bundle. AdminPermission[*,CLASS] therefore implies the EXECUTE action during a loadClass
method call.

References Life Cycle Layer Version 1.9

Page 132 OSGi Core Release 7

Normal class loading caused by executing Java class code must not require
AdminPermission[*,EXECUTE] .

4.9 References

[1] The Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982
http://www.ietf.org/rfc/rfc822.txt

[2] The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
http://www.ietf.org/rfc/rfc2068.txt

[3] Java Language Specification
https://docs.oracle.com/javase/specs/

[4] A String Representation of LDAP Search Filters
RFC 1960, UMich, 1996
http://www.ietf.org/rfc/rfc1960.txt

[5] Java Security Architecture
https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

[6] Java Package Versioning Specification
https://docs.oracle.com/javase/8/docs/technotes/guides/versioning/index.html

[7] Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

[8] Manifest Format
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest

[9] W3C EBNF
http://www.w3c.org/TR/REC-xml#sec-notation

[10] Interval Notation
http://www.math.ohio-state.edu/courses/math104/interval.pdf

[11] OSGi Reference Names
https://www.osgi.org/developer/specifications/reference/

[12] JKS Keystore Format (reverse engineered)
http://metastatic.org/source/JKS.html

[13] Java Service Provider Configuration
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider

[14] IETF RFC 1422 A Universally Unique IDentifier (UUID) URN Namespace
http://www.ietf.org/rfc/rfc4122.txt

4.10 Changes
• Launching property org.osgi .f ramework.storage must be set when default value used.
• Added support for multi-release JARs. See Detecting Bundle Modifications on page 120 and Re-

trieving Manifest Headers on page 120.

http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc2068.txt
https://docs.oracle.com/javase/specs/
http://www.ietf.org/rfc/rfc1960.txt
https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/versioning/index.html
http://lcweb.loc.gov/standards/iso639-2/langhome.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest
http://www.w3c.org/TR/REC-xml#sec-notation
http://www.math.ohio-state.edu/courses/math104/interval.pdf
https://www.osgi.org/developer/specifications/reference/
http://metastatic.org/source/JKS.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider
http://www.ietf.org/rfc/rfc4122.txt

Service Layer Version 1.9 Introduction

OSGi Core Release 7 Page 133

5 Service Layer

Version 1.9

5.1 Introduction
The OSGi Service Layer defines a dynamic collaborative model that is highly integrated with the
Life Cycle Layer. The service model is a publish, find and bind model. A service is a normal Java ob-
ject that is registered under one or more Java interfaces with the service registry. Bundles can regis-
ter services, search for them, or receive notifications when their registration state changes.

5.1.1 Essentials

• Collaborative - The service layer must provide a mechanism for bundles to publish, find, and bind
to each other's services without having a priori knowledge of those bundles.

• Dynamic - The service mechanism must be able to handle changes in the outside world and un-
derlying structures directly.

• Secure - It must be possible to restrict access to services.
• Reflective - Provide full access to the Service Layer's internal state.
• Versioning - Provide mechanisms that make it possible to handle the fact that bundles and their

services evolve over time.
• Persistent Identifier - Provide a means for bundles to track services across Framework restarts.

5.1.2 Entities

• Service - An object registered with the service registry under one or more interfaces together with
properties. The service can be discovered and used by bundles.

• Service Registry - Holds the service registrations.
• Service Reference - A reference to a service. Provides access to the service's properties but not the

actual service object. The service object must be acquired through a bundle's Bundle Context.
• Service Registration - The receipt provided when a service is registered. The service registration al-

lows the update of the service properties and the unregistration of the service.
• Service Permission - The permission to use an interface name when registering or using a service.
• Service Scope - Indicates how service objects are obtained when requesting a service object. The

following service scopes are defined: singleton, bundle, and prototype. The default service scope is
singleton.

• Service Factory - A facility to let the registering bundle customize the service object for each using
bundle. When using a Service Factory, the service scope of the service is bundle.

• Prototype Service Factory - A facility to let the registering bundle customize the service object for
each caller. When using a Prototype Service Factory, the service scope of the service is prototype.

• Service Objects - A facility to let the using bundle obtain multiple service objects for a service with
prototype service scope.

• Service Listener - A listener to Service Events.
• Service Event - An event holding information about the registration, modification, or unregistra-

tion of a service object.

Services Service Layer Version 1.9

Page 134 OSGi Core Release 7

• Filter - An object that implements a simple but powerful filter language. It can select on proper-
ties.

• Invalid Syntax Exception - The exception thrown when a filter expression contains an error.

Figure 5.1 Class Diagram org.osgi .f ramework Service Layer

Bundle Impl Service Impl

Object<<interface>>
Bundle Context

<<interface>>
Service
Registration

<<interface>>
Service Listener

<<class>>
Service Event

<<class>>
Invalid Syntax
Exception

Service Registry
Impl

<<interface>>
Service
Reference

<<interface>>
Service Factory

Service Factory
Impl

<<interface>>
Filter

registers
service

0,1

1

0,11

0..n 0..n

1

1

1 1 <<interface>>
All Service
Listener

10..n
<<interface>>
Prototype
Service Factory

5.2 Services
In the OSGi framework, bundles are built around a set of cooperating services available from a
shared service registry. Such an OSGi service is defined semantically by its service interface and imple-
mented as a service object.

The service interface should be specified with as few implementation details as possible. OSGi has
specified many service interfaces for common needs and will specify more in the future.

The service object is owned by, and runs within, a bundle. This bundle must register the service ob-
ject with the Framework service registry so that the service's functionality is available to other bun-
dles under control of the Framework.

Dependencies between the bundle owning the service and the bundles using it are managed by the
Framework. For example, when a bundle is stopped, all the services registered with the Framework
by that bundle must be automatically unregistered.

The Framework maps services to their underlying service objects, and provides a simple but power-
ful query mechanism that enables a bundle to request the services it needs. The Framework also pro-

Service Layer Version 1.9 Services

OSGi Core Release 7 Page 135

vides an event mechanism so that bundles can receive events of services that are registered, modi-
fied, or unregistered.

5.2.1 Service References
In general, registered service objects are referenced through ServiceReference objects. This avoids
creating unnecessary dynamic service dependencies between bundles when a bundle needs to know
about a service but does not require the service object itself.

A ServiceReference object can be stored and passed on to other bundles without the implications of
dependencies. A ServiceReference object encapsulates the properties and other meta-information
about the service object it represents. This meta-information can be queried by a bundle to assist in
the selection of a service that best suits its needs.

When a bundle queries the Framework service registry for services, the Framework must provide
the requesting bundle with the ServiceReference objects of the requested services, rather than with
the services themselves. See Locating Services on page 139.

A ServiceReference object may also be obtained from a ServiceRegistrat ion object.

A ServiceReference object is valid only as long as the service is registered. However, its properties
must remain available as long as the ServiceReference object exists.

When a bundle wishes to use the service object, it can be obtained by using the ServiceReference .
See Getting Service Objects on page 141.

5.2.2 Service Interfaces
A service interface is the specification of the service's public methods.

In practice, a bundle developer creates a service object by implementing its service interface and reg-
isters the service object with the Framework service registry. Once a bundle has registered a service
object under an interface name, the associated service can be acquired by bundles under that inter-
face name, and its methods can be accessed by way of its service interface. The Framework also sup-
ports registering service objects under a class name, so references to service interface in this specifi-
cation can be interpreted to be an interface or class.

When requesting a service object from the Framework, a bundle can specify the name of the ser-
vice interface that the requested service object must implement. In the request, the bundle may also
specify a filter string to narrow the search.

Many service interfaces are defined and specified by organizations such as the OSGi Alliance. A ser-
vice interface that has been accepted as a standard can be implemented and used by any number of
bundle developers.

5.2.3 Registering Services
A bundle publishes a service by registering a service object with the Framework service registry. A
service object registered with the Framework is exposed to other bundles installed in the OSGi envi-
ronment.

Every registered service object has a unique ServiceRegistrat ion object, and has one or more Ser-
viceReference objects that refer to it. These ServiceReference objects expose the registration proper-
ties of the service, including the set of service interfaces they implement. The ServiceReference ob-
ject can then be used to acquire a service object that implements the desired service interface.

The Framework permits bundles to register and unregister service objects dynamically. Therefore,
a bundle is permitted to register service objects at any time during the STARTING , ACTIVE or STOP-
PING states.

A bundle registers a service object with the Framework by calling one of the
BundleContext.registerService methods on its BundleContext object:

Services Service Layer Version 1.9

Page 136 OSGi Core Release 7

• registerService(Str ing,Object,Dict ionary) - For a service object registered under a single service
interface.

• registerService(Str ing[] ,Object ,Dict ionary) - For a service object registered under multiple ser-
vice interfaces.

• registerService(Class,S,Dict ionary) - For a service object registered under a single service inter-
face using the class object for the interface name.

The names of the service interfaces under which a bundle wants to register its service are provided
as arguments to the registerService methods. The Framework must ensure that the service object
actually is an instance of each specified service interfaces, unless the object is a Service Factory. See
Service Factory on page 146 and Prototype Service Factory on page 146.

To perform this check, the Framework must load the Class object for each specified service interface
from either the bundle or a shared package. For each Class object, Class. is Instance must be called
and return true on the Class object with the service object as the argument.

The service object being registered may be further described by a Dictionary object, which contains
the properties of the service as a collection of key/value pairs.

The service interface names under which a service object has been successfully registered are auto-
matically added to the service's properties under the key objectClass . This value must be set auto-
matically by the Framework and any value provided by the bundle must be overridden.

If the service object is successfully registered, the Framework must return a ServiceRegistrat ion ob-
ject to the caller. A service object can be unregistered only by the holder of its ServiceRegistrat ion
object (see the unregister() method). Every successful service object registration must yield a unique
ServiceRegistrat ion object even if the same service object is registered multiple times.

Using the ServiceRegistrat ion object is the only way to reliably change the service's properties after
it has been registered (see the setPropert ies(Dict ionary) method). Modifying a service's Dictionary
object after the service object is registered may not have any effect on the service's properties.

The process of registering a service object is subject to a permission check. The registering bundle
must have ServicePermission[<name>,REGISTER] to register the service object under all the service
interfaces specified. Otherwise, the service object must not be registered, and a SecurityException
must be thrown.

5.2.4 Early Need for ServiceRegistration Object
The registration of a service object will cause all registered ServiceListener objects to be notified.
This is a synchronous notification. This means that such a listener can get access to the service and
call its methods before the registerService method has returned the ServiceRegistrat ion object. In
certain cases, access to the ServiceRegistrat ion object is necessary in such a callback. However, the
registering bundle has not yet received the ServiceRegistrat ion object. Figure 5.2 on page 137
shows such a sequence.

Service Layer Version 1.9 Services

OSGi Core Release 7 Page 137

Figure 5.2 Service Registration and registration

T2T1

deliver event

get service

Framework (not a thread)
In method

The registerService
method has not
returned yet, so there
is no ServiceRegistration
object

registerService

callback

return

return

In a case as described previously, access to the registration object can be obtained via a ServiceFac-
tory object or PrototypeServiceFactory object. If a ServiceFactory object or PrototypeServiceFac-
tory object is registered, the Framework must call-back the registering bundle with the Service-
Factory method getService(Bundle,ServiceRegistrat ion) or the PrototypeServiceFactory method
getService(Bundle,ServiceRegistrat ion) . The required ServiceRegistrat ion object is passed as a pa-
rameter to these methods.

5.2.5 Service Properties
Properties hold information as key/value pairs. The key must be a Str ing object and the value should
be a type recognized by Fi l ter objects (see Filters on page 145 for a list). Multiple values for the
same key are supported with arrays ([]) and Collect ion objects.

The values of properties should be limited to primitive or standard Java types to prevent unwanted
inter bundle dependencies. The Framework cannot detect dependencies that are created by the ex-
change of objects between bundles via the service properties.

The key of a property is not case sensitive. ObjectClass , OBJECTCLASS and objectclass all are the
same property key. A Framework must return the key in ServiceReference.getPropertyKeys in ex-
actly the same case as it was last set. When a Dictionary object that contains keys that only differ in
case is passed, the Framework must raise an exception.

The service properties are intended to provide information about the service. The properties should
not be used to participate in the actual function of the service. Modifying the properties for the ser-
vice registration is a potentially expensive operation. For example, a Framework may pre-process
the properties into an index during registration to speed up later look-ups.

The Fi l ter interface supports complex filtering; it can be used to find matching services. Therefore,
all properties share a single namespace in the Framework service registry. As a result, it is important
to use descriptive names or formal definitions of shorter names to prevent conflicts. Several OSGi
specifications reserve parts of this namespace. All properties starting with the prefix service . and
the property objectClass are reserved for use by OSGi specifications.

Table 5.1 contains a list of pre-defined properties.

Services Service Layer Version 1.9

Page 138 OSGi Core Release 7

Table 5.1 Standard Service Properties (+ indicates scalar, array of, or collection of)

Property Key Type Constants Property Description
objectClass† Str ing[] OBJECTCLASS The objectClass property contains the

set of interface names under which
a service object is registered with the
Framework. The Framework must
set this property automatically. The
Framework must guarantee that
when a service object is retrieved with
getService(ServiceReference) , it can be
cast to any of the interface names.

service.bundleid† Long SERVICE_BUNDLEID The service.bundleid property identifies
the bundle registering the service. The
Framework must set this property auto-
matically with the value of the bundle id
of the registering bundle.

service.descr ipt ion Str ing SERVICE_DESCRIPTION The service.descr ipt ion property is in-
tended to be used as documentation and
is optional. Frameworks and bundles can
use this property to provide a short de-
scription of a registered service object.
The purpose is mainly for debugging be-
cause there is no support for localization.

service. id† Long SERVICE_ID Every registered service object is assigned
a unique, non-negative service. id by the
Framework. This number is added to the
service's properties. The Framework as-
signs a unique, non-negative value to
every registered service object that is
larger than values provided to all previ-
ously registered service objects.

service.pid Str ing+ SERVICE_PID The service.pid property optionally iden-
tifies a persistent, unique identifier for
the service object. See Persistent Identifier
(PID) on page 139.

service.scope† Str ing SERVICE_SCOPE The service.scope property identifies the
service's scope. The Framework must set
this property automatically. If the regis-
tered service object implements Proto-
typeServiceFactory , then the value will
be prototype . Otherwise, if the registered
service object implements ServiceFacto-
ry , then the value will be bundle . Other-
wise, the value will be singleton . See Ser-
vice Scope on page 140.

service.ranking Integer SERVICE_RANKING See Service Ranking Order on page 139.
service.vendor Str ing SERVICE_VENDOR This optional property can be used by the

bundle registering the service object to
indicate the vendor.

† The values for these service properties must be set by the Framework. Any values specified for
these service properties during service registration or service properties update must be ignored.

Service Layer Version 1.9 Services

OSGi Core Release 7 Page 139

5.2.6 Service Ranking Order
When registering a service object, a bundle may optionally specify a SERVICE_RANKING service
property of type Integer . This number specifies a ranking order between services. The highest num-
ber has the highest ranking and the lowest number (including negative numbers) has the lowest
ranking. If no service.ranking service property is specified or its type is not Integer then a ranking of
0 must be used.

The ranking order is defined as follows:

• Sorted on descending ranking number (highest first)
• If the ranking numbers are equal, sorted on ascending service. id property (oldest first).

This ordering is complete because service ids are never reused and handed out in order of their reg-
istration time. That is, a service that is registered later will have a higher service id. Therefore, the
ranking order is in descending service.ranking numeric order where ties give a preference to the ear-
lier registrant.

The ranking order is the reverse of the natural ordering of a ServiceReference object.

The purpose of the ranking order is to allow:

• Selection - When a single service must be chosen but multiple services qualify then the service
with the highest ranking must be selected.

• Ordering - When multiple services must be used in a specified order.

5.2.7 Persistent Identifier (PID)
The purpose of a Persistent Identifier (PID) is to identify a service across Framework restarts. Ser-
vices that can reference the same underlying entity every time they are registered should therefore
use a service property that contains a PID. The name of the service property for PID is defined as
service.pid . The PID is a unique identifier for a service that persists over multiple invocations of the
Framework. For a given service, the same PID should always be used. If the bundle is stopped and
later started, the same PID must always be used.

The format of the PID should be:

 pid ::= symbolic-name // See 1.3.2

5.2.8 Locating Services
In order to use a service object and call its methods, a bundle must first obtain a ServiceReference
object. The BundleContext interface defines a number of methods a bundle can call to obtain Ser-
viceReference objects from the Framework:

• getServiceReference(Str ing) , getServiceReference(Class) - These methods returns a ServiceRef-
erence object to a service object that implements, and was registered under, the name of the spec-
ified service interface. If multiple such service objects exist, a ServiceReference object to the
service object with the highest SERVICE_RANKING is returned. If there is a tie in ranking, a Ser-
viceReference object to the service object with the lowest SERVICE_ID (the service object that
was registered first) is returned. If no matching service objects are registered then nul l must be re-
turned.

• getServiceReferences(Str ing,Str ing) , getServiceReferences(Class,Str ing) - These methods re-
turns an array or collection, respectively, of ServiceReference objects for service objects that:
• Implement and were registered under the specified service interface.
• Satisfy the search filter specified. The filter syntax is further explained in Filters on page

145.

Service Scope Service Layer Version 1.9

Page 140 OSGi Core Release 7

If no matching service objects are registered then nul l must be returned by the
getServiceReferences(Str ing,Str ing) method and an empty collection must be returned by the
getServiceReferences(Class,Str ing) method.

The caller receives zero or more ServiceReference objects. These objects can be used to retrieve
properties of the underlying service, or they can be used to obtain the actual service object. See Get-
ting Service Objects on page 141.

The above methods require that the caller has the necessary ServicePermission[ServiceReference,
GET] to get the service object for the returned Service Reference. If the caller lacks the required per-
mission, these methods must not include that Service Reference in the result.

5.2.9 Getting Service Properties
To allow for interrogation of service properties, the ServiceReference interface defines these two
methods:

• getPropertyKeys() - Returns an array of the property keys that are available.
• getProperty(Str ing) - Returns the value of a property.

Both of these methods must continue to provide information about the referenced service object,
even after it has been unregistered from the Framework. This requirement can be useful when a
ServiceReference object is stored with the Log Service.

5.2.10 Information About Services
The Bundle interface defines these two methods for returning information pertaining to service us-
age of the bundles:

• getRegisteredServices() - Returns the ServiceReference objects for the service objects that the
bundle has registered with the Framework.

• getServicesInUse() - Returns the ServiceReference objects for the service objects that the bundle
is currently using.

5.2.11 Service Exceptions
The Service Exception is a Run Time exception that can be used by the Framework to report errors
or by user code that needs to signal a problem with a service. An exception type available from this
exception provides the detailed information about the problem that caused the exception to be
thrown.

Implementations of the framework or user code are allowed to throw sub classes of the ServiceEx-
ception class. If a sub class is thrown for a reason other than one of the specified types, then the type
should be set to SUBCLASSED . Sub classes that provide additional information for a specified type
should use the specified type.

5.2.12 Services and Concurrency
Services published on one thread and obtained on another thread must be safe to use. That is, the
Framework must guarantee that there is a happens-before relationship between the time a service is
registered and the time a service object or Service Reference is obtained. That is both the registering
and obtaining threads must be properly synchronized with each other.

5.3 Service Scope
The SERVICE_SCOPE service property identifies the scope of the registered service object. The fol-
lowing service scopes are supported by the Framework:

Service Layer Version 1.9 Getting Service Objects

OSGi Core Release 7 Page 141

• SCOPE_SINGLETON - Identifies the registered service object as a single service object which will
be used by all bundles requesting the service object.

• SCOPE_BUNDLE - Identifies the registered service object as a Service Factory. A Service Factory
allows the registering bundle to customize the service object for each bundle requesting the ser-
vice object. See Service Factory on page 146

• SCOPE_PROTOTYPE - Identifies the registered service object as a Prototype Service Factory. A Pro-
totype Service Factory allows the registering bundle to customize the service object for each re-
quest for the service object. See Prototype Service Factory on page 146.

The Framework must set the SERVICE_SCOPE service property automatically depending on the
type of registered service object. If the registered service object implements PrototypeServiceFac-
tory , then the value must be SCOPE_PROTOTYPE . Otherwise, if the registered service object im-
plements ServiceFactory , then the value must be SCOPE_BUNDLE . Otherwise, the value must be
SCOPE_SINGLETON . The SERVICE_SCOPE service property allows bundles to determine whether
multiple service objects can be obtained for the service. Component models like Declarative Ser-
vices and Blueprint need to know if they can properly obtain multiple service objects for referenced
services.

5.4 Getting Service Objects
There are two methods available to get service objects from the service registry:

• BundleContext .getService(ServiceReference) - This method should be used if the using bundle
only needs a single service object.

• ServiceObjects .getService() - This method should be used if the service has SCOPE_PROTOTYPE
scope and the using bundle needs multiple service objects.

These methods are used to obtain an actual service object so that the Framework can manage depen-
dencies. If a bundle retrieves a service object, that bundle becomes dependent upon the life cycle of
the registered service object. This dependency is tracked by the BundleContext object used to obtain
the service object, directly or indirectly by a ServiceObjects object, and is one reason that it is im-
portant to be careful when sharing BundleContext and ServiceObjects objects with other bundles.

5.4.1 Getting a Single Service Object
The BundleContext is used when a bundle only needs a single service object. The
BundleContext .getService(ServiceReference) method returns an object that implements the inter-
faces as defined by the objectClass property. A bundle making multiple calls to this method, with-
out releasing the service object, will receive the same service object.

This method has the following characteristics:

• Returns nul l if the underlying service object has been unregistered.
• Determines if the caller has ServicePermission[ServiceReference,GET] , to get a service object

associated with the specified Service Reference. This permission check is necessary so that Ser-
viceReference objects can be passed around freely without compromising security.

• Increments the usage count of the service by one for this BundleContext object.
• If the service has SCOPE_SINGLETON scope then the registered service object is returned. Oth-

erwise, if the bundle context's usage count of the service is one, the registered service object is
cast to a ServiceFactory object and the getService(Bundle,ServiceRegistrat ion) method is called
to create a customized service object for the calling bundle which is then cached and returned.
Otherwise, a cached copy of this customized service object is returned. See Service Factory on page
146 for more information about ServiceFactory objects.

Releasing Service Objects Service Layer Version 1.9

Page 142 OSGi Core Release 7

The BundleContext .getService(ServiceReference) method will only return a single service object
for the bundle even if the service has SCOPE_PROTOTYPE scope. See Getting Multiple Service Ob-
jects on page 142 for information on how to obtain multiple service objects for a service with
SCOPE_PROTOTYPE scope.

5.4.2 Getting Multiple Service Objects
A ServiceObjects object is used when the service has SCOPE_PROTOTYPE scope and a bundle needs
multiple service objects. A ServiceObjects object is associated with a single service and is obtained
by calling the BundleContext .getServiceObjects(ServiceReference) method. The caller must have
ServicePermission[ServiceReference,GET] , to get a ServiceObjects object for a service.

The ServiceObjects .getService() method can be used to obtain multiple service objects for the asso-
ciated service.

This method has the following characteristics for a service with SCOPE_PROTOTYPE scope:

• Returns nul l if the underlying service object has been unregistered.
• The registered service object is cast to a PrototypeServiceFactory object and the

getService(Bundle,ServiceRegistrat ion) method is called to create a customized service object.
See Prototype Service Factory on page 146 for more information about PrototypeServiceFac-
tory objects.

• The usage count for the customized service object is incremented.
• The customized service object is returned.

The ServiceObjects .getService() method will only return a single service object for the bundle
if the service has SCOPE_SINGLETON or SCOPE_BUNDLE scope. That is, the method behaves the
same as the BundleContext .getService(ServiceReference) method and only a single service object is
available. See Getting a Single Service Object on page 141.

5.5 Releasing Service Objects
A bundle must release a service object to remove the dynamic dependency on the bundle that reg-
istered the service object. Depending on how a service object was obtained, one of the following
methods is used to release a service object:

• BundleContext .ungetService(ServiceReference) - This method should be used if the bundle is
using a single service object and needs to release the single service object. See Getting a Single Ser-
vice Object on page 141.

• ServiceObjects .ungetService(S) - This method should be used if the bundle is using multiple
service objects and needs to release one of the service objects. See Getting Multiple Service Objects
on page 142.

5.5.1 Releasing a Single Service Object
The BundleContext interface defines a method to release a single service object:
ungetService(ServiceReference)

This method has the following characteristics:

• If the usage count of the service for this BundleContext object is zero or the service has been un-
registered, fa lse is returned.

• The usage count of the service for this BundleContext object is decremented by one.
• If the usage count of the service for this BundleContext object is now zero and the service has

SCOPE_BUNDLE or SCOPE_PROTOTYPE scope, the registered service object is cast to a Service-

Service Layer Version 1.9 Service Events

OSGi Core Release 7 Page 143

Factory object and the ungetService(Bundle,ServiceRegistrat ion,S) method is called to release
the previously cached customized service object for the calling bundle. The cached customized
service object must be unreferenced by the Framework so it may be garbage collected. See Service
Factory on page 146 for more information about ServiceFactory objects.

• true is returned.

5.5.2 Releasing Multiple Service Objects
A ServiceObjects object can be used to obtain multiple service objects for the associated service
if the service has SCOPE_PROTOTYPE scope. The ServiceObjects interface defines a method to re-
lease one of the service objects obtained by a bundle: ungetService(S) . If the associated service
has SCOPE_SINGLETON or SCOPE_BUNDLE scope, this method behaves the same as calling the
BundleContext .ungetService(ServiceReference) method.

For a service with SCOPE_PROTOTYPE scope, the following steps are required to release the specified
service object:

• If the associated service has been unregistered, this method returns without doing anything.
• If the specified service object is nul l or was not provided by a ServiceObjects for the associated

service, then an I l legalArgumentException is thrown.
• The usage count for the specified service object is decremented.
• If the usage count for the specified service object is now zero, the registered service object is

cast to a PrototypeServiceFactory object and the ungetService(Bundle,ServiceRegistrat ion,S)
method is called to release the specified service object . The specified service object must be un-
referenced by the Framework so it may be garbage collected. See Prototype Service Factory on page
146 for more information about PrototypeServiceFactory objects.

5.6 Service Events
• ServiceEvent - Reports registration, unregistration, and property changes for service objects. All

events of this kind must be delivered synchronously. The type of the event is given by the get-
Type() method, which returns an int . Event types can be extended in the future; unknown event
types should be ignored.

• ServiceListener - Called with a ServiceEvent when a service object has been registered or modi-
fied, or is in the process of unregistering. A security check must be performed for each registered
listener when a ServiceEvent occurs. The listener must not be called unless the bundle which
registered the listener has the required ServicePermission[ServiceReference,GET] for the corre-
sponding Service Reference.

• AllServiceListener - Services can only be seen when the service interface/class is not incompat-
ible with the getter. The AllServiceListener is a marker interface that indicates that the getter
wants to receive events for all services even if they are incompatible. See Multiple Version Export
Considerations on page 148.

• Unfi l teredServiceListener - Extenders (bundles that can act on behalf of other bundles) frequent-
ly require unfiltered access to the service events for efficiency reasons. However, when they reg-
ister without a filter then the Service Hooks, see Service Hook Service Specification on page 401,
cannot provide the filter expression to the hooks. This filter information is sometimes necessary
to detect when certain services are needed. Therefore, the Unfi l teredServiceListener interface is
a marker interface that instructs the framework to never filter service events but still pass the fil-
ter to the Service Hooks. Extenders should use a single Unfi l teredServiceListener object with a
compound filter.

A bundle that uses a service object should register a ServiceListener object to track the availability
of the service object, and take appropriate action when the service object is unregistering.

Stale References Service Layer Version 1.9

Page 144 OSGi Core Release 7

5.6.1 Service Event Types
The following service events are defined:

• REGISTERED - A service object has been registered. This event is synchronously delivered after
the service object has been registered with the Framework.

• MODIFIED - The properties of a service have been modified. This event is synchronously deliv-
ered after the service properties have been modified.

• MODIFIED_ENDMATCH - Listeners registered with a filter can not see the MODIFIED event when
a modification makes the filter no longer match. The lack of this notification complicates track-
ing a service with a filter. The MODIFIED_ENDMATCH event is therefore delivered if the old ser-
vice properties matched the given filter but the modified properties do not. This event is syn-
chronously delivered after the service properties have been modified.

• UNREGISTERING - A service object is in the process of being unregistered. This event is synchro-
nously delivered before the service object has completed unregistering. That is, during the deliv-
ery of this event, the service object is still valid. The bundle receiving this event must release all
references to this service before this method returns.

New service event types can be added in future specifications

5.7 Stale References
The Framework must manage the dependencies between bundles. This management is, however,
restricted to Framework structures. Bundles must listen to events generated by the Framework to
clean up and remove stale references.

A stale reference is a reference to a Java object that belongs to the class loader of a bundle that is
stopped or is associated with a service object that is unregistered. Standard Java does not provide
any generic means to clean up stale references, and bundle developers must analyze their code care-
fully to ensure that stale references are deleted.

Stale references are potentially harmful because they hinder the Java garbage collector from har-
vesting the classes, and possibly the instances, of stopped bundles. This may result in significantly
increased memory usage and can cause updating native code libraries to fail. Bundles using services
are strongly recommended to use either the Service Tracker or Declarative Services.

Service developers can minimize the consequences of (but not completely prevent) stale references
by using the following mechanisms:

• Implement service objects using the ServiceFactory or PrototypeServiceFactory interface. The
methods in the ServiceFactory and PrototypeServiceFactory interface simplify tracking bundles
that use their service objects. See Service Factory on page 146 and Prototype Service Factory on
page 146.

• Use indirection in the service object implementations. Service objects handed out to other bun-
dles should use a pointer to the actual service implementation. When the service object becomes
invalid, the pointer is set to nul l , effectively removing the reference to the actual service imple-
mentation.

The behavior of a service object that becomes unregistered is undefined. Such service objects may
continue to work properly or throw an exception at their discretion. This type of error should be
logged.

Service Layer Version 1.9 Filters

OSGi Core Release 7 Page 145

5.8 Filters
The Framework provides a Fi l ter interface, and uses a filter syntax in the getServiceRefer-
ences methods that is defined in Filter Syntax on page 39. Filter objects can be created by calling
BundleContext .createFi l ter(Str ing) or FrameworkUti l .createFi l ter(Str ing) with the chosen filter
string. The filter supports the following match methods:

• match(ServiceReference) - Match the properties of the Service Reference performing key lookup
in a case insensitive way.

• match(Dict ionary) - Match the entries in the given Dictionary object performing key lookup in a
case insensitive way.

• matchCase(Dict ionary) - Match the entries in the given Dictionary object performing key lookup
in a case sensitive way.

• matches(Map) - Match the entries in the given Map object. The map defines the
case sensitivity of the match, standard maps are case sensitive but for example a
TreeMap(Str ing.CASE_INSENSITIVE_ORDER) provides a case insensitive map.

A Fi l ter object can be used numerous times to determine if the match argument, a ServiceReference
object, a Map object, or a Dictionary object, matches the filter string that was used to create the Fi l ter
object.

This matching requires comparing the value string in the filter to a target object from the service
properties or dictionary. This comparison can be executed with the Comparable interface if the tar-
get object's class implements the Comparable interface. If the target object's class does not imple-
ment Comparable , the =, ~=, <= >= operators must return only true when the objects are equal (using
the equals(Object) method).

The value string in the filter can be converted into an object suitable for comparison with the tar-
get object if the target object's class implements either a static valueOf method taking a single Str ing
object or a constructor taking a single Str ing object. That is, if the target object is of class Target , the
class Target must implement one of the following methods:

• A static valueOf(Str ing) method whose return type is assignable to Target
• A Target(Str ing) constructor

The Target class does not need to be a public class.

If during the evaluation of the filter a target object throws an exception, then this exception must
not be re-thrown but caught. The result of the evaluation must then be interpreted as fa lse .

The following example shows how a class can verify the ordering of an enumeration with a filter.

public class B implements Comparable {
 String keys[] = {"bugs", "daffy", "elmer", "pepe"};
 int index;

 public B(String s) {
 for (index=0; index<keys.length; index++)
 if (keys[index].equals(s))
 return;
 }

 public int compareTo(Object other) {
 B vother = (B) other;
 return index - vother.index;
 }

Service Factory Service Layer Version 1.9

Page 146 OSGi Core Release 7

 }

The class could be used with the following filter:

(!(enum>=elmer)) -> matches bugs and daffy

The Fi l ter.toStr ing method must always return the filter string with unnecessary white space re-
moved.

5.9 Service Factory
A Service Factory allows customization of the service object that is returned to a calling bundle. See
Getting a Single Service Object on page 141. See also Prototype Service Factory on page 146.

Often, the service object that is registered by a bundle is returned directly to all using bundles. Such
a service has SCOPE_SINGLETON scope. If, however, the registered service object implements the
ServiceFactory interface, the service has SCOPE_BUNDLE scope and the Framework must call meth-
ods on the registered object to obtain a customized service object for each distinct bundle that gets
the service.

When the customized service object is no longer used by a bundle - for example, when that bundle
is stopped - then the Framework must notify the ServiceFactory object to release the customized ser-
vice object.

ServiceFactory objects help manage bundle dependencies that are not explicitly managed by the
Framework. By binding a returned service object to the requesting bundle, the service can be noti-
fied when that bundle ceases to use the customized service object, such as when it is stopped, and re-
lease resources associated with providing the service to that bundle.

The ServiceFactory interface defines the following methods:

• getService(Bundle,ServiceRegistrat ion) - This method is called by the Framework when it needs
to obtain a customized service object for a requesting bundle. See Getting Service Objects on page
141.

The Framework must check the customized service object returned by this method. If it is not an
instance of all the classes named when the Service Factory was registered, nul l is returned to the
requesting bundle. This check must be done as specified in Registering Services on page 135.

If this method is called recursively for the same bundle then it must return nul l to break the re-
cursion.

• ungetService(Bundle,ServiceRegistrat ion,S) - This method is called by the Framework when it
needs to release a customized service object for a requesting bundle. See Releasing Service Objects
on page 142.

5.10 Prototype Service Factory
A Prototype Service Factory allows customization of service objects and allows multiple service ob-
jects to be used by a bundle. See Getting Multiple Service Objects on page 142. See also Service Factory
on page 146.

Often, the service object that is registered by a bundle is returned directly to all using bundles. Such
a service has SCOPE_SINGLETON scope. If, however, the registered service object implements the
PrototypeServiceFactory interface, the service has SCOPE_PROTOTYPE scope and the Framework
must call methods on the registered service object to create customized service object instances for
each call to ServiceObjects .getService() . Services with SCOPE_PROTOTYPE are useful for service

Service Layer Version 1.9 Unregistering Services

OSGi Core Release 7 Page 147

objects that maintain state for the duration of usage and the using bundles require multiple service
objects at the same time.

When the customized service objects are no longer used by a bundle - for example, when that bun-
dle is stopped - then the Framework must notify the PrototypeServiceFactory object to release all
the customized service objects.

PrototypeServiceFactory objects help manage bundle dependencies that are not explicitly man-
aged by the Framework. By binding a returned service object to the requesting bundle and optional-
ly some other stateful information, the Prototype Service Factory can be notified when that bundle
ceases to use a customized service object, such as when it is stopped, and release resources associat-
ed with providing a customized service object to that bundle.

The PrototypeServiceFactory interface defines the following methods:

• getService(Bundle,ServiceRegistrat ion) - This method is called by the Framework when it needs
to obtain a customized service object for a requesting bundle. See Getting Service Objects on page
141.

The Framework must check the customized service object returned by this method. If it is not an
instance of all the classes named when the Service Factory was registered, nul l is returned to the
requesting bundle. This check must be done as specified in Registering Services on page 135.

For each customized services object returned by this method, the Framework must hold a refer-
ence to it until it is released. This is necessary so the Framework can release all unused and unre-
leased customized service objects - for example, when a requesting bundle is stopped or the ser-
vice object is unregistered.

Since this method can return the same service object repeatedly, the framework must maintain
a usage count for each customized service object so that it is only released when its usage count
returns to zero.

• ungetService(Bundle,ServiceRegistrat ion,S) - This method is called by the Framework when it
needs to release a customized service object for a requesting bundle. See Releasing Service Objects
on page 142.

5.11 Unregistering Services
The ServiceRegistrat ion interface defines the unregister() method to unregister the service object.
This must remove the service object from the Framework service registry. Any ServiceReference ob-
ject for this ServiceRegistrat ion object can no longer be used to access the service object.

The fact that this method is on the ServiceRegistrat ion object ensures that only the bundle hold-
ing this object can unregister the associated service object. The bundle that unregisters a service ob-
ject, however, might not be the same bundle that registered it. As an example, the registering bun-
dle could have passed the ServiceRegistrat ion object to another bundle, endowing that bundle with
the responsibility of unregistering the service object. Passing ServiceRegistrat ion objects should be
done with caution.

After unregister() successfully completes, the service objects must be:

• Completely removed from the Framework service registry. Therefore, ServiceReference objects
obtained for that service object can no longer be used to access a service object. Attempts to get a
service object must return nul l .

• Unregistered, even if other bundles had dependencies upon it. Bundles must be notified of the
unregistration through the publishing of a ServiceEvent of type UNREGISTERING . This event is
sent synchronously in order to give bundles the opportunity to release service objects.

Multiple Version Export Considerations Service Layer Version 1.9

Page 148 OSGi Core Release 7

After receiving an event of type UNREGISTERING , a bundle should release the service objects and
release any references it has to the service objects, so that the service objects can be garbage col-
lected by the Java VM.

• Released by all using bundles. For each bundle with unreleased service objects after all invoked
ServiceListener objects have returned, the Framework must release all the service objects.

5.12 Multiple Version Export Considerations
Allowing multiple bundles to export a package with a given name causes some complications for
Framework implementers and bundle programmers: The class name no longer uniquely identifies
the exported class. This affects the service registry and permission checking.

5.12.1 Service Registry
Bundles must not be exposed to service objects for which there are conflicting class loaders. A bun-
dle that gets a service object should be able to expect that it can safely cast the service object to any
of the associated interfaces or classes under which the service object was registered and that it can
access. No ClassCastExceptions should occur because those interfaces do not come from the same
class loader. The service registry must therefore ensure that bundles can only see service objects that
are not incompatible with the bundle. A service object is not incompatible with the bundle getting the
service object when that bundle is not wired to another source class loader for this interface pack-
age than the bundle registering the service object. That is, it is either wired to the same source class
loader or it has no wire for that package at all.

It is paramount that bundles are not accidentally confronted with incompatible service objects.
Therefore, the following methods need to filter ServiceReference objects depending on the incom-
patibility of the interfaces with the calling bundle and only return Service Reference objects for ser-
vices object that are not incompatible with the calling bundle for the specified interface. The bundle
is identified by the used Bundle Context:

• getServiceReference(Str ing)
• getServiceReference(Class)
• getServiceReferences(Str ing,Str ing)
• getServiceReferences(Class,Str ing)

The getAl lServiceReferences(Str ing,Str ing) method provides access to the service registry with-
out any compatibility restrictions. Service References acquired through this method can be used to
obtain service objects which can cause a Class Cast Exception when casting to the specified class
name.

The ServiceReference .isAssignableTo(Bundle,Str ing) method is also available to test if the bundle
that registered the service object referenced by this ServiceReference and the specified bundle are
both wired to same source for the specified interface.

5.12.2 Service Events
Service events must only be delivered to event listeners registered by bundles that are not incompat-
ible with the referenced service object.

Some bundles need to listen to all service events regardless of any compatibility issues. A special
type of ServiceListener can therefore be used: AllServiceListener . This is a marker interface; it ex-
tends ServiceListener . Listeners that use this marker interface indicate to the Framework that the
bundle registering the event listener wants to see events for all services, including for service objects
that are incompatible with the bundle.

Service Layer Version 1.9 Security

OSGi Core Release 7 Page 149

5.13 Security

5.13.1 Service Permission
A ServicePermission has the following parameters.

• target - Either the interface name or a filter expression for the GET action. The interface name
may end with a wildcard to match multiple interface names. See java.security.BasicPermission
for a discussion of wildcards. Filters are explained in Filter Based Permissions on page 29. The fil-
ter expression can additionally test for the service interface name with the objectClass key. Ad-
ditionally, a service permission can also test for service properties that are part of the service reg-
istration. In general, all the service properties are usable in the filter expression. However, when
there is a name conflict with the bundle identification properties, then the key can be prefixed
with the commercial at sign ('@' \u0040). For example, @id will refer to a service property with
the name id.

• action - Supported actions are:
• REGISTER - Indicates that the permission holder may register the service object
• GET - Indicates that the holder may get the service.

When an object is being registered as a service object using BundleContext.registerService , the reg-
istering bundle must have the ServicePermission to register all the named classes. See Registering
Services on page 135.

When a ServiceReference object is obtained from the service registry, see Locating Services on page
139, the calling bundle must have the required ServicePermission[ServiceReference, GET] to get
the service object for each returned Service Reference.

When a service object is obtained using a ServiceReference object, see Getting Service Objects on page
141, the calling code must have the required ServicePermission[ServiceReference, GET] to get
the service object associated with the Service Reference.

ServicePermission must be used as a filter for the service events received by the Service Listener,
as well as for the methods to enumerate services, including Bundle.getRegisteredServices and
Bundle.getServicesInUse . The Framework must assure that a bundle must not be able to detect the
presence of a service that it does not have permission to access.

5.14 Changes
• Updated Prototype Service Factory on page 146 to specify that customized service objects must

be use counted.

Changes Service Layer Version 1.9

Page 150 OSGi Core Release 7

Resource API Specification Version 1.0 Introduction

OSGi Core Release 7 Page 151

6 Resource API Specification

Version 1.0

6.1 Introduction
This section describes the API for the generic Requirement-Capability model as introduced in the
Dependencies on page 42. This API is not used directly by the Framework, the purpose of specifying
this base API is to allow it to be used as building block for other specifications.

6.1.1 Entities

• Resource - An entity that can be installed in an Environment where it will provide its Capabilities
when all its Requirements are satisfied.

• Environment - A framework or container that contains one or more Resources.
• Namespace - Defines the semantics of the Requirements and Capabilities; a Requirement can only

match a Capability when they are in the same Namespace. A Namespace is similar to a type in an
object oriented language.

• Requirement - An assertion on a Capability in a Namespace. The assertion uses the OSGi filter lan-
guage to match the attributes of a Capability. The filter is specified as a directive; a Requirement
can also have other directives and attributes.

• Capability - An attribute based description of a quality of a Resource when installed in an Envi-
ronment.

• Wiring - The wired state of a Resource.
• Wire - Connects a Requirement to a matching Capability.

Figure 6.1 Class diagram for org.osgi.resource

<<interface>>
Resource

<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Wiring

1

0..n

0..n

1

0..n

0..n

0..1 <<interface>>
Wire0..n

declares

declares

0..n

provider for

requirer for

1

1

has

1

1

provided

required

requirer for

provider for

Namespace

6.2 Resources
The OSGi dependency model is introduced in Dependencies on page 42 ; it is based on a generic Re-
quirements/Capability model. In this model a Resource models something that can be installed in an
Environment but has Requirements that must be satisfied by Capabilities available in that the Envi-

Namespaces Resource API Specification Version 1.0

Page 152 OSGi Core Release 7

ronment. However, once it is installed and resolved into the Environment it provides its declared
Capabilities to that Environment. Bundles are Resources, an example of a Requirement is an Im-
port-Package clause, and an example of a Capability is an Export-Package clause.

The org.osgi . resource package contains a base API that defines a number of interfaces that model
this generic model.

The org.osgi .f ramework.wir ing package provides an API for reflecting the wiring of an OSGi Frame-
work. The purpose of the separation is to allow the management agents to treat the system in a uni-
form way. That is, it allows a wide array of resources and environments to be modeled, and thus
managed, in a uniform way. The Resource API is therefore primarily a building block for other speci-
fications.

The Capabi l i ty and Requirement class are almost identical in their signature. They both provide the
following methods:

• getAttr ibutes() - Return a map with the attributes
• getDirect ives() - Return a map with the directives
• getNamespace() - Return the Namespace
• getResource() - Return the Resource

The key difference between a Requirement and a Capability is that a Capability provides attributes
that are matched by an OSGi filter specified in a Requirement's f i l ter directive.

6.3 Namespaces
The Namespace acts as the type of a Capability and Requirement. A Capability and a Requirement
can only match when they are in the same Namespace. The Namespaces in use by the OSGi Core
specification are defined in Framework Namespaces Specification on page 171. Other specifications
can, however, define their own Namespaces.

A Namespace defines:

• Requirement Attributes - Any attributes that are allowed to be used on a Requirement declaration.
• Requirement Directives - Any directives that are allowed to be used on a Requirement declaration.
• Capability Attributes - Any attributes that are allowed to be used on a Capability, these attributes

are available for matching.
• Capability Directives - Any defined directives that are allowed to be used on the Capability
• Semantics - The Namespace definition defines what the meaning is of a Capability. This can in-

clude actions in the Environment like for example being wired with certain rules.

6.3.1 Matching
A Requirement matches a Capability when:

• They have the same Namespace, and
• The Requirement's filter matches the Capability's attributes, and
• If the Namespace is an osgi .wir ing.* Namespace then the mandatory directive must be support-

ed.

Other Namespaces must not introduce additional matching rules.

Resource API Specification Version 1.0 Resolution

OSGi Core Release 7 Page 153

6.4 Resolution
Before a Resource can provide its functionality it must be resolved against the Environment. The
Environment can provide a number of Capabilities of its own but in general the Capabilities come
from the of the installed Resources. The resolver must find a set of Wires between Requirements and
Capabilities in an Environment such that each mandatory Requirement is satisfied with at least one
Capability, and the constraints of the involved Namespaces are all met.

Resolving is an NP-complete problem since there are many solutions, it is easy to test if a solution is
right, but there is no algorithm to calculate a solution. In practice, for the OSGi resolvers it is possi-
ble to find solutions in a reasonable amount of time. However, the nature of NP-complete problems
makes it difficult to set exact rules: many solutions are correct. Constraining the resolvers too much
would stifle innovation and likely cause performance problems.

In general the Environment has an existing Wiring state for already installed Resources. The re-
solver then calculates a resolution, which is a set of Wires that should be added to the existing
Wiring state by installing the Resources. A Wire is a connection from a Requirement to a Capability.
A Requirement or Capability is declared in a Resource. This is depicted in Figure 6.2.

Figure 6.2 Wire and declared Resources

Capability

Requirement

Resource

declared

wire

6.4.1 Hosted Requirements and Capabilities
Though each Capability and Requirement is declared in a Resource, it can however be hosted by an-
other Resource. For example, when a Fragment has an Export-Package header it is in reality its host
that will provide that package. There is therefore a clear distinction between the Resource that de-
clares the Capability/Requirement and the run time Wiring state that hosts that Capability. For this
reason, a Wire connects a Requirement and a Capability but links separately to the Resources that
host the Requirement and the Capability. Figure 6.3 depicts a hosted Capability. The Capability from
the Fragment bundle is hosted by Host A and Host B.

Figure 6.3 Hosted Capability Example

Host BFragmentHost A

For this reason, the Wire class provides the following methods:

• getRequirement() - The Requirement wired from.

Resolution Resource API Specification Version 1.0

Page 154 OSGi Core Release 7

• getRequirer() - The Resource that hosts the Requirement.
• getCapabi l i ty() - The Capability that is wired to.
• getProvider() - The Resource that hosts the Capability.

6.4.2 Resolution
Requirements can be optional or mandatory , as specified in the resolut ion directive, which is only
available on the Requirement. Optional Requirements do not have to be satisfied by the Resolver.
Environments can be eager or relaxed in finding Resources to resolve optional Requirements. All
mandatory Requirements of a Resource must be satisfied before that Resource's Capabilities can be
provided to the Environment.

The syntax of the resolution directive is therefore:

resolution ::= 'optional' | 'mandatory'

The default is mandatory .

6.4.3 Effectiveness
Both Requirements and Capabilities support the effect ive directive. This directive provides a name
that can be used by the Environment to control the resolving process. During a resolve process, the
Environment can then decide one or more names that must match the effect ive directive.

For the OSGi Framework, the name resolve is reserved, this is also the default. The syntax is there-
fore:

effective ::= <name>

6.4.4 Mandatory Attributes
If a Capability has declared a mandatory directive and the Namespace starts with osgi .wir ing then
it mandates that the names listed directive are used in the filter and must match. The syntax for the
mandatory attribute is:

mandatory ::= extended (',' extended)*

6.4.5 Cardinality
The cardinality directive defines if a Requirement can be wired to multiple Capabilities or must be
wired to at most one. The syntax for the directive is:

cardinality ::= 'single' | 'multiple'

The default is single .

6.4.6 Class Space Consistency
Though the Requirement/Capability model is generic it is linked closely with the class loading ar-
chitecture of OSGi frameworks, particularly class space consistency, see Constraint Solving on page
57. For this reason, each Capability can specify its uses constraints with the uses Capability directive.
The uses directive always contains a comma separated list of package names. The resolver must en-
sure that any resolution does not violate the class space consistency based on these constraints. Uses
constraints can be specified on any Capability, not just Capabilities related to class loading, and are
always about Java packages. The syntax of the directive is:

uses ::= package-name (',' package-name)*

Resource API Specification Version 1.0 Wiring

OSGi Core Release 7 Page 155

6.5 Wiring
A resolver calculates a set of Wires between Requirements and Capabilities based on an existing, po-
tentially empty, state. The existing state in the Environment is represented in a set of Wiring objects.
Such an object represents the Wiring state of a Resource in an Environment. It provides access to all
hosted Requirements and Capabilities as well as existing Wires. It has the following methods to con-
veniently provide access to the state:

• getResource() - The related Resource.
• getProvidedResourceWires(Str ing) - Get any Wires, in the given Namespace, where the related

Resource is the provider.
• getRequiredResourceWires(Str ing) - Get any Wires, in the given Namespace, where the related

Resource is the requirer.
• getResourceCapabi l i t ies(Str ing) - Get the hosted Capabilities of the related Resource.
• getResourceRequirements(Str ing) - Get the hosted Requirements of the Related Resource.

Wiring Resource API Specification Version 1.0

Page 156 OSGi Core Release 7

Bundle Wiring API Specification Version 1.2 Introduction

OSGi Core Release 7 Page 157

7 Bundle Wiring API Specification

Version 1.2

7.1 Introduction
A key aspect of the OSGi framework is managing the dependencies between the bundles. These de-
pendencies are expressed as manifest headers that can be grouped into requirements and capabilities
as defined in Resource API Specification on page 151. For example, an Export-Package clause is a capa-
bility and an Import-Package clause is a requirement. During the resolving phase the requirements
are resolved to matching capabilities by creating a Bundle Wire. Some of the wires can influence how
the classes are loaded from bundles during runtime.

This section outlines the API to introspect the wiring between the requirements and capabilities of
resolved bundles.

7.1.1 Entities

• Bundle Revision - Represents the class/resource container of an install or update (that is, the JAR,
directory, or other form of archive). Each update creates a new Bundle Revision and an uninstall
removes the Bundle Revisions. A Bundle Revision is modeled after a Resource.

• Namespace - Bundle Requirements and Bundle Capabilities are defined in a namespace, name-
spaces define the semantics of the requirements and capabilities. The osgi .wir ing.bundle ,
osgi .wir ing.host and osgi .wir ing.package from the Framework Namespaces are defined in Frame-
work Namespaces Specification on page 171.

• Bundle Requirement - Represents a requirement header, either the Require-Capability header or
any of the manifest headers referred to in the Framework Namespaces Specification on page 171
that map to a requirement.

• Bundle Capability - A quality of a Bundle Revision that is provided when the revision is installed.
Implemented as a set of attributes that are part of a namespace. A Bundle Capability represents
either the Provide-Capability manifest header clauses, or any headers defined in the OSGi name-
spaces that map to a capability.

• Bundle Wiring - Created each time when a Bundle Revision is resolved for holding the wires to
other Bundle Wirings as well as maintaining the run time state. Used by the framework to con-
trol class loading depending on the semantics of the OSGi namespaces.

• Bundle Wire - Connects a Bundle Requirement to a Bundle Capability as well as the requirer Bun-
dle Wiring and provider Bundle Wiring.

• Framework Wiring - Provides access to manage and initiate refresh and resolving.

Using the Wiring API Bundle Wiring API Specification Version 1.2

Page 158 OSGi Core Release 7

Figure 7.1 Class Diagram org.osgi.framework.wiring (with relations to org.osgi.resource)

<<interface>>
Bundle

<<interface>>
Bundle
Requirement

<<interface>>
Bundle Wiring

<<interface>>
Bundle Wire

<<interface>>
Framework
Wiring

0..1 (when resolved)

<<system
bundle>>

<<interface>>
Bundle
Revision

1

<<interface>>
Bundle
Capability

1

0..n

1

0..n

11

0..n

1 1

0..n0..n

0..n0..n

11

adapted
from

1

0..1

adapt adapt from Bundle Revisions

providerrequirer<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Wire

<<interface>>
Resource

<<interface>>
Wiring

7.2 Using the Wiring API
This section explains how the wiring API can be used without fully explaining all the concepts in
depth. The next sections outline the formal specification.

7.2.1 Synopsis
The Bundle Context instal lBundle method installs a bundle and returns a Bundle object. This install
provides the classes and resources in a JAR, directory or some other form, as an environment. This re-
source is represented as a Bundle Revision.

A Bundle Revision declares a number of Bundle Capabilities as well as a number of Bundle Require-
ments. A capability represents a set of attributes and a requirement is a filter on those attributes. For
a requirement to be applicable to a capability, they must reside in the same namespace. The name-
space groups requirements and capabilities and defines the semantics for a resolved requirement/ca-
pability pair. This pair is represented as a Bundle Wire.

Capabilities can be anything: certificates, screen size, the packages, the bundle itself or the capabili-
ty to act as host for a fragment. Some capabilities and requirements are from the Provide-Capability

Bundle Wiring API Specification Version 1.2 Using the Wiring API

OSGi Core Release 7 Page 159

and Require-Capability headers, others are defined by the OSGi headers defined in Module Layer on
page 33, the namespaces for these OSGi specific headers are defined in Framework Namespaces Speci-
fication on page 171.

The framework wires the Bundle Requirements to Bundle Capabilities during the resolving opera-
tion. The framework must resolve all the requirements to matching capabilities according to the se-
mantics of their namespaces before it can declare a bundle to be resolved. For generic namespaces
it is sufficient to find a matching capability for each requirement. However, for the OSGi name-
spaces additional rules are implied. For example, the osgi .wir ing.host namespace implies all the
rules around OSGi fragment bundles.

Once a bundle is in the RESOLVED state it gets a Bundle Wiring, the Bundle Wiring represents the
run time state of the Bundle Revision. The Bundle Wiring holds the Bundle Wires. A Bundle Wire ties
a single Bundle Requirement to a single Bundle Capability as well as tying the Bundle Wiring that
holds the requirement to the Bundle Wiring that holds the capability. The Bundle Wires that flow
from a Bundle Wiring's Requirement to a capability are the required wires, they can be obtained with
getRequiredWires(Str ing) . Bundle Wires that come from a Bundle Wiring's Capability to a require-
ment are the provided wires, they can be obtained with getProvidedWires(Str ing) . The same require-
ments and capabilities can be used in different wires.

Namespace rules can be complex. For example, in the case of fragments they imply that any ca-
pabilities from the fragment are actually available from its hosts. In the case of exported pack-
ages that are also imported the resolver can choose to pick either. These examples demonstrate
that the resolver must be able to differentiate between the Bundle Revision's declared require-
ments and capabilities and the run time state, the Bundle Wiring, of the corresponding Bundle Re-
vision. A Bundle Revision's Bundle Wiring therefore provides the actual run time requirements
and capabilities as chosen by the resolver with the Bundle Wiring's getRequirements(Str ing) and
getCapabi l i t ies(Str ing) methods. Any optional declared requirements that were not satisfied are
not in the list of requirements. All dynamic requirements that can potentially be satisfied at run
time are in this requirements list.

The BundleWir ing objects are therefore not necessarily associated with the same Bundle Revisions
that originate the declared Bundle Requirement and the declared Bundle Capability. It is therefore
that the diagramming technique used in Figure 7.2 uses dotted lines for the Bundle Wiring connec-
tion. That is, the connections from the Bundle Wire to the requirer BundleWir ing object and to the
provider BundleWir ing object. It then uses solid lines for the connection to the declared require-
ment and capability in their Bundle Revisions. This technique makes it possible to depict fragments
where a capability in the fragment is actually available from the host's Bundle Wiring.

Figure 7.2 Requirements and Capabilities Diagramming

Capability

Requirement

Bundle
Wiring

declaration
part

bundle wiring

getCapability()getRequirement()

getRequirerWiring() getProviderWiring()<<interface>>
Bundle Wire

declaration
part

Bundle
Wiring

Bundle Wire

BundleWir ing objects can continue to exist and operate as long as there are wires from other
BundleWir ing objects, even after a bundle is updated. The only way to break this non-current wiring
is to refresh the bundles that are involved. The refresh operation computes a transitive closure of all
dependent bundles, and re-resolves them. Any active bundles in this closure will be stopped and
restarted. This operation can be activated on the Framework Wiring.

Using the Wiring API Bundle Wiring API Specification Version 1.2

Page 160 OSGi Core Release 7

The wiring API is based on the Bundle.adapt() method, see Adaptations on page 123. This method al-
lows the Bundle object to be adapted to another type. For example:

BundleWiring current = bundle.adapt(BundleWiring.class);
if (current != null) {
 ...
}

For this API, the following adaptations of the Bundle object are supported:

• BundleRevis ion - Provides access to the current revision at the time of the adapt method call. A
Bundle will always have a current Bundle Revision until it is uninstalled.

• BundleWir ing - Provides access to the current Bundle Wiring at the time of the adapt method call.
A current Bundle Wiring object only exists (the adapt method returns non-nul l) when the bundle
is resolved.

• BundleRevis ions - Provides access to all the BundleRevis ion objects that are still in use. A Bundle
always has a BundleRevis ions object, the adapt method must never return nul l .

• FrameworkWir ing - Can only be adapted from the system bundle with bundle id 0. Provides ac-
cess to the management methods like refresh and resolve, and information about bundles that
are pending removal, and the dependency closure of a set of bundles.

The Bundle Wiring API is usable during launching after the in it method has returned.

After an uninstall the adapt method will always return nul l for BundleRevis ion or BundleWir ing .
However, it is possible that the Bundle Revision and/or its Bundle Wiring are reachable through oth-
er bundles.

7.2.2 Finding the Imported Packages
Packages are reflected in the osgi .wir ing.package namespace. An Import-Package clause is mapped
to an osgi .wir ing.package requirement and an Export-Package clause is mapped into the corre-
sponding capability. For example:

Import-Package: com.acme.foo;version=1
Export-Package: com.acme.foo;version=1

In the Requirements/Capabilities model this is depicted as in Figure 7.3.:

Figure 7.3 Example Import/Export Package with Requirements/Capabilities Model

Package Capability

Package Requirement
com.acme.foo;v1 com.acme.foo;v1

The following code prints the bundles that bundle A is wired to through Import-Package state-
ments:

void printImports(Bundle A) {
 BundleWiring wA = A.adapt(BundleWiring.class);
 for (BundleWire wire :
 wA.getRequiredWires(PACKAGE_NAMESPACE)) {
 String pack = (String) wire.getCapability().getAttributes()
 .get(PACKAGE_NAMESPACE);
 Bundle bundle = wire.getProviderWiring()

Bundle Wiring API Specification Version 1.2 Bundle Wiring

OSGi Core Release 7 Page 161

 .getBundle());
 System.out.println(pack + " - " + bundle.getLocation());
 }
}

7.2.3 Attached Fragments
Fragments use the osgi .wir ing.host namespace to control their attachment. A fragment has a re-
quirement for a host capability, this is a capability with the bundle symbolic name and version. If
a fragment is attached then there is a wire from the fragment's Bundle Wiring to the host's Bundle
Wiring.

The following snippet finds the attached fragments of a bundle:

Set<BundleWiring> attachedFragments(BundleA) {
 Set<BundleWiring> result = new HashSet<BundleWiring>();
 BundleWiring wA = A.adapt(BundleWiring.class);

 for (BundleWire wire : wA.getProvidedWires(HOST_NAMESPACE)) {
 result.add(wire.getRequirerWiring());
 }
 return result;
}

7.3 Bundle Wiring
A bundle provides a simplified view of the state of the framework: it is either resolved or not. If it is
resolved, bundles can become active and collaborate with other resolved bundles. During the time
a bundle is resolved, and thus can see the environment, it will see a consistent stable state with re-
spect to its code dependencies. Other bundles can be started and stopped, installed, updated, and
uninstalled during the life cycle of a bundle. However, as long as a bundle is resolved it will contin-
ue to load classes from the bundle revisions it was wired to when it was initially resolved, even if
those bundles are updated or uninstalled.

The consequence of this model is that each bundle can have multiple revisions, and each revision
can have an optional wiring at any moment in time. Management agents have the need to see this
more complex state to be able to predict the impact of management actions and to help diagnose
problems.

There are two important event types that complicate the overall state. The install and update events
provide a new Bundle Revision for a bundle and the uninstall event disconnects any Bundle Revisions
from the bundle. The Bundle Revision contains the resources and the metadata defining, among oth-
er things, what type of bundle it is and what its dependencies are. An update can therefore change
every aspect of a bundle. For example, an update could turn a non-fragment bundle into a fragment.

The other event types that is of interest here are the RESOLVED and UNRESOLVED events. Resolv-
ing a bundle creates a Bundle Wiring based on the then current Bundle Revision. During resolving,
a Bundle Wiring uses the requirements from the Bundle Revision to create wires to other Bundle Re-
visions; the wires are used to control the class loading process. Once a Bundle Wiring is required by
another Bundle Wiring, or it is the current wiring, it is said to be in use. This model is depicted in Fig-
ure 7.4.

Bundle Wiring Bundle Wiring API Specification Version 1.2

Page 162 OSGi Core Release 7

Figure 7.4 Relationship between events, revisions, and wirings

<<interface>>
Bundle

Install/Update/Uninstall

Resolve/Unresolve

current

<<interface>>
Bundle
Revision

<<interface>>
Bundle Wiring

in use

<<interface>>
Bundle
Revision

<<interface>>
Bundle Wiring

The framework never eagerly disconnects the wires between Bundle Wirings,
a disconnect happens only under control of the management agent when the
refreshBundles(Col lect ion,FrameworkListener. . .) method is called or when all requiring bun-
dles become uninstalled. When a bundle is updated, its existing BundleWir ing objects will con-
tinue to serve classes and resources to bundles that use it. The update, even though it provides
a new revision, has no effect on resolved bundles with respect to class loading. Also, the instal-
lation of a new bundle could allow new wires but they must not affect the existing wiring until
refreshBundles(Col lect ion,FrameworkListener. . .) is called (with the exception for dynamic im-
ports). Though the class loading wires remain in place, proper bundles should react to the changes
in the dynamic state. That is, when a bundle is updated it will be stopped, allowing others to remove
any references they have to that bundle. However, even in those cases the wirings will remain until
the bundle is unresolved during a refresh cycle.

After an update, the existing Bundle Wiring is no longer current for the bundle.

Bundle Wirings that are not in use (no other Bundle Wiring is wired to it) can be removed imme-
diately but in-use Bundle Wirings must remain in place until they become no longer in use. These
non-current in-use Bundle Wirings are called pending for removal.

To forcefully remove all these non-current in use Bundle Wirings the framework can refresh a set of
bundles at the request of a management agent. The refresh will create a transitive dependency graph
on an initial set of bundles and then unresolves each bundle in the graph, which will make any of
the stale Bundle Wirings no longer in use so they can be cleaned up. After this refresh, any previous-
ly active bundles will be restored to their previous state.

The purpose of this non-eager behavior is to allow for efficient handling of multiple updates/in-
stalls/uninstalls. Refreshing the wires after each such event requires the start and stop of the depen-
dent bundles, disrupting the operations of the system unnecessary often. It is therefore better to
batch up a number of such operations and then refresh the system once. However, the implication of
this optimization is that the actual wiring between bundles can quickly become an intricate web of
connections between revisions of bundles.

For example, assume a bundle A is installed. At installation, it will have a single Bundle Revision,
called A.0 . Next, bundle B is installed, it will have a Bundle Revision B.0 . Assuming Bundle Revision
A.0 requires a capability in bundle B , resolving bundle A and bundle B will create a Bundle Wiring
for Bundle Revision A.0 linking to a Bundle Wiring for Bundle Revision B.0 . If bundle B is now up-
dated, it will create a second Bundle Revision, B.1 .However, the current Bundle Wiring for bundle A
(Bundle Revision A.0) will remain wired to Bundle Revision B.0 as long as bundle A and bundle B re-
main resolved, even though the current Bundle Revision for bundle B has now become B.1 . As long
as Bundle Revision A.0 remains resolved, bundle B 's resolved state has no impact.

Bundle Wiring API Specification Version 1.2 Bundle Wiring

OSGi Core Release 7 Page 163

Bundles are only actually unresolved when they are refreshed, the UNRESOLVED event only indicates
that a Bundle is updated or uninstalled. Refreshing happens on a per bundle basis but takes any Bun-
dle Wirings into account that depend on the refreshed bundle. In the previous example, if bundle B
is refreshed, it will automatically refresh bundle A because A is wired to B . That is, bundle B is in use
by A . The refresh will stop bundles A and B and then unresolve both of them. Unresolving basical-
ly means removing any reference from the framework to the Bundle Wirings of the involved bun-
dles. This unreferencing will allow the garbage collector to remove any remains, like for example
the class loader and the activator, unless some bundles illegally hold on to references. Once a Bun-
dle Wiring is no longer required by the framework, it is set to be not in use, regardless of stale refer-
ences.

Normally, after unresolving, the bundles are started again in their original state, forcing them to re-
solve again. In the previous example, Bundle Revision A.0 will then be connected to the Bundle Revi-
sion B.1 through newly created BundleWir ing objects. The old Bundle Wiring for B.0 will no longer
be in use and will thus be garbage collected.

This example is depicted in Figure 7.5. This picture shows when the different objects are created and
discarded. In this picture bundle B is not started.

Figure 7.5 The Bundle Revisions and Bundle Wirings over time

A
Install A

Install B

Resolve A,B

Update B

Refresh A,B

Resolve A,B

Uninstall B

Refresh

BB.0B.1A.0

t

Bundle

current & in use
Bundle Revision

In use, not current Bundle Revision

Bundle Wiring

Wire

The resolver is responsible for wiring Bundle Requirements and Bundle Capabilities to each other
while adhering to the semantics defined in their namespace. For each paired Bundle Requirement
and Bundle Capability the resolver creates a Bundle Wire that links the Bundle Requirement, the re-
quiring Bundle Wiring, the providing Bundle Wiring, and the Bundle Capability. The relationships
between a bundle A and bundle B , where A requires some capability in B , is depicted in Figure 7.6.

Fragments Bundle Wiring API Specification Version 1.2

Page 164 OSGi Core Release 7

Figure 7.6 Bundle A requires Bundle B Wiring Instances

Bundle BBundle A

Bundle
Revision
A.0

Bundle
Revision
B.0

Bundle Wiring
A.0

Bundle Wiring
B.0

Wire

Requirement Capability

The OSGi framework can add wires and new requirements and capabilities after resolving during
run time. This mechanism is for example used in DynamicImport-Package, dynamic attaching of
fragments, and byte code weaving.

7.4 Fragments
The type of a bundle is available on the Bundle Revision because a Bundle can change from a frag-
ment to a normal bundle or vice versa after an update. The getTypes() method is used to obtain a
bitmap that is either 0 or has the following bit set:

• TYPE_FRAGMENT - If this bit is set the Bundle Revision is a fragment.

The type is a bitmap allowing future versions of this specification to add new types that can be a
combination of existing and new types. The following example displays how a Bundle is checked to
be a fragment:

BundleRevision rev = aBundle.adapt(BundleRevision.class);
if (rev != null && (rev.getTypes() & TYPE_FRAGMENT)!= 0){
 ... // do the fragment thing
}

A fragment bundle will show all its declared capabilities and requirements on its Bundle Revision
but during resolving the resolver only considers the osgi .wir ing.host and osgi .ee requirements and
the osgi . identity capability and requirements.

The osgi .wir ing.host requirement represents the Fragment-Host header. A fragment can be attached
to different hosts and each attachment creates a wire from the fragment's Bundle Wiring to the
host's Bundle Wiring. The osgi .ee requirement is also never hosted.

The osgi . identity capability of a fragment is part of the fragment's Bundle Wiring and is not part of
a host bundle's Bundle Wiring. That is, each Bundle Wiring has exactly one osgi . identity capability.
However, osgi . identity requirements declared by a fragment are not part of the fragment's Bundle
Wiring and are instead hosted by the host bundle's Bundle Wiring.

Any other requirements and capabilities in a fragment bundle never become part of the fragment's
Bundle Wiring; they are treated as part of the host's requirements and capabilities when the frag-
ment is attached to that host.

Bundle Wiring API Specification Version 1.2 Fragments

OSGi Core Release 7 Page 165

To find the attached fragment for a host bundle it is necessary to find the wires for the
osgi .wir ing.host capability. The requiring end of such a wire is the attached fragment and the pro-
viding end is the attaching host.

For example, bundle A is a host and bundle B is a fragment as depicted in Figure 7.7 on page 165.

Figure 7.7 Fragments and Wiring

Fragment B.0Host A.0
attached =
getProvidedWires("osgi.wiring.host")

hosts =
getRequiredWires("osgi.wiring.host")

Then, to find the attached fragments for Bundle Revision A0:

List<BundleWiring> attached = new ArrayList<BundleWiring>();
for (BundleWire wire : A0.getBundleWiring().getProvidedWires(HOST_NAMESPACE))
 attached.add(wire.getRequirerWiring());

It is also possible to calculate the reverse dependency for finding the hosts of a fragment. For the pre-
vious example, the bundles that attach fragment B can be found with:

List<BundleWiring> hosts = new ArrayList<BundleWiring>();
for (BundleWire wire : B0.getBundleWiring().getRequiredWires(HOST_NAMESPACE))
 hosts.add(wire.getProviderWiring());

The osgi .wir ing.host namespace mandates that the resolver moves the Bundle Requirements
and Bundle Capabilities from the fragment in all other namespaces than the osgi .wir ing.host ,
osgi . identity and osgi .ee namespaces to the host bundle. For example, if the fragment exports a
package p , then this package is exported by the host. In such a case, the BundleRequirement and
BundleCapabi l i ty objects remain associated with the Bundle Revision of the fragment. However, the
Bundle Wire has the appropriate Bundle Wiring of the host. This is depicted in Figure 7.8 on page
165. Package p is declared a capability in fragment B.0 but when wired the Bundle Wiring of host
A.0 will be the provider.

Figure 7.8 Exporting a Package from a Fragment

Fragment B.0A.0

C.0p

p

The previous example is also depicted as an instance diagram in Figure 7.9 on page 166.

Framework Actions Bundle Wiring API Specification Version 1.2

Page 166 OSGi Core Release 7

Figure 7.9 Fragments Wiring Instances

Bundle
Revision
A.0

Bundle
Revision
C.0

Bundle Wiring
A.0 (host)

Bundle Wiring
B.0 (fragment)

Requirement
(..host=A)

Bundle
Capability
..package=p

Wire
(host wire)

Capability
host=A

Bundle Wiring
C.0

Bundle
Requirement
(..package=p)

Bundle Wire
(package p wire)

Bundle
Revision
B.0 (fragment)

bundle wire
declared wire

7.5 Framework Actions
There are a number of actions that are global in a framework and not associated with a specific bun-
dle. These actions are associated with the framework; this is the reason for the Framework Wiring
adaptation. The system bundle (bundle 0) can be adapted to a FrameworkWir ing object:

FrameworkWiring fw = systemBundle.adapt(FrameworkWiring.class);

The Framework Wiring provides the following actions:

• f indProviders(Requirement) - The find providers method returns capabilities available in the
framework that match the given requirement. This method can be used to search for capabilities
provided by bundles in the framework. For example, an exported package with a specific pack-
age name.

• getDependencyClosure(Col lect ion) - The dependency closure method takes a seed of bundles
for a dependency closure and then add any bundles that depend a bundle in the dependency
closure, recursively. The result can be used to calculate the impact of a refresh operation. If the
framework is refreshed the result of this method provides the bundles that will be affected.

• getRemovalPendingBundles() - Bundles that have a Bundle Wiring that is in use but not current.
Such bundles are pending removal.

• refreshBundles(Col lect ion,FrameworkListener. . .) - See Refreshing on page 167.
• resolveBundles(Col lect ion) - Attempt to resolve all the bundles in the given collection. This ac-

tion can also cause bundles to become resolved outside the given collections.

Bundle Wiring API Specification Version 1.2 Container Scanning

OSGi Core Release 7 Page 167

7.5.1 Refreshing
The update of bundles will create new Bundle Revisions while the existing Bundle Wirings re-
main wired to their previous Bundle Revisions. This stale wiring must be cleaned up and the
refreshBundles(Col lect ion,FrameworkListener. . .) method achieves this.

The refreshBundles method works from an initial collection of bundles that is used to seed the cal-
culation of the dependency closure. The dependency closure is calculated by expanding the seed de-
pendency closure to include any bundle that has a Bundle Wiring that depends on any bundle in
the dependency closure. This is a recursive definition so the dependency closure contains the list of
transitive dependencies on the initial seed collection.

This dependency closure can be obtained separately with the getDependencyClosure(Col lect ion)
method providing it with the same seed. If no seed is provided, that is a nul l argument is given, the
refreshBundles method will be identical to calling it with the result of the getRemovalPendingBun-
dles() method as the seed collection. This default will ensure that all stale Bundle Wirings will be
cleaned up.

The refresh process will stop any bundles in the considered collection while recording their state
and, if active, their starting option (for example START_TRANSIENT). Stopping must take any start
level rules into account.

The refresh must then unresolve all the bundles in the considered collection. Unresolving will cause
all the removal pending Bundle Wirings to become no longer in use because there are no longer any
bundles requiring them. This will make the Bundle Wirings available for garbage collection because
they are then no longer reachable from the framework API.

The framework must then attempt to restore the state as it was before the refresh taking all the
framework rules into account, including start levels, start options, and activation options.

The actual refresh operation will take place in the background because it can be a long running op-
eration. The refresh operation will send out a global framework event PACKAGES_REFRESHED . How-
ever, catching this event properly is non-trivial. For this reason, the refreshBundle method also al-
lows a callback by specifying an optional Framework Listener in the method invocation that will
only be called when the method is finished. For example:

fw.refreshBundles(null, new FrameworkListener(){
 public void frameworkEvent(FrameworkEvent ev) {
 System.out.println("Refresh finished");
 }
});

7.6 Container Scanning
A resolved bundle can consist of a number of containers: the basic bundle container (usually a JAR),
embedded JARs or directories, and fragments. Containers contain entries but the Bundle-ClassPath
header turns these entries into a single namespace, called resources. These concepts are fully defined
in Bundle Class Path on page 67.

The wiring API provides two different ways to iterate over the contents in the containers that con-
stitute a resolved bundle:

• Bundle Class Path Order - Scan the bundle class path containers.
• Entry Order - Scan all the entries that constitute a bundle and its attached fragments.

These two different ways are outlined in the following sections.

Security Bundle Wiring API Specification Version 1.2

Page 168 OSGi Core Release 7

7.6.1 Bundle Class Path Order
Once a bundle is resolved all its container namespaces are flattened to a single namespace that is
then used by the class loader. Flattening has as a consequence that certain resources will disappear
from the view, which resource remains and which disappear depends on the order of the flattening.
The OSGi specification defines exactly what this order is. However, the rules for this ordering are
many and non-trivial. For this reason, a Bundle Wiring allows the iteration over the resources of a
bundle in the bundle class path order, reflecting the same flattening as that what the class loader
will do. A bundle must be resolved to be able to iterate over its resources.

The method used to iterate over the resources in bundle class path order is
l istResources(Str ing,Str ing, int) . This method takes a starting path in the namespace, a pattern to
match (for example *.class for class resources) and a flag to indicate if the scan should recurs into di-
rectories or not.

When the bundle class path has a multi-release container, see Multi-release Container on page 69,
and an argument to the l istResources(Str ing,Str ing, int) method would include a resource name in
the method result if the resource was not available from the root directory but is available from a
versioned directory visible on the current Java version, then the method result must include the re-
source name from the root directory. For example, if the multi-release container has the following
entry

META-INF/versions/9/com/foo/resource.txt

and the call l istResources(“/com/foo”, “*.txt” , 0) is made when running on Java 9, or later, the re-
sult must include

com/foo/resource.txt

The l istResources(Str ing,Str ing, int) method has no counterpart in the standard class loader API.

7.6.2 Entry Order
A Bundle Wiring reflects a resolved bundle. This wiring constitutes the bundle and
any attached fragments. The f indEntr ies(Str ing,Str ing, int) method is similar to the
Bundle.f indEntr ies(Str ing,Str ing,boolean) method. The Bundle's method will be identi-
cal when the bundle can be resolved, if the bundle cannot resolve the Bundle's f indEntr ies
method has a fallback that allows iteration without attached fragments. The Bundle Wiring's
f indEntr ies(Str ing,Str ing, int) is always against a resolved bundle because it is on a Bundle Wiring.

7.6.3 Class Loader Access
The class loader can also be obtained from the BundleWir ing class with the getClassLoader()
method.

7.7 Security
The Bundle Wiring API requires Adapt Permission with action ADAPT for the following types:

• org.osgi .f ramework.wir ing.BundleWir ing
• org.osgi .f ramework.wir ing.BundleRevis ion
• org.osgi .f ramework.wir ing.BundleRevis ions
• org.osgi .f ramework.wir ing.FrameworkWir ing

The Framework Wiring methods that mutate state require an additional Admin Permission with the
action:

Bundle Wiring API Specification Version 1.2 Changes

OSGi Core Release 7 Page 169

• RESOLVE (for the system bundle) - For refreshBundles(Col lect ion,FrameworkListener. . .) and
resolveBundles(Col lect ion)

7.8 Changes
• Added support for multi-release JARs. See Bundle Class Path Order on page 168.

Changes Bundle Wiring API Specification Version 1.2

Page 170 OSGi Core Release 7

Framework Namespaces Specification Version 1.1 Introduction

OSGi Core Release 7 Page 171

8 Framework Namespaces
Specification

Version 1.1

8.1 Introduction
A key aspect of the OSGi dependency model based on requirements and capabilities is the concept
of a namespace. A Namespace defines the semantics of a Requirement-Capability pair. This generic
model is defined in Resource API Specification on page 151. This section defines a number of name-
spaces that are part of the OSGi Core specification. The osgi .wir ing.* namespaces map to the mod-
ule layer, others are used as foundations for other specifications.

Namespaces that are mapped from OSGi manifest headers must never be specified as generic re-
quirements or capabilities in the manifest. The purpose of these namespaces is only to provide the
Modularity manifest headers in generic form; the framework must translate the specific manifest
headers defined in the Module Layer on page 33 to their generic form so that requirements and capa-
bilities can be used in a uniform way, regardless if they originate from specialized or generic mani-
fest headers.

Each namespace is defined with the following items:

• Name - the name of an attribute or directive
• Kind - Defines where the attribute or directive can be used

• CA - Capability Attribute
• CD - Capability Directive
• RA - Requirement Attribute
• RD - Requirement Directive

• M/O - Mandatory (M) or Optional (O).
• Type - The data Type
• Syntax - Any syntax rules. The syntax refers in general to the syntaxes defined in General Syntax

Definitions on page 12 and Common Header Syntax on page 38 and later sections.

Attributes on manifest headers that define capabilities are used as matching attributes in the
requirement's filter and are available as the attributes of a Capabi l i ty object. Attributes on manifest
headers that define requirements are translated to a conjunction of assertions in the filter that cor-
respond to the semantics of their header. That is, these attributes on requiring manifest headers are
not visible on the Requirement objects as attributes.

Unless an attribute is specifically overridden, all namespaces inherit the attributes and directives of
the default namespace as defined in Table 8.1 and in Namespace .

Table 8.1 Default Namespace

Name Kind M/O Type Syntax Description
uses CD O String package-name

(',' package-name)*

A list of packages used in calculation class
space consistency.

osgi.ee Namespace Framework Namespaces Specification Version 1.1

Page 172 OSGi Core Release 7

Name Kind M/O Type Syntax Description
effect ive RD,

CD

O String 'resolve' | <any name> A name indicating if a resolve operation ap-
plies to this requirement. Default and only
defined value is resolve .

resolut ion RD O String 'mandatory ' | 'optional ' If mandatory , then this requirement must be
satisfied before the resource is resolved. The
default is mandatory .

f i l ter RD O String fi l ter The given filter is matched against the
capability's attributes to satisfy the require-
ment. A filter is optional, if no filter directive
is specified the requirement always matches.

cardinal ity RD O String 'mult iple' | 's ingle' Allow the requirement to be satisfied by just
one capability or provide wires to any capa-
bility that satisfies the requirement.

mandatory CD O String extended (',' extended)* List of attribute names that the
requirement's filter must assert to be equal
to the values in the capability's attributes.

This directive must only be used for the
osgi .wir ing.* namespaces and is forbidden in
any other namespace.

Namespaces can have any additional attributes and directives, both defined in a namespace as well
as ad-hoc. However, none of these additional directives or attributes must require different or addi-
tional matching rules.

All directives and attributes specified on the OSGi manifest headers that are translated to require-
ments and capabilities are visible in these capabilities and requirements, except when they are
specifically noted to be ignored in the definition of a namespace.

8.2 osgi.ee Namespace
An OSGi Framework must register capabilities for all the execution environments the Java VM is
known to be backward compatible with. For example, if the Java VM provides Java SE 6, then it is
backward compatible with 1.2, 1.3, 1.4, 1.5, and 1.6. The osgi .ee capability defines the provided ver-
sions as a comma separated list. For example:

Provide-Capability: «
 osgi.ee; «
 osgi.ee="OSGi/Minimum"; «
 version:List<Version>="1.0,1.1,1.2", «
 osgi.ee; «
 osgi.ee="JavaSE"; «
 version:List<Version>="1.2,1.3,1.4,1.5,1.6"

Bundles can require the osgi .ee capability if they have a dependency on a specific execution envi-
ronment, for example:

Require-Capability: «
 osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.6))"

This is useful when the bundle contains class files compiled to target a version of the Java VM and
thus cannot be loaded by prior versions of the Java VM. If a bundle needs to require that specific ja-
va.* packages are available in the runtime, it should use the Import-Package header to require those
packages. See Execution Environment on page 48.

Framework Namespaces Specification Version 1.1 osgi.wiring.package Namespace

OSGi Core Release 7 Page 173

The osgi .ee requirement is not hosted when it is part of a Fragment. That is, a requirement from this
namespace must be treated as part of the Fragment Bundle and must not be hosted.

The osgi .ee capability is defined in table Table 8.2 and in the ExecutionEnvironmentNamespace
class.

Table 8.2 osgi.ee Namespace definition

Name Kind M/O Type Syntax Description
osgi .ee CA M String ~(ws| ',')+ The name of the execution environment. The

name can contain any character except white
space (as defined by Java) or the comma (','
\u002C) character.

version CA M List

<Version>

version (',' vers ion)* A comma separated list of versions, compar-
isons must be done with version ordering be-
cause the version attribute must be declared
with the List<Version> type.

Provide-Capability headers in the osgi .ee namespace must not be used in a bundle's manifest; Re-
quire-Capability with this namespace is allowed. An osgi .ee requirement is the replacement for the
Bundle-RequiredExecutionEnvironment header in Bundle-RequiredExecutionEnvironment on page 48.

The names for the execution environments are not normatively defined in this specification except
those defined in Table 8.3. A list of well-known (non-normative) names are maintained at [1] Specifi-
cation References.

Table 8.3 osgi.ee execution environment names

Name Description
JavaSE Should be used for all Java SE execution environments since Java 1.2. The name

for the Java Runtime Environment has changed several times but for all envi-
ronments the Java SE name must be used.

JavaSE/compact1 Java SE Embedded compact1 profile.
JavaSE/compact2 Java SE Embedded compact2 profile.
JavaSE/compact3 Java SE Embedded compact3 profile.
OSGi/Minimum The OSGi Minimum execution environment.

8.3 osgi.wiring.package Namespace
The osgi .wir ing.package namespace reflects the information in the manifest Import-Package, Dy-
namicImport-Package, and Export-Package clauses as defined Import-Package on page 54, Export-Pack-
age on page 55, and Dynamic Import Package on page 69.

The Import-Package header and DynamicImport-Package headers are represented as a Bundle Re-
quirement for each of their clauses. The Export-Package header is represented as a Bundle Capability
for each clause. DynamicImport-Package clauses have a resolut ion directive set to dynamic and can
only be wired after the bundle has been resolved.

For example, the following bundles:

Bundle A:
 Import-Package: p
 DynamicImport-Package: q.*

Bundle B:
 Export-Package: p

osgi.wiring.bundle Namespace Framework Namespaces Specification Version 1.1

Page 174 OSGi Core Release 7

This example is depicted in Figure 8.1. Package p is wired to a Bundle Revision of bundle B because it
exports package p . The DynamicImport-Package clause is not wired but this can change when dur-
ing run time package s refers to a class that cannot be found.

Figure 8.1 Example osgi.wiring.package Namespace

p p

q.*

s

BA

dynamic

The osgi .wir ing.package attributes are defined in Table 8.4 and in the PackageNamespace class.

Table 8.4 osgi.wiring.package Namespace definition

Name Kind M/O Type Syntax Description
osgi .wir ing.package CA M String package-name The name of the package.
version CA M Version version A version of the exported package
bundle-symbol ic-name CA M String symbol ic-name The bundle symbolic name of the bundle

that exports the package
bundle-version CA M Version version The bundle version as defined in the Bun-

dle-Version header.
* CA O String * Any attributes defined on the Export-Pack-

age clause
resolut ion RD O String 'dynamic ' |

'mandatory ' |

'optional '

This directive is inherited from the default
namespace but this namespace adds an ad-
ditional value dynamic .

The following directives must be ignored when specified on the Import-Package, or Export-Package,
or DynamicImport-Package manifest headers:

• effect ive
• cardinal ity

The requirements and capabilities in the osgi .wir ing.package namespace must never be used in the
Require-Capability and Provide-Capability headers.

8.4 osgi.wiring.bundle Namespace
The osgi .wir ing.bundle namespace reflects the information in the bundle headers for the purpose of
requiring another bundle. The Require-Bundle header is a requirement on the capability provided
by the pair of Bundle-SymbolicName/Bundle-Version headers. Requiring this namespace through a
Require-Bundle header creates a wire from the requiring bundle to the required bundle.

A bundle must only provide this capability when the Bundle-ManifestVersion >= 2. The
osgi .wir ing.bundle attributes are defined in table Table 8.5 and in the BundleNamespace class.

Table 8.5 osgi.wiring.bundle Namespace definition

Name Kind M/O Type Syntax Description
osgi .wir ing.bundle CA M String symbol ic-name The name of the bundle as defined in the

Bundle-SymbolicName header.
bundle-version CA M Version version The version of the bundle as defined in the

Bundle-Version header.

Framework Namespaces Specification Version 1.1 osgi.wiring.host Namespace

OSGi Core Release 7 Page 175

Name Kind M/O Type Syntax Description
singleton CD O String 'true' | ' fa lse' Indicates if this is a singleton bundle, see

Bundle-SymbolicName on page 53.
vis ibi l i ty RD O String 'pr ivate' | ' reexport ' See Require-Bundle on page 84.

The effect of the osgi .wir ing.bundle namespace is that the exported packages of any required bun-
dles become available to the requirer as defined in the Requiring Bundles on page 84. A Bundle Wire
in the osgi .wir ing.bundle namespace does not imply the availability of osgi .wir ing.package Bundle
Wires that correspond to the required bundle's exported packages. If there is a need to know what
packages will become available then this must be deduced from the osgi .wir ing.package capabilities
of the required bundle.

The following directives must be ignored when specified on the Require-Bundle or Bundle-Symbol-
icName manifest headers:

• uses
• effect ive
• cardinal ity

The requirements and capabilities in the osgi .wir ing.bundle namespace must not be used in the Re-
quire-Capability and Provide-Capability headers.

8.5 osgi.wiring.host Namespace
The osgi .wir ing.host namespace reflects the information in the bundle headers for the purpose of
fragments. The Fragment-Host header is a requirement on the capability that is provided by the pair
of Bundle-SymbolicName/Bundle-Version headers. Satisfying this requirement allows a fragment to
attach itself to a host. A bundle must only provide this capability when the f ragment-attachment
directive allows fragments to attach and the Bundle-ManifestVersion >= 2.

The osgi .wir ing.host namespace is defined in table Table 8.6 and in the HostNamespace class.

Table 8.6 osgi.wiring.host Namespace definition

Name Kind M/O Type Syntax Description
osgi .wir ing.host CA M String symbol ic-name The name of the bundle as defined in the

Bundle-SymbolicName header.
bundle-version CA M Version version The version of the bundle as defined in the

Bundle-Version header.
f ragment-attachment CD O String 'always' |

' resolve-t ime' |

'never '

Indicates how, or if, a fragment can attach
to this host. This capability is defined on
the Bundle-SymbolicName header with its
corresponding f ragment-attachment direc-
tive. See Bundle-SymbolicName on page 53.

extension RD O String ' framework' |

'bootclasspath'

Indicates if the requiring fragment bundle
is a framework or boot class path extension.
See Fragment-Host on page 88.

The effect of the osgi .wir ing.host namespace is that all declared capabilities and requirements of the
fragment, except the osgi .wir ing.host and osgi .ee requirements and the osgi . identity capability, are
merged with the host bundle as defined in the Fragment Bundles on page 87.

The following directives must be ignored when specified on the Fragment-Host or Bundle-Symbolic-
Name manifest headers:

• uses

osgi.identity Namespace Framework Namespaces Specification Version 1.1

Page 176 OSGi Core Release 7

• effect ive
• cardinal ity

The requirements and capabilities in the osgi .wir ing.host namespace must not be used in the Re-
quire-Capability and Provide-Capability headers.

8.6 osgi.identity Namespace
The osgi . identity namespace has a capability that can uniquely identify a resource. Its purpose is
to identify a type for the resource and then provide a name that is unique for that type. That is, the
type can be osgi .bundle and then the name is a Bundle-SymbolicName. For example, for a certifi-
cate the type could be x509 and the name could then its SHA-1 fingerprint. Each must have associat-
ed rules for the names uses as the identity name. It is required that the value of the osgi . identity at-
tribute, plus the value of the type attribute, plus the version attribute are a unique combination.

The definition of the osgi . identity namespace is in Table 8.7 and in the IdentityNamespace class.

Table 8.7 osgi.identity Namespace definition

Name Kind M/O Type Syntax Description
osgi . identity CA M String symbol ic-name The identity of the resource, for an OSGi

bundle this is the bundle symbolic name.
type CA M String osgi .bundle |

osgi .f ragment |

'unknown' |

<any>

The type of the resource

version CA M Version version The version of the resource
singleton CD O String 'true' | ' fa lse' If this resource is a singleton. The default

value is fa lse .
copyright CA O Str ing A human readable copyright notice as de-

fined for the Bundle-Copyright header.
descr ipt ion CA O String A human readable description of the re-

source as defined for the Bundle-Descrip-
tion header.

documentation CA O String <url> A URL to where documentation of the re-
source can be found as defined for the Bun-
dle-DocURL header.

l icense CA O String <url> A URL to the license for this resource. The
URL must be the name of the license as de-
fined in the Bundle-License header.

classi f ier RD O String <see text> A name for the relation. Though any name
is usable, a number of names are defined in
Related Resources on page 176.

Provide-Capability headers in the osgi . identity Namespace must not be used in the manifest, Re-
quire-Capability with this Namespace is allowed.

8.6.1 Related Resources
A resource can have related resources. For example, a Bundle can have Javadoc, source code, link to
a source control management system, etc. It is assumed that these artifacts are also resources. It is
therefore necessary that a resource can specify a relation with another resource.

Framework Namespaces Specification Version 1.1 osgi.native Namespace

OSGi Core Release 7 Page 177

A resource can specify a relation to other resource by declaring an optional requirement to that oth-
er resource. Such relation requirements should be placed in another effective time than resolve to
not interfere with resolving, for example the effective time meta . The requirements should be in to
the osgi . identity namespace and assert:

• osgi . identity - The name of the resource.
• type - The type of the resource.
• version - The version of the resource.

The requirement must then add a directive classi f ier that defines the related type so that tools like
IDEs can find the relations by iteration over all the osgi . identity requirements that have a classi f ier
directive. In general, these requirement should be optional and have a cardinal ity of single .

The following values are defined for the classi f ier directive:

• sources - An archive containing the source code in the same directory layout as this resource.
• javadoc - An archive containing the Javadoc in the same directory layout as this resource
• * - Any other names

For example, a bundle could contain the following requirement modeling a relation:

Require-Capability: «
 osgi.identity; «
 filter:="(&(osgi.identity=org.example.foo-source)(version=1.1))"; «
 effective:=meta; «
 classifier:=sources; «
 resolution:=optional

The code to retrieve a related resource could look like:

 Repository repository = ...;

 InputStream getRelated(Resource resource, String classifier)
 throws IOException {
 for (Requirement r : resource.getRequirements("osgi.identity")) {
 if (classifier.equals(r.getDirectives().get("classifier"))){
 Collection<Capability> caps =
 repository.findProviders(Collections.singleton(r)).get(r);

 if (caps==null || caps.isEmpty())
 continue;

 Capability c = caps.iterator().next();
 Resource related = c.getResource();
 return ((RepositoryContent)related).getContent();
 }
 }
 return null;
 }

8.7 osgi.native Namespace
The osgi .nat ive namespace is used to describe the native environment in which the Framework is
executing. An OSGi Framework must provide a capability in the osgi .nat ive namespace that repre-
sents the native environment in which the Framework is executing. For example, the following ca-

osgi.native Namespace Framework Namespaces Specification Version 1.1

Page 178 OSGi Core Release 7

pability is provided when running a 64-bit VM on a Windows 7 machine with the language set to
en_US:

Provide-Capability: «
 osgi.native; «
 osgi.native.osname:List<String>="Windows7,Windows 7,Win7,Win32"; «
 osgi.native.osversion:Version="7.0"; «
 osgi.native.processor:List<String>="x86-64,amd64,em64t,x86_64"; «
 osgi.native.language="en"

Provide-Capability headers in the osgi .nat ive namespace must not be used in a bundle's manifest.
Bundles can require an osgi .nat ive capability which matches the native environment required for
the bundle to function properly, for example:

Require-Capability: «
 osgi.native; «
 filter:=" «
 (& «
 (osgi.native.osname~=win32) «
 (osgi.native.processor~=x86-64) «
 (osgi.native.language~=en) «
)"

The osgi .nat ive namespace is not used to specify native code paths packaged within a bundle. The
Bundle-NativeCode header is used to specify native code paths. The OSGi Framework converts a
Bundle-NativeCode into an osgi .nat ive requirement which describes the native environment re-
quired to execute native code packaged within a Bundle (see Loading Native Code Libraries on page
76). There is no need for a bundle to specify both a Bundle-NativeCode header and an osgi .nat ive re-
quirement.

Native code included in a Fragment Bundle gets loaded by the class loaders of the Host Bundles the
Fragment is attached to, therefore the osgi .nat ive requirement is hosted when it is part of a Frag-
ment. That is, a requirement from this namespace must be treated as part of the Host Bundles the
Fragment is attached to.

The osgi .nat ive capability is defined in table Table 8.8 and in the NativeNamespace class.

Table 8.8 osgi.native Namespace definition

Name Kind M/O Type Syntax Description
osgi .nat ive.osname CA M List

<Str ing>

osname

(',' osname)*

A comma separated list of canonical os name
aliases to the org.osgi .f ramework.os.name
launching property value (See Table 4.3 and
[11] OSGi Reference Names). For example,
an org.osgi .f ramework.os.name value of
Windows95 will get a List<Str ing> value of
Windows95,Windows 95,Win95,Win32

osgi .nat ive.osversion CA M Version version A Version as parsed from the value of the
org.osgi .f ramework.os.version launching
property

osgi .nat ive.processor CA M List

<Str ing>

processor

(',' processor)*

A comma separated list of canon-
ical processor aliases to the
org.osgi .f ramework.processor launch-
ing property value (See Table 4.2 and
[11] OSGi Reference Names). For example,
an org.osgi .f ramework.processor val-
ue of x86 will get a List<Str ing> value of
x86,pentium,i386, i486, i586, i686

Framework Namespaces Specification Version 1.1 References

OSGi Core Release 7 Page 179

Name Kind M/O Type Syntax Description
osgi .nat ive. language CA M String The value of the

org.osgi .f ramework. language launching
property

In addition to the attributes defined in Table 8.8 an OSGi Framework must populate the osgi .nat ive
capability attributes with the values included in the Framework launching properties (see Launch-
ing Properties on page 102). Launching property keys that start with osgi .nat ive. are excluded to pre-
vent collisions with the defined capability attribute keys.

8.8 References

[1] Specification References
https://www.osgi.org/developer/specifications/reference/

8.9 Changes
• Added osgi .ee capability names for Java SE Embedded compact profiles in osgi.ee Namespace on

page 172.
• Updated osgi .ee description to indicate that bundles should import the java.* packages they re-

quire to ensure the runtime provides them.

https://www.osgi.org/developer/specifications/reference/

Changes Framework Namespaces Specification Version 1.1

Page 180 OSGi Core Release 7

Start Level API Specification Version 1.0 Introduction

OSGi Core Release 7 Page 181

9 Start Level API Specification

Version 1.0

9.1 Introduction
This specification describes how to enable a management agent to control the relative starting and
stopping order of bundles in an OSGi framework.

The management agent can set the start levels for bundles and set the active start level of the Frame-
work, which will start and stop the appropriate bundles. Only bundles that have a start level less or
equal to this active start level must be active. The purpose of the Start Level API is to allow the man-
agement agent to control, in detail, what bundles will be started and stopped and when this occurs.

9.1.1 Essentials

• Ordering - A management agent should be able to order the startup and shutdown sequences of
bundles.

• Levels - The management agent should support a virtually unlimited number of levels.

9.1.2 Entities

• Bundle Start Level - The adapter on a bundle that is used by a management agent to order the start-
up and shutdown sequences of bundles.

• Framework Start Level - The adapter that is used to set the framework start levels.
• Management Agent - A bundle that is provided by the Operator to implement an Operator specific

policy.
• Framework Event - See Events on page 127.
• Framework Listener - See Listeners on page 127.

Figure 9.1 Class Diagram org.osgi.framework.startlevel package

<<interface>>
Bundle

<<interface>>
Bundle Start
Level

<<interface>>
Framework
Start Level

adapt
1

0..1 0..1

9.2 Start Level API
The Start Level API provides the following functions:

• Controls the beginning start level of the OSGi Framework.

The Concept of a Start Level Start Level API Specification Version 1.0

Page 182 OSGi Core Release 7

• Is used to modify the active start level of the Framework.
• Can be used to assign a specific start level to a bundle.
• Can set the initial start level for newly installed bundles.

Defining the order in which bundles are started and stopped is useful for the following:

• Safe mode - The management agent can implement a safe mode. In this mode, only fully trusted
bundles are started. Safe mode might be necessary when a bundle causes a failure at startup that
disrupts normal operation and prevents correction of the problem.

• Splash screen - If the total startup time is long, it might be desirable to show a splash screen dur-
ing initialization. This improves the user's perception of the boot time of the device. The startup
ordering can ensure that the right bundle is started first.

• Handling erratic bundles - Problems can occur because bundles require services to be available
when they are activated (this is a programming error). By controlling the start order, the manage-
ment agent can prevent these problems.

• High priority bundles - Certain tasks such as metering need to run as quickly as possible and can-
not have a long startup delay. These bundles can be started first.

Start levels are not intended to be used for ensuring that dependencies are met when a bundle is
started. Any of the life cycle actions (install/update/uninstall) can cause a dependency to become
unavailable regardless of start levels.

9.2.1 Adaptations
This specification provides two adaptations of a Bundle object to a:

• BundleStartLevel - Used to get and set the start level on a specific bundle.
• FrameworkStartLevel - Used to get and control the framework start level. This adaptation must

return null for any other bundle than the system bundle (bundle 0).

9.2.2 Bundle Start Level Bundle Adaptation
The adaptation provides the following methods:

• setStartLevel(int) - Sets the current start level for the adapted bundle.
• getStartLevel() - Gets the current start level for the adapted bundle.
• isAct ivat ionPol icyUsed() - Answer if the activation policy is used.
• isPersistentlyStarted() - Answer if this bundle as persistently started.

9.2.3 Framework Start Level Bundle Adaptation
The Framework Start Level adaptation is only possible for the system bundle. Other bundles must
return nul l for this adaptation. The adaptation provides the following methods:

• getInit ia lBundleStartLevel() - Return the start level to assign for newly installed bundles.
• setInit ia lBundleStartLevel(int) - Set the initial start level.
• getStartLevel() - Get the current framework start level.
• setStartLevel(int ,FrameworkListener. . .) - Set the current framework start level and provide an

optional callback Framework Listener. This listener is called back when the set start level has
been reached.

9.3 The Concept of a Start Level
A start level is defined as a non-negative integer. A start level of 0 (zero) is the state in which the
Framework has either not been launched or has completed shutdown (these two states are consid-

Start Level API Specification Version 1.0 The Concept of a Start Level

OSGi Core Release 7 Page 183

ered equivalent). In this state, no bundles are running. Progressively higher integral values represent
progressively higher start levels. For example, 2 is a higher start level than 1. The Framework must
support all positive int values (Integer.MAX_VALUE) for start levels.

The Framework has an active start level that is used to decide which bundles can be started. All bun-
dles must be assigned a bundle start level. This is the minimum start level to start a bundle. The bun-
dle start level can be set with the setStartLevel(int) method on the BundleStartLevel object. When
a bundle is installed, it is initially assigned the bundle start level returned by getInit ia lBundleS-
tartLevel() on a FrameworkStartLevel object. The initial bundle start level to be used when bundles
are installed can be set with setInit ia lBundleStartLevel(int) .

In addition, a bundle can be persistently marked as started or stopped with the Bundle start and stop
methods. A bundle cannot run unless it is marked started, regardless of the bundle's start level.

9.3.1 Changing the Active Start Level
A management agent can influence the active start level with the setStartLevel(int) method. The
Framework must then increase or decrease the active start level by 1 until the requested start level
is reached. The process of starting or stopping bundles, which is initiated by the setStartLevel(int)
method, must take place asynchronously.

This means that the active start level (the one that is active at a certain moment in time) must be
changed to a new start level, called the requested start level. The active and requested levels differ dur-
ing a certain period when the Framework starts and stops the appropriate bundles. Moving from the
active start level to the requested start level must take place in increments of one (1).

If the requested start level is higher than the active start level, the Framework must increase the
start level by one and then start all bundles that meet the following criteria:

• Bundles that are persistently marked started, and
• Bundles that have a bundle start level equal to the new active start level.

The Framework continues increasing the active start level and starting the appropriate bundles un-
til it has started all bundles with a bundle start level that equals the requested start level.

The Framework must not increase to the next active start level until all started bundles
have returned from their BundleActivator.start method normally or with an exception. A
FrameworkEvent.ERROR must be broadcast when the BundleActivator.start method throws an ex-
ception.

If the requested start level is lower than the active start level, the Framework must stop all bun-
dles that have a bundle start level that is equal to the active start level. The Framework must then
decrease the active start level by 1. If the active start level is still higher than the requested start
level, it should continue stopping the appropriate bundles and decreasing the active start level
until the requested start level is reached. A FrameworkEvent.ERROR must be broadcast when the
BundleActivator.stop method throws an exception.

If the requested start level is the active start level, the Framework will not start or stop any bundles.

When the requested start level is reached and all bundles satisfy the condition
that their bundle start level <= active start level in order to be started, then the
FrameworkEvent.STARTLEVEL_CHANGED event must be sent to all registered FrameworkListener
objects. If the requested start level and active start level are equal, then this event may arrive before
the setStartLevel method has returned.

It must therefore always be true that:

• A bundle is started, or will be started soon, if the start level is less or equal to the active start level.
• A bundle is stopped, or will be stopped soon, when it has a start level more than the active start

level.

The Concept of a Start Level Start Level API Specification Version 1.0

Page 184 OSGi Core Release 7

These steps are depicted in the flow chart in Figure 9.2.

Figure 9.2 Move to requested start level R, active level is A, B is a bundle's start level

move to R

A<R

Start All
bundles where

B = A

A = A+1

A==R

A = A-1

A>R

Stop All
bundles where

B = A

A==R

A==RA==RA<R A>R

publish event

If the Framework is currently involved in changing the active start level, it must first reach the pre-
viously requested start level before it is allowed to continue with a newly requested start level. For
example, assume the active start level is 5 and the Framework is requested to transition to start level
3. Before start level 3 is reached, another request is made to transition to start level 7. In this case, the
OSGi Framework must first complete the transition to start level 3 before it transitions to start level
7.

9.3.2 Startup Sequence
At startup, the Framework must have an active start level of zero. It must then move the active start
level to the beginning start level. The beginning start level is specified with an argument when start-
ing the Framework or through some other means, which is left undefined here. If no beginning start
level is given, the Framework must assume a beginning start level of one (1).

The Framework must launch and then set the requested start level to the beginning start
level. It must then follow the procedure described in Changing the Active Start Level on page
183 to make the active start level equal the beginning start level, with the exception of the
FrameworkEvent.START_LEVEL_CHANGED event broadcast. During launching, the Framework
must broadcast a FrameworkEvent.STARTED event when the beginning start level is reached.

9.3.3 Shutdown Sequence
When the Framework shuts down, the requested start level must be set to zero. The Framework
must then follow the process described in Changing the Active Start Level on page 183 to make the
active start level equal to zero.

9.3.4 Changing a Bundle's Start Level
Bundles are assigned an initial start level when they are installed. The default value for the
initial start level is set to one, but can be changed with the setInit ia lBundleStartLevel(int)
method on the FrameworkStartLevel object. A bundle's start level will not change when the
setInit ia lBundleStartLevel(int) method later modifies the default initial start level.

Once installed, the start level of a bundle can be changed with setStartLevel(int) . When a bundle's
start level is changed and the bundle is marked persistently to be started, then the OSGi Framework

Start Level API Specification Version 1.0 Example Applications

OSGi Core Release 7 Page 185

must compare the new bundle start level to the active start level. For example, assume that the ac-
tive start level is 5 and a bundle with start level 5 is started. If the bundle's start level subsequently is
changed to 6 then this bundle must be stopped by the OSGi Framework but it must still be marked
persistently to be started.

9.3.5 Starting a Bundle
If a bundle is started by calling the Bundle.start method, then the OSGi Framework must mark the
bundle as persistently started. The OSGi Framework must not actually start a bundle when the ac-
tive start level is less than the bundle's start level. In that case, the state must not change.

9.3.6 Exceptions in the Bundle Activator
If the BundleActivator.start or stop method throws an Exception , then the handling of this Excep-
t ion is different depending who invoked the start or stop method.

If the bundle is started/stopped due to a change in the active start level or the bundle's
start level, then the Exception must be wrapped in a BundleException and broadcast as a
FrameworkEvent.ERROR event. Otherwise, a new BundleException must be created containing the
exception and this BundleException is then thrown to the caller.

9.3.7 System Bundle
The System Bundle is defined to have a start level of zero. The start level of the System Bundle can-
not be changed.

9.4 Example Applications
The Start Level API allows a management agent to implement many different startup schemes. The
following sections show some examples.

9.4.1 Safe Mode Startup Scheme
A management agent can implement a safe mode in which it runs trusted bundles at level 1 and runs
itself on level 2. When the management agent gets control, it constructs a list of all applications to
be started. This list can be constructed from BundleContext.getBundles() . The management agent
checks each bundle to determine if it is not started but is marked to be started persistently by calling
the isPersistentlyStarted() method of the Start Level API.

Before it starts each bundle, the management agent persistently records the bundle to be started and
then starts the bundle. This continues until all bundles are started. When all bundles are successful-
ly started, the management agent persistently records that all bundles started without problems.

If the OSGi framework is restarted, the management agent should inspect the persistently recorded
information. If the persistently recorded information indicates a bundle failure, the management
agent should try to restart the system without that application bundle since that bundle failed. Al-
ternatively, it could contact its Remote Manager and ask for assistance.

9.4.2 Splash Screen Startup Scheme
A splash screen is a popup containing startup information about an application. The popup pro-
vides feedback to the end user indicating that the system is still initializing. The Start Level API can
be used by a bundle to pop-up a splash screen before any other bundle is started, and remove it once
all bundles have been started. The splash-screen bundle would start at start level 1 and all other bun-
dles would start at start level 2 or higher.

class SplashScreen implements
 BundleActivator, FrameworkListener {

Security Start Level API Specification Version 1.0

Page 186 OSGi Core Release 7

 Screen screen;
 public void start(BundleContext context) {
 context.addFrameworkListener(this);
 screen = createSplash();
 screen.open();
 }
 public void stop(BundleContext context) {
 screen.close();
 }
 public void frameworkEvent(FrameworkEvent event) {
 if (event.getType() == FrameworkEvent.STARTED)
 screen.close();
 }
 Screen createSplash() { ... }
}

9.5 Security
The Start Level API requires Adapt Permission with action ADAPT for the following type:

• org.osgi .f ramework.start level .BundleStartLevel
• org.osgi .f ramework.start level .FrameworkStartLevel

The Start Level methods that mutate state require an additional Admin Permission with the action:

• EXECUTE - For bundles that must be able to modify a bundle's start level
• STARTLEVEL - For modifying the Framework's active start level.

Framework API org.osgi.framework

OSGi Core Release 7 Page 187

10 Framework API

10.1 org.osgi.framework

Framework Package Version 1.9.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework; vers ion="[1.9,2.0)"

10.1.1 Summary

• AdaptPermission - A bundle's authority to adapt an object to a type.
• AdminPermission - A bundle's authority to perform specific privileged administrative opera-

tions on or to get sensitive information about a bundle.
• AllServiceListener - A ServiceEvent listener that does not filter based upon package wiring.
• Bundle - An installed bundle in the Framework.
• BundleActivator - Customizes the starting and stopping of a bundle.
• BundleContext - A bundle's execution context within the Framework.
• BundleEvent - An event from the Framework describing a bundle lifecycle change.
• BundleException - A Framework exception used to indicate that a bundle lifecycle problem oc-

curred.
• BundleListener - A BundleEvent listener.
• BundlePermission - A bundle's authority to require or provide a bundle or to receive or attach

fragments.
• BundleReference - A reference to a Bundle.
• Capabi l i tyPermission - A bundle's authority to provide or require a capability.
• Configurable - Supports a configuration object.
• Constants - Defines standard names for the OSGi environment system properties, service prop-

erties, and Manifest header attribute keys.
• Fi l ter - An RFC 1960 [http://www.ietf.org/rfc/rfc1960.txt]-based Filter.
• FrameworkEvent - A general event from the Framework.
• FrameworkListener - A FrameworkEvent listener.
• FrameworkUti l - Framework Utility class.
• Inval idSyntaxException - A Framework exception used to indicate that a filter string has an in-

valid syntax.
• PackagePermission - A bundle's authority to import or export a package.
• PrototypeServiceFactory - A factory for prototype scope services.
• ServiceEvent - An event from the Framework describing a service lifecycle change.
• ServiceException - A service exception used to indicate that a service problem occurred.
• ServiceFactory - A factory for bundle scope services.
• ServiceListener - A ServiceEvent listener.
• ServiceObjects - Allows multiple service objects for a service to be obtained.
• ServicePermission - A bundle's authority to register or get a service.

http://www.ietf.org/rfc/rfc1960.txt
http://www.ietf.org/rfc/rfc1960.txt

org.osgi.framework Framework API

Page 188 OSGi Core Release 7

• ServiceReference - A reference to a service.
• ServiceRegistrat ion - A registered service.
• SynchronousBundleListener - A synchronous BundleEvent listener.
• Unfi l teredServiceListener - A ServiceEvent listener that does not filter based upon any filter

string specified to BundleContext.addServiceListener(ServiceListener, String).
• Version - Version identifier for capabilities such as bundles and packages.
• VersionRange - Version range.

10.1.2 public final class AdaptPermission
extends BasicPermission
A bundle's authority to adapt an object to a type.

AdaptPermission has one action: adapt .

Concurrency Thread-safe

10.1.2.1 public static final String ADAPT = "adapt"

The action string in it iate .

10.1.2.2 public AdaptPermission(String filter, String actions)

filter A filter expression. Filter attribute names are processed in a case sensitive manner. A special value of
"*" can be used to match all adaptations.

actions adapt .

□ Creates a new granted AdaptPermission object. This constructor must only be used to create a per-
mission that is going to be checked.

Examples:

 (adaptClass=com.acme.*)
 (&(signer=*,o=ACME,c=US)(adaptClass=com.acme.*))
 (signer=*,o=ACME,c=US)

When a signer key is used within the filter expression the signer value must escape the special filter
chars ('*', '(', ')').

The name is specified as a filter expression. The filter gives access to the following attributes:

• signer - A Distinguished Name chain used to sign the exporting bundle. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules defined for a DN chain.

• location - The location of the exporting bundle.
• id - The bundle ID of the exporting bundle.
• name - The symbolic name of the exporting bundle.
• adaptClass - The name of the type to which an object can be adapted.

Filter attribute names are processed in a case sensitive manner.

Throws I l legalArgumentException– If the filter has an invalid syntax.

10.1.2.3 public AdaptPermission(String adaptClass, Bundle adaptableBundle, String actions)

adaptClass The name of the type to which an object can be adapted.

adaptableBundle The bundle associated with the object being adapted.

actions adapt .

Framework API org.osgi.framework

OSGi Core Release 7 Page 189

□ Creates a new requested AdaptPermission object to be used by the code that must perform checkPer-
mission . AdaptPermission objects created with this constructor cannot be added to an AdaptPermis-
sion permission collection.

10.1.2.4 public boolean equals(Object obj)

obj The object to test for equality with this AdaptPermission object.

□ Determines the equality of two AdaptPermission objects. This method checks that specified permis-
sion has the same name and AdaptPermission actions as this AdaptPermission object.

Returns true if obj is a AdaptPermission , and has the same name and actions as this AdaptPermission object;
fa lse otherwise.

10.1.2.5 public String getActions()

□ Returns the canonical string representation of the AdaptPermission actions.

Always returns present AdaptPermission actions in the following order: adapt .

Returns Canonical string representation of the AdaptPermission actions.

10.1.2.6 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

10.1.2.7 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object.

This method checks that the filter of the target is implied by the adapt class name of this object. The
list of AdaptPermission actions must either match or allow for the list of the target object to imply
the target AdaptPermission action.

Returns true if the specified permission is implied by this object; fa lse otherwise.

10.1.2.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing AdaptPermission objects.

Returns A new PermissionCol lect ion object.

10.1.3 public final class AdminPermission
extends BasicPermission
A bundle's authority to perform specific privileged administrative operations on or to get sensitive
information about a bundle. The actions for this permission are:

 Action Methods
 class Bundle.loadClass
 execute Bundle.start
 Bundle.stop
 BundleStartLevel.setStartLevel
 extensionLifecycle BundleContext.installBundle for extension bundles
 Bundle.update for extension bundles
 Bundle.uninstall for extension bundles
 lifecycle BundleContext.installBundle

org.osgi.framework Framework API

Page 190 OSGi Core Release 7

 Bundle.update
 Bundle.uninstall
 listener BundleContext.addBundleListener for
 SynchronousBundleListener
 BundleContext.removeBundleListener for
 SynchronousBundleListener
 metadata Bundle.getHeaders
 Bundle.getLocation
 resolve FrameworkWiring.refreshBundles
 FrameworkWiring.resolveBundles
 resource Bundle.getResource
 Bundle.getResources
 Bundle.getEntry
 Bundle.getEntryPaths
 Bundle.findEntries
 Bundle resource/entry URL creation
 startlevel FrameworkStartLevel.setStartLevel
 FrameworkStartLevel.setInitialBundleStartLevel
 context Bundle.getBundleContext
 weave WovenClass.getBytes
 WovenClass.setBytes
 WovenClass.getDynamicImports for modification

The special action "*" will represent all actions. The resolve action is implied by the class , execute
and resource actions.

The name of this permission is a filter expression. The filter gives access to the following attributes:

• signer - A Distinguished Name chain used to sign a bundle. Wildcards in a DN are not matched
according to the filter string rules, but according to the rules defined for a DN chain.

• location - The location of a bundle.
• id - The bundle ID of the designated bundle.
• name - The symbolic name of a bundle.

Filter attribute names are processed in a case sensitive manner.

Concurrency Thread-safe

10.1.3.1 public static final String CLASS = "class"

The action string class . The class action implies the resolve action.

Since 1.3

10.1.3.2 public static final String CONTEXT = "context"

The action string context .

Since 1.4

10.1.3.3 public static final String EXECUTE = "execute"

The action string execute . The execute action implies the resolve action.

Since 1.3

10.1.3.4 public static final String EXTENSIONLIFECYCLE = "extensionLifecycle"

The action string extensionLifecycle .

Since 1.3

Framework API org.osgi.framework

OSGi Core Release 7 Page 191

10.1.3.5 public static final String LIFECYCLE = "lifecycle"

The action string l i fecycle .

Since 1.3

10.1.3.6 public static final String LISTENER = "listener"

The action string l istener .

Since 1.3

10.1.3.7 public static final String METADATA = "metadata"

The action string metadata .

Since 1.3

10.1.3.8 public static final String RESOLVE = "resolve"

The action string resolve . The resolve action is implied by the class , execute and resource actions.

Since 1.3

10.1.3.9 public static final String RESOURCE = "resource"

The action string resource . The resource action implies the resolve action.

Since 1.3

10.1.3.10 public static final String STARTLEVEL = "startlevel"

The action string start level .

Since 1.3

10.1.3.11 public static final String WEAVE = "weave"

The action string weave .

Since 1.6

10.1.3.12 public AdminPermission()

□ Creates a new AdminPermission object that matches all bundles and has all actions. Equivalent to
AdminPermission("*","*");

10.1.3.13 public AdminPermission(String filter, String actions)

filter A filter expression that can use signer, location, id, and name keys. A value of "*" or nul l matches all
bundle. Filter attribute names are processed in a case sensitive manner.

actions class , execute , extensionLifecycle , l i fecycle , l istener , metadata , resolve , resource , start level , con-
text or weave . A value of "*" or nul l indicates all actions.

□ Create a new AdminPermission. This constructor must only be used to create a permission that is
going to be checked.

Examples:

 (signer=*,o=ACME,c=US)
 (&(signer=*,o=ACME,c=US)(name=com.acme.*)
 (location=http://www.acme.com/bundles/*))
 (id>=1)

When a signer key is used within the filter expression the signer value must escape the special filter
chars ('*', '(', ')').

org.osgi.framework Framework API

Page 192 OSGi Core Release 7

Null arguments are equivalent to "*".

Throws I l legalArgumentException– If the filter has an invalid syntax.

10.1.3.14 public AdminPermission(Bundle bundle, String actions)

bundle A bundle.

actions class , execute , extensionLifecycle , l i fecycle , l istener , metadata , resolve , resource , start level , con-
text , weave . A value of "*" or nul l indicates all actions.

□ Creates a new requested AdminPermission object to be used by the code that must perform check-
Permission . AdminPermission objects created with this constructor cannot be added to an AdminPer-
mission permission collection.

Since 1.3

10.1.3.15 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Determines the equality of two AdminPermission objects.

Returns true if obj is equivalent to this AdminPermission ; fa lse otherwise.

10.1.3.16 public String getActions()

□ Returns the canonical string representation of the AdminPermission actions.

Always returns present AdminPermission actions in the following order: class , execute , extension-
Lifecycle , l i fecycle , l istener , metadata , resolve , resource , start level , context , weave .

Returns Canonical string representation of the AdminPermission actions.

10.1.3.17 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

10.1.3.18 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object. This method throws an exception if
the specified permission was not constructed with a bundle.

This method returns true if the specified permission is an AdminPermission AND

• this object's filter matches the specified permission's bundle ID, bundle symbolic name, bundle
location and bundle signer distinguished name chain OR

• this object's filter is "*"

AND this object's actions include all of the specified permission's actions.

Special case: if the specified permission was constructed with "*" filter, then this method returns
true if this object's filter is "*" and this object's actions include all of the specified permission's ac-
tions

Returns true if the specified permission is implied by this object; fa lse otherwise.

10.1.3.19 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing AdminPermissions.

Framework API org.osgi.framework

OSGi Core Release 7 Page 193

Returns A new PermissionCol lect ion object.

10.1.4 public interface AllServiceListener
extends ServiceListener
A ServiceEvent listener that does not filter based upon package wiring. AllServiceListener is a listen-
er interface that may be implemented by a bundle developer. When a ServiceEvent is fired, it is syn-
chronously delivered to an AllServiceListener . The Framework may deliver ServiceEvent objects to
an AllServiceListener out of order and may concurrently call and/or reenter an AllServiceListener .

An AllServiceListener object is registered with the Framework using the
BundleContext.addServiceListener method. AllServiceListener objects are called with a Ser-
viceEvent object when a service is registered, modified, or is in the process of unregistering.

ServiceEvent object delivery to AllServiceListener objects is filtered by the filter specified when the
listener was registered. If the Java Runtime Environment supports permissions, then additional fil-
tering is done. ServiceEvent objects are only delivered to the listener if the bundle which defines the
listener object's class has the appropriate ServicePermission to get the service using at least one of
the named classes under which the service was registered.

Unlike normal ServiceListener objects, AllServiceListener objects receive all ServiceEvent objects
regardless of whether the package source of the listening bundle is equal to the package source of
the bundle that registered the service. This means that the listener may not be able to cast the ser-
vice object to any of its corresponding service interfaces if the service object is retrieved.

See Also ServiceEvent, ServicePermission

Since 1.3

Concurrency Thread-safe

10.1.5 public interface Bundle
extends Comparable<Bundle>
An installed bundle in the Framework.

A Bundle object is the access point to define the lifecycle of an installed bundle. Each bundle in-
stalled in the OSGi environment must have an associated Bundle object.

A bundle must have a unique identity, a long , chosen by the Framework. This identity must not
change during the lifecycle of a bundle, even when the bundle is updated. Uninstalling and then re-
installing the bundle must create a new unique identity.

A bundle can be in one of six states:

• UNINSTALLED
• INSTALLED
• RESOLVED
• STARTING
• STOPPING
• ACTIVE

Values assigned to these states have no specified ordering; they represent bit values that may be
ORed together to determine if a bundle is in one of the valid states.

A bundle should only have active threads of execution when its state is one of STARTING ,ACTIVE , or
STOPPING . An UNINSTALLED bundle can not be set to another state; it is a zombie and can only be
reached because references are kept somewhere.

The Framework is the only entity that is allowed to create Bundle objects, and these objects are only
valid within the Framework that created them.

org.osgi.framework Framework API

Page 194 OSGi Core Release 7

Bundles have a natural ordering such that if two Bundles have the same bundle id they are equal. A
Bundle is less than another Bundle if it has a lower bundle id and is greater if it has a higher bundle
id.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.5.1 public static final int ACTIVE = 32

The bundle is now running.

A bundle is in the ACTIVE state when it has been successfully started and activated.

The value of ACTIVE is 0x00000020.

10.1.5.2 public static final int INSTALLED = 2

The bundle is installed but not yet resolved.

A bundle is in the INSTALLED state when it has been installed in the Framework but is not or cannot
be resolved.

This state is visible if the bundle's code dependencies are not resolved. The Framework may attempt
to resolve an INSTALLED bundle's code dependencies and move the bundle to the RESOLVED state.

The value of INSTALLED is 0x00000002.

10.1.5.3 public static final int RESOLVED = 4

The bundle is resolved and is able to be started.

A bundle is in the RESOLVED state when the Framework has successfully resolved the bundle's code
dependencies. These dependencies include:

• The bundle's class path from its Constants.BUNDLE_CLASSPATH Manifest header.
• The bundle's package dependencies from its Constants.EXPORT_PACKAGE and

Constants.IMPORT_PACKAGE Manifest headers.
• The bundle's required bundle dependencies from its Constants.REQUIRE_BUNDLE Manifest

header.
• A fragment bundle's host dependency from its Constants.FRAGMENT_HOST Manifest header.

Note that the bundle is not active yet. A bundle must be put in the RESOLVED state before it can be
started. The Framework may attempt to resolve a bundle at any time.

The value of RESOLVED is 0x00000004.

10.1.5.4 public static final int SIGNERS_ALL = 1

Request that all certificates used to sign the bundle be returned.

See Also getSignerCertificates(int)

Since 1.5

10.1.5.5 public static final int SIGNERS_TRUSTED = 2

Request that only certificates used to sign the bundle that are trusted by the framework be returned.

See Also getSignerCertificates(int)

Since 1.5

10.1.5.6 public static final int START_ACTIVATION_POLICY = 2

The bundle start operation must activate the bundle according to the bundle's declared activation
policy.

Framework API org.osgi.framework

OSGi Core Release 7 Page 195

This bit may be set when calling start(int) to notify the framework that the bundle must be activat-
ed using the bundle's declared activation policy.

See Also Constants.BUNDLE_ACTIVATIONPOLICY, start(int)

Since 1.4

10.1.5.7 public static final int START_TRANSIENT = 1

The bundle start operation is transient and the persistent autostart setting of the bundle is not mod-
ified.

This bit may be set when calling start(int) to notify the framework that the autostart setting of the
bundle must not be modified. If this bit is not set, then the autostart setting of the bundle is modi-
fied.

See Also start(int)

Since 1.4

10.1.5.8 public static final int STARTING = 8

The bundle is in the process of starting.

A bundle is in the STARTING state when its start method is active. A bundle must be in this state
when the bundle's BundleActivator.start(BundleContext) is called. If the BundleActivator.start
method completes without exception, then the bundle has successfully started and must move to
the ACTIVE state.

If the bundle has a lazy activation policy, then the bundle may remain in this state for some time
until the activation is triggered.

The value of STARTING is 0x00000008.

10.1.5.9 public static final int STOP_TRANSIENT = 1

The bundle stop is transient and the persistent autostart setting of the bundle is not modified.

This bit may be set when calling stop(int) to notify the framework that the autostart setting of the
bundle must not be modified. If this bit is not set, then the autostart setting of the bundle is modi-
fied.

See Also stop(int)

Since 1.4

10.1.5.10 public static final int STOPPING = 16

The bundle is in the process of stopping.

A bundle is in the STOPPING state when its stop method is active. A bundle must be in this
state when the bundle's BundleActivator.stop(BundleContext) method is called. When the
BundleActivator.stop method completes the bundle is stopped and must move to the RESOLVED
state.

The value of STOPPING is 0x00000010.

10.1.5.11 public static final int UNINSTALLED = 1

The bundle is uninstalled and may not be used.

The UNINSTALLED state is only visible after a bundle is uninstalled; the bundle is in an unusable
state but references to the Bundle object may still be available and used for introspection.

The value of UNINSTALLED is 0x00000001.

org.osgi.framework Framework API

Page 196 OSGi Core Release 7

10.1.5.12 public A adapt(Class<A> type)

Type Parameters <A>

<A> The type to which this bundle is to be adapted.

type Class object for the type to which this bundle is to be adapted.

□ Adapt this bundle to the specified type.

Adapting this bundle to the specified type may require certain checks, including security checks, to
succeed. If a check does not succeed, then this bundle cannot be adapted and nul l is returned.

Returns The object, of the specified type, to which this bundle has been adapted or nul l if this bundle cannot
be adapted to the specified type.

Throws SecurityException– If the caller does not have the appropriate AdaptPermission[type,this ,ADAPT] ,
and the Java Runtime Environment supports permissions.

Since 1.6

10.1.5.13 public Enumeration<URL> findEntries(String path, String filePattern, boolean recurse)

path The path name in which to look. The path is always relative to the root of this bundle and may be-
gin with "/". A path value of "/" indicates the root of this bundle.

filePattern The file name pattern for selecting entries in the specified path. The pattern is only matched against
the last element of the entry path. If the entry is a directory then the trailing "/" is not used for pat-
tern matching. Substring matching is supported, as specified in the Filter specification, using the
wildcard character ("*"). If null is specified, this is equivalent to "*" and matches all files.

recurse If true , recurse into subdirectories. Otherwise only return entries from the specified path.

□ Returns entries in this bundle and its attached fragments. This bundle's class loader is not used to
search for entries. Only the contents of this bundle and its attached fragments are searched for the
specified entries. If this bundle's state is INSTALLED , this method must attempt to resolve this bun-
dle before attempting to find entries.

This method is intended to be used to obtain configuration, setup, localization and other informa-
tion from this bundle. This method takes into account that the "contents" of this bundle can be ex-
tended with fragments. This "bundle space" is not a namespace with unique members; the same
entry name can be present multiple times. This method therefore returns an enumeration of URL
objects. These URLs can come from different JARs but have the same path name. This method can
either return only entries in the specified path or recurse into subdirectories returning entries in
the directory tree beginning at the specified path. Fragments can be attached after this bundle is re-
solved, possibly changing the set of URLs returned by this method. If this bundle is not resolved, on-
ly the entries in the JAR file of this bundle are returned.

Examples:

 // List all XML files in the OSGI-INF directory and below
 Enumeration e = b.findEntries("OSGI-INF", "*.xml", true);

 // Find a specific localization file
 Enumeration e = b.findEntries("OSGI-INF/l10n",
 "bundle_nl_DU.properties", false);
 if (e.hasMoreElements())
 return (URL) e.nextElement();

URLs for directory entries must have their path end with "/".

Note: Jar and zip files are not required to include directory entries. URLs to directory entries will not
be returned if the bundle contents do not contain directory entries.

Framework API org.osgi.framework

OSGi Core Release 7 Page 197

Returns An enumeration of URL objects for each matching entry, or nul l if no matching entry could be found
or if the caller does not have the appropriate AdminPermission[this ,RESOURCE] , and the Java Run-
time Environment supports permissions. The URLs are sorted such that entries from this bundle are
returned first followed by the entries from attached fragments in attachment order. If this bundle is
a fragment, then only matching entries in this fragment are returned.

Throws I l legalStateException– If this bundle has been uninstalled.

Since 1.3

10.1.5.14 public BundleContext getBundleContext()

□ Returns this bundle's BundleContext. The returned BundleContext can be used by the caller to act
on behalf of this bundle.

If this bundle is not in the STARTING, ACTIVE, or STOPPING states or this bundle is a fragment
bundle, then this bundle has no valid BundleContext . This method will return nul l if this bundle has
no valid BundleContext .

Returns A BundleContext for this bundle or nul l if this bundle has no valid BundleContext .

Throws SecurityException– If the caller does not have the appropriate AdminPermission[this ,CONTEXT] ,
and the Java Runtime Environment supports permissions.

Since 1.4

10.1.5.15 public long getBundleId()

□ Returns this bundle's unique identifier. This bundle is assigned a unique identifier by the Frame-
work when it was installed in the OSGi environment.

A bundle's unique identifier has the following attributes:

• Is unique and persistent.
• Is a long .
• Its value is not reused for another bundle, even after a bundle is uninstalled.
• Does not change while a bundle remains installed.
• Does not change when a bundle is updated.

This method must continue to return this bundle's unique identifier while this bundle is in the
UNINSTALLED state.

Returns The unique identifier of this bundle.

10.1.5.16 public File getDataFile(String filename)

filename A relative name to the file to be accessed.

□ Creates a Fi le object for a file in the persistent storage area provided for this bundle by the Frame-
work. This method will return nul l if the platform does not have file system support or this bundle
is a fragment bundle.

A Fi le object for the base directory of the persistent storage area provided for this bundle by the
Framework can be obtained by calling this method with an empty string as f i lename .

If the Java Runtime Environment supports permissions, the Framework will ensure that this bundle
has the java. io.F i lePermission with actions read ,write ,delete for all files (recursively) in the persis-
tent storage area provided for this bundle.

Returns A Fi le object that represents the requested file or nul l if the platform does not have file system sup-
port or this bundle is a fragment bundle.

Throws I l legalStateException– If this bundle has been uninstalled.

Since 1.6

org.osgi.framework Framework API

Page 198 OSGi Core Release 7

10.1.5.17 public URL getEntry(String path)

path The path name of the entry.

□ Returns a URL to the entry at the specified path in this bundle. This bundle's class loader is not used
to search for the entry. Only the contents of this bundle are searched for the entry.

The specified path is always relative to the root of this bundle and may begin with "/". A path value
of "/" indicates the root of this bundle.

Note: Jar and zip files are not required to include directory entries. URLs to directory entries will not
be returned if the bundle contents do not contain directory entries.

Returns A URL to the entry, or nul l if no entry could be found or if the caller does not have the appropriate
AdminPermission[this ,RESOURCE] and the Java Runtime Environment supports permissions.

Throws I l legalStateException– If this bundle has been uninstalled.

Since 1.3

10.1.5.18 public Enumeration<String> getEntryPaths(String path)

path The path name for which to return entry paths.

□ Returns an Enumeration of all the paths (Str ing objects) to entries within this bundle whose longest
sub-path matches the specified path. This bundle's class loader is not used to search for entries. Only
the contents of this bundle are searched.

The specified path is always relative to the root of this bundle and may begin with a "/". A path value
of "/" indicates the root of this bundle.

Returned paths indicating subdirectory paths end with a "/". The returned paths are all relative to
the root of this bundle and must not begin with "/".

Note: Jar and zip files are not required to include directory entries. Paths to directory entries will not
be returned if the bundle contents do not contain directory entries.

Returns An Enumeration of the entry paths (Str ing objects) or nul l if no entry could be found or if the caller
does not have the appropriate AdminPermission[this ,RESOURCE] and the Java Runtime Environ-
ment supports permissions.

Throws I l legalStateException– If this bundle has been uninstalled.

Since 1.3

10.1.5.19 public Dictionary<String, String> getHeaders()

□ Returns this bundle's Manifest headers and values. This method returns all the Manifest headers and
values from the main section of this bundle's Manifest file; that is, all lines prior to the first blank
line.

Manifest header names are case-insensitive. The methods of the returned Dictionary object must
operate on header names in a case-insensitive manner. If a Manifest header value starts with "%", it
must be localized according to the default locale. If no localization is found for a header value, the
header value without the leading "%" is returned.

For example, the following Manifest headers and values are included if they are present in the Mani-
fest file:

 Bundle-Name
 Bundle-Vendor
 Bundle-Version
 Bundle-Description
 Bundle-DocURL
 Bundle-ContactAddress

Framework API org.osgi.framework

OSGi Core Release 7 Page 199

This method must continue to return Manifest header information while this bundle is in the
UNINSTALLED state.

Returns An unmodifiable Dictionary object containing this bundle's Manifest headers and values.

Throws SecurityException– If the caller does not have the appropriate AdminPermission[this ,METADATA] ,
and the Java Runtime Environment supports permissions.

See Also Constants.BUNDLE_LOCALIZATION

10.1.5.20 public Dictionary<String, String> getHeaders(String locale)

locale The locale name into which the header values are to be localized. If the specified locale is nul l then
the locale returned by java.ut i l .Locale.getDefault is used. If the specified locale is the empty string,
this method will return the raw (unlocalized) manifest headers including any leading "%".

□ Returns this bundle's Manifest headers and values localized to the specified locale.

This method performs the same function as Bundle.getHeaders() except the manifest header values
are localized to the specified locale.

If a Manifest header value starts with "%", it must be localized according to the specified locale. If a
locale is specified and cannot be found, then the header values must be returned using the default
locale. Localizations are searched for in the following order:

 bn + "_" + Ls + "_" + Cs + "_" + Vs
 bn + "_" + Ls + "_" + Cs
 bn + "_" + Ls
 bn + "_" + Ld + "_" + Cd + "_" + Vd
 bn + "_" + Ld + "_" + Cd
 bn + "_" + Ld
 bn

Where bn is this bundle's localization basename, Ls , Cs and Vs are the specified locale (language,
country, variant) and Ld , Cd and Vd are the default locale (language, country, variant). If nul l is spec-
ified as the locale string, the header values must be localized using the default locale. If the empty
string ("") is specified as the locale string, the header values must not be localized and the raw (unlo-
calized) header values, including any leading "%", must be returned. If no localization is found for a
header value, the header value without the leading "%" is returned.

This method must continue to return Manifest header information while this bundle is in the
UNINSTALLED state, however the header values must only be available in the raw and default locale
values.

Returns An unmodifiable Dictionary object containing this bundle's Manifest headers and values.

Throws SecurityException– If the caller does not have the appropriate AdminPermission[this ,METADATA] ,
and the Java Runtime Environment supports permissions.

See Also getHeaders(), Constants.BUNDLE_LOCALIZATION

Since 1.3

10.1.5.21 public long getLastModified()

□ Returns the time when this bundle was last modified. A bundle is considered to be modified when it
is installed, updated or uninstalled.

The time value is the number of milliseconds since January 1, 1970, 00:00:00 UTC.

Returns The time when this bundle was last modified.

Since 1.3

org.osgi.framework Framework API

Page 200 OSGi Core Release 7

10.1.5.22 public String getLocation()

□ Returns this bundle's location identifier.

The location identifier is the location passed to BundleContext. instal lBundle when a bundle is in-
stalled. The location identifier does not change while this bundle remains installed, even if this bun-
dle is updated.

This method must continue to return this bundle's location identifier while this bundle is in the
UNINSTALLED state.

Returns The string representation of this bundle's location identifier.

Throws SecurityException– If the caller does not have the appropriate AdminPermission[this ,METADATA] ,
and the Java Runtime Environment supports permissions.

10.1.5.23 public ServiceReference<?>[] getRegisteredServices()

□ Returns this bundle's ServiceReference list for all services it has registered or nul l if this bundle has
no registered services.

If the Java runtime supports permissions, a ServiceReference object to a service is included in the
returned list only if the caller has the ServicePermission to get the service using at least one of the
named classes the service was registered under.

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at anytime.

Returns An array of ServiceReference objects or nul l .

Throws I l legalStateException– If this bundle has been uninstalled.

See Also ServiceRegistration, ServiceReference, ServicePermission

10.1.5.24 public URL getResource(String name)

name The name of the resource. See ClassLoader.getResource for a description of the format of a resource
name.

□ Find the specified resource from this bundle's class loader. This bundle's class loader is called to
search for the specified resource. If this bundle's state is INSTALLED , this method must attempt to re-
solve this bundle before attempting to get the specified resource. If this bundle cannot be resolved,
then only this bundle must be searched for the specified resource. Imported packages cannot be
searched when this bundle has not been resolved. If this bundle is a fragment bundle then nul l is re-
turned.

Note: Jar and zip files are not required to include directory entries. URLs to directory entries will not
be returned if the bundle contents do not contain directory entries.

Returns A URL to the named resource, or nul l if the resource could not be found or if this bundle is a frag-
ment bundle or if the caller does not have the appropriate AdminPermission[this ,RESOURCE] , and
the Java Runtime Environment supports permissions.

Throws I l legalStateException– If this bundle has been uninstalled.

See Also getEntry(String), findEntries(String, String, boolean)

Since 1.1

10.1.5.25 public Enumeration<URL> getResources(String name) throws IOException

name The name of the resource. See ClassLoader.getResources for a description of the format of a re-
source name.

□ Find the specified resources from this bundle's class loader. This bundle's class loader is called to
search for the specified resources. If this bundle's state is INSTALLED , this method must attempt
to resolve this bundle before attempting to get the specified resources. If this bundle cannot be re-

Framework API org.osgi.framework

OSGi Core Release 7 Page 201

solved, then only this bundle must be searched for the specified resources. Imported packages can-
not be searched when a bundle has not been resolved. If this bundle is a fragment bundle then nul l is
returned.

Note: Jar and zip files are not required to include directory entries. URLs to directory entries will not
be returned if the bundle contents do not contain directory entries.

Returns An enumeration of URLs to the named resources, or nul l if the resource could not be
found or if this bundle is a fragment bundle or if the caller does not have the appropriate
AdminPermission[this ,RESOURCE] , and the Java Runtime Environment supports permissions.

Throws I l legalStateException– If this bundle has been uninstalled.

IOException– If there is an I/O error.

Since 1.3

10.1.5.26 public ServiceReference<?>[] getServicesInUse()

□ Returns this bundle's ServiceReference list for all services it is using or returns nul l if this bundle is
not using any services. A bundle is considered to be using a service if it has any unreleased service
objects.

If the Java Runtime Environment supports permissions, a ServiceReference object to a service is
included in the returned list only if the caller has the ServicePermission to get the service using at
least one of the named classes the service was registered under.

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at anytime.

Returns An array of ServiceReference objects or nul l .

Throws I l legalStateException– If this bundle has been uninstalled.

See Also ServiceReference, ServicePermission

10.1.5.27 public Map<X509Certificate, List<X509Certificate>> getSignerCertificates(int signersType)

signersType If SIGNERS_ALL is specified, then information on all signers of this bundle is returned. If
SIGNERS_TRUSTED is specified, then only information on the signers of this bundle trusted by the
framework is returned.

□ Return the certificates for the signers of this bundle and the certificate chains for those signers.

Returns The X509Cert i f icates for the signers of this bundle and the X509Cert i f icate chains for those sign-
ers. The keys of the Map are the X509Cert i f icates of the signers of this bundle. The value for a key
is a List containing the X509Cert i f icate chain for the signer. The first item in the List is the signer's
X509Cert i f icate which is then followed by the rest of the X509Cert i f icate chain. The returned Map
will be empty if there are no signers. The returned Map is the property of the caller who is free to
modify it.

Throws I l legalArgumentException– If the specified signersType is not SIGNERS_ALL or
SIGNERS_TRUSTED.

Since 1.5

10.1.5.28 public int getState()

□ Returns this bundle's current state.

A bundle can be in only one state at any time.

Returns An element of UNINSTALLED ,INSTALLED , RESOLVED , STARTING , STOPPING , ACTIVE .

org.osgi.framework Framework API

Page 202 OSGi Core Release 7

10.1.5.29 public String getSymbolicName()

□ Returns the symbolic name of this bundle as specified by its Bundle-Symbol icName manifest head-
er. The bundle symbolic name should be based on the reverse domain name naming convention like
that used for java packages.

This method must continue to return this bundle's symbolic name while this bundle is in the
UNINSTALLED state.

Returns The symbolic name of this bundle or nul l if this bundle does not have a symbolic name.

Since 1.3

10.1.5.30 public Version getVersion()

□ Returns the version of this bundle as specified by its Bundle-Version manifest header. If this bundle
does not have a specified version then Version.emptyVersion is returned.

This method must continue to return this bundle's version while this bundle is in the UNINSTALLED
state.

Returns The version of this bundle.

Since 1.5

10.1.5.31 public boolean hasPermission(Object permission)

permission The permission to verify.

□ Determines if this bundle has the specified permissions.

If the Java Runtime Environment does not support permissions, this method always returns true .

permission is of type Object to avoid referencing the java.security.Permission class directly. This
is to allow the Framework to be implemented in Java environments which do not support permis-
sions.

If the Java Runtime Environment does support permissions, this bundle and all its resources includ-
ing embedded JAR files, belong to the same java.security.Protect ionDomain ; that is, they must share
the same set of permissions.

Returns true if this bundle has the specified permission or the permissions possessed by this bundle imply
the specified permission; fa lse if this bundle does not have the specified permission or permission is
not an instanceof java.security.Permission .

Throws I l legalStateException– If this bundle has been uninstalled.

10.1.5.32 public Class<?> loadClass(String name) throws ClassNotFoundException

name The name of the class to load.

□ Loads the specified class using this bundle's class loader.

If this bundle is a fragment bundle then this method must throw a ClassNotFoundException .

If this bundle's state is INSTALLED , this method must attempt to resolve this bundle before attempt-
ing to load the class.

If this bundle cannot be resolved, a Framework event of type FrameworkEvent.ERROR is fired con-
taining a BundleException with details of the reason this bundle could not be resolved. This method
must then throw a ClassNotFoundException .

If this bundle's state is UNINSTALLED , then an I l legalStateException is thrown.

Returns The Class object for the requested class.

Framework API org.osgi.framework

OSGi Core Release 7 Page 203

Throws ClassNotFoundException– If no such class can be found or if this bundle is a fragment bundle or if
the caller does not have the appropriate AdminPermission[this ,CLASS] , and the Java Runtime Envi-
ronment supports permissions.

I l legalStateException– If this bundle has been uninstalled.

Since 1.3

10.1.5.33 public void start(int options) throws BundleException

options The options for starting this bundle. See START_TRANSIENT and START_ACTIVATION_POLICY.
The Framework must ignore unrecognized options.

□ Starts this bundle.

If this bundle's state is UNINSTALLED then an I l legalStateException is thrown.

If the current start level is less than this bundle's start level:

• If the START_TRANSIENT option is set, then a BundleException is thrown indicating this bundle
cannot be started due to the Framework's current start level.

• Otherwise, the Framework must set this bundle's persistent autostart setting to Started with de-
clared activation if the START_ACTIVATION_POLICY option is set or Started with eager activation if
not set.

When the Framework's current start level becomes equal to or more than this bundle's start level,
this bundle will be started.

Otherwise, the following steps are required to start this bundle:

1. If this bundle is in the process of being activated or deactivated then this method must wait for
activation or deactivation to complete before continuing. If this does not occur in a reasonable
time, a BundleException is thrown to indicate this bundle was unable to be started.

2. If the START_TRANSIENT option is not set then set this bundle's autostart setting to Started with
declared activation if the START_ACTIVATION_POLICY option is set or Started with eager activa-
tion if not set. When the Framework is restarted and this bundle's autostart setting is not Stopped,
this bundle must be automatically started.

3. If this bundle's state is ACTIVE then this method returns immediately.
4. If this bundle's state is not RESOLVED , an attempt is made to resolve this bundle. If the Frame-

work cannot resolve this bundle, a BundleException is thrown.
5. If the START_ACTIVATION_POLICY option is set and this bundle's declared activation policy is

lazy then:
• If this bundle's state is STARTING then this method returns immediately.
• This bundle's state is set to STARTING .
• A bundle event of type BundleEvent.LAZY_ACTIVATION is fired.
• This method returns immediately and the remaining steps will be followed when this

bundle's activation is later triggered.
6. This bundle's state is set to STARTING .
7. A bundle event of type BundleEvent.STARTING is fired.
8. The BundleActivator.start(BundleContext) method of this bundle's BundleActivator , if one is

specified, is called. If the BundleActivator is invalid or throws an exception then:
• This bundle's state is set to STOPPING .
• A bundle event of type BundleEvent.STOPPING is fired.
• Any services registered by this bundle must be unregistered.
• Any services used by this bundle must be released.
• Any listeners registered by this bundle must be removed.

org.osgi.framework Framework API

Page 204 OSGi Core Release 7

• This bundle's state is set to RESOLVED .
• A bundle event of type BundleEvent.STOPPED is fired.
• A BundleException is then thrown.

9. This bundle's state is set to ACTIVE .
10. A bundle event of type BundleEvent.STARTED is fired.

Preconditions

• getState() in { INSTALLED , RESOLVED } or { INSTALLED , RESOLVED , STARTING } if this bundle has
a lazy activation policy.

Postconditions, no exceptions thrown

• Bundle autostart setting is modified unless the START_TRANSIENT option was set.
• getState() in { ACTIVE } unless the lazy activation policy was used.
• BundleActivator.start() has been called and did not throw an exception unless the lazy activa-

tion policy was used.

Postconditions, when an exception is thrown

• Depending on when the exception occurred, bundle autostart setting is modified unless the
START_TRANSIENT option was set.

• getState() not in { STARTING , ACTIVE }.

Throws BundleException– If this bundle could not be started. BundleException types
thrown by this method include: BundleException.START_TRANSIENT_ERROR,
BundleException.NATIVECODE_ERROR, BundleException.RESOLVE_ERROR,
BundleException.STATECHANGE_ERROR, and BundleException.ACTIVATOR_ERROR.

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

Since 1.4

10.1.5.34 public void start() throws BundleException

□ Starts this bundle with no options.

This method performs the same function as calling start(0) .

Throws BundleException– If this bundle could not be started. BundleException types thrown by this
method include: BundleException.NATIVECODE_ERROR, BundleException.RESOLVE_ERROR,
BundleException.STATECHANGE_ERROR, and BundleException.ACTIVATOR_ERROR.

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

See Also start(int)

10.1.5.35 public void stop(int options) throws BundleException

options The options for stopping this bundle. See STOP_TRANSIENT. The Framework must ignore unrecog-
nized options.

□ Stops this bundle.

Framework API org.osgi.framework

OSGi Core Release 7 Page 205

The following steps are required to stop a bundle:

1. If this bundle's state is UNINSTALLED then an I l legalStateException is thrown.
2. If this bundle is in the process of being activated or deactivated then this method must wait for

activation or deactivation to complete before continuing. If this does not occur in a reasonable
time, a BundleException is thrown to indicate this bundle was unable to be stopped.

3. If the STOP_TRANSIENT option is not set then set this bundle's persistent autostart setting to
Stopped. When the Framework is restarted and this bundle's autostart setting is Stopped, this bun-
dle must not be automatically started.

4. If this bundle's state is not STARTING or ACTIVE then this method returns immediately.
5. This bundle's state is set to STOPPING .
6. A bundle event of type BundleEvent.STOPPING is fired.
7. If this bundle's state was ACTIVE prior to setting the state to STOPPING , the

BundleActivator.stop(BundleContext) method of this bundle's BundleActivator , if one is speci-
fied, is called. If that method throws an exception, this method must continue to stop this bun-
dle and a BundleException must be thrown after completion of the remaining steps.

8. Any services registered by this bundle must be unregistered.
9. Any services used by this bundle must be released.
10. Any listeners registered by this bundle must be removed.
11. If this bundle's state is UNINSTALLED , because this bundle was uninstalled while the

BundleActivator.stop method was running, a BundleException must be thrown.
12. This bundle's state is set to RESOLVED .
13. A bundle event of type BundleEvent.STOPPED is fired.

Preconditions

• getState() in { ACTIVE }.

Postconditions, no exceptions thrown

• Bundle autostart setting is modified unless the STOP_TRANSIENT option was set.
• getState() not in { ACTIVE , STOPPING }.
• BundleActivator.stop has been called and did not throw an exception.

Postconditions, when an exception is thrown

• Bundle autostart setting is modified unless the STOP_TRANSIENT option was set.

Throws BundleException– BundleException types thrown by this method include:
BundleException.STATECHANGE_ERROR and BundleException.ACTIVATOR_ERROR.

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

Since 1.4

10.1.5.36 public void stop() throws BundleException

□ Stops this bundle with no options.

This method performs the same function as calling stop(0) .

Throws BundleException– BundleException types thrown by this method include:
BundleException.STATECHANGE_ERROR and BundleException.ACTIVATOR_ERROR.

org.osgi.framework Framework API

Page 206 OSGi Core Release 7

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

See Also start(int)

10.1.5.37 public void uninstall() throws BundleException

□ Uninstalls this bundle.

This method causes the Framework to notify other bundles that this bundle is being uninstalled,
and then puts this bundle into the UNINSTALLED state. The Framework must remove any resources
related to this bundle that it is able to remove.

If this bundle has exported any packages, the Framework must continue to make these packages
available to their importing bundles until the FrameworkWiring.refreshBundles method has been
called or the Framework is relaunched.

The following steps are required to uninstall a bundle:

1. If this bundle's state is UNINSTALLED then an I l legalStateException is thrown.
2. If this bundle's state is ACTIVE , STARTING or STOPPING , this bundle is stopped as described

in the Bundle.stop method. If Bundle.stop throws an exception, a Framework event of type
FrameworkEvent.ERROR is fired containing the exception.

3. This bundle's state is set to UNINSTALLED .
4. A bundle event of type BundleEvent.UNINSTALLED is fired.
5. This bundle and any persistent storage area provided for this bundle by the Framework are re-

moved.

Preconditions

• getState() not in { UNINSTALLED }.

Postconditions, no exceptions thrown

• getState() in { UNINSTALLED }.
• This bundle has been uninstalled.

Postconditions, when an exception is thrown

• getState() not in { UNINSTALLED }.
• This Bundle has not been uninstalled.

Throws BundleException– If the uninstall failed. This can occur if another thread is attempting to change
this bundle's state and does not complete in a timely manner. BundleException types thrown by this
method include: BundleException.STATECHANGE_ERROR

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,L IFECYCLE] ,
and the Java Runtime Environment supports permissions.

See Also stop()

10.1.5.38 public void update(InputStream input) throws BundleException

input The InputStream from which to read the new bundle or nul l to indicate the Framework must cre-
ate the input stream from this bundle's Bundle-UpdateLocation Manifest header, if present, or this

Framework API org.osgi.framework

OSGi Core Release 7 Page 207

bundle's original location. The input stream must always be closed when this method completes,
even if an exception is thrown.

□ Updates this bundle from an InputStream .

If the specified InputStream is nul l , the Framework must create the InputStream from which to read
the updated bundle by interpreting, in an implementation dependent manner, this bundle's Bun-
dle-UpdateLocation Manifest header, if present, or this bundle's original location.

If this bundle's state is ACTIVE , it must be stopped before the update and started after the update suc-
cessfully completes.

If this bundle has exported any packages that are imported by another bundle, these packages must
remain exported until the FrameworkWiring.refreshBundles method has been has been called or
the Framework is relaunched.

The following steps are required to update a bundle:

1. If this bundle's state is UNINSTALLED then an I l legalStateException is thrown.
2. If this bundle's state is ACTIVE , STARTING or STOPPING , this bundle is stopped as described in

the Bundle.stop method. If Bundle.stop throws an exception, the exception is rethrown termi-
nating the update.

3. The updated version of this bundle is read from the input stream and installed. If the Framework
is unable to install the updated version of this bundle, the original version of this bundle must
be restored and a BundleException must be thrown after completion of the remaining steps.

4. This bundle's state is set to INSTALLED .
5. If the updated version of this bundle was successfully installed, a bundle event of type

BundleEvent.UPDATED is fired.
6. If this bundle's state was originally ACTIVE , the updated bundle is started as described in

the Bundle.start method. If Bundle.start throws an exception, a Framework event of type
FrameworkEvent.ERROR is fired containing the exception.

Preconditions

• getState() not in { UNINSTALLED }.

Postconditions, no exceptions thrown

• getState() in { INSTALLED , RESOLVED , ACTIVE }.
• This bundle has been updated.

Postconditions, when an exception is thrown

• getState() in { INSTALLED , RESOLVED , ACTIVE }.
• Original bundle is still used; no update occurred.

Throws BundleException– If this bundle could not be updated. BundleException types thrown by this
method include: BundleException.READ_ERROR, BundleException.DUPLICATE_BUNDLE_ERROR,
BundleException.MANIFEST_ERROR, BundleException.NATIVECODE_ERROR,
BundleException.RESOLVE_ERROR, BundleException.STATECHANGE_ERROR, and
BundleException.ACTIVATOR_ERROR.

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,L IFECYCLE]
for both the current bundle and the updated bundle, and the Java Runtime Environment supports
permissions.

See Also stop(), start()

org.osgi.framework Framework API

Page 208 OSGi Core Release 7

10.1.5.39 public void update() throws BundleException

□ Updates this bundle.

This method performs the same function as calling update(InputStream) with a nul l InputStream.

Throws BundleException– If this bundle could not be updated. BundleException types thrown by this
method include: BundleException.READ_ERROR, BundleException.DUPLICATE_BUNDLE_ERROR,
BundleException.MANIFEST_ERROR, BundleException.NATIVECODE_ERROR,
BundleException.RESOLVE_ERROR, BundleException.STATECHANGE_ERROR, and
BundleException.ACTIVATOR_ERROR.

I l legalStateException– If this bundle has been uninstalled or this bundle tries to change its own
state.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,L IFECYCLE]
for both the current bundle and the updated bundle, and the Java Runtime Environment supports
permissions.

See Also update(InputStream)

10.1.6 public interface BundleActivator
Customizes the starting and stopping of a bundle.

BundleActivator is an interface that may be implemented when a bundle is started or stopped.
The Framework can create instances of a bundle's BundleActivator as required. If an instance's
BundleActivator.start method executes successfully, it is guaranteed that the same instance's
BundleActivator.stop method will be called when the bundle is to be stopped. The Framework must
not concurrently call a BundleActivator object.

BundleActivator is specified through the Bundle-Activator Manifest header. A bundle can only spec-
ify a single BundleActivator in the Manifest file. Fragment bundles must not have a BundleActivator .
The form of the Manifest header is:

Bundle-Activator: class-name

where class-name is a fully qualified Java classname.

The specified BundleActivator class must have a public constructor that takes no parameters so that
a BundleActivator object can be created by Class.newInstance() .

Concurrency Not Thread-safe

10.1.6.1 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

□ Called when this bundle is started so the Framework can perform the bundle-specific activities nec-
essary to start this bundle. This method can be used to register services or to allocate any resources
that this bundle needs.

This method must complete and return to its caller in a timely manner.

Throws Exception– If this method throws an exception, this bundle is marked as stopped and the Frame-
work will remove this bundle's listeners, unregister all services registered by this bundle, and re-
lease all services used by this bundle.

10.1.6.2 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

□ Called when this bundle is stopped so the Framework can perform the bundle-specific ac-
tivities necessary to stop the bundle. In general, this method should undo the work that the
BundleActivator.start method started. There should be no active threads that were started by this
bundle when this bundle returns. A stopped bundle must not call any Framework objects.

Framework API org.osgi.framework

OSGi Core Release 7 Page 209

This method must complete and return to its caller in a timely manner.

Throws Exception– If this method throws an exception, the bundle is still marked as stopped, and the
Framework will remove the bundle's listeners, unregister all services registered by the bundle, and
release all services used by the bundle.

10.1.7 public interface BundleContext
extends BundleReference
A bundle's execution context within the Framework. The context is used to grant access to other
methods so that this bundle can interact with the Framework.

BundleContext methods allow a bundle to:

• Subscribe to events published by the Framework.
• Register service objects with the Framework service registry.
• Retrieve ServiceReferences from the Framework service registry.
• Get and release service objects for a referenced service.
• Install new bundles in the Framework.
• Get the list of bundles installed in the Framework.
• Get the Bundle object for a bundle.
• Create Fi le objects for files in a persistent storage area provided for the bundle by the Framework.

A BundleContext object will be created for a bundle when the bundle is started. The Bundle object
associated with a BundleContext object is called the context bundle.

The BundleContext object will be passed to the BundleActivator.start(BundleContext) method
during activation of the context bundle. The same BundleContext object will be passed to the
BundleActivator.stop(BundleContext) method when the context bundle is stopped. A BundleCon-
text object is generally for the private use of its associated bundle and is not meant to be shared with
other bundles in the OSGi environment.

The BundleContext object is only valid during the execution of its context bundle; that is, during
the period from when the context bundle is in the STARTING , STOPPING , and ACTIVE bundle states.
However, the BundleContext object becomes invalid after BundleActivator.stop(BundleContext)
returns (if the bundle has a Bundle Activator). The BundleContext object becomes invalid be-
fore disposing of any remaining registered services and releasing any remaining services in use.
Since those activities can result in other bundles being called (for example, ServiceListeners for
ServiceEvent.UNREGISTERING events and ServiceFactorys for unget operations), those other bun-
dles can observe the stopping bundle in the STOPPING state but with an invalid BundleContext ob-
ject. If the BundleContext object is used after it has become invalid, an I l legalStateException must
be thrown. The BundleContext object must never be reused after its context bundle is stopped.

Two BundleContext objects are equal if they both refer to the same execution context of a bundle.
The Framework is the only entity that can create BundleContext objects and they are only valid
within the Framework that created them.

A Bundle can be adapted to its BundleContext . In order for this to succeed, the caller must have the
appropriate AdminPermission[bundle,CONTEXT] if the Java Runtime Environment supports per-
missions.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.7.1 public void addBundleListener(BundleListener listener)

listener The BundleListener to be added.

org.osgi.framework Framework API

Page 210 OSGi Core Release 7

□ Adds the specified BundleListener object to the context bundle's list of listeners if not already
present. BundleListener objects are notified when a bundle has a lifecycle state change.

If the context bundle's list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

Throws I l legalStateException– If this BundleContext is no longer valid.

SecurityException– If listener is a SynchronousBundleListener and the caller does not have the ap-
propriate AdminPermission[context bundle,L ISTENER] , and the Java Runtime Environment sup-
ports permissions.

See Also BundleEvent, BundleListener

10.1.7.2 public void addFrameworkListener(FrameworkListener listener)

listener The FrameworkListener object to be added.

□ Adds the specified FrameworkListener object to the context bundle's list of listeners if not already
present. FrameworkListeners are notified of general Framework events.

If the context bundle's list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also FrameworkEvent, FrameworkListener

10.1.7.3 public void addServiceListener(ServiceListener listener, String filter) throws InvalidSyntaxException

listener The ServiceListener object to be added.

filter The filter criteria.

□ Adds the specified ServiceListener object with the specified f i l ter to the context bundle's list of lis-
teners. See Filter for a description of the filter syntax. ServiceListener objects are notified when a ser-
vice has a lifecycle state change.

If the context bundle's list of listeners already contains a listener l such that (l==l istener) , then this
method replaces that listener's filter (which may be nul l) with the specified one (which may be nul l).

The listener is called if the filter criteria is met. To filter based upon the class of the service, the filter
should reference the Constants.OBJECTCLASS property. If f i l ter is nul l , all services are considered to
match the filter.

When using a f i l ter , it is possible that the ServiceEvent s for the complete lifecycle of a service will
not be delivered to the listener. For example, if the f i l ter only matches when the property x has the
value 1 , the listener will not be called if the service is registered with the property x not set to the
value 1 . Subsequently, when the service is modified setting property x to the value 1 , the filter will
match and the listener will be called with a ServiceEvent of type MODIFIED . Thus, the listener will
not be called with a ServiceEvent of type REGISTERED .

If the Java Runtime Environment supports permissions, the ServiceListener object will be notified
of a service event only if the bundle that is registering it has the ServicePermission to get the service
using at least one of the named classes the service was registered under.

Throws Inval idSyntaxException– If f i l ter contains an invalid filter string that cannot be parsed.

I l legalStateException– If this BundleContext is no longer valid.

See Also ServiceEvent, ServiceListener, ServicePermission

10.1.7.4 public void addServiceListener(ServiceListener listener)

listener The ServiceListener object to be added.

□ Adds the specified ServiceListener object to the context bundle's list of listeners.

Framework API org.osgi.framework

OSGi Core Release 7 Page 211

This method is the same as calling BundleContext.addServiceListener(ServiceListener l istener,
Str ing f i l ter) with f i l ter set to nul l .

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also addServiceListener(ServiceListener, String)

10.1.7.5 public Filter createFilter(String filter) throws InvalidSyntaxException

filter The filter string.

□ Creates a Fi l ter object. This Fi l ter object may be used to match a ServiceReference object or a Dictio-
nary object.

If the filter cannot be parsed, an InvalidSyntaxException will be thrown with a human readable
message where the filter became unparsable.

Returns A Fi l ter object encapsulating the filter string.

Throws Inval idSyntaxException– If f i l ter contains an invalid filter string that cannot be parsed.

NullPointerException– If f i l ter is null.

I l legalStateException– If this BundleContext is no longer valid.

See Also Framework specif icat ion for a descr ipt ion of the f i l ter str ing syntax. ,
FrameworkUtil.createFilter(String)

Since 1.1

10.1.7.6 public ServiceReference<?>[] getAllServiceReferences(String clazz, String filter) throws
InvalidSyntaxException

clazz The class name with which the service was registered or nul l for all services.

filter The filter expression or nul l for all services.

□ Returns an array of ServiceReference objects. The returned array of ServiceReference objects con-
tains services that were registered under the specified class and match the specified filter expres-
sion.

The list is valid at the time of the call to this method. However since the Framework is a very dy-
namic environment, services can be modified or unregistered at any time.

The specified f i l ter expression is used to select the registered services whose service properties con-
tain keys and values which satisfy the filter expression. See Filter for a description of the filter syn-
tax. If the specified f i l ter is nul l , all registered services are considered to match the filter. If the spec-
ified f i l ter expression cannot be parsed, an InvalidSyntaxException will be thrown with a human
readable message where the filter became unparsable.

The result is an array of ServiceReference objects for all services that meet all of the following con-
ditions:

• If the specified class name, clazz , is not nul l , the service must have been registered with the speci-
fied class name. The complete list of class names with which a service was registered is available
from the service's objectClass property.

• If the specified f i l ter is not nul l , the filter expression must match the service.
• If the Java Runtime Environment supports permissions, the caller must have ServicePermission

with the GET action for at least one of the class names under which the service was registered.

Returns An array of ServiceReference objects or nul l if no services are registered which satisfy the search.

Throws Inval idSyntaxException– If the specified f i l ter contains an invalid filter expression that cannot be
parsed.

I l legalStateException– If this BundleContext is no longer valid.

org.osgi.framework Framework API

Page 212 OSGi Core Release 7

Since 1.3

10.1.7.7 public Bundle getBundle()

□ Returns the Bundle object associated with this BundleContext . This bundle is called the context bun-
dle.

Returns The Bundle object associated with this BundleContext .

Throws I l legalStateException– If this BundleContext is no longer valid.

10.1.7.8 public Bundle getBundle(long id)

id The identifier of the bundle to retrieve.

□ Returns the bundle with the specified identifier.

Returns A Bundle object or nul l if the identifier does not match any installed bundle.

10.1.7.9 public Bundle getBundle(String location)

location The location of the bundle to retrieve.

□ Returns the bundle with the specified location.

Returns A Bundle object or nul l if the location does not match any installed bundle.

Since 1.6

10.1.7.10 public Bundle[] getBundles()

□ Returns a list of all installed bundles.

This method returns a list of all bundles installed in the OSGi environment at the time of the call
to this method. However, since the Framework is a very dynamic environment, bundles can be in-
stalled or uninstalled at anytime.

Returns An array of Bundle objects, one object per installed bundle.

10.1.7.11 public File getDataFile(String filename)

filename A relative name to the file to be accessed.

□ Creates a Fi le object for a file in the persistent storage area provided for the bundle by the Frame-
work. This method will return nul l if the platform does not have file system support.

A Fi le object for the base directory of the persistent storage area provided for the context bundle by
the Framework can be obtained by calling this method with an empty string as f i lename .

If the Java Runtime Environment supports permissions, the Framework will ensure that the bundle
has the java. io.F i lePermission with actions read ,write ,delete for all files (recursively) in the persis-
tent storage area provided for the context bundle.

Returns A Fi le object that represents the requested file or nul l if the platform does not have file system sup-
port.

Throws I l legalStateException– If this BundleContext is no longer valid.

10.1.7.12 public String getProperty(String key)

key The name of the requested property.

□ Returns the value of the specified property. If the key is not found in the Framework properties, the
system properties are then searched. The method returns nul l if the property is not found.

All bundles must have permission to read properties whose names start with "org.osgi.".

Returns The value of the requested property, or nul l if the property is undefined.

Framework API org.osgi.framework

OSGi Core Release 7 Page 213

Throws SecurityException– If the caller does not have the appropriate PropertyPermission to read the prop-
erty, and the Java Runtime Environment supports permissions.

10.1.7.13 public S getService(ServiceReference<S> reference)

Type Parameters <S>

<S> Type of Service.

reference A reference to the service.

□ Returns the service object for the service referenced by the specified ServiceReference object.

A bundle's use of a service object obtained from this method is tracked by the bundle's use count
of that service. Each time the service object is returned by getService(ServiceReference) the context
bundle's use count for the service is incremented by one. Each time the service object is released by
ungetService(ServiceReference) the context bundle's use count for the service is decremented by
one.

When a bundle's use count for the service drops to zero, the bundle should no longer use the service
object.

This method will always return nul l when the service associated with the specified reference has
been unregistered.

The following steps are required to get the service object:

1. If the service has been unregistered, nul l is returned.
2. If the context bundle's use count for the service is currently zero and the service has bundle or

prototype scope, the ServiceFactory.getService(Bundle, ServiceRegistration) method is called to
supply the service object for the context bundle. If the service object returned by the ServiceFac-
tory object is nul l , not an instanceof all the classes named when the service was registered or the
ServiceFactory object throws an exception or will be recursively called for the context bundle,
nul l is returned and a Framework event of type FrameworkEvent.ERROR containing a Service-
Exception describing the error is fired. The supplied service object is cached by the Framework.
While the context bundle's use count for the service is greater than zero, subsequent calls to get
the service object for the context bundle will return the cached service object.

3. The context bundle's use count for the service is incremented by one.
4. The service object for the service is returned.

Returns A service object for the service associated with reference or nul l if the service is not registered, the
service object returned by a ServiceFactory does not implement the classes under which it was reg-
istered or the ServiceFactory threw an exception.

Throws SecurityException– If the caller does not have the ServicePermission to get the service using at least
one of the named classes the service was registered under and the Java Runtime Environment sup-
ports permissions.

I l legalStateException– If this BundleContext is no longer valid.

I l legalArgumentException– If the specified ServiceReference was not created by the same frame-
work instance as this BundleContext .

See Also ungetService(ServiceReference), ServiceFactory

10.1.7.14 public ServiceObjects<S> getServiceObjects(ServiceReference<S> reference)

Type Parameters <S>

<S> Type of Service.

reference A reference to the service.

org.osgi.framework Framework API

Page 214 OSGi Core Release 7

□ Returns the ServiceObjects object for the service referenced by the specified ServiceReference ob-
ject.

The ServiceObjects object can be used to obtain multiple service objects for services with prototype
scope.

For services with singleton or bundle scope, the ServiceObjects.getService() method behaves the
same as the getService(ServiceReference) method and the ServiceObjects.ungetService(Object)
method behaves the same as the ungetService(ServiceReference) method. That is, only one, use-
counted service object is available from the ServiceObjects object.

This method will always return nul l when the service associated with the specified reference has
been unregistered.

Returns A ServiceObjects object for the service associated with the specified reference or nul l if the service is
not registered.

Throws SecurityException– If the caller does not have the ServicePermission to get the service using at least
one of the named classes the service was registered under and the Java Runtime Environment sup-
ports permissions.

I l legalStateException– If this BundleContext is no longer valid.

I l legalArgumentException– If the specified ServiceReference was not created by the same frame-
work instance as this BundleContext .

See Also PrototypeServiceFactory

Since 1.8

10.1.7.15 public ServiceReference<?> getServiceReference(String clazz)

clazz The class name with which the service was registered.

□ Returns a ServiceReference object for a service that implements and was registered under the speci-
fied class.

The returned ServiceReference object is valid at the time of the call to this method. However as the
Framework is a very dynamic environment, services can be modified or unregistered at any time.

This method is the same as calling getServiceReferences(String, String) with a nul l filter expression
and then finding the reference with the highest priority. It is provided as a convenience for when
the caller is interested in any service that implements the specified class.

If multiple such services exist, the service with the highest priority is selected. This pri-
ority is defined as the service reference with the highest ranking (as specified in its
Constants.SERVICE_RANKING property) is returned.

If there is a tie in ranking, the service with the lowest service id (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A ServiceReference object, or nul l if no services are registered which implement the named class.

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also getServiceReferences(String, String)

10.1.7.16 public ServiceReference<S> getServiceReference(Class<S> clazz)

Type Parameters <S>

<S> Type of Service.

clazz The class under whose name the service was registered. Must not be nul l .

□ Returns a ServiceReference object for a service that implements and was registered under the name
of the specified class.

Framework API org.osgi.framework

OSGi Core Release 7 Page 215

The returned ServiceReference object is valid at the time of the call to this method. However as the
Framework is a very dynamic environment, services can be modified or unregistered at any time.

This method is the same as calling getServiceReferences(Class, String) with a nul l filter expression.
It is provided as a convenience for when the caller is interested in any service that implements the
specified class.

If multiple such services exist, the service with the highest ranking (as specified in its
Constants.SERVICE_RANKING property) is returned.

If there is a tie in ranking, the service with the lowest service id (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A ServiceReference object, or nul l if no services are registered which implement the specified class.

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also getServiceReferences(Class, String)

Since 1.6

10.1.7.17 public ServiceReference<?>[] getServiceReferences(String clazz, String filter) throws
InvalidSyntaxException

clazz The class name with which the service was registered or nul l for all services.

filter The filter expression or nul l for all services.

□ Returns an array of ServiceReference objects. The returned array of ServiceReference objects con-
tains services that were registered under the specified class, match the specified filter expression,
and the packages for the class names under which the services were registered match the context
bundle's packages as defined in ServiceReference.isAssignableTo(Bundle, String).

The list is valid at the time of the call to this method. However since the Framework is a very dy-
namic environment, services can be modified or unregistered at any time.

The specified f i l ter expression is used to select the registered services whose service properties con-
tain keys and values which satisfy the filter expression. See Filter for a description of the filter syn-
tax. If the specified f i l ter is nul l , all registered services are considered to match the filter. If the spec-
ified f i l ter expression cannot be parsed, an InvalidSyntaxException will be thrown with a human
readable message where the filter became unparsable.

The result is an array of ServiceReference objects for all services that meet all of the following con-
ditions:

• If the specified class name, clazz , is not nul l , the service must have been registered with the speci-
fied class name. The complete list of class names with which a service was registered is available
from the service's objectClass property.

• If the specified f i l ter is not nul l , the filter expression must match the service.
• If the Java Runtime Environment supports permissions, the caller must have ServicePermission

with the GET action for at least one of the class names under which the service was registered.
• For each class name with which the service was registered, calling

ServiceReference.isAssignableTo(Bundle, String) with the context bundle and the class name on
the service's ServiceReference object must return true

Returns An array of ServiceReference objects or nul l if no services are registered which satisfy the search.

Throws Inval idSyntaxException– If the specified f i l ter contains an invalid filter expression that cannot be
parsed.

I l legalStateException– If this BundleContext is no longer valid.

org.osgi.framework Framework API

Page 216 OSGi Core Release 7

10.1.7.18 public Collection<ServiceReference<S>> getServiceReferences(Class<S> clazz, String filter) throws
InvalidSyntaxException

Type Parameters <S>

<S> Type of Service

clazz The class under whose name the service was registered. Must not be nul l .

filter The filter expression or nul l for all services.

□ Returns a collection of ServiceReference objects. The returned collection of ServiceReference ob-
jects contains services that were registered under the name of the specified class, match the speci-
fied filter expression, and the packages for the class names under which the services were registered
match the context bundle's packages as defined in ServiceReference.isAssignableTo(Bundle, String).

The collection is valid at the time of the call to this method. However since the Framework is a very
dynamic environment, services can be modified or unregistered at any time.

The specified f i l ter expression is used to select the registered services whose service properties con-
tain keys and values which satisfy the filter expression. See Filter for a description of the filter syn-
tax. If the specified f i l ter is nul l , all registered services are considered to match the filter. If the spec-
ified f i l ter expression cannot be parsed, an InvalidSyntaxException will be thrown with a human
readable message where the filter became unparsable.

The result is a collection of ServiceReference objects for all services that meet all of the following
conditions:

• The service must have been registered with the name of the specified class. The complete list of
class names with which a service was registered is available from the service's objectClass prop-
erty.

• If the specified f i l ter is not nul l , the filter expression must match the service.
• If the Java Runtime Environment supports permissions, the caller must have ServicePermission

with the GET action for at least one of the class names under which the service was registered.
• For each class name with which the service was registered, calling

ServiceReference.isAssignableTo(Bundle, String) with the context bundle and the class name on
the service's ServiceReference object must return true

Returns A collection of ServiceReference objects. May be empty if no services are registered which satisfy
the search.

Throws Inval idSyntaxException– If the specified f i l ter contains an invalid filter expression that cannot be
parsed.

I l legalStateException– If this BundleContext is no longer valid.

Since 1.6

10.1.7.19 public Bundle installBundle(String location, InputStream input) throws BundleException

location The location identifier of the bundle to install.

input The InputStream object from which this bundle will be read or nul l to indicate the Framework must
create the input stream from the specified location identifier. The input stream must always be
closed when this method completes, even if an exception is thrown.

□ Installs a bundle from the specified InputStream object.

If the specified InputStream is nul l , the Framework must create the InputStream from which to read
the bundle by interpreting, in an implementation dependent manner, the specified locat ion .

The specified locat ion identifier will be used as the identity of the bundle. Every installed bundle is
uniquely identified by its location identifier which is typically in the form of a URL.

Framework API org.osgi.framework

OSGi Core Release 7 Page 217

The following steps are required to install a bundle:

1. If a bundle containing the same location identifier is already installed, the Bundle object for that
bundle is returned.

2. The bundle's content is read from the input stream. If this fails, a BundleException is thrown.
3. The bundle's associated resources are allocated. The associated resources minimally consist of a

unique identifier and a persistent storage area if the platform has file system support. If this step
fails, a BundleException is thrown.

4. The bundle's state is set to INSTALLED .
5. A bundle event of type BundleEvent.INSTALLED is fired.
6. The Bundle object for the newly or previously installed bundle is returned.

Postconditions, no exceptions thrown

• getState() in { INSTALLED , RESOLVED }.
• Bundle has a unique ID.

Postconditions, when an exception is thrown

• Bundle is not installed. If there was an existing bundle for the specified location, then that bun-
dle must still be in the state it was prior to calling this method.

Returns The Bundle object of the installed bundle.

Throws BundleException– If the installation failed. BundleException types thrown by this method
include: BundleException.READ_ERROR , BundleException.DUPLICATE_BUNDLE_ERROR,
BundleException.MANIFEST_ERROR, and BundleException.REJECTED_BY_HOOK.

SecurityException– If the caller does not have the appropriate AdminPermission[instal led
bundle,L IFECYCLE] , and the Java Runtime Environment supports permissions.

I l legalStateException– If this BundleContext is no longer valid.

10.1.7.20 public Bundle installBundle(String location) throws BundleException

location The location identifier of the bundle to install.

□ Installs a bundle from the specified locat ion identifier.

This method performs the same function as calling installBundle(String,InputStream) with the
specified locat ion identifier and a nul l InputStream.

Returns The Bundle object of the installed bundle.

Throws BundleException– If the installation failed. BundleException types thrown by this method
include: BundleException.READ_ERROR , BundleException.DUPLICATE_BUNDLE_ERROR,
BundleException.MANIFEST_ERROR, and BundleException.REJECTED_BY_HOOK.

SecurityException– If the caller does not have the appropriate AdminPermission[instal led
bundle,L IFECYCLE] , and the Java Runtime Environment supports permissions.

I l legalStateException– If this BundleContext is no longer valid.

See Also installBundle(String, InputStream)

10.1.7.21 public ServiceRegistration<?> registerService(String[] clazzes, Object service, Dictionary<String, ?>
properties)

clazzes The class names under which the service can be located. The class names in this array will be stored
in the service's properties under the key Constants.OBJECTCLASS.

service The service object or an object implementing ServiceFactory .

org.osgi.framework Framework API

Page 218 OSGi Core Release 7

properties The properties for this service. The keys in the properties object must all be Str ing ob-
jects. See Constants for a list of standard service property keys. Changes should not
be made to this object after calling this method. To update the service's properties the
ServiceRegistration.setProperties(Dictionary) method must be called. The set of properties may be
nul l if the service has no properties.

□ Registers the specified service object with the specified properties under the specified class names
into the Framework. A ServiceRegistrat ion object is returned. The ServiceRegistrat ion object is
for the private use of the bundle registering the service and should not be shared with other bun-
dles. The registering bundle is defined to be the context bundle. Other bundles can locate the ser-
vice by using one of the getServiceReferences(Class, String), getServiceReferences(String, String),
getServiceReference(Class) or getServiceReference(String) methods.

A bundle can register a service object that implements the ServiceFactory interface to have more
flexibility in providing service objects to other bundles.

The following steps are required to register a service:

1. If service does not implement ServiceFactory , an I l legalArgumentException is thrown if service
is not an instanceof all the specified class names.

2. The Framework adds the following service properties to the service properties from the speci-
fied Dictionary (which may be nul l):
• A property named Constants.SERVICE_ID identifying the registration number of the service
• A property named Constants.OBJECTCLASS containing all the specified classes.
• A property named Constants.SERVICE_SCOPE identifying the scope of the service.
• A property named Constants.SERVICE_BUNDLEID identifying the context bundle.

Properties with these names in the specified Dictionary will be ignored.
3. The service is added to the Framework service registry and may now be used by other bundles.
4. A service event of type ServiceEvent.REGISTERED is fired.
5. A ServiceRegistrat ion object for this registration is returned.

Returns A ServiceRegistrat ion object for use by the bundle registering the service to update the service's
properties or to unregister the service.

Throws I l legalArgumentException– If one of the following is true:

• service is nul l .
• service does not implement ServiceFactory and is not an instance of all the specified classes.
• propert ies contains case variants of the same key name.

SecurityException– If the caller does not have the ServicePermission to register the service for all
the named classes and the Java Runtime Environment supports permissions.

I l legalStateException– If this BundleContext is no longer valid.

See Also ServiceRegistration, PrototypeServiceFactory, ServiceFactory

10.1.7.22 public ServiceRegistration<?> registerService(String clazz, Object service, Dictionary<String, ?> properties)

clazz The class name under which the service can be located.

service The service object or an object implementing ServiceFactory .

properties The properties for this service.

□ Registers the specified service object with the specified properties under the specified class name
with the Framework.

This method is otherwise identical to registerService(String[], Object, Dictionary) and is provided as
a convenience when service will only be registered under a single class name. Note that even in this

Framework API org.osgi.framework

OSGi Core Release 7 Page 219

case the value of the service's Constants.OBJECTCLASS property will be an array of string, rather
than just a single string.

Returns A ServiceRegistrat ion object for use by the bundle registering the service to update the service's
properties or to unregister the service.

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also registerService(String[], Object, Dictionary)

10.1.7.23 public ServiceRegistration<S> registerService(Class<S> clazz, S service, Dictionary<String, ?> properties)

Type Parameters <S>

<S> Type of Service.

clazz The class under whose name the service can be located.

service The service object or an object implementing ServiceFactory .

properties The properties for this service.

□ Registers the specified service object with the specified properties under the name of the specified
class with the Framework.

This method is otherwise identical to registerService(String, Object, Dictionary) and is provided to
return a type safe ServiceRegistrat ion .

Returns A ServiceRegistrat ion object for use by the bundle registering the service to update the service's
properties or to unregister the service.

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also registerService(String, Object, Dictionary)

Since 1.6

10.1.7.24 public ServiceRegistration<S> registerService(Class<S> clazz, ServiceFactory<S> factory, Dictionary<String, ?
> properties)

Type Parameters <S>

<S> Type of Service.

clazz The class under whose name the service can be located.

factory The ServiceFactory object.

properties The properties for this service.

□ Registers the specified service factory object with the specified properties under the name of the
specified class with the Framework.

This method is otherwise identical to registerService(Class, Object, Dictionary) and is provided to re-
turn a type safe ServiceRegistrat ion when registering a ServiceFactory.

Returns A ServiceRegistrat ion object for use by the bundle registering the service to update the service's
properties or to unregister the service.

Throws I l legalStateException– If this BundleContext is no longer valid.

See Also registerService(Class, Object, Dictionary)

Since 1.8

10.1.7.25 public void removeBundleListener(BundleListener listener)

listener The BundleListener object to be removed.

□ Removes the specified BundleListener object from the context bundle's list of listeners.

org.osgi.framework Framework API

Page 220 OSGi Core Release 7

If l istener is not contained in the context bundle's list of listeners, this method does nothing.

Throws I l legalStateException– If this BundleContext is no longer valid.

SecurityException– If listener is a SynchronousBundleListener and the caller does not have the ap-
propriate AdminPermission[context bundle,L ISTENER] , and the Java Runtime Environment sup-
ports permissions.

10.1.7.26 public void removeFrameworkListener(FrameworkListener listener)

listener The FrameworkListener object to be removed.

□ Removes the specified FrameworkListener object from the context bundle's list of listeners.

If l istener is not contained in the context bundle's list of listeners, this method does nothing.

Throws I l legalStateException– If this BundleContext is no longer valid.

10.1.7.27 public void removeServiceListener(ServiceListener listener)

listener The ServiceListener to be removed.

□ Removes the specified ServiceListener object from the context bundle's list of listeners.

If l istener is not contained in this context bundle's list of listeners, this method does nothing.

Throws I l legalStateException– If this BundleContext is no longer valid.

10.1.7.28 public boolean ungetService(ServiceReference<?> reference)

reference A reference to the service to be released.

□ Releases the service object for the service referenced by the specified ServiceReference object. If the
context bundle's use count for the service is zero, this method returns fa lse . Otherwise, the context
bundle's use count for the service is decremented by one.

The service object must no longer be used and all references to it should be destroyed when a
bundle's use count for the service drops to zero.

The following steps are required to release the service object:

1. If the context bundle's use count for the service is zero or the service has been unregistered, fa lse
is returned.

2. The context bundle's use count for the service is decremented by one.
3. If the context bundle's use count for the service is now zero and the service has bundle or pro-

totype scope, the ServiceFactory.ungetService(Bundle, ServiceRegistration, Object) method is
called to release the service object for the context bundle.

4. true is returned.

Returns fa lse if the context bundle's use count for the service is zero or if the service has been unregistered;
true otherwise.

Throws I l legalStateException– If this BundleContext is no longer valid.

I l legalArgumentException– If the specified ServiceReference was not created by the same frame-
work instance as this BundleContext .

See Also getService(ServiceReference), ServiceFactory

10.1.8 public class BundleEvent
extends EventObject
An event from the Framework describing a bundle lifecycle change.

Framework API org.osgi.framework

OSGi Core Release 7 Page 221

BundleEvent objects are delivered to SynchronousBundleListeners and BundleListeners when a
change occurs in a bundle's lifecycle. A type code is used to identify the event type for future extend-
ability.

OSGi Alliance reserves the right to extend the set of types.

See Also BundleListener, SynchronousBundleListener

Concurrency Immutable

10.1.8.1 public static final int INSTALLED = 1

The bundle has been installed.

See Also BundleContext.installBundle(String)

10.1.8.2 public static final int LAZY_ACTIVATION = 512

The bundle will be lazily activated.

The bundle has a lazy activation policy and is waiting to be activated. It is now in the STARTING
state and has a valid BundleContext . This event is only delivered to SynchronousBundleListeners. It
is not delivered to BundleListeners.

Since 1.4

10.1.8.3 public static final int RESOLVED = 32

The bundle has been resolved.

See Also Bundle.RESOLVED

Since 1.3

10.1.8.4 public static final int STARTED = 2

The bundle has been started.

The bundle's BundleActivator start method has been executed if the bundle has a bundle activator
class.

See Also Bundle.start()

10.1.8.5 public static final int STARTING = 128

The bundle is about to be activated.

The bundle's BundleActivator start method is about to be called if the bundle has a bundle activator
class. This event is only delivered to SynchronousBundleListener s. It is not delivered to BundleLis-
teners.

See Also Bundle.start()

Since 1.3

10.1.8.6 public static final int STOPPED = 4

The bundle has been stopped.

The bundle's BundleActivator stop method has been executed if the bundle has a bundle activator
class.

See Also Bundle.stop()

10.1.8.7 public static final int STOPPING = 256

The bundle is about to deactivated.

org.osgi.framework Framework API

Page 222 OSGi Core Release 7

The bundle's BundleActivator stop method is about to be called if the bundle has a bundle activator
class. This event is only delivered to SynchronousBundleListener s. It is not delivered to BundleLis-
teners.

See Also Bundle.stop()

Since 1.3

10.1.8.8 public static final int UNINSTALLED = 16

The bundle has been uninstalled.

See Also Bundle.uninstall()

10.1.8.9 public static final int UNRESOLVED = 64

The bundle has been unresolved.

See Also Bundle.INSTALLED

Since 1.3

10.1.8.10 public static final int UPDATED = 8

The bundle has been updated.

See Also Bundle.update()

10.1.8.11 public BundleEvent(int type, Bundle bundle, Bundle origin)

type The event type.

bundle The bundle which had a lifecycle change.

origin The bundle which is the origin of the event. For the event type INSTALLED, this is the bundle whose
context was used to install the bundle. Otherwise it is the bundle itself.

□ Creates a bundle event of the specified type.

Since 1.6

10.1.8.12 public BundleEvent(int type, Bundle bundle)

type The event type.

bundle The bundle which had a lifecycle change. This bundle is used as the origin of the event.

□ Creates a bundle event of the specified type.

10.1.8.13 public Bundle getBundle()

□ Returns the bundle which had a lifecycle change. This bundle is the source of the event.

Returns The bundle that had a change occur in its lifecycle.

10.1.8.14 public Bundle getOrigin()

□ Returns the bundle that was the origin of the event.

For the event type INSTALLED, this is the bundle whose context was used to install the bundle. Oth-
erwise it is the bundle itself.

Returns The bundle that was the origin of the event.

Since 1.6

10.1.8.15 public int getType()

□ Returns the type of lifecyle event. The type values are:

Framework API org.osgi.framework

OSGi Core Release 7 Page 223

• INSTALLED
• RESOLVED
• LAZY_ACTIVATION
• STARTING
• STARTED
• STOPPING
• STOPPED
• UPDATED
• UNRESOLVED
• UNINSTALLED

Returns The type of lifecycle event.

10.1.9 public class BundleException
extends Exception
A Framework exception used to indicate that a bundle lifecycle problem occurred.

A BundleException object is created by the Framework to denote an exception condition in the life-
cycle of a bundle. BundleException s should not be created by bundle developers. A type code is used
to identify the exception type for future extendability.

OSGi Alliance reserves the right to extend the set of types.

This exception conforms to the general purpose exception chaining mechanism.

10.1.9.1 public static final int ACTIVATOR_ERROR = 5

The bundle activator was in error.

Since 1.5

10.1.9.2 public static final int DUPLICATE_BUNDLE_ERROR = 9

The install or update operation failed because another already installed bundle has the same sym-
bolic name and version. This exception type will only occur if the framework is configured to only
allow a single bundle to be installed for a given symbolic name and version.

See Also Constants.FRAMEWORK_BSNVERSION

Since 1.5

10.1.9.3 public static final int INVALID_OPERATION = 2

The operation was invalid.

Since 1.5

10.1.9.4 public static final int MANIFEST_ERROR = 3

The bundle manifest was in error.

Since 1.5

10.1.9.5 public static final int NATIVECODE_ERROR = 8

The bundle could not be resolved due to an error with the Bundle-NativeCode header.

Since 1.5

10.1.9.6 public static final int READ_ERROR = 11

The framework received an error while reading the input stream for a bundle.

org.osgi.framework Framework API

Page 224 OSGi Core Release 7

Since 1.6

10.1.9.7 public static final int REJECTED_BY_HOOK = 12

A framework hook rejected the operation.

Since 1.6

10.1.9.8 public static final int RESOLVE_ERROR = 4

The bundle was not resolved.

Since 1.5

10.1.9.9 public static final int SECURITY_ERROR = 6

The operation failed due to insufficient permissions.

Since 1.5

10.1.9.10 public static final int START_TRANSIENT_ERROR = 10

The start transient operation failed because the start level of the bundle is greater than the current
framework start level

Since 1.5

10.1.9.11 public static final int STATECHANGE_ERROR = 7

The operation failed to complete the requested lifecycle state change.

Since 1.5

10.1.9.12 public static final int UNSPECIFIED = 0

No exception type is specified.

Since 1.5

10.1.9.13 public static final int UNSUPPORTED_OPERATION = 1

The operation was unsupported. This type can be used anywhere a BundleException can be thrown.

Since 1.5

10.1.9.14 public BundleException(String msg, Throwable cause)

msg The associated message.

cause The cause of this exception.

□ Creates a BundleException with the specified message and exception cause.

10.1.9.15 public BundleException(String msg)

msg The message.

□ Creates a BundleException with the specified message.

10.1.9.16 public BundleException(String msg, int type, Throwable cause)

msg The associated message.

type The type for this exception.

cause The cause of this exception.

□ Creates a BundleException with the specified message, type and exception cause.

Framework API org.osgi.framework

OSGi Core Release 7 Page 225

Since 1.5

10.1.9.17 public BundleException(String msg, int type)

msg The message.

type The type for this exception.

□ Creates a BundleException with the specified message and type.

Since 1.5

10.1.9.18 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.3

10.1.9.19 public Throwable getNestedException()

□ Returns the cause of this exception or nul l if no cause was specified when this exception was created.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .

10.1.9.20 public int getType()

□ Returns the type for this exception or UNSPECIFIED if the type was unspecified or unknown.

Returns The type of this exception.

Since 1.5

10.1.9.21 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.3

10.1.10 public interface BundleListener
extends EventListener
A BundleEvent listener. BundleListener is a listener interface that may be implemented by a bun-
dle developer. When a BundleEvent is fired, it is asynchronously delivered to a BundleListener . The
Framework delivers BundleEvent objects to a BundleListener in order and must not concurrently
call a BundleListener .

A BundleListener object is registered with the Framework using the
BundleContext.addBundleListener(BundleListener) method. BundleListeners are called with a
BundleEvent object when a bundle has been installed, resolved, started, stopped, updated, unre-
solved, or uninstalled.

See Also BundleEvent

Concurrency Not Thread-safe

org.osgi.framework Framework API

Page 226 OSGi Core Release 7

10.1.10.1 public void bundleChanged(BundleEvent event)

event The BundleEvent .

□ Receives notification that a bundle has had a lifecycle change.

10.1.11 public final class BundlePermission
extends BasicPermission
A bundle's authority to require or provide a bundle or to receive or attach fragments.

A bundle symbolic name defines a unique fully qualified name. Wildcards may be used.

 name ::= <symbolic name> | <symbolic name ending in ".*"> | *

Examples:

 org.osgi.example.bundle
 org.osgi.example.*
 *

BundlePermission has four actions: provide , require , host , and f ragment . The provide action implies
the require action.

Since 1.3

Concurrency Thread-safe

10.1.11.1 public static final String FRAGMENT = "fragment"

The action string f ragment .

10.1.11.2 public static final String HOST = "host"

The action string host .

10.1.11.3 public static final String PROVIDE = "provide"

The action string provide . The provide action implies the require action.

10.1.11.4 public static final String REQUIRE = "require"

The action string require . The require action is implied by the provide action.

10.1.11.5 public BundlePermission(String symbolicName, String actions)

symbolicName The bundle symbolic name.

actions provide ,require , host , f ragment (canonical order).

□ Defines the authority to provide and/or require and or specify a host fragment symbolic name with-
in the OSGi environment.

Bundle Permissions are granted over all possible versions of a bundle. A bundle that needs to pro-
vide a bundle must have the appropriate BundlePermission for the symbolic name; a bundle that re-
quires a bundle must have the appropriate BundlePermssion for that symbolic name; a bundle that
specifies a fragment host must have the appropriate BundlePermission for that symbolic name.

10.1.11.6 public boolean equals(Object obj)

obj The object to test for equality with this BundlePermission object.

□ Determines the equality of two BundlePermission objects. This method checks that specified bundle
has the same bundle symbolic name and BundlePermission actions as this BundlePermission object.

Framework API org.osgi.framework

OSGi Core Release 7 Page 227

Returns true if obj is a BundlePermission , and has the same bundle symbolic name and actions as this
BundlePermission object; fa lse otherwise.

10.1.11.7 public String getActions()

□ Returns the canonical string representation of the BundlePermission actions.

Always returns present BundlePermission actions in the following order: provide , require , host ,
f ragment .

Returns Canonical string representation of the BundlePermission actions.

10.1.11.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

10.1.11.9 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object.

This method checks that the symbolic name of the target is implied by the symbolic name of this
object. The list of BundlePermission actions must either match or allow for the list of the target ob-
ject to imply the target BundlePermission action.

The permission to provide a bundle implies the permission to require the named symbolic name.

 x.y.*,"provide" -> x.y.z,"provide" is true
 *,"require" -> x.y, "require" is true
 *,"provide" -> x.y, "require" is true
 x.y,"provide" -> x.y.z, "provide" is false

Returns true if the specified BundlePermission action is implied by this object; fa lse otherwise.

10.1.11.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing BundlePermission objects.

Returns A new PermissionCol lect ion object.

10.1.12 public interface BundleReference
A reference to a Bundle.

Since 1.5

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.12.1 public Bundle getBundle()

□ Returns the Bundle object associated with this BundleReference .

Returns The Bundle object associated with this BundleReference .

10.1.13 public final class CapabilityPermission
extends BasicPermission
A bundle's authority to provide or require a capability.

org.osgi.framework Framework API

Page 228 OSGi Core Release 7

• The provide action allows a bundle to provide a capability matching the specified filter.
• The require action allows a bundle to require a capability matching the specified filter.

Since 1.6

Concurrency Thread-safe

10.1.13.1 public static final String PROVIDE = "provide"

The action string provide .

10.1.13.2 public static final String REQUIRE = "require"

The action string require .

10.1.13.3 public CapabilityPermission(String name, String actions)

name The capability namespace or a filter over the attributes.

actions require ,provide (canonical order)

□ Create a new CapabilityPermission.

The name is specified as a dot-separated string. Wildcards may be used.

 name ::= <namespace> | <namespace ending in ".*"> | *

Examples:

 com.acme.capability.*
 org.foo.capability
 *

For the require action, the name can also be a filter expression. The filter gives access to the capabili-
ty attributes as well as the following attributes:

• signer - A Distinguished Name chain used to sign the bundle providing the capability. Wildcards
in a DN are not matched according to the filter string rules, but according to the rules defined for
a DN chain.

• location - The location of the bundle providing the capability.
• id - The bundle ID of the bundle providing the capability.
• name - The symbolic name of the bundle providing the capability.
• capability.namespace - The namespace of the required capability.

Since the above attribute names may conflict with attribute names of a capability, you can prefix an
attribute name with '@' in the filter expression to match against the capability attributes and not
one of the above attributes. Filter attribute names are processed in a case sensitive manner.

There are two possible actions: require and provide . The require permission allows the owner of this
permission to require a capability matching the attributes. The provide permission allows the bun-
dle to provide a capability in the specified capability namespace.

Throws I l legalArgumentException– If the specified name is a filter expression and either the specified ac-
tion is not require or the filter has an invalid syntax.

10.1.13.4 public CapabilityPermission(String namespace, Map<String, ?> attributes, Bundle providingBundle, String
actions)

namespace The requested capability namespace.

attributes The requested capability attributes.

Framework API org.osgi.framework

OSGi Core Release 7 Page 229

providingBundle The bundle providing the requested capability.

actions The action require .

□ Creates a new requested Capabi l i tyPermission object to be used by code that must perform check-
Permission for the require action. Capabi l i tyPermission objects created with this constructor cannot
be added to a Capabi l i tyPermission permission collection.

Throws I l legalArgumentException– If the specified action is not require or attributes or providingBundle are
nul l .

10.1.13.5 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two CapabilityPermission objects. Checks that specified object has the
same name and action as this Capabi l i tyPermission .

Returns true if obj is a Capabi l i tyPermission , and has the same name and actions as this Capabi l i tyPermis-
sion object; fa lse otherwise.

10.1.13.6 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing order: require , provide .

Returns The canonical string representation of the actions.

10.1.13.7 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

10.1.13.8 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Capabi l i tyPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

10.1.13.9 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing Capabi l i tyPermission objects.

Returns A new PermissionCol lect ion object suitable for storing Capabi l i tyPermission objects.

10.1.14 public interface Configurable
Supports a configuration object.

Configurable is an interface that should be used by a bundle developer in support of a configurable
service. Bundles that need to configure a service may test to determine if the service object is an in-
stanceof Configurable .

Deprecated As of 1.2. Please use Configuration Admin service.

10.1.14.1 public Object getConfigurationObject()

□ Returns this service's configuration object.

Services implementing Configurable should take care when returning a service configuration object
since this object is probably sensitive.

org.osgi.framework Framework API

Page 230 OSGi Core Release 7

If the Java Runtime Environment supports permissions, it is recommended that the caller is checked
for some appropriate permission before returning the configuration object.

Returns The configuration object for this service.

Throws SecurityException– If the caller does not have an appropriate permission and the Java Runtime En-
vironment supports permissions.

Deprecated As of 1.2. Please use Configuration Admin service.

10.1.15 public interface Constants
Defines standard names for the OSGi environment system properties, service properties, and Mani-
fest header attribute keys.

The values associated with these keys are of type Str ing , unless otherwise indicated.

Since 1.1

Provider Type Consumers of this API must not implement this type

10.1.15.1 public static final String ACTIVATION_LAZY = "lazy"

Bundle activation policy declaring the bundle must be activated when the first class load is made
from the bundle.

A bundle with the lazy activation policy that is started with the START_ACTIVATION_POLICY op-
tion will wait in the STARTING state until the first class load from the bundle occurs. The bundle
will then be activated before the class is returned to the requester.

The activation policy value is specified as in the Bundle-ActivationPolicy manifest header like:

 Bundle-ActivationPolicy: lazy

See Also BUNDLE_ACTIVATIONPOLICY, Bundle.start(int), Bundle.START_ACTIVATION_POLICY

Since 1.4

10.1.15.2 public static final String BUNDLE_ACTIVATIONPOLICY = "Bundle-ActivationPolicy"

Manifest header identifying the bundle's activation policy.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

See Also ACTIVATION_LAZY, INCLUDE_DIRECTIVE, EXCLUDE_DIRECTIVE

Since 1.4

10.1.15.3 public static final String BUNDLE_ACTIVATOR = "Bundle-Activator"

Manifest header identifying the bundle's activator class.

If present, this header specifies the name of the bundle resource class that implements the Bundle-
Activator interface and whose start and stop methods are called by the Framework when the bundle
is started and stopped, respectively.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.4 public static final String BUNDLE_CATEGORY = "Bundle-Category"

Manifest header identifying the bundle's category.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Framework API org.osgi.framework

OSGi Core Release 7 Page 231

10.1.15.5 public static final String BUNDLE_CLASSPATH = "Bundle-ClassPath"

Manifest header identifying a list of directories and embedded JAR files, which are bundle resources
used to extend the bundle's classpath.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.6 public static final String BUNDLE_CONTACTADDRESS = "Bundle-ContactAddress"

Manifest header identifying the contact address where problems with the bundle may be reported;
for example, an email address.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.7 public static final String BUNDLE_COPYRIGHT = "Bundle-Copyright"

Manifest header identifying the bundle's copyright information.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.8 public static final String BUNDLE_DESCRIPTION = "Bundle-Description"

Manifest header containing a brief description of the bundle's functionality.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.9 public static final String BUNDLE_DEVELOPERS = "Bundle-Developers"

Manifest header identifying the bundle's developers.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.9

10.1.15.10 public static final String BUNDLE_DOCURL = "Bundle-DocURL"

Manifest header identifying the bundle's documentation URL, from which further information
about the bundle may be obtained.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.11 public static final String BUNDLE_ICON = "Bundle-Icon"

Manifest header identifying the bundle's icon URLs.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.8

10.1.15.12 public static final String BUNDLE_LICENSE = "Bundle-License"

Manifest header identifying the bundle's license information.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.8

10.1.15.13 public static final String BUNDLE_LOCALIZATION = "Bundle-Localization"

Manifest header identifying the base name of the bundle's localization entries.

org.osgi.framework Framework API

Page 232 OSGi Core Release 7

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

See Also BUNDLE_LOCALIZATION_DEFAULT_BASENAME

Since 1.3

10.1.15.14 public static final String BUNDLE_LOCALIZATION_DEFAULT_BASENAME = "OSGI-INF/l10n/bundle"

Default value for the Bundle-Local izat ion manifest header.

See Also BUNDLE_LOCALIZATION

Since 1.3

10.1.15.15 public static final String BUNDLE_MANIFESTVERSION = "Bundle-ManifestVersion"

Manifest header identifying the bundle manifest version. A bundle manifest may express the ver-
sion of the syntax in which it is written by specifying a bundle manifest version. Bundles exploiting
OSGi Release 4, or later, syntax must specify a bundle manifest version.

The bundle manifest version defined by OSGi Release 4 or, more specifically, by version 1.3 of the
OSGi Core Specification is "2".

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.3

10.1.15.16 public static final String BUNDLE_NAME = "Bundle-Name"

Manifest header identifying the bundle's name.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.17 public static final String BUNDLE_NATIVECODE = "Bundle-NativeCode"

Manifest header identifying a number of hardware environments and the native language code li-
braries that the bundle is carrying for each of these environments.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.18 public static final String BUNDLE_NATIVECODE_LANGUAGE = "language"

Manifest header attribute identifying the language in which the native bundle code is written speci-
fied in the Bundle-NativeCode manifest header. See ISO 639 for possible values.

The attribute value is encoded in the Bundle-NativeCode manifest header like:

 Bundle-NativeCode: http.so ; language=nl_be ...

See Also BUNDLE_NATIVECODE

10.1.15.19 public static final String BUNDLE_NATIVECODE_OSNAME = "osname"

Manifest header attribute identifying the operating system required to run native bundle code speci-
fied in the Bundle-NativeCode manifest header).

The attribute value is encoded in the Bundle-NativeCode manifest header like:

 Bundle-NativeCode: http.so ; osname=Linux ...

See Also BUNDLE_NATIVECODE

Framework API org.osgi.framework

OSGi Core Release 7 Page 233

10.1.15.20 public static final String BUNDLE_NATIVECODE_OSVERSION = "osversion"

Manifest header attribute identifying the operating system version required to run native bundle
code specified in the Bundle-NativeCode manifest header).

The attribute value is encoded in the Bundle-NativeCode manifest header like:

 Bundle-NativeCode: http.so ; osversion="2.34" ...

See Also BUNDLE_NATIVECODE

10.1.15.21 public static final String BUNDLE_NATIVECODE_PROCESSOR = "processor"

Manifest header attribute identifying the processor required to run native bundle code specified in
the Bundle-NativeCode manifest header).

The attribute value is encoded in the Bundle-NativeCode manifest header like:

 Bundle-NativeCode: http.so ; processor=x86 ...

See Also BUNDLE_NATIVECODE

10.1.15.22 public static final String BUNDLE_REQUIREDEXECUTIONENVIRONMENT = "Bundle-
RequiredExecutionEnvironment"

Manifest header identifying the required execution environment for the bundle. The service plat-
form may run this bundle if any of the execution environments named in this header matches one
of the execution environments it implements.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.2

Deprecated As of 1.6. Replaced by the osgi .ee capability.

10.1.15.23 public static final String BUNDLE_SCM = "Bundle-SCM"

Manifest header identifying the bundle's software configuration management system.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.9

10.1.15.24 public static final String BUNDLE_SYMBOLICNAME = "Bundle-SymbolicName"

Manifest header identifying the bundle's symbolic name.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.3

10.1.15.25 public static final String BUNDLE_SYMBOLICNAME_ATTRIBUTE = "bundle-symbolic-name"

Manifest header attribute identifying the symbolic name of a bundle that exports a package speci-
fied in the Import-Package manifest header.

The attribute value is encoded in the Import-Package manifest header like:

 Import-Package: org.osgi.framework;
 bundle-symbolic-name="com.acme.module.test"

See Also IMPORT_PACKAGE

Since 1.3

org.osgi.framework Framework API

Page 234 OSGi Core Release 7

10.1.15.26 public static final String BUNDLE_UPDATELOCATION = "Bundle-UpdateLocation"

Manifest header identifying the location from which a new bundle version is obtained during a bun-
dle update operation.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.27 public static final String BUNDLE_VENDOR = "Bundle-Vendor"

Manifest header identifying the bundle's vendor.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.28 public static final String BUNDLE_VERSION = "Bundle-Version"

Manifest header identifying the bundle's version.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.29 public static final String BUNDLE_VERSION_ATTRIBUTE = "bundle-version"

Manifest header attribute identifying a range of versions for a bundle specified in the Require-Bun-
dle or Fragment-Host manifest headers. The default value is 0.0.0 .

The attribute value is encoded in the Require-Bundle manifest header like:

 Require-Bundle: com.acme.module.test; bundle-version="1.1"
 Require-Bundle: com.acme.module.test; bundle-version="[1.0,2.0)"

The bundle-version attribute value uses a mathematical interval notation to specify a range of bun-
dle versions. A bundle-version attribute value specified as a single version means a version range
that includes any bundle version greater than or equal to the specified version.

See Also REQUIRE_BUNDLE

Since 1.3

10.1.15.30 public static final String DYNAMICIMPORT_PACKAGE = "DynamicImport-Package"

Manifest header identifying the packages that the bundle may dynamically import during execu-
tion.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.2

10.1.15.31 public static final String EFFECTIVE_ACTIVE = "active"

Manifest header directive value identifying a capability that is effective at active time. Capabilities
with an effective time of active are ignored by the resolver.

The directive value is encoded in the Provide-Capability manifest header like:

 Provide-Capability: com.acme.capability; effective:="active"

See Also EFFECTIVE_DIRECTIVE

Since 1.6

10.1.15.32 public static final String EFFECTIVE_DIRECTIVE = "effective"

Manifest header directive identifying the effective time of the provided capability. The default value
is resolve.

Framework API org.osgi.framework

OSGi Core Release 7 Page 235

The directive value is encoded in the Provide-Capability manifest header like:

 Provide-Capability: com.acme.capability; effective:="resolve"

See Also PROVIDE_CAPABILITY, EFFECTIVE_RESOLVE, EFFECTIVE_ACTIVE

Since 1.6

10.1.15.33 public static final String EFFECTIVE_RESOLVE = "resolve"

Manifest header directive value identifying a capability that is effective at resolve time. Capabilities
with an effective time of resolve are the only capabilities which are processed by the resolver.

The directive value is encoded in the Provide-Capability manifest header like:

 Provide-Capability: com.acme.capability; effective:="resolve"

See Also EFFECTIVE_DIRECTIVE

Since 1.6

10.1.15.34 public static final String EXCLUDE_DIRECTIVE = "exclude"

Manifest header directive identifying a list of classes to exclude in the exported package..

This directive is used by the Export-Package manifest header to identify a list of classes of the spec-
ified package which must not be allowed to be exported. The directive value is encoded in the Ex-
port-Package manifest header like:

 Export-Package: org.osgi.framework; exclude:="*Impl"

This directive is also used by the Bundle-ActivationPolicy manifest header to identify the packages
from which class loads will not trigger lazy activation. The directive value is encoded in the Bun-
dle-ActivationPolicy manifest header like:

 Bundle-ActivationPolicy: lazy; exclude:="org.osgi.framework"

See Also EXPORT_PACKAGE, BUNDLE_ACTIVATIONPOLICY

Since 1.3

10.1.15.35 public static final String EXPORT_PACKAGE = "Export-Package"

Manifest header identifying the packages that the bundle offers to the Framework for export.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.36 public static final String EXPORT_SERVICE = "Export-Service"

Manifest header identifying the fully qualified class names of the services that the bundle may regis-
ter (used for informational purposes only).

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Deprecated As of 1.2.

10.1.15.37 public static final String EXTENSION_BOOTCLASSPATH = "bootclasspath"

Manifest header directive value identifying the type of extension fragment. An extension fragment
type of bootclasspath indicates that the extension fragment is to be loaded by the boot class loader.

The directive value is encoded in the Fragment-Host manifest header like:

org.osgi.framework Framework API

Page 236 OSGi Core Release 7

 Fragment-Host: system.bundle; extension:="bootclasspath"

See Also EXTENSION_DIRECTIVE

Since 1.3

Deprecated As of 1.9.

10.1.15.38 public static final String EXTENSION_BUNDLE_ACTIVATOR = "ExtensionBundle-Activator"

Manifest header identifying the extension bundle's activator class.

If present, this header specifies the name of the extension bundle resource class that implements the
BundleActivator interface and whose start and stop methods are called by the Framework when the
Framework is initialized and shutdown, respectively.

Since 1.8

10.1.15.39 public static final String EXTENSION_DIRECTIVE = "extension"

Manifest header directive identifying the type of the extension fragment.

The directive value is encoded in the Fragment-Host manifest header like:

 Fragment-Host: system.bundle; extension:="framework"

The default value is framework.

See Also FRAGMENT_HOST, EXTENSION_FRAMEWORK

Since 1.3

10.1.15.40 public static final String EXTENSION_FRAMEWORK = "framework"

Manifest header directive value identifying the type of extension fragment. An extension fragment
type of framework indicates that the extension fragment is to be loaded by the framework's class
loader.

The directive value is encoded in the Fragment-Host manifest header like:

 Fragment-Host: system.bundle; extension:="framework"

See Also EXTENSION_DIRECTIVE

Since 1.3

10.1.15.41 public static final String FILTER_DIRECTIVE = "filter"

Manifest header directive identifying the capability filter specified in the Require-Capability mani-
fest header.

The directive value is encoded in the Require-Capability manifest header like:

 Require-Capability: com.acme.capability; filter:="(someattr=somevalue)"

See Also REQUIRE_CAPABILITY

Since 1.6

10.1.15.42 public static final String FRAGMENT_ATTACHMENT_ALWAYS = "always"

Manifest header directive value identifying a fragment attachment type of always. A fragment at-
tachment type of always indicates that fragments are allowed to attach to the host bundle at any
time (while the host is resolved or during the process of resolving the host bundle).

The directive value is encoded in the Bundle-SymbolicName manifest header like:

Framework API org.osgi.framework

OSGi Core Release 7 Page 237

 Bundle-SymbolicName: com.acme.module.test; fragment-attachment:="always"

See Also FRAGMENT_ATTACHMENT_DIRECTIVE

Since 1.3

10.1.15.43 public static final String FRAGMENT_ATTACHMENT_DIRECTIVE = "fragment-attachment"

Manifest header directive identifying if and when a fragment may attach to a host bundle. The de-
fault value is always.

The directive value is encoded in the Bundle-SymbolicName manifest header like:

 Bundle-SymbolicName: com.acme.module.test; fragment-attachment:="never"

See Also BUNDLE_SYMBOLICNAME, FRAGMENT_ATTACHMENT_ALWAYS,
FRAGMENT_ATTACHMENT_RESOLVETIME, FRAGMENT_ATTACHMENT_NEVER

Since 1.3

10.1.15.44 public static final String FRAGMENT_ATTACHMENT_NEVER = "never"

Manifest header directive value identifying a fragment attachment type of never. A fragment attach-
ment type of never indicates that no fragments are allowed to attach to the host bundle at any time.

The directive value is encoded in the Bundle-SymbolicName manifest header like:

 Bundle-SymbolicName: com.acme.module.test; fragment-attachment:="never"

See Also FRAGMENT_ATTACHMENT_DIRECTIVE

Since 1.3

10.1.15.45 public static final String FRAGMENT_ATTACHMENT_RESOLVETIME = "resolve-time"

Manifest header directive value identifying a fragment attachment type of resolve-time. A fragment
attachment type of resolve-time indicates that fragments are allowed to attach to the host bundle
only during the process of resolving the host bundle.

The directive value is encoded in the Bundle-SymbolicName manifest header like:

 Bundle-SymbolicName: com.acme.module.test;
 fragment-attachment:="resolve-time"

See Also FRAGMENT_ATTACHMENT_DIRECTIVE

Since 1.3

10.1.15.46 public static final String FRAGMENT_HOST = "Fragment-Host"

Manifest header identifying the symbolic name of another bundle for which that the bundle is a
fragment.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.3

10.1.15.47 public static final String FRAMEWORK_BEGINNING_STARTLEVEL = "org.osgi.framework.startlevel.beginning"

Framework launching property specifying the beginning start level of the framework.

See Also Core Specif icat ion, Start ing the Framework.

Since 1.5

org.osgi.framework Framework API

Page 238 OSGi Core Release 7

10.1.15.48 public static final String FRAMEWORK_BOOTDELEGATION = "org.osgi.framework.bootdelegation"

Framework launching property identifying packages for which the Framework must delegate class
loading to the parent class loader of the bundle.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

See Also FRAMEWORK_BUNDLE_PARENT

Since 1.3

10.1.15.49 public static final String FRAMEWORK_BSNVERSION = "org.osgi.framework.bsnversion"

Framework launching property specifying whether multiple bundles having the same symbolic
name and version may be installed.

Default value is managed in this release of the specification. This default may change in a future
specification release. Therefore, code must not assume the default behavior is managed and should
interrogate the value of this property to determine the behavior.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

See Also FRAMEWORK_BSNVERSION_MULTIPLE, FRAMEWORK_BSNVERSION_SINGLE,
FRAMEWORK_BSNVERSION_MANAGED

Since 1.6

10.1.15.50 public static final String FRAMEWORK_BSNVERSION_MANAGED = "managed"

Specifies the framework must consult the bundle collision hook services to determine if it will be
an error to install a bundle or update a bundle to have the same symbolic name and version as an-
other installed bundle. If no bundle collision hook services are registered, then it will be an error
to install a bundle or update a bundle to have the same symbolic name and version as another in-
stalled bundle.

See Also FRAMEWORK_BSNVERSION, BundleException.DUPLICATE_BUNDLE_ERROR

Since 1.7

10.1.15.51 public static final String FRAMEWORK_BSNVERSION_MULTIPLE = "multiple"

Specifies the framework will allow multiple bundles to be installed having the same symbolic name
and version.

See Also FRAMEWORK_BSNVERSION

Since 1.6

10.1.15.52 public static final String FRAMEWORK_BSNVERSION_SINGLE = "single"

Specifies the framework will only allow a single bundle to be installed for a given symbolic name
and version. It will be an error to install a bundle or update a bundle to have the same symbolic
name and version as another installed bundle.

See Also FRAMEWORK_BSNVERSION, BundleException.DUPLICATE_BUNDLE_ERROR

Since 1.6

10.1.15.53 public static final String FRAMEWORK_BUNDLE_PARENT = "org.osgi.framework.bundle.parent"

Framework launching property specifying the parent class loader type for all bundle class loaders.
Default value is boot.

See Also FRAMEWORK_BUNDLE_PARENT_BOOT, FRAMEWORK_BUNDLE_PARENT_EXT,
FRAMEWORK_BUNDLE_PARENT_APP, FRAMEWORK_BUNDLE_PARENT_FRAMEWORK

Since 1.5

Framework API org.osgi.framework

OSGi Core Release 7 Page 239

10.1.15.54 public static final String FRAMEWORK_BUNDLE_PARENT_APP = "app"

Specifies to use the application class loader as the parent class loader for all bundle class load-
ers. Depending on how the framework is launched, this may refer to the same class loader as
FRAMEWORK_BUNDLE_PARENT_FRAMEWORK.

See Also FRAMEWORK_BUNDLE_PARENT

Since 1.5

10.1.15.55 public static final String FRAMEWORK_BUNDLE_PARENT_BOOT = "boot"

Specifies to use of the boot class loader as the parent class loader for all bundle class loaders.

See Also FRAMEWORK_BUNDLE_PARENT

Since 1.5

10.1.15.56 public static final String FRAMEWORK_BUNDLE_PARENT_EXT = "ext"

Specifies to use the extension class loader as the parent class loader for all bundle class loaders.

See Also FRAMEWORK_BUNDLE_PARENT

Since 1.5

10.1.15.57 public static final String FRAMEWORK_BUNDLE_PARENT_FRAMEWORK = "framework"

Specifies to use the framework class loader as the parent class loader for all bundle class load-
ers. The framework class loader is the class loader used to load the framework implementa-
tion. Depending on how the framework is launched, this may refer to the same class loader as
FRAMEWORK_BUNDLE_PARENT_APP.

See Also FRAMEWORK_BUNDLE_PARENT

Since 1.5

10.1.15.58 public static final String FRAMEWORK_COMMAND_ABSPATH = "abspath"

Specified the substitution string for the absolute path of a file.

See Also FRAMEWORK_EXECPERMISSION

Since 1.6

10.1.15.59 public static final String FRAMEWORK_EXECPERMISSION = "org.osgi.framework.command.execpermission"

Framework launching property specifying an optional OS specific command to set file permissions
on extracted native code. On some operating systems, it is required that native libraries be set to ex-
ecutable. This optional property allows you to specify the command. For example, on a UNIX style
OS, this property could have the following value.

 chmod +rx ${abspath}

The ${abspath} is used by the framework to substitute the actual absolute file path.

Since 1.5

10.1.15.60 public static final String FRAMEWORK_EXECUTIONENVIRONMENT =
"org.osgi.framework.executionenvironment"

Framework launching property identifying execution environments provided by the Framework.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.2

Deprecated As of 1.6. Replaced by the osgi .ee capability.

org.osgi.framework Framework API

Page 240 OSGi Core Release 7

10.1.15.61 public static final String FRAMEWORK_LANGUAGE = "org.osgi.framework.language"

Framework launching property identifying the Framework implementation language (see ISO 639
for possible values).

The value of this property may be retrieved by calling the BundleContext.getProperty method.

10.1.15.62 public static final String FRAMEWORK_LIBRARY_EXTENSIONS = "org.osgi.framework.library.extensions"

Framework launching property specifying a comma separated list of additional library file exten-
sions that must be used when a bundle's class loader is searching for native libraries. If this proper-
ty is not set, then only the library name returned by System.mapLibraryName(Str ing) will be used
to search. This is needed for certain operating systems which allow more than one extension for a li-
brary. For example, AIX allows library extensions of .a and .so , but System.mapLibraryName(Str ing)
will only return names with the .a extension.

Since 1.5

10.1.15.63 public static final String FRAMEWORK_OS_NAME = "org.osgi.framework.os.name"

Framework launching property identifying the Framework host-computer's operating system.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

10.1.15.64 public static final String FRAMEWORK_OS_VERSION = "org.osgi.framework.os.version"

Framework launching property identifying the Framework host-computer's operating system ver-
sion number.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

10.1.15.65 public static final String FRAMEWORK_PROCESSOR = "org.osgi.framework.processor"

Framework launching property identifying the Framework host-computer's processor name.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

10.1.15.66 public static final String FRAMEWORK_SECURITY = "org.osgi.framework.security"

Framework launching property specifying the type of security manager the framework must use. If
not specified then the framework will not set the VM security manager.

See Also FRAMEWORK_SECURITY_OSGI

Since 1.5

10.1.15.67 public static final String FRAMEWORK_SECURITY_OSGI = "osgi"

Specifies that a security manager that supports all security aspects of the OSGi core specification in-
cluding postponed conditions must be installed.

If this value is specified and there is a security manager already installed, then a SecurityException
must be thrown when the Framework is initialized.

See Also FRAMEWORK_SECURITY

Since 1.5

10.1.15.68 public static final String FRAMEWORK_STORAGE = "org.osgi.framework.storage"

Framework launching property specifying the persistent storage area used by the framework. The
value of this property must be a valid file path in the file system to a directory. If the specified direc-
tory does not exist then the framework will create the directory. If the specified path exists but is not
a directory or if the framework fails to create the storage directory, then framework initialization
must fail. The framework is free to use this directory as it sees fit. This area can not be shared with
anything else.

Framework API org.osgi.framework

OSGi Core Release 7 Page 241

If this property is not set, the framework should use a reasonable platform default for the persistent
storage area.

Since 1.5

10.1.15.69 public static final String FRAMEWORK_STORAGE_CLEAN = "org.osgi.framework.storage.clean"

Framework launching property specifying if and when the persistent storage area for the frame-
work should be cleaned. If this property is not set, then the framework storage area must not be
cleaned.

See Also FRAMEWORK_STORAGE_CLEAN_ONFIRSTINIT

Since 1.5

10.1.15.70 public static final String FRAMEWORK_STORAGE_CLEAN_ONFIRSTINIT = "onFirstInit"

Specifies that the framework storage area must be cleaned before the framework is initialized for
the first time. Subsequent inits, starts or updates of the framework will not result in cleaning the
framework storage area.

Since 1.5

10.1.15.71 public static final String FRAMEWORK_SYSTEMCAPABILITIES = "org.osgi.framework.system.capabilities"

Framework launching property identifying capabilities which the system bundle must provide.

If this property is not specified then the framework must calculate a reasonable default value for the
current execution environment.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.6

10.1.15.72 public static final String FRAMEWORK_SYSTEMCAPABILITIES_EXTRA =
"org.osgi.framework.system.capabilities.extra"

Framework launching property identifying extra capabilities which the system bundle must addi-
tionally provide.

This property is useful for configuring extra system capabilities in addition to the system capabili-
ties calculated by the framework.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

See Also FRAMEWORK_SYSTEMCAPABILITIES

Since 1.6

10.1.15.73 public static final String FRAMEWORK_SYSTEMPACKAGES = "org.osgi.framework.system.packages"

Framework launching property identifying packages which the system bundle must export.

If this property is not specified then the framework must calculate a reasonable default value for the
current execution environment.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.3

10.1.15.74 public static final String FRAMEWORK_SYSTEMPACKAGES_EXTRA =
"org.osgi.framework.system.packages.extra"

Framework launching property identifying extra packages which the system bundle must export
from the current execution environment.

This property is useful for configuring extra system packages in addition to the system packages cal-
culated by the framework.

org.osgi.framework Framework API

Page 242 OSGi Core Release 7

The value of this property may be retrieved by calling the BundleContext.getProperty method.

See Also FRAMEWORK_SYSTEMPACKAGES

Since 1.5

10.1.15.75 public static final String FRAMEWORK_TRUST_REPOSITORIES = "org.osgi.framework.trust.repositories"

Framework launching property specifying the trust repositories used by the framework. The value
is a java. io.F i le .pathSeparator separated list of valid file paths to files that contain key stores. Key
stores of type JKS must be supported and other key store types may be supported. The framework
will use the key stores as trust repositories to authenticate certificates of trusted signers. The key
stores are only used as read-only trust repositories to access public keys. No passwords are required
to access the key stores' public keys.

Note that framework implementations are allowed to use other trust repositories in addition to the
trust repositories specified by this property. How these other trust repositories are configured and
populated is implementation specific.

Since 1.5

10.1.15.76 public static final String FRAMEWORK_UUID = "org.osgi.framework.uuid"

Framework environment property identifying the Framework's universally unique identifier
(UUID). A UUID represents a 128-bit value. A new UUID is generated by the Framework.init()
method each time a framework is initialized. The value of this property must conform to the UUID
string representation specified in RFC 4122 [http://www.ietf.org/rfc/rfc4122.txt].

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.6

10.1.15.77 public static final String FRAMEWORK_VENDOR = "org.osgi.framework.vendor"

Framework environment property identifying the Framework implementation vendor.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

10.1.15.78 public static final String FRAMEWORK_VERSION = "org.osgi.framework.version"

Framework environment property identifying the Framework version.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

10.1.15.79 public static final String FRAMEWORK_WINDOWSYSTEM = "org.osgi.framework.windowsystem"

Framework launching property specifying the current windowing system. The framework should
provide a reasonable default if this is not set.

Since 1.5

10.1.15.80 public static final String IMPORT_PACKAGE = "Import-Package"

Manifest header identifying the packages on which the bundle depends.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

10.1.15.81 public static final String IMPORT_SERVICE = "Import-Service"

Manifest header identifying the fully qualified class names of the services that the bundle requires
(used for informational purposes only).

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Deprecated As of 1.2.

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt

Framework API org.osgi.framework

OSGi Core Release 7 Page 243

10.1.15.82 public static final String INCLUDE_DIRECTIVE = "include"

Manifest header directive identifying a list of classes to include in the exported package.

This directive is used by the Export-Package manifest header to identify a list of classes of the spec-
ified package which must be allowed to be exported. The directive value is encoded in the Ex-
port-Package manifest header like:

 Export-Package: org.osgi.framework; include:="MyClass*"

This directive is also used by the Bundle-ActivationPolicy manifest header to identify the packages
from which class loads will trigger lazy activation. The directive value is encoded in the Bundle-Ac-
tivationPolicy manifest header like:

 Bundle-ActivationPolicy: lazy; include:="org.osgi.framework"

See Also EXPORT_PACKAGE, BUNDLE_ACTIVATIONPOLICY

Since 1.3

10.1.15.83 public static final String INTENT_ASYNC = "osgi.async"

Intent supported by Remote Service implementations that support Asynchronous Remote Services
as defined for the osgi .async intent.

Since 1.9

10.1.15.84 public static final String INTENT_BASIC = "osgi.basic"

Intent supported by Remote Services implementations that support Basic Remote Services as de-
fined for the osgi .basic intent.

Since 1.9

10.1.15.85 public static final String INTENT_CONFIDENTIAL = "osgi.confidential"

Intent supported by Remote Service implementation that provide confidential communications as
defined for the osgi .confidential intent.

Since 1.9

10.1.15.86 public static final String INTENT_PRIVATE = "osgi.private"

Intent supported by Remote Service implementations that provide private communications as de-
fined for the osgi .pr ivate intent.

Since 1.9

10.1.15.87 public static final String MANDATORY_DIRECTIVE = "mandatory"

Manifest header directive identifying names of matching attributes which must be specified by
matching Import-Package statements in the Export-Package manifest header.

The directive value is encoded in the Export-Package manifest header like:

 Export-Package: org.osgi.framework; mandatory:="bundle-symbolic-name"

See Also EXPORT_PACKAGE

Since 1.3

10.1.15.88 public static final String OBJECTCLASS = "objectClass"

Service property identifying all of the class names under which a service was registered in the
Framework. The value of this property must be of type Str ing[] .

This property is set by the Framework when a service is registered.

org.osgi.framework Framework API

Page 244 OSGi Core Release 7

10.1.15.89 public static final String PACKAGE_SPECIFICATION_VERSION = "specification-version"

Manifest header attribute identifying the version of a package specified in the Export-Package or Im-
port-Package manifest header.

Deprecated As of 1.3. This has been replaced by VERSION_ATTRIBUTE.

10.1.15.90 public static final String PROVIDE_CAPABILITY = "Provide-Capability"

Manifest header identifying the capabilities that the bundle offers to provide to other bundles.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.6

10.1.15.91 public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"

Service property identifying the configuration types supported by a distribution provider. Regis-
tered by the distribution provider on one of its services to indicate the supported configuration
types.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.92 public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"

Service property identifying the intents supported by a distribution provider. Registered by the dis-
tribution provider on one of its services to indicate the vocabulary of implemented intents.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.93 public static final String REQUIRE_BUNDLE = "Require-Bundle"

Manifest header identifying the symbolic names of other bundles required by the bundle.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.3

10.1.15.94 public static final String REQUIRE_CAPABILITY = "Require-Capability"

Manifest header identifying the capabilities on which the bundle depends.

The header value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

Since 1.6

10.1.15.95 public static final String RESOLUTION_DIRECTIVE = "resolution"

Manifest header directive identifying the resolution type in the Import-Package, Require-Bundle or
Require-Capability manifest header. The default value is mandatory.

The directive value is encoded in the Import-Package, Require-Bundle or Require-Capability mani-
fest header like:

 Import-Package: org.osgi.framework; resolution:="optional"
 Require-Bundle: com.acme.module.test; resolution:="optional"
 Require-Capability: com.acme.capability; resolution:="optional"

Framework API org.osgi.framework

OSGi Core Release 7 Page 245

See Also IMPORT_PACKAGE, REQUIRE_BUNDLE, REQUIRE_CAPABILITY, RESOLUTION_MANDATORY,
RESOLUTION_OPTIONAL

Since 1.3

10.1.15.96 public static final String RESOLUTION_MANDATORY = "mandatory"

Manifest header directive value identifying a mandatory resolution type. A mandatory resolution
type indicates that the import package, require bundle or require capability must be resolved when
the bundle is resolved. If such an import, require bundle or require capability cannot be resolved,
the module fails to resolve.

The directive value is encoded in the Import-Package, Require-Bundle or Require-Capability mani-
fest header like:

 Import-Package: org.osgi.framework; resolution:="mandatory"
 Require-Bundle: com.acme.module.test; resolution:="mandatory"
 Require-Capability: com.acme.capability; resolution:="mandatory"

See Also RESOLUTION_DIRECTIVE

Since 1.3

10.1.15.97 public static final String RESOLUTION_OPTIONAL = "optional"

Manifest header directive value identifying an optional resolution type. An optional resolution type
indicates that the import, require bundle or require capability is optional and the bundle may be
resolved without the import, require bundle or require capability being resolved. If the import, re-
quire bundle or require capability is not resolved when the bundle is resolved, the import, require
bundle or require capability may not be resolved until the bundle is refreshed.

The directive value is encoded in the Import-Package, Require-Bundle or Require-Capability mani-
fest header like:

 Import-Package: org.osgi.framework; resolution:="optional"
 Require-Bundle: com.acme.module.test; resolution:="optional"
 Require-Capability: com.acme.capability; resolution:="optional"

See Also RESOLUTION_DIRECTIVE

Since 1.3

10.1.15.98 public static final String SCOPE_BUNDLE = "bundle"

Service scope is bundle. Each bundle using the service receives a customized service object.

See Also SERVICE_SCOPE

Since 1.8

10.1.15.99 public static final String SCOPE_PROTOTYPE = "prototype"

Service scope is prototype. Each bundle using the service receives either a customized service object
or can request multiple customized service objects via ServiceObjects.

See Also SERVICE_SCOPE

Since 1.8

10.1.15.100 public static final String SCOPE_SINGLETON = "singleton"

Service scope is singleton. All bundles using the service receive the same service object.

See Also SERVICE_SCOPE

Since 1.8

org.osgi.framework Framework API

Page 246 OSGi Core Release 7

10.1.15.101 public static final String SELECTION_FILTER_ATTRIBUTE = "selection-filter"

Manifest header attribute is used for selection by filtering based upon system properties.

The attribute value is encoded in manifest headers like:

 Bundle-NativeCode: libgtk.so; selection-filter="(ws=gtk)"; ...

See Also BUNDLE_NATIVECODE

Since 1.3

10.1.15.102 public static final String SERVICE_BUNDLEID = "service.bundleid"

Service property identifying the bundle id of the bundle registering the service.

This property is set by the Framework when a service is registered. The value of this property must
be of type Long .

Since 1.8

10.1.15.103 public static final String SERVICE_CHANGECOUNT = "service.changecount"

Service property identifying the monotonically increasing change count of a service.

A service may optional provide this property to indicate there has been a change in some data pro-
vided by the service. The change count must be incremented with a positive value every time the
data provided by the service is changed. The service announces the modified change count by up-
dating its service properties with the new value for this service property.

The value of this property must be of type Long .

Since 1.9

10.1.15.104 public static final String SERVICE_DESCRIPTION = "service.description"

Service property identifying a service's description.

This property may be supplied in the properties Dictionary object passed to the
BundleContext.registerService method.

10.1.15.105 public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"

Service property identifying the configuration types that should be used to export the service. Each
configuration type represents the configuration parameters for an endpoint. A distribution provider
should create an endpoint for each configuration type that it supports.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.106 public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"

Service property identifying the intents that the distribution provider must implement to distrib-
ute the service. Intents listed in this property are reserved for intents that are critical for the code to
function correctly, for example, ordering of messages. These intents should not be configurable.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

Framework API org.osgi.framework

OSGi Core Release 7 Page 247

10.1.15.107 public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"

Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service. This property is merged with the service.exported. intents property before the
distribution provider interprets the listed intents; it has therefore the same semantics but the prop-
erty should be configurable so the administrator can choose the intents based on the topology. Bun-
dles should therefore make this property configurable, for example through the Configuration Ad-
min service.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.108 public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"

Service property marking the service for export. It defines the interfaces under which this service
can be exported. This list must be a subset of the types under which the service was registered. The
single value of an asterisk ('* ' \u002A) indicates all the interface types under which the service was
registered excluding the non-interface types. It is strongly recommended to only export interface
types and not concrete classes due to the complexity of creating proxies for some type of concrete
classes.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.109 public static final String SERVICE_ID = "service.id"

Service property identifying a service's registration number. The value of this property must be of
type Long .

The value of this property is assigned by the Framework when a service is registered. The Frame-
work assigns a unique, non-negative value that is larger than all previously assigned values since
the Framework was started. These values are NOT persistent across restarts of the Framework.

10.1.15.110 public static final String SERVICE_IMPORTED = "service.imported"

Service property identifying the service as imported. This service property must be set by a distribu-
tion provider to any value when it registers the endpoint proxy as an imported service. A bundle can
use this property to filter out imported services.

The value of this property may be of any type.

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.111 public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"

Service property identifying the configuration types used to import the service. Any associated
properties for this configuration types must be properly mapped to the importing system. For ex-
ample, a URL in these properties must point to a valid resource when used in the importing frame-
work. If multiple configuration types are listed in this property, then they must be synonyms for ex-
actly the same remote endpoint that is used to export this service.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

org.osgi.framework Framework API

Page 248 OSGi Core Release 7

See Also Remote Services Specif icat ion , SERVICE_EXPORTED_CONFIGS

Since 1.6

10.1.15.112 public static final String SERVICE_INTENTS = "service.intents"

Service property identifying the intents that this service implement. This property has a dual pur-
pose:

• A bundle can use this service property to notify the distribution provider that these intents are
already implemented by the exported service object.

• A distribution provider must use this property to convey the combined intents of: the exporting
service, the intents that the exporting distribution provider adds, and the intents that the import-
ing distribution provider adds.

To export a service, a distribution provider must expand any qualified intents. Both the exporting
and importing distribution providers must recognize all intents before a service can be distributed.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Since 1.6

10.1.15.113 public static final String SERVICE_PID = "service.pid"

Service property identifying a service's persistent identifier.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

A service's persistent identifier uniquely identifies the service and persists across multiple Frame-
work invocations.

By convention, every bundle has its own unique namespace, starting with the bundle's identifier
(see Bundle.getBundleId()) and followed by a dot (.). A bundle may use this as the prefix of the persis-
tent identifiers for the services it registers.

10.1.15.114 public static final String SERVICE_RANKING = "service.ranking"

Service property identifying a service's ranking number.

This property may be supplied in the propert ies Dict ionary object passed to the
BundleContext.registerService method. The value of this property must be of type Integer .

The service ranking is used by the Framework to determine the natural order of services, see
ServiceReference.compareTo(Object), and the default service to be returned from a call to the
BundleContext.getServiceReference(Class) or BundleContext.getServiceReference(String) method.

The default ranking is zero (0). A service with a ranking of Integer.MAX_VALUE is very likely to be
returned as the default service, whereas a service with a ranking of Integer.MIN_VALUE is very un-
likely to be returned.

If the supplied property value is not of type Integer , it is deemed to have a ranking value of zero.

10.1.15.115 public static final String SERVICE_SCOPE = "service.scope"

Service property identifying a service's scope.

This property is set by the Framework when a service is registered. If the registered object imple-
ments PrototypeServiceFactory, then the value of this service property will be SCOPE_PROTOTYPE.
Otherwise, if the registered object implements ServiceFactory, then the value of this ser-
vice property will be SCOPE_BUNDLE. Otherwise, the value of this service property will be
SCOPE_SINGLETON.

Framework API org.osgi.framework

OSGi Core Release 7 Page 249

See Also SCOPE_SINGLETON, SCOPE_BUNDLE, SCOPE_PROTOTYPE

Since 1.8

10.1.15.116 public static final String SERVICE_VENDOR = "service.vendor"

Service property identifying a service's vendor.

This property may be supplied in the properties Dictionary object passed to the
BundleContext.registerService method.

10.1.15.117 public static final String SINGLETON_DIRECTIVE = "singleton"

Manifest header directive identifying whether a bundle is a singleton. The default value is fa lse .

The directive value is encoded in the Bundle-SymbolicName manifest header like:

 Bundle-SymbolicName: com.acme.module.test; singleton:=true

See Also BUNDLE_SYMBOLICNAME

Since 1.3

10.1.15.118 public static final String SUPPORTS_BOOTCLASSPATH_EXTENSION =
"org.osgi.supports.bootclasspath.extension"

Framework environment property identifying whether the Framework supports bootclasspath ex-
tension bundles.

If the value of this property is true , then the Framework supports bootclasspath extension bundles.
The default value is fa lse .

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.3

10.1.15.119 public static final String SUPPORTS_FRAMEWORK_EXTENSION = "org.osgi.supports.framework.extension"

Framework environment property identifying whether the Framework supports framework exten-
sion bundles.

As of version 1.4, the value of this property must be true . The Framework must support framework
extension bundles.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.3

10.1.15.120 public static final String SUPPORTS_FRAMEWORK_FRAGMENT = "org.osgi.supports.framework.fragment"

Framework environment property identifying whether the Framework supports fragment bundles.

As of version 1.4, the value of this property must be true . The Framework must support fragment
bundles.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

Since 1.3

10.1.15.121 public static final String SUPPORTS_FRAMEWORK_REQUIREBUNDLE =
"org.osgi.supports.framework.requirebundle"

Framework environment property identifying whether the Framework supports the Require-Bundle
manifest header.

As of version 1.4, the value of this property must be true . The Framework must support the Re-
quire-Bundle manifest header.

The value of this property may be retrieved by calling the BundleContext.getProperty method.

org.osgi.framework Framework API

Page 250 OSGi Core Release 7

Since 1.3

10.1.15.122 public static final long SYSTEM_BUNDLE_ID = 0L

Identifier of the OSGi system bundle , which is defined to be 0 .

Since 1.8

10.1.15.123 public static final String SYSTEM_BUNDLE_LOCATION = "System Bundle"

Location identifier of the OSGi system bundle , which is defined to be "System Bundle".

10.1.15.124 public static final String SYSTEM_BUNDLE_SYMBOLICNAME = "system.bundle"

Alias for the symbolic name of the OSGi system bundle . It is defined to be "system.bundle".

Since 1.3

10.1.15.125 public static final String USES_DIRECTIVE = "uses"

Manifest header directive identifying a list of packages that an exported package or provided capa-
bility uses.

The directive value is encoded in the Export-Package or Provide-Capability manifest header like:

 Export-Package: org.osgi.util.tracker; uses:="org.osgi.framework"
 Provide-Capability: com.acme.capability; uses:="com.acme.service"

See Also EXPORT_PACKAGE, PROVIDE_CAPABILITY

Since 1.3

10.1.15.126 public static final String VERSION_ATTRIBUTE = "version"

Manifest header attribute identifying the version of a package specified in the Export-Package or Im-
port-Package manifest header.

The attribute value is encoded in the Export-Package or Import-Package manifest header like:

 Export-Package: org.osgi.framework; version="1.1"

See Also EXPORT_PACKAGE, IMPORT_PACKAGE

Since 1.3

10.1.15.127 public static final String VISIBILITY_DIRECTIVE = "visibility"

Manifest header directive identifying the visibility of a required bundle in the Require-Bundle mani-
fest header. The default value is private.

The directive value is encoded in the Require-Bundle manifest header like:

 Require-Bundle: com.acme.module.test; visibility:="reexport"

See Also REQUIRE_BUNDLE, VISIBILITY_PRIVATE, VISIBILITY_REEXPORT

Since 1.3

10.1.15.128 public static final String VISIBILITY_PRIVATE = "private"

Manifest header directive value identifying a private visibility type. A private visibility type indi-
cates that any packages that are exported by the required bundle are not made visible on the export
signature of the requiring bundle.

The directive value is encoded in the Require-Bundle manifest header like:

 Require-Bundle: com.acme.module.test; visibility:="private"

Framework API org.osgi.framework

OSGi Core Release 7 Page 251

See Also VISIBILITY_DIRECTIVE

Since 1.3

10.1.15.129 public static final String VISIBILITY_REEXPORT = "reexport"

Manifest header directive value identifying a reexport visibility type. A reexport visibility type indi-
cates any packages that are exported by the required bundle are re-exported by the requiring bundle.
Any arbitrary matching attributes with which they were exported by the required bundle are delet-
ed.

The directive value is encoded in the Require-Bundle manifest header like:

 Require-Bundle: com.acme.module.test; visibility:="reexport"

See Also VISIBILITY_DIRECTIVE

Since 1.3

10.1.16 public interface Filter
An RFC 1960 [http://www.ietf.org/rfc/rfc1960.txt]-based Filter.

Fi l ters can be created by calling BundleContext.createFilter(String) or
FrameworkUtil.createFilter(String) with a filter string.

A Fi l ter can be used numerous times to determine if the match argument matches the filter string
that was used to create the Fi l ter .

Some examples of LDAP filters are:

 "(cn=Babs Jensen)"
 "(!(cn=Tim Howes))"
 "(&(" + Constants.OBJECTCLASS + "=Person)(|(sn=Jensen)(cn=Babs J*)))"
 "(o=univ*of*mich*)"

See Also Core Specif icat ion, F i l ters , for a descr ipt ion of the f i l ter str ing syntax.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.16.1 public boolean equals(Object obj)

obj The object to compare against this Fi l ter .

□ Compares this Fi l ter to another Fi l ter .

This implementation returns the result of calling this .toStr ing() .equals(obj .toStr ing()) .

Returns If the other object is a Fi l ter object, then returns the result of calling
this .toStr ing() .equals(obj .toStr ing()) ; fa lse otherwise.

10.1.16.2 public int hashCode()

□ Returns the hashCode for this Fi l ter .

This implementation returns the result of calling this .toStr ing() .hashCode() .

Returns The hashCode of this Fi l ter .

10.1.16.3 public boolean match(ServiceReference<?> reference)

reference The reference to the service whose properties are used in the match.

http://www.ietf.org/rfc/rfc1960.txt
http://www.ietf.org/rfc/rfc1960.txt

org.osgi.framework Framework API

Page 252 OSGi Core Release 7

□ Filter using a service's properties.

This Fi l ter is executed using the keys and values of the referenced service's properties. The keys are
looked up in a case insensitive manner.

Returns true if the service's properties match this Fi l ter ; fa lse otherwise.

10.1.16.4 public boolean match(Dictionary<String, ?> dictionary)

dictionary The Dictionary whose key/value pairs are used in the match.

□ Filter using a Dictionary with case insensitive key lookup. This Fi l ter is executed using the specified
Dictionary 's keys and values. The keys are looked up in a case insensitive manner.

Returns true if the Dictionary 's values match this filter; fa lse otherwise.

Throws I l legalArgumentException– If dict ionary contains case variants of the same key name.

10.1.16.5 public boolean matchCase(Dictionary<String, ?> dictionary)

dictionary The Dictionary whose key/value pairs are used in the match.

□ Filter using a Dictionary . This Fi l ter is executed using the specified Dictionary 's keys and values. The
keys are looked up in a normal manner respecting case.

Returns true if the Dictionary 's values match this filter; fa lse otherwise.

Since 1.3

10.1.16.6 public boolean matches(Map<String, ?> map)

map The Map whose key/value pairs are used in the match. Maps with nul l key or values are not support-
ed. A nul l value is considered not present to the filter.

□ Filter using a Map . This Fi l ter is executed using the specified Map 's keys and values. The keys are
looked up in a normal manner respecting case.

Returns true if the Map 's values match this filter; fa lse otherwise.

Since 1.6

10.1.16.7 public String toString()

□ Returns this Fi l ter 's filter string.

The filter string is normalized by removing whitespace which does not affect the meaning of the fil-
ter.

Returns This Fi l ter 's filter string.

10.1.17 public class FrameworkEvent
extends EventObject
A general event from the Framework.

FrameworkEvent objects are delivered to FrameworkListeners when a general event occurs within
the OSGi environment. A type code is used to identify the event type for future extendability.

OSGi Alliance reserves the right to extend the set of event types.

See Also FrameworkListener

Concurrency Immutable

10.1.17.1 public static final int ERROR = 2

An error has occurred.

Framework API org.osgi.framework

OSGi Core Release 7 Page 253

There was an error associated with a bundle.

10.1.17.2 public static final int INFO = 32

An informational event has occurred.

There was an informational event associated with a bundle.

Since 1.3

10.1.17.3 public static final int PACKAGES_REFRESHED = 4

A FrameworkWiring.refreshBundles operation has completed.

This event is fired when the Framework has completed the refresh bundles operation initiated by a
call to the FrameworkWiring.refreshBundles method. The source of this event is the System Bundle.

See Also FrameworkWiring.refreshBundles(java.util.Collection, FrameworkListener...)

Since 1.2

10.1.17.4 public static final int STARTED = 1

The Framework has started.

This event is fired when the Framework has started after all installed bundles that are marked to be
started have been started and the Framework has reached the initial start level. The source of this
event is the System Bundle.

See Also The Start Level Specif icat ion

10.1.17.5 public static final int STARTLEVEL_CHANGED = 8

A FrameworkStartLevel.setStartLevel operation has completed.

This event is fired when the Framework has completed changing the active start level initiated by a
call to the StartLevel.setStartLevel method. The source of this event is the System Bundle.

See Also FrameworkStartLevel.setStartLevel(int, FrameworkListener...)

Since 1.2

10.1.17.6 public static final int STOPPED = 64

The Framework has stopped.

This event is fired when the Framework has been stopped because of a stop operation on the system
bundle. The source of this event is the System Bundle.

Since 1.5

10.1.17.7 public static final int STOPPED_BOOTCLASSPATH_MODIFIED = 256

The Framework has stopped and the boot class path has changed.

This event is fired when the Framework has been stopped because of a stop operation on the system
bundle and a bootclasspath extension bundle has been installed or updated. The source of this event
is the System Bundle.

Since 1.5

10.1.17.8 public static final int STOPPED_SYSTEM_REFRESHED = 1024

The Framework has stopped and the framework requires a new class loader to restart.

This event is fired when the Framework has been stopped because of a stop operation on the system
bundle and the framework requires a new class loader to be used to restart. For example, if a frame-
work extension bundle has been refreshed. The source of this event is the System Bundle.

org.osgi.framework Framework API

Page 254 OSGi Core Release 7

Since 1.9

10.1.17.9 public static final int STOPPED_UPDATE = 128

The Framework has stopped during update.

This event is fired when the Framework has been stopped because of an update operation on the
system bundle. The Framework will be restarted after this event is fired. The source of this event is
the System Bundle.

Since 1.5

10.1.17.10 public static final int WAIT_TIMEDOUT = 512

The Framework did not stop before the wait timeout expired.

This event is fired when the Framework did not stop before the wait timeout expired. The source of
this event is the System Bundle.

Since 1.5

10.1.17.11 public static final int WARNING = 16

A warning has occurred.

There was a warning associated with a bundle.

Since 1.3

10.1.17.12 public FrameworkEvent(int type, Object source)

type The event type.

source The event source object. This may not be nul l .

□ Creates a Framework event.

Deprecated As of 1.2. This constructor is deprecated in favor of using the other constructor with the System
Bundle as the event source.

10.1.17.13 public FrameworkEvent(int type, Bundle bundle, Throwable throwable)

type The event type.

bundle The event source.

throwable The related exception. This argument may be nul l if there is no related exception.

□ Creates a Framework event regarding the specified bundle.

10.1.17.14 public Bundle getBundle()

□ Returns the bundle associated with the event. This bundle is also the source of the event.

Returns The bundle associated with the event.

10.1.17.15 public Throwable getThrowable()

□ Returns the exception related to this event.

Returns The related exception or nul l if none.

10.1.17.16 public int getType()

□ Returns the type of framework event.

The type values are:

• STARTED
• ERROR

Framework API org.osgi.framework

OSGi Core Release 7 Page 255

• WARNING
• INFO
• PACKAGES_REFRESHED
• STARTLEVEL_CHANGED
• STOPPED
• STOPPED_BOOTCLASSPATH_MODIFIED
• STOPPED_UPDATE
• WAIT_TIMEDOUT

Returns The type of state change.

10.1.18 public interface FrameworkListener
extends EventListener
A FrameworkEvent listener. FrameworkListener is a listener interface that may be implemented by a
bundle developer. When a FrameworkEvent is fired, it is asynchronously delivered to a Framework-
Listener . The Framework delivers FrameworkEvent objects to a FrameworkListener in order and
must not concurrently call a FrameworkListener .

A FrameworkListener object is registered with the Framework using the
BundleContext.addFrameworkListener(FrameworkListener) method. FrameworkListener objects
are called with a FrameworkEvent objects when the Framework starts and when asynchronous er-
rors occur.

See Also FrameworkEvent

Concurrency Not Thread-safe

10.1.18.1 public void frameworkEvent(FrameworkEvent event)

event The FrameworkEvent object.

□ Receives notification of a general FrameworkEvent object.

10.1.19 public class FrameworkUtil
Framework Utility class.

This class contains utility methods which access Framework functions that may be useful to bun-
dles.

Since 1.3

Concurrency Thread-safe

10.1.19.1 public static Filter createFilter(String filter) throws InvalidSyntaxException

filter The filter string.

□ Creates a Fi l ter object. This Fi l ter object may be used to match a ServiceReference object or a Dictio-
nary object.

If the filter cannot be parsed, an InvalidSyntaxException will be thrown with a human readable
message where the filter became unparsable.

This method returns a Filter implementation which may not perform as well as the framework im-
plementation-specific Filter implementation returned by BundleContext.createFilter(String).

Returns A Fi l ter object encapsulating the filter string.

Throws Inval idSyntaxException– If f i l ter contains an invalid filter string that cannot be parsed.

NullPointerException– If f i l ter is null.

org.osgi.framework Framework API

Page 256 OSGi Core Release 7

See Also Filter

10.1.19.2 public static Bundle getBundle(Class<?> classFromBundle)

classFromBundle A class defined by a bundle class loader.

□ Return a Bundle for the specified bundle class. The returned Bundle is the bundle associated with the
bundle class loader which defined the specified class.

Returns A Bundle for the specified bundle class or nul l if the specified class was not defined by a bundle class
loader.

Since 1.5

10.1.19.3 public static boolean matchDistinguishedNameChain(String matchPattern, List<String> dnChain)

matchPattern The pattern against which to match the DN chain.

dnChain The DN chain to match against the specified pattern. Each element of the chain must be of type
Str ing and use the format defined in RFC 2253 [http://www.ietf.org/rfc/rfc2253.txt].

□ Match a Distinguished Name (DN) chain against a pattern. DNs can be matched using wildcards. A
wildcard ('* ' \u002A) replaces all possible values. Due to the structure of the DN, the comparison is
more complicated than string-based wildcard matching.

A wildcard can stand for zero or more DNs in a chain, a number of relative distinguished names
(RDNs) within a DN, or the value of a single RDN. The DNs in the chain and the matching pattern
are canonicalized before processing. This means, among other things, that spaces must be ignored,
except in values.

The format of a wildcard match pattern is:

 matchPattern ::= dn-match (';' dn-match) *
 dn-match ::= ('*' | rdn-match) (',' rdn-match) * | '-'
 rdn-match ::= name '=' value-match
 value-match ::= '*' | value-star
 value-star ::= < value, requires escaped '*' and '-' >

The most simple case is a single wildcard; it must match any DN. A wildcard can also replace the
first list of RDNs of a DN. The first RDNs are the least significant. Such lists of matched RDNs can be
empty.

For example, a match pattern with a wildcard that matches all DNs that end with RDNs of o=ACME
and c=US would look like this:

 *, o=ACME, c=US

This match pattern would match the following DNs:

 cn = Bugs Bunny, o = ACME, c = US
 ou = Carrots, cn=Daffy Duck, o=ACME, c=US
 street = 9C\, Avenue St. Drézéry, o=ACME, c=US
 dc=www, dc=acme, dc=com, o=ACME, c=US
 o=ACME, c=US

The following DNs would not match:

 street = 9C\, Avenue St. Drézéry, o=ACME, c=FR
 dc=www, dc=acme, dc=com, c=US

If a wildcard is used for a value of an RDN, the value must be exactly *. The wildcard must match
any value, and no substring matching must be done. For example:

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Framework API org.osgi.framework

OSGi Core Release 7 Page 257

 cn=*,o=ACME,c=*

This match pattern with wildcard must match the following DNs:

 cn=Bugs Bunny,o=ACME,c=US
 cn = Daffy Duck , o = ACME , c = US
 cn=Road Runner, o=ACME, c=NL

But not:

 o=ACME, c=NL
 dc=acme.com, cn=Bugs Bunny, o=ACME, c=US

A match pattern may contain a chain of DN match patterns. The semicolon(' ; ' \u003B) must be used
to separate DN match patterns in a chain. Wildcards can also be used to match against a complete
DN within a chain.

The following example matches a certificate signed by Tweety Inc. in the US.

 * ; ou=S & V, o=Tweety Inc., c=US

The wildcard ('*') matches zero or one DN in the chain, however, sometimes it is necessary to match
a longer chain. The minus sign (' - ' \u002D) represents zero or more DNs, whereas the asterisk only
represents a single DN. For example, to match a DN where the Tweety Inc. is in the DN chain, use
the following expression:

 - ; *, o=Tweety Inc., c=US

Returns true If the pattern matches the DN chain; otherwise fa lse is returned.

Throws I l legalArgumentException– If the specified match pattern or DN chain is invalid.

Since 1.5

10.1.20 public class InvalidSyntaxException
extends Exception
A Framework exception used to indicate that a filter string has an invalid syntax.

An Inval idSyntaxException object indicates that a filter string parameter has an invalid syntax and
cannot be parsed. See Filter for a description of the filter string syntax.

This exception conforms to the general purpose exception chaining mechanism.

10.1.20.1 public InvalidSyntaxException(String msg, String filter)

msg The message.

filter The invalid filter string.

□ Creates an exception of type Inval idSyntaxException .

This method creates an Inval idSyntaxException object with the specified message and the filter
string which generated the exception.

10.1.20.2 public InvalidSyntaxException(String msg, String filter, Throwable cause)

msg The message.

filter The invalid filter string.

cause The cause of this exception.

□ Creates an exception of type Inval idSyntaxException .

org.osgi.framework Framework API

Page 258 OSGi Core Release 7

This method creates an Inval idSyntaxException object with the specified message and the filter
string which generated the exception.

Since 1.3

10.1.20.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.3

10.1.20.4 public String getFilter()

□ Returns the filter string that generated the Inval idSyntaxException object.

Returns The invalid filter string.

See Also BundleContext.getServiceReferences(Class, String), BundleContext.getServiceReferences(String,
String), BundleContext.addServiceListener(ServiceListener,String)

10.1.20.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.3

10.1.21 public final class PackagePermission
extends BasicPermission
A bundle's authority to import or export a package.

A package is a dot-separated string that defines a fully qualified Java package.

For example:

 org.osgi.service.http

PackagePermission has three actions: exportonly , import and export . The export action, which is
deprecated, implies the import action.

Concurrency Thread-safe

10.1.21.1 public static final String EXPORT = "export"

The action string export . The export action implies the import action.

Deprecated As of 1.5. Use exportonly instead.

10.1.21.2 public static final String EXPORTONLY = "exportonly"

The action string exportonly . The exportonly action does not imply the import action.

Since 1.5

10.1.21.3 public static final String IMPORT = "import"

The action string import .

Framework API org.osgi.framework

OSGi Core Release 7 Page 259

10.1.21.4 public PackagePermission(String name, String actions)

name Package name or filter expression. A filter expression can only be specified if the specified action is
import .

actions exportonly ,import (canonical order).

□ Creates a new PackagePermission object.

The name is specified as a normal Java package name: a dot-separated string. Wildcards may be used.

 name ::= <package name> | <package name ending in ".*"> | *

Examples:

 org.osgi.service.http
 javax.servlet.*
 *

For the import action, the name can also be a filter expression. The filter gives access to the follow-
ing attributes:

• signer - A Distinguished Name chain used to sign the exporting bundle. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules defined for a DN chain.

• location - The location of the exporting bundle.
• id - The bundle ID of the exporting bundle.
• name - The symbolic name of the exporting bundle.
• package.name - The name of the requested package.

Filter attribute names are processed in a case sensitive manner.

Package Permissions are granted over all possible versions of a package. A bundle that needs to ex-
port a package must have the appropriate PackagePermission for that package; similarly, a bundle
that needs to import a package must have the appropriate PackagePermssion for that package.

Permission is granted for both classes and resources.

Throws I l legalArgumentException– If the specified name is a filter expression and either the specified ac-
tion is not import or the filter has an invalid syntax.

10.1.21.5 public PackagePermission(String name, Bundle exportingBundle, String actions)

name The name of the requested package to import.

exportingBundle The bundle exporting the requested package.

actions The action import .

□ Creates a new requested PackagePermission object to be used by code that must perform checkPer-
mission for the import action. PackagePermission objects created with this constructor cannot be
added to a PackagePermission permission collection.

Throws I l legalArgumentException– If the specified action is not import or the name is a filter expression.

Since 1.5

10.1.21.6 public boolean equals(Object obj)

obj The object to test for equality with this PackagePermission object.

□ Determines the equality of two PackagePermission objects. This method checks that specified pack-
age has the same package name and PackagePermission actions as this PackagePermission object.

Returns true if obj is a PackagePermission , and has the same package name and actions as this PackagePer-
mission object; fa lse otherwise.

org.osgi.framework Framework API

Page 260 OSGi Core Release 7

10.1.21.7 public String getActions()

□ Returns the canonical string representation of the PackagePermission actions.

Always returns present PackagePermission actions in the following order: EXPORTONLY ,IMPORT .

Returns Canonical string representation of the PackagePermission actions.

10.1.21.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

10.1.21.9 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object.

This method checks that the package name of the target is implied by the package name of this ob-
ject. The list of PackagePermission actions must either match or allow for the list of the target object
to imply the target PackagePermission action.

The permission to export a package implies the permission to import the named package.

 x.y.*,"export" -> x.y.z,"export" is true
 *,"import" -> x.y, "import" is true
 *,"export" -> x.y, "import" is true
 x.y,"export" -> x.y.z, "export" is false

Returns true if the specified permission is implied by this object; fa lse otherwise.

10.1.21.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing PackagePermission objects.

Returns A new PermissionCol lect ion object.

10.1.22 public interface PrototypeServiceFactory<S>
extends ServiceFactory<S>

<S> Type of Service

A factory for prototype scope services. The factory can provide multiple, customized service objects
in the OSGi environment.

When registering a service, a PrototypeServiceFactory object can be used instead of a service object,
so that the bundle developer can create a customized service object for each caller that is using the
service.

When a caller uses a ServiceObjects to request a service object, the framework calls the getService
method to return a service object customized for the requesting caller. The caller can release the re-
turned service object and the framework will call the ungetService method with the service object.

When a bundle uses the BundleContext.getService(ServiceReference) method to obtain a service
object, the framework must act as if the service has bundle scope. That is, the framework will call
the getService method to obtain a bundle-scoped service object which will be cached and have a use
count. See ServiceFactory.

A bundle can use both ServiceObjects and BundleContext.getService(ServiceReference) to obtain a
service object for a service. ServiceObjects.getService() will always return a service object provided

Framework API org.osgi.framework

OSGi Core Release 7 Page 261

by a call to getService(Bundle, ServiceRegistration) and BundleContext.getService(ServiceReference)
will always return the bundle-scoped service object.

PrototypeServiceFactory objects are only used by the Framework and are not made available to oth-
er bundles in the OSGi environment. The Framework may concurrently call a PrototypeServiceFac-
tory .

See Also BundleContext.getServiceObjects(ServiceReference), ServiceObjects

Since 1.8

Concurrency Thread-safe

10.1.22.1 public S getService(Bundle bundle, ServiceRegistration<S> registration)

bundle The bundle requesting the service.

registration The ServiceRegistrat ion object for the requested service.

□ Returns a service object for a caller.

The Framework invokes this method for each caller requesting a service object using
ServiceObjects.getService(). The factory can then return a customized service object for the caller.

The Framework must check that the returned service object is valid. If the returned service ob-
ject is nul l or is not an instanceof all the classes named when the service was registered, a frame-
work event of type FrameworkEvent.ERROR is fired containing a service exception of type
ServiceException.FACTORY_ERROR and nul l is returned to the caller. If this method throws an ex-
ception, a framework event of type FrameworkEvent.ERROR is fired containing a service exception
of type ServiceException.FACTORY_EXCEPTION with the thrown exception as the cause and nul l is
returned to the caller.

Returns A service object that must be an instance of all the classes named when the service was registered.

See Also ServiceObjects.getService()

10.1.22.2 public void ungetService(Bundle bundle, ServiceRegistration<S> registration, S service)

bundle The bundle releasing the service.

registration The ServiceRegistrat ion object for the service being released.

service The service object returned by a previous call to the getService method.

□ Releases a service object customized for a caller.

The Framework invokes this method when a service has been released by a bundle such as by call-
ing ServiceObjects.ungetService(Object). The service object may then be destroyed.

If this method throws an exception, a framework event of type FrameworkEvent.ERROR is fired con-
taining a service exception of type ServiceException.FACTORY_EXCEPTION with the thrown excep-
tion as the cause.

See Also ServiceObjects.ungetService(Object)

10.1.23 public class ServiceEvent
extends EventObject
An event from the Framework describing a service lifecycle change.

ServiceEvent objects are delivered to ServiceListeners and AllServiceListeners when a change oc-
curs in this service's lifecycle. A type code is used to identify the event type for future extendability.

OSGi Alliance reserves the right to extend the set of types.

See Also ServiceListener, AllServiceListener

org.osgi.framework Framework API

Page 262 OSGi Core Release 7

Concurrency Immutable

10.1.23.1 public static final int MODIFIED = 2

The properties of a registered service have been modified.

This event is synchronously delivered after the service properties have been modified.

See Also ServiceRegistration.setProperties(Dictionary)

10.1.23.2 public static final int MODIFIED_ENDMATCH = 8

The properties of a registered service have been modified and the new properties no longer match
the listener's filter.

This event is synchronously delivered after the service properties have been modified. This event is
only delivered to listeners which were added with a non-nul l filter where the filter matched the ser-
vice properties prior to the modification but the filter does not match the modified service proper-
ties.

See Also ServiceRegistration.setProperties(Dictionary)

Since 1.5

10.1.23.3 public static final int REGISTERED = 1

This service has been registered.

This event is synchronously delivered after the service has been registered with the Framework.

See Also BundleContext.registerService(String[],Object,Dictionary)

10.1.23.4 public static final int UNREGISTERING = 4

This service is in the process of being unregistered.

This event is synchronously delivered before the service has completed unregistering.

If a bundle is using a service that is UNREGISTERING , the bundle should release its use of the service
when it receives this event. If the bundle does not release its use of the service when it receives this
event, the Framework will automatically release the bundle's use of the service while completing
the service unregistration operation.

See Also ServiceRegistration.unregister(), BundleContext.ungetService(ServiceReference)

10.1.23.5 public ServiceEvent(int type, ServiceReference<?> reference)

type The event type.

reference A ServiceReference object to the service that had a lifecycle change.

□ Creates a new service event object.

10.1.23.6 public ServiceReference<?> getServiceReference()

□ Returns a reference to the service that had a change occur in its lifecycle.

This reference is the source of the event.

Returns Reference to the service that had a lifecycle change.

10.1.23.7 public int getType()

□ Returns the type of event. The event type values are:

• REGISTERED
• MODIFIED
• MODIFIED_ENDMATCH

Framework API org.osgi.framework

OSGi Core Release 7 Page 263

• UNREGISTERING

Returns Type of service lifecycle change.

10.1.24 public class ServiceException
extends RuntimeException
A service exception used to indicate that a service problem occurred.

A ServiceException object is created by the Framework or service implementation to denote an ex-
ception condition in the service. A type code is used to identify the exception type for future extend-
ability. Service implementations may also create subclasses of ServiceException . When subclassing,
the subclass should set the type to SUBCLASSED to indicate that ServiceException has been sub-
classed.

This exception conforms to the general purpose exception chaining mechanism.

Since 1.5

10.1.24.1 public static final int ASYNC_ERROR = 7

An asynchronous operation was unable to obtain the service.

Since 1.8

10.1.24.2 public static final int FACTORY_ERROR = 2

The service factory produced an invalid service object.

10.1.24.3 public static final int FACTORY_EXCEPTION = 3

The service factory threw an exception.

10.1.24.4 public static final int FACTORY_RECURSION = 6

The service factory resulted in a recursive call to itself for the requesting bundle.

Since 1.6

10.1.24.5 public static final int REMOTE = 5

An error occurred invoking a remote service.

10.1.24.6 public static final int SUBCLASSED = 4

The exception is a subclass of ServiceException. The subclass should be examined for the type of the
exception.

10.1.24.7 public static final int UNREGISTERED = 1

The service has been unregistered.

10.1.24.8 public static final int UNSPECIFIED = 0

No exception type is unspecified.

10.1.24.9 public ServiceException(String msg, Throwable cause)

msg The associated message.

cause The cause of this exception.

□ Creates a ServiceException with the specified message and exception cause.

10.1.24.10 public ServiceException(String msg)

msg The message.

□ Creates a ServiceException with the specified message.

org.osgi.framework Framework API

Page 264 OSGi Core Release 7

10.1.24.11 public ServiceException(String msg, int type, Throwable cause)

msg The associated message.

type The type for this exception.

cause The cause of this exception.

□ Creates a ServiceException with the specified message, type and exception cause.

10.1.24.12 public ServiceException(String msg, int type)

msg The message.

type The type for this exception.

□ Creates a ServiceException with the specified message and type.

10.1.24.13 public int getType()

□ Returns the type for this exception or UNSPECIFIED if the type was unspecified or unknown.

Returns The type of this exception.

10.1.25 public interface ServiceFactory<S>
<S> Type of Service

A factory for bundle scope services. The factory can provide service objects customized for each bun-
dle in the OSGi environment.

When registering a service, a ServiceFactory object can be used instead of a service object, so that
the bundle developer can create a customized service object for each bundle that is using the ser-
vice.

When a bundle requests the service object, the framework calls the getService method to return a
service object customized for the requesting bundle. The returned service object is cached by the
Framework for subsequent calls to BundleContext.getService(ServiceReference) until the bundle re-
leases its use of the service.

When the bundle's use count for the service is decremented to zero (including the bundle stopping
or the service being unregistered), the framework will call the ungetService method.

ServiceFactory objects are only used by the Framework and are not made available to other bundles
in the OSGi environment. The Framework may concurrently call a ServiceFactory .

See Also BundleContext.getService(ServiceReference)

Concurrency Thread-safe

10.1.25.1 public S getService(Bundle bundle, ServiceRegistration<S> registration)

bundle The bundle requesting the service.

registration The ServiceRegistrat ion object for the requested service.

□ Returns a service object for a bundle.

The Framework invokes this method the first time the specified bundle requests a service object
using the BundleContext.getService(ServiceReference) method. The factory can then return a cus-
tomized service object for each bundle.

The Framework must check that the returned service object is valid. If the returned service ob-
ject is nul l or is not an instanceof all the classes named when the service was registered, a frame-
work event of type FrameworkEvent.ERROR is fired containing a service exception of type
ServiceException.FACTORY_ERROR and nul l is returned to the bundle. If this method throws an
exception, a framework event of type FrameworkEvent.ERROR is fired containing a service ex-
ception of type ServiceException.FACTORY_EXCEPTION with the thrown exception as the cause

Framework API org.osgi.framework

OSGi Core Release 7 Page 265

and nul l is returned to the bundle. If this method is recursively called for the specified bundle, a
framework event of type FrameworkEvent.ERROR is fired containing a service exception of type
ServiceException.FACTORY_RECURSION and nul l is returned to the bundle.

The Framework caches the valid service object and will return the same service object on any future
call to BundleContext.getService(ServiceReference) for the specified bundle. This means the Frame-
work must not allow this method to be concurrently called for the specified bundle.

Returns A service object that must be an instance of all the classes named when the service was registered.

See Also BundleContext.getService(ServiceReference)

10.1.25.2 public void ungetService(Bundle bundle, ServiceRegistration<S> registration, S service)

bundle The bundle releasing the service.

registration The ServiceRegistrat ion object for the service being released.

service The service object returned by a previous call to the getService method.

□ Releases a service object customized for a bundle.

The Framework invokes this method when a service has been released by a bundle. The service ob-
ject may then be destroyed.

If this method throws an exception, a framework event of type FrameworkEvent.ERROR is fired con-
taining a service exception of type ServiceException.FACTORY_EXCEPTION with the thrown excep-
tion as the cause.

See Also BundleContext.ungetService(ServiceReference)

10.1.26 public interface ServiceListener
extends EventListener
A ServiceEvent listener. ServiceListener is a listener interface that may be implemented by a bun-
dle developer. When a ServiceEvent is fired, it is synchronously delivered to a ServiceListener . The
Framework may deliver ServiceEvent objects to a ServiceListener out of order and may concurrent-
ly call and/or reenter a ServiceListener .

A ServiceListener object is registered with the Framework using the
BundleContext.addServiceListener method. ServiceListener objects are called with a ServiceEvent
object when a service is registered, modified, or is in the process of unregistering.

ServiceEvent object delivery to ServiceListener objects is filtered by the filter specified when the lis-
tener was registered. If the Java Runtime Environment supports permissions, then additional filter-
ing is done. ServiceEvent objects are only delivered to the listener if the bundle which defines the
listener object's class has the appropriate ServicePermission to get the service using at least one of
the named classes under which the service was registered.

ServiceEvent object delivery to ServiceListener objects is further filtered according to package
sources as defined in ServiceReference.isAssignableTo(Bundle, String).

See Also ServiceEvent, ServicePermission

Concurrency Thread-safe

10.1.26.1 public void serviceChanged(ServiceEvent event)

event The ServiceEvent object.

□ Receives notification that a service has had a lifecycle change.

10.1.27 public interface ServiceObjects<S>
<S> Type of Service

org.osgi.framework Framework API

Page 266 OSGi Core Release 7

Allows multiple service objects for a service to be obtained.

For services with prototype scope, multiple service objects for the service can be obtained. Since im-
plementations of PrototypeServiceFactory can return the same service object repeatedly, the frame-
work must use count the returned service objects to release the service object only when its use
count returns to zero.

For services with singleton or bundle scope, only one, use-counted service object is available to a re-
questing bundle.

Any unreleased service objects obtained from this ServiceObjects object are automatically released
by the framework when the bundle associated with the BundleContext used to create this Ser-
viceObjects object is stopped.

See Also BundleContext.getServiceObjects(ServiceReference), PrototypeServiceFactory

Since 1.8

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.27.1 public S getService()

□ Returns a service object for the associated service.

This ServiceObjects object can be used to obtain multiple service objects for the associated service if
the service has prototype scope.

If the associated service has singleton or bundle scope, this method behaves the same as calling the
BundleContext.getService(ServiceReference) method for the associated service. That is, only one,
use-counted service object is available from this ServiceObjects object.

This method will always return nul l when the associated service has been unregistered.

For a prototype scope service, the following steps are required to obtain a service object:

1. If the associated service has been unregistered, nul l is returned.
2. The PrototypeServiceFactory.getService(Bundle, ServiceRegistration) method is called to supply

a customized service object for the caller.
3. If the service object returned by the PrototypeServiceFactory object is nul l , not an instanceof all

the classes named when the service was registered or the PrototypeServiceFactory object throws
an exception, nul l is returned and a Framework event of type FrameworkEvent.ERROR contain-
ing a ServiceException describing the error is fired.

4. The use count for the customized service object is incremented by one.
5. The customized service object is returned.

Returns A service object for the associated service or nul l if the service is not registered, the customized ser-
vice object returned by a ServiceFactory does not implement the classes under which it was regis-
tered or the ServiceFactory threw an exception.

Throws I l legalStateException– If the BundleContext used to create this ServiceObjects object is no longer
valid.

See Also ungetService(Object)

10.1.27.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this ServiceObjects object.

Returns The ServiceReference for the service associated with this ServiceObjects object.

10.1.27.3 public void ungetService(S service)

service A service object previously provided by this ServiceObjects object.

Framework API org.osgi.framework

OSGi Core Release 7 Page 267

□ Releases a service object for the associated service.

This ServiceObjects object can be used to obtain multiple service objects for the associated service if
the service has prototype scope. If the associated service has singleton or bundle scope, this method
behaves the same as calling the BundleContext.ungetService(ServiceReference) method for the asso-
ciated service. That is, only one, use-counted service object is available from this ServiceObjects ob-
ject.

For a prototype scope service, the following steps are required to release a service object:

1. If the associated service has been unregistered, this method returns without doing anything.
2. The use count for the specified service object is decremented by one.
3. If the use count for the specified service object is now zero, the

PrototypeServiceFactory.ungetService(Bundle, ServiceRegistration, Object) method is called to
release the specified service object.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method when the use count has returned to zero.

Throws I l legalStateException– If the BundleContext used to create this ServiceObjects object is no longer
valid.

I l legalArgumentException– If the specified service object is nul l or was not provided by a Ser-
viceObjects object for the associated service.

See Also getService()

10.1.28 public final class ServicePermission
extends BasicPermission
A bundle's authority to register or get a service.

• The register action allows a bundle to register a service on the specified names.
• The get action allows a bundle to detect a service and get it.

Permission to get a service is required in order to detect events regarding the service. Untrusted bun-
dles should not be able to detect the presence of certain services unless they have the appropriate
ServicePermission to get the specific service.

Concurrency Thread-safe

10.1.28.1 public static final String GET = "get"

The action string get .

10.1.28.2 public static final String REGISTER = "register"

The action string register .

10.1.28.3 public ServicePermission(String name, String actions)

name The service class name

actions get ,register (canonical order)

□ Create a new ServicePermission.

The name of the service is specified as a fully qualified class name. Wildcards may be used.

 name ::= <class name> | <class name ending in ".*"> | *

Examples:

org.osgi.framework Framework API

Page 268 OSGi Core Release 7

 org.osgi.service.http.HttpService
 org.osgi.service.http.*
 *

For the get action, the name can also be a filter expression. The filter gives access to the service prop-
erties as well as the following attributes:

• signer - A Distinguished Name chain used to sign the bundle publishing the service. Wildcards
in a DN are not matched according to the filter string rules, but according to the rules defined for
a DN chain.

• location - The location of the bundle publishing the service.
• id - The bundle ID of the bundle publishing the service.
• name - The symbolic name of the bundle publishing the service.

Since the above attribute names may conflict with service property names used by a service, you
can prefix an attribute name with '@' in the filter expression to match against the service property
and not one of the above attributes. Filter attribute names are processed in a case sensitive manner
unless the attribute references a service property. Service properties names are case insensitive.

There are two possible actions: get and register . The get permission allows the owner of this permis-
sion to obtain a service with this name. The register permission allows the bundle to register a ser-
vice under that name.

Throws I l legalArgumentException– If the specified name is a filter expression and either the specified ac-
tion is not get or the filter has an invalid syntax.

10.1.28.4 public ServicePermission(ServiceReference<?> reference, String actions)

reference The requested service.

actions The action get .

□ Creates a new requested ServicePermission object to be used by code that must perform checkPer-
mission for the get action. ServicePermission objects created with this constructor cannot be added
to a ServicePermission permission collection.

Throws I l legalArgumentException– If the specified action is not get or reference is nul l .

Since 1.5

10.1.28.5 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two ServicePermission objects. Checks that specified object has the same
class name and action as this ServicePermission .

Returns true if obj is a ServicePermission , and has the same class name and actions as this ServicePermission
object; fa lse otherwise.

10.1.28.6 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing order: get , register .

Returns The canonical string representation of the actions.

10.1.28.7 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

Framework API org.osgi.framework

OSGi Core Release 7 Page 269

10.1.28.8 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a ServicePermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

10.1.28.9 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing ServicePermission objects.

Returns A new PermissionCol lect ion object suitable for storing ServicePermission objects.

10.1.29 public interface ServiceReference<S>
extends Comparable<Object>

<S> Type of Service.

A reference to a service.

The Framework returns ServiceReference objects from the BundleContext.getServiceReference
and BundleContext.getServiceReferences methods.

A ServiceReference object may be shared between bundles and can be used to examine the proper-
ties of the service and to get the service object.

Every service registered in the Framework has a unique ServiceRegistrat ion object and may have
multiple, distinct ServiceReference objects referring to it. ServiceReference objects associated with
a ServiceRegistrat ion object have the same hashCode and are considered equal (more specifically,
their equals() method will return true when compared).

If the same service object is registered multiple times, ServiceReference objects associated with dif-
ferent ServiceRegistrat ion objects are not equal.

See Also BundleContext.getServiceReference(Class), BundleContext.getServiceReference(String),
BundleContext.getServiceReferences(Class, String), BundleContext.getServiceReferences(String,
String), BundleContext.getService(ServiceReference),
BundleContext.getServiceObjects(ServiceReference)

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.29.1 public int compareTo(Object reference)

reference The ServiceReference to be compared.

□ Compares this ServiceReference with the specified ServiceReference for order.

If this ServiceReference and the specified ServiceReference have the same service id they are equal.
This ServiceReference is less than the specified ServiceReference if it has a lower service ranking
and greater if it has a higher service ranking. Otherwise, if this ServiceReference and the specified
ServiceReference have the same service ranking, this ServiceReference is less than the specified
ServiceReference if it has a higher service id and greater if it has a lower service id.

Returns Returns a negative integer, zero, or a positive integer if this ServiceReference is less than, equal to, or
greater than the specified ServiceReference .

Throws I l legalArgumentException– If the specified ServiceReference was not created by the same frame-
work instance as this ServiceReference .

Since 1.4

org.osgi.framework Framework API

Page 270 OSGi Core Release 7

10.1.29.2 public Bundle getBundle()

□ Returns the bundle that registered the service referenced by this ServiceReference object.

This method must return nul l when the service has been unregistered. This can be used to deter-
mine if the service has been unregistered.

Returns The bundle that registered the service referenced by this ServiceReference object; nul l if that service
has already been unregistered.

See Also BundleContext.registerService(String[],Object,Dictionary)

10.1.29.3 public Dictionary<String, Object> getProperties()

□ Returns a copy of the properties of the service referenced by this ServiceReference object.

This method will continue to return the properties after the service has been unregistered. This is so
references to unregistered services (for example, ServiceReference objects stored in the log) can still
be interrogated.

The returned Dictionary object:

• Must map property values by using property keys in a case-insensitive manner.
• Must return property keys is a case-preserving manner. This means that the keys

must have the same case as the corresponding key in the properties Dictionary
that was passed to the BundleContext.registerService(String[],Object,Dictionary) or
ServiceRegistration.setProperties(Dictionary) methods.

• Is the property of the caller and can be modified by the caller but any changes are not reflected
in the properties of the service. ServiceRegistration.setProperties(Dictionary) must be called to
modify the properties of the service.

Returns A copy of the properties of the service referenced by this ServiceReference object

Since 1.9

10.1.29.4 public Object getProperty(String key)

key The property key.

□ Returns the property value to which the specified property key is mapped in the properties Dictio-
nary object of the service referenced by this ServiceReference object.

Property keys are case-insensitive.

This method must continue to return property values after the service has been unregistered. This
is so references to unregistered services (for example, ServiceReference objects stored in the log) can
still be interrogated.

Returns The property value to which the key is mapped; nul l if there is no property named after the key.

10.1.29.5 public String[] getPropertyKeys()

□ Returns an array of the keys in the properties Dictionary object of the service referenced by this Ser-
viceReference object.

This method will continue to return the keys after the service has been unregistered. This is so refer-
ences to unregistered services (for example, ServiceReference objects stored in the log) can still be
interrogated.

This method is case-preserving ; this means that every key in the returned array
must have the same case as the corresponding key in the properties Dictionary
that was passed to the BundleContext.registerService(String[],Object,Dictionary) or
ServiceRegistration.setProperties(Dictionary) methods.

Returns An array of property keys.

Framework API org.osgi.framework

OSGi Core Release 7 Page 271

10.1.29.6 public Bundle[] getUsingBundles()

□ Returns the bundles that are using the service referenced by this ServiceReference object. Specifical-
ly, this method returns the bundles whose usage count for that service is greater than zero.

Returns An array of bundles whose usage count for the service referenced by this ServiceReference object is
greater than zero; nul l if no bundles are currently using that service.

Since 1.1

10.1.29.7 public boolean isAssignableTo(Bundle bundle, String className)

bundle The Bundle object to check.

className The class name to check.

□ Tests if the bundle that registered the service referenced by this ServiceReference and the specified
bundle use the same source for the package of the specified class name.

This method performs the following checks:

1. Get the package name from the specified class name.
2. For the bundle that registered the service referenced by this ServiceReference (registrant bun-

dle); find the source for the package. If no source is found then return true if the registrant bun-
dle is equal to the specified bundle; otherwise return fa lse .

3. If the package source of the registrant bundle is equal to the package source of the specified bun-
dle then return true ; otherwise return fa lse .

Returns true if the bundle which registered the service referenced by this ServiceReference and the specified
bundle use the same source for the package of the specified class name. Otherwise fa lse is returned.

Throws I l legalArgumentException– If the specified Bundle was not created by the same framework instance
as this ServiceReference .

Since 1.3

10.1.30 public interface ServiceRegistration<S>
<S> Type of Service.

A registered service.

The Framework returns a ServiceRegistrat ion object when a BundleContext.registerService
method invocation is successful. The ServiceRegistrat ion object is for the private use of the register-
ing bundle and should not be shared with other bundles.

The ServiceRegistrat ion object may be used to update the properties of the service or to unregister
the service.

See Also BundleContext.registerService(String[],Object,Dictionary)

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.1.30.1 public ServiceReference<S> getReference()

□ Returns a ServiceReference object for a service being registered.

The ServiceReference object may be shared with other bundles.

Returns ServiceReference object.

Throws I l legalStateException– If this ServiceRegistrat ion object has already been unregistered.

org.osgi.framework Framework API

Page 272 OSGi Core Release 7

10.1.30.2 public void setProperties(Dictionary<String, ?> properties)

properties The properties for this service. See Constants for a list of standard service property keys. Changes
should not be made to this object after calling this method. To update the service's properties this
method should be called again.

□ Updates the properties associated with a service.

The Constants.OBJECTCLASS, Constants.SERVICE_BUNDLEID, Constants.SERVICE_ID and
Constants.SERVICE_SCOPE keys cannot be modified by this method. These values are set by the
Framework when the service is registered in the OSGi environment.

The following steps are required to modify service properties:

1. The service's properties are replaced with the provided properties.
2. A service event of type ServiceEvent.MODIFIED is fired.

Throws I l legalStateException– If this ServiceRegistrat ion object has already been unregistered.

I l legalArgumentException– If propert ies contains case variants of the same key name.

10.1.30.3 public void unregister()

□ Unregisters a service. Remove a ServiceRegistrat ion object from the Framework service registry. All
ServiceReference objects associated with this ServiceRegistrat ion object can no longer be used to
interact with the service once unregistration is complete.

The following steps are required to unregister a service:

1. The service is removed from the Framework service registry so that it can no longer be obtained.
2. A service event of type ServiceEvent.UNREGISTERING is fired so that bundles using this ser-

vice can release their use of the service. Once delivery of the service event is complete, the Ser-
viceReference objects for the service may no longer be used to get a service object for the service.

3. For each bundle whose use count for this service is greater than zero:
• The bundle's use count for this service is set to zero.
• If the service was registered with a ServiceFactory object, the ServiceFactory.ungetService

method is called to release the service object for the bundle.

Throws I l legalStateException– If this ServiceRegistrat ion object has already been unregistered.

See Also BundleContext.ungetService(ServiceReference), ServiceFactory.ungetService(Bundle, ServiceRegis-
tration, Object)

10.1.31 public interface SynchronousBundleListener
extends BundleListener
A synchronous BundleEvent listener. SynchronousBundleListener is a listener interface that may be
implemented by a bundle developer. When a BundleEvent is fired, it is synchronously delivered to
a SynchronousBundleListener . The Framework may deliver BundleEvent objects to a Synchronous-
BundleListener out of order and may concurrently call and/or reenter a SynchronousBundleListen-
er .

For BundleEvent types STARTED and LAZY_ACTIVATION, the Framework must not hold the refer-
enced bundle's "state change" lock when the BundleEvent is delivered to a SynchronousBundleLis-
tener . For the other BundleEvent types, the Framework must hold the referenced bundle's "state
change" lock when the BundleEvent is delivered to a SynchronousBundleListener . A Synchronous-
BundleListener cannot directly call life cycle methods on the referenced bundle when the Frame-
work is holding the referenced bundle's "state change" lock.

A SynchronousBundleListener object is registered with the Framework using the
BundleContext.addBundleListener(BundleListener) method. SynchronousBundleListener objects

Framework API org.osgi.framework

OSGi Core Release 7 Page 273

are called with a BundleEvent object when a bundle has been installed, resolved, starting, started,
stopping, stopped, updated, unresolved, or uninstalled.

Unlike normal BundleListener objects, SynchronousBundleListeners are synchronously called dur-
ing bundle lifecycle processing. The bundle lifecycle processing will not proceed until all Synchro-
nousBundleListeners have completed. SynchronousBundleListener objects will be called prior to
BundleListener objects.

AdminPermission[bundle,L ISTENER] is required to add or remove a SynchronousBundleListener ob-
ject.

See Also BundleEvent

Since 1.1

Concurrency Thread-safe

10.1.32 public interface UnfilteredServiceListener
extends ServiceListener
A ServiceEvent listener that does not filter based upon any filter string specified to
BundleContext.addServiceListener(ServiceListener, String). Using an Unfi l teredServiceListener and
specifying a filter string to BundleContext.addServiceListener(ServiceListener, String) allows the lis-
tener to receive all ServiceEvent objects while still advising ListenerHook implementation of the
service interests in the filter string. For example, an implementation of Declarative Services would
add an Unfi l teredServiceListener with a filter string listing all the services referenced by all the ser-
vice components. The Declarative Services implementation would receive all ServiceEvent objects
for internal processing and a Remote Services discovery service implementation can observe the ser-
vice interests of the service components using a ListenerHook. When the set of service components
being processed changes, the Declarative Services implementation would re-add the Unfi l teredSer-
viceListener with an updated filter string.

When a ServiceEvent is fired, it is synchronously delivered to an Unfi l teredServiceListener . The
Framework may deliver ServiceEvent objects to an Unfi l teredServiceListener out of order and may
concurrently call and/or reenter an Unfi l teredServiceListener .

An Unfi l teredServiceListener object is registered with the Framework using the
BundleContext.addServiceListener method. Unfi l teredServiceListener objects are called with a Ser-
viceEvent object when a service is registered, modified, or is in the process of unregistering.

ServiceEvent object delivery to Unfi l teredServiceListener objects are not filtered by the filter speci-
fied when the listener was registered. If the Java Runtime Environment supports permissions, then
some filtering is done. ServiceEvent objects are only delivered to the listener if the bundle which de-
fines the listener object's class has the appropriate ServicePermission to get the service using at least
one of the named classes under which the service was registered.

See Also ServiceEvent, ServicePermission

Since 1.7

Concurrency Thread-safe

10.1.33 public class Version
implements Comparable<Version>
Version identifier for capabilities such as bundles and packages.

Version identifiers have four components.

1. Major version. A non-negative integer.
2. Minor version. A non-negative integer.
3. Micro version. A non-negative integer.

org.osgi.framework Framework API

Page 274 OSGi Core Release 7

4. Qualifier. A text string. See Version(Str ing) for the format of the qualifier string.

Version objects are immutable.

Since 1.3

Concurrency Immutable

10.1.33.1 public static final Version emptyVersion

The empty version "0.0.0".

10.1.33.2 public Version(int major, int minor, int micro)

major Major component of the version identifier.

minor Minor component of the version identifier.

micro Micro component of the version identifier.

□ Creates a version identifier from the specified numerical components.

The qualifier is set to the empty string.

Throws I l legalArgumentException– If the numerical components are negative.

10.1.33.3 public Version(int major, int minor, int micro, String qualifier)

major Major component of the version identifier.

minor Minor component of the version identifier.

micro Micro component of the version identifier.

qualifier Qualifier component of the version identifier. If nul l is specified, then the qualifier will be set to the
empty string.

□ Creates a version identifier from the specified components.

Throws I l legalArgumentException– If the numerical components are negative or the qualifier string is in-
valid.

10.1.33.4 public Version(String version)

version String representation of the version identifier. There must be no whitespace in the argument.

□ Creates a version identifier from the specified string.

Version string grammar:

 version ::= major('.'minor('.'micro('.'qualifier)?)?)?
 major ::= digit+
 minor ::= digit+
 micro ::= digit+
 qualifier ::= (alpha|digit|'_'|'-')+
 digit ::= [0..9]
 alpha ::= [a..zA..Z]

Throws I l legalArgumentException– If version is improperly formatted.

10.1.33.5 public int compareTo(Version other)

other The Version object to be compared.

□ Compares this Version object to another Version .

A version is considered to be less than another version if its major component is less than the oth-
er version's major component, or the major components are equal and its minor component is less
than the other version's minor component, or the major and minor components are equal and its

Framework API org.osgi.framework

OSGi Core Release 7 Page 275

micro component is less than the other version's micro component, or the major, minor and micro
components are equal and it's qualifier component is less than the other version's qualifier compo-
nent (using Str ing.compareTo).

A version is considered to be equal to another version if the major, minor and micro components
are equal and the qualifier component is equal (using Str ing.compareTo).

Returns A negative integer, zero, or a positive integer if this version is less than, equal to, or greater than the
specified Version object.

Throws ClassCastException– If the specified object is not a Version object.

10.1.33.6 public boolean equals(Object object)

object The Version object to be compared.

□ Compares this Version object to another object.

A version is considered to be equal to another version if the major, minor and micro components
are equal and the qualifier component is equal (using Str ing.equals).

Returns true if object is a Version and is equal to this object; fa lse otherwise.

10.1.33.7 public int getMajor()

□ Returns the major component of this version identifier.

Returns The major component.

10.1.33.8 public int getMicro()

□ Returns the micro component of this version identifier.

Returns The micro component.

10.1.33.9 public int getMinor()

□ Returns the minor component of this version identifier.

Returns The minor component.

10.1.33.10 public String getQualifier()

□ Returns the qualifier component of this version identifier.

Returns The qualifier component.

10.1.33.11 public int hashCode()

□ Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.

10.1.33.12 public static Version parseVersion(String version)

version String representation of the version identifier. Leading and trailing whitespace will be ignored.

□ Parses a version identifier from the specified string.

See Version(String) for the format of the version string.

Returns A Version object representing the version identifier. If version is nul l or the empty string then emp-
tyVersion will be returned.

Throws I l legalArgumentException– If version is improperly formatted.

10.1.33.13 public String toString()

□ Returns the string representation of this version identifier.

org.osgi.framework Framework API

Page 276 OSGi Core Release 7

The format of the version string will be major.minor.micro if qualifier is the empty string or
major.minor.micro.qual i f ier otherwise.

Returns The string representation of this version identifier.

10.1.33.14 public static Version valueOf(String version)

version String representation of the version identifier. Leading and trailing whitespace will be ignored. Must
not be nul l .

□ Returns a Version object holding the version identifier in the specified Str ing .

See Version(String) for the format of the version string.

This method performs a similar function as parseVersion(String) but has the static factory
valueOf(Str ing) method signature.

Returns A Version object representing the version identifier. If version is the empty string then emptyVer-
sion will be returned.

Throws I l legalArgumentException– If version is improperly formatted.

Since 1.8

10.1.34 public class VersionRange
Version range. A version range is an interval describing a set of versions.

A range has a left (lower) endpoint and a right (upper) endpoint. Each endpoint can be open (exclud-
ed from the set) or closed (included in the set).

VersionRange objects are immutable.

Since 1.7

Concurrency Immutable

10.1.34.1 public static final char LEFT_CLOSED = 91

The left endpoint is closed and is included in the range.

The value of LEFT_CLOSED is ' [' .

10.1.34.2 public static final char LEFT_OPEN = 40

The left endpoint is open and is excluded from the range.

The value of LEFT_OPEN is ' (' .

10.1.34.3 public static final char RIGHT_CLOSED = 93

The right endpoint is closed and is included in the range.

The value of RIGHT_CLOSED is '] ' .

10.1.34.4 public static final char RIGHT_OPEN = 41

The right endpoint is open and is excluded from the range.

The value of RIGHT_OPEN is ') ' .

10.1.34.5 public VersionRange(char leftType, Version leftEndpoint, Version rightEndpoint, char rightType)

leftType Must be either LEFT_CLOSED or LEFT_OPEN .

leftEndpoint Left endpoint of range. Must not be nul l .

rightEndpoint Right endpoint of range. May be nul l to indicate the right endpoint is Infinity.

rightType Must be either RIGHT_CLOSED or RIGHT_OPEN.

Framework API org.osgi.framework

OSGi Core Release 7 Page 277

□ Creates a version range from the specified versions.

Throws I l legalArgumentException– If the arguments are invalid.

10.1.34.6 public VersionRange(String range)

range String representation of the version range. The versions in the range must contain no whitespace.
Other whitespace in the range string is ignored. Must not be nul l .

□ Creates a version range from the specified string.

Version range string grammar:

 range ::= interval | atleast
 interval ::= ('[' | '(') left ',' right (']' | ')')
 left ::= version
 right ::= version
 atleast ::= version

Throws I l legalArgumentException– If range is improperly formatted.

10.1.34.7 public boolean equals(Object object)

object The VersionRange object to be compared.

□ Compares this VersionRange object to another object.

A version range is considered to be equal to another version range if both the endpoints and their
types are equal or if both version ranges are empty.

Returns true if object is a VersionRange and is equal to this object; fa lse otherwise.

10.1.34.8 public Version getLeft()

□ Returns the left endpoint of this version range.

Returns The left endpoint.

10.1.34.9 public char getLeftType()

□ Returns the type of the left endpoint of this version range.

Returns LEFT_CLOSED if the left endpoint is closed or LEFT_OPEN if the left endpoint is open.

10.1.34.10 public Version getRight()

□ Returns the right endpoint of this version range.

Returns The right endpoint. May be nul l which indicates the right endpoint is Infinity.

10.1.34.11 public char getRightType()

□ Returns the type of the right endpoint of this version range.

Returns RIGHT_CLOSED if the right endpoint is closed or RIGHT_OPEN if the right endpoint is open.

10.1.34.12 public int hashCode()

□ Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.

10.1.34.13 public boolean includes(Version version)

version The version to test for inclusion in this version range.

□ Returns whether this version range includes the specified version.

Returns true if the specified version is included in this version range; fa lse otherwise.

org.osgi.framework.launch Framework API

Page 278 OSGi Core Release 7

10.1.34.14 public VersionRange intersection(VersionRange... ranges)

ranges The version ranges to intersect with this version range.

□ Returns the intersection of this version range with the specified version ranges.

Returns A version range representing the intersection of this version range and the specified version ranges.
If no version ranges are specified, then this version range is returned.

10.1.34.15 public boolean isEmpty()

□ Returns whether this version range is empty. A version range is empty if the set of versions defined
by the interval is empty.

Returns true if this version range is empty; fa lse otherwise.

10.1.34.16 public boolean isExact()

□ Returns whether this version range contains only a single version.

Returns true if this version range contains only a single version; fa lse otherwise.

10.1.34.17 public String toFilterString(String attributeName)

attributeName The attribute name to use in the returned filter string.

□ Returns the filter string for this version range using the specified attribute name.

Returns A filter string for this version range using the specified attribute name.

Throws I l legalArgumentException– If the specified attribute name is not a valid attribute name.

See Also Core Specif icat ion, F i l ters , for a descr ipt ion of the f i l ter str ing syntax.

10.1.34.18 public String toString()

□ Returns the string representation of this version range.

The format of the version range string will be a version string if the right end point is Infinity (nul l)
or an interval string.

Returns The string representation of this version range.

10.1.34.19 public static VersionRange valueOf(String range)

range String representation of the version range. The versions in the range must contain no whitespace.
Other whitespace in the range string is ignored. Must not be nul l .

□ Returns a VersionRange object holding the version range in the specified Str ing .

See VersionRange(String) for the format of the version range string.

Returns A VersionRange object representing the version range.

Throws I l legalArgumentException– If range is improperly formatted.

Since 1.8

10.2 org.osgi.framework.launch

Framework Launch Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Framework API org.osgi.framework.launch

OSGi Core Release 7 Page 279

Import-Package: org.osgi .f ramework. launch; vers ion="[1.2,2.0)"

10.2.1 Summary

• Framework - A Framework instance.
• FrameworkFactory - A factory for creating Framework instances.

10.2.2 public interface Framework
extends Bundle
A Framework instance. A Framework is also known as a System Bundle.

Framework instances are created using a FrameworkFactory. The methods of this interface can be
used to manage and control the created framework instance.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.2.2.1 public A adapt(Class<A> type)

Type Parameters <A>

<A> The type to which this Framework is to be adapted.

type Class object for the type to which this Framework is to be adapted.

□ Adapt this Framework to the specified type.

Adapting this Framework to the specified type may require certain checks, including security
checks, to succeed. If a check does not succeed, then this Framework cannot be adapted and nul l is
returned. If this Framework is not initialized, then nul l is returned if the specified type is one of the
OSGi defined types to which a system bundle can be adapted.

Returns The object, of the specified type, to which this Framework has been adapted or nul l if this Frame-
work cannot be adapted

10.2.2.2 public Enumeration<URL> findEntries(String path, String filePattern, boolean recurse)

path Ignored.

filePattern Ignored.

recurse Ignored.

□ Returns nul l as a framework implementation does not have a proper bundle from which to return
entries.

Returns nul l as a framework implementation does not have a proper bundle from which to return entries.

10.2.2.3 public long getBundleId()

□ Returns the Framework unique identifier. This Framework is assigned the unique identifier zero (0)
since this Framework is also a System Bundle.

Returns 0.

See Also Bundle.getBundleId()

10.2.2.4 public URL getEntry(String path)

path Ignored.

□ Returns nul l as a framework implementation does not have a proper bundle from which to return
an entry.

org.osgi.framework.launch Framework API

Page 280 OSGi Core Release 7

Returns nul l as a framework implementation does not have a proper bundle from which to return an entry.

10.2.2.5 public Enumeration<String> getEntryPaths(String path)

path Ignored.

□ Returns nul l as a framework implementation does not have a proper bundle from which to return
entry paths.

Returns nul l as a framework implementation does not have a proper bundle from which to return entry
paths.

10.2.2.6 public long getLastModified()

□ Returns the time when the set of bundles in this framework was last modified. The set of bundles is
considered to be modified when a bundle is installed, updated or uninstalled.

The time value is the number of milliseconds since January 1, 1970, 00:00:00 UTC.

Returns The time when the set of bundles in this framework was last modified.

10.2.2.7 public String getLocation()

□ Returns the Framework location identifier. This Framework is assigned the unique location "System
Bundle" since this Framework is also a System Bundle.

Returns The string "System Bundle".

Throws SecurityException– If the caller does not have the appropriate AdminPermission[this ,METADATA] ,
and the Java Runtime Environment supports permissions.

See Also Bundle.getLocation(), Constants.SYSTEM_BUNDLE_LOCATION

10.2.2.8 public String getSymbolicName()

□ Returns the symbolic name of this Framework. The symbolic name is unique for the implementa-
tion of the framework. However, the symbolic name "system.bundle" must be recognized as an alias
to the implementation-defined symbolic name since this Framework is also a System Bundle.

Returns The symbolic name of this Framework.

See Also Bundle.getSymbolicName(), Constants.SYSTEM_BUNDLE_SYMBOLICNAME

10.2.2.9 public void init() throws BundleException

□ Initialize this Framework.

This method performs the same function as calling init(FrameworkListener...) with no framework
listeners.

Throws BundleException– If this Framework could not be initialized.

SecurityException– If the Java Runtime Environment supports permissions and the caller does not
have the appropriate AdminPermission[this ,EXECUTE] or if there is a security manager already in-
stalled and the Constants.FRAMEWORK_SECURITY configuration property is set.

See Also init(FrameworkListener...)

10.2.2.10 public void init(FrameworkListener... listeners) throws BundleException

listeners Zero or more listeners to be notified when framework events occur while initializing the frame-
work. The specified listeners do not need to be otherwise registered with the framework. If a speci-
fied listener is registered with the framework, it will be notified twice for each framework event.

□ Initialize this Framework. After calling this method, this Framework must:

Framework API org.osgi.framework.launch

OSGi Core Release 7 Page 281

• Have generated a new framework UUID.
• Be in the STARTING state.
• Have a valid Bundle Context.
• Be at start level 0.
• Have event handling enabled.
• Have reified Bundle objects for all installed bundles.
• Have registered any framework services. For example, Condit ionalPermissionAdmin .
• Be adaptable to the OSGi defined types to which a system bundle can be adapted.
• Have called the start method of the extension bundle activator for all resolved extension bun-

dles.

This Framework will not actually be started until start is called.

This method does nothing if called when this Framework is in the STARTING, ACTIVE or STOP-
PING states.

All framework events fired by this method are also delivered to the specified FrameworkListeners
in the order they are specified before returning from this method. After returning from this method
the specified listeners are no longer notified of framework events.

Throws BundleException– If this Framework could not be initialized.

SecurityException– If the Java Runtime Environment supports permissions and the caller does not
have the appropriate AdminPermission[this ,EXECUTE] or if there is a security manager already in-
stalled and the Constants.FRAMEWORK_SECURITY configuration property is set.

Since 1.2

10.2.2.11 public void start() throws BundleException

□ Start this Framework.

The following steps are taken to start this Framework:

1. If this Framework is not in the STARTING state, initialize this Framework.
2. All installed bundles must be started in accordance with each bundle's persistent autostart set-

ting. This means some bundles will not be started, some will be started with eager activation and
some will be started with their declared activation policy. The start level of this Framework is
moved to the start level specified by the beginning start level framework property, as described
in the Start Level Specification. If this framework property is not specified, then the start level of
this Framework is moved to start level one (1). Any exceptions that occur during bundle start-
ing must be wrapped in a BundleException and then published as a framework event of type
FrameworkEvent.ERROR

3. This Framework's state is set to ACTIVE.
4. A framework event of type FrameworkEvent.STARTED is fired

Throws BundleException– If this Framework could not be started.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

See Also Start Level Specif icat ion

10.2.2.12 public void start(int options) throws BundleException

options Ignored. There are no start options for the Framework.

□ Start this Framework.

Calling this method is the same as calling start(). There are no start options for the Framework.

org.osgi.framework.launch Framework API

Page 282 OSGi Core Release 7

Throws BundleException– If this Framework could not be started.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

See Also start()

10.2.2.13 public void stop() throws BundleException

□ Stop this Framework.

The method returns immediately to the caller after initiating the following steps to be taken on an-
other thread.

1. This Framework's state is set to STOPPING.
2. All installed bundles must be stopped without changing each bundle's persistent autostart set-

ting. The start level of this Framework is moved to start level zero (0), as described in the Start
Level Specification. Any exceptions that occur during bundle stopping must be wrapped in a
BundleException and then published as a framework event of type FrameworkEvent.ERROR

3. Unregister all services registered by this Framework.
4. Event handling is disabled.
5. This Framework's state is set to RESOLVED.
6. All resources held by this Framework are released. This includes threads, bundle class loaders,

open files, etc.
7. Notify all threads that are waiting at waitForStop that the stop operation has completed.

After being stopped, this Framework may be discarded, initialized or started.

Throws BundleException– If stopping this Framework could not be initiated.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

See Also Start Level Specif icat ion

10.2.2.14 public void stop(int options) throws BundleException

options Ignored. There are no stop options for the Framework.

□ Stop this Framework.

Calling this method is the same as calling stop(). There are no stop options for the Framework.

Throws BundleException– If stopping this Framework could not be initiated.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,EXECUTE] ,
and the Java Runtime Environment supports permissions.

See Also stop()

10.2.2.15 public void uninstall() throws BundleException

□ The Framework cannot be uninstalled.

This method always throws a BundleException.

Throws BundleException– This Framework cannot be uninstalled.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,L IFECYCLE] ,
and the Java Runtime Environment supports permissions.

10.2.2.16 public void update() throws BundleException

□ Stop and restart this Framework.

Framework API org.osgi.framework.launch

OSGi Core Release 7 Page 283

The method returns immediately to the caller after initiating the following steps to be taken on an-
other thread.

1. Perform the steps in the stop() method to stop this Framework.
2. Perform the steps in the start() method to start this Framework.

Throws BundleException– If stopping and restarting this Framework could not be initiated.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,L IFECYCLE] ,
and the Java Runtime Environment supports permissions.

10.2.2.17 public void update(InputStream in) throws BundleException

in Any provided InputStream is immediately closed before returning from this method and otherwise
ignored.

□ Stop and restart this Framework.

Calling this method is the same as calling update() except that any provided InputStream is imme-
diately closed.

Throws BundleException– If stopping and restarting this Framework could not be initiated.

SecurityException– If the caller does not have the appropriate AdminPermission[this ,L IFECYCLE] ,
and the Java Runtime Environment supports permissions.

10.2.2.18 public FrameworkEvent waitForStop(long timeout) throws InterruptedException

timeout Maximum number of milliseconds to wait until this Framework has completely stopped. A value of
zero will wait indefinitely.

□ Wait until this Framework has completely stopped. The stop and update methods on a Framework
performs an asynchronous stop of the Framework. This method can be used to wait until the asyn-
chronous stop of this Framework has completed. This method will only wait if called when this
Framework is in the STARTING, ACTIVE, or STOPPING states. Otherwise it will return immediately.

A Framework Event is returned to indicate why this Framework has stopped.

Returns A Framework Event indicating the reason this method returned. The following FrameworkEvent
types may be returned by this method.

• STOPPED - This Framework has been stopped.
• STOPPED_UPDATE - This Framework has been updated which has shutdown and will now

restart.
• STOPPED_BOOTCLASSPATH_MODIFIED - This Framework has been stopped and a bootclass-

path extension bundle has been installed or updated. The VM must be restarted in order for the
changed boot class path to take effect.

• ERROR - The Framework encountered an error while shutting down or an error has occurred
which forced the framework to shutdown.

• WAIT_TIMEDOUT - This method has timed out and returned before this Framework has
stopped.

Throws InterruptedException– If another thread interrupted the current thread before or while the cur-
rent thread was waiting for this Framework to completely stop. The interrupted status of the current
thread is cleared when this exception is thrown.

I l legalArgumentException– If the value of timeout is negative.

10.2.3 public interface FrameworkFactory
A factory for creating Framework instances.

org.osgi.resource Framework API

Page 284 OSGi Core Release 7

A framework implementation jar must contain the following resource:

 /META-INF/services/org.osgi.framework.launch.FrameworkFactory

This UTF-8 encoded resource must contain the name of the framework implementation's Frame-
workFactory implementation class. Space and tab characters, including blank lines, in the resource
must be ignored. The number sign ('# ' \u0023) and all characters following it on each line are a com-
ment and must be ignored.

Launchers can find the name of the FrameworkFactory implementation class in the resource and
then load and construct a FrameworkFactory object for the framework implementation. The Frame-
workFactory implementation class must have a public, no-argument constructor. Java™ SE 6 intro-
duced the ServiceLoader class which can create a FrameworkFactory instance from the resource.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.2.3.1 public Framework newFramework(Map<String, String> configuration)

configuration The framework properties to configure the new framework instance. If framework properties are
not provided by the configuration argument, the created framework instance must use some rea-
sonable default configuration appropriate for the current VM. For example, the system packages
for the current execution environment should be properly exported. The specified configuration ar-
gument may be nul l . The created framework instance must copy any information needed from the
specified configuration argument since the configuration argument can be changed after the frame-
work instance has been created.

□ Create a new Framework instance.

Returns A new, configured Framework instance. The framework instance must be in the Bundle.INSTALLED
state.

Throws SecurityException– If the caller does not have AllPermission , and the Java Runtime Environment
supports permissions.

10.3 org.osgi.resource

Resource Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. For example:

 Import-Package: org.osgi.resource; version="[1.0,2.0)"

10.3.1 Summary

• Capabi l i ty - A capability that has been declared from a Resource.
• Namespace - Capability and Requirement Namespaces base class.
• Requirement - A requirement that has been declared from a Resource .
• Resource - A resource is the representation of a uniquely identified and typed data.
• Wire - A wire connecting a Capability to a Requirement.
• Wiring - A wiring for a resource.

10.3.2 public interface Capability
A capability that has been declared from a Resource.

Framework API org.osgi.resource

OSGi Core Release 7 Page 285

Instances of this type must be effectively immutable. That is, for a given instance of this interface, the
methods defined by this interface must always return the same result.

Concurrency Thread-safe

10.3.2.1 public boolean equals(Object obj)

obj The object to compare against this Capabi l i ty .

□ Compares this Capabi l i ty to another Capabi l i ty .

This Capabi l i ty is equal to another Capabi l i ty if they have the same namespace, directives and attrib-
utes and are declared by the same resource.

Returns true if this Capabi l i ty is equal to the other object; fa lse otherwise.

10.3.2.2 public Map<String, Object> getAttributes()

□ Returns the attributes of this capability.

Returns An unmodifiable map of attribute names to attribute values for this capability, or an empty map if
this capability has no attributes.

10.3.2.3 public Map<String, String> getDirectives()

□ Returns the directives of this capability.

Returns An unmodifiable map of directive names to directive values for this capability, or an empty map if
this capability has no directives.

10.3.2.4 public String getNamespace()

□ Returns the namespace of this capability.

Returns The namespace of this capability.

10.3.2.5 public Resource getResource()

□ Returns the resource declaring this capability.

Returns The resource declaring this capability.

10.3.2.6 public int hashCode()

□ Returns the hashCode of this Capabi l i ty .

Returns The hashCode of this Capabi l i ty .

10.3.3 public abstract class Namespace
Capability and Requirement Namespaces base class.

This class is the common class shared by all OSGi defined namespaces. It defines the names for the
common attributes and directives for the OSGi specified namespaces.

The OSGi Alliance reserves the right to extend the set of directives and attributes which have speci-
fied semantics for all of the specified namespaces.

The values associated with these keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

10.3.3.1 public static final String CAPABILITY_EFFECTIVE_DIRECTIVE = "effective"

The capability directive used to specify the effective time for the capability. The default value is re-
solve.

org.osgi.resource Framework API

Page 286 OSGi Core Release 7

See Also resolve, active

10.3.3.2 public static final String CAPABILITY_USES_DIRECTIVE = "uses"

The capability directive used to specify the comma separated list of package names used by a capa-
bility.

10.3.3.3 public static final String CARDINALITY_MULTIPLE = "multiple"

The directive value identifying a multiple cardinality type.

See Also REQUIREMENT_CARDINALITY_DIRECTIVE

10.3.3.4 public static final String CARDINALITY_SINGLE = "single"

The directive value identifying a cardinality type of single.

See Also REQUIREMENT_CARDINALITY_DIRECTIVE

10.3.3.5 public static final String EFFECTIVE_ACTIVE = "active"

The directive value identifying a capability or requirement that is effective at active time. Capabili-
ties and requirements with an effective time of active are ignored while resolving a resource.

See Also REQUIREMENT_EFFECTIVE_DIRECTIVE, CAPABILITY_EFFECTIVE_DIRECTIVE

10.3.3.6 public static final String EFFECTIVE_RESOLVE = "resolve"

The directive value identifying a capability or requirement that is effective at resolve time. Capabili-
ties and requirements with an effective time of resolve are the only capabilities which are processed
while resolving a resource.

See Also REQUIREMENT_EFFECTIVE_DIRECTIVE, CAPABILITY_EFFECTIVE_DIRECTIVE

10.3.3.7 public static final String REQUIREMENT_CARDINALITY_DIRECTIVE = "cardinality"

The requirement directive used to specify the cardinality for a requirement. The default value is sin-
gle.

See Also multiple, single

10.3.3.8 public static final String REQUIREMENT_EFFECTIVE_DIRECTIVE = "effective"

The requirement directive used to specify the effective time for the requirement. The default value
is resolve.

See Also resolve, active

10.3.3.9 public static final String REQUIREMENT_FILTER_DIRECTIVE = "filter"

The requirement directive used to specify a capability filter. This filter is used to match against a
capability's attributes.

10.3.3.10 public static final String REQUIREMENT_RESOLUTION_DIRECTIVE = "resolution"

The requirement directive used to specify the resolution type for a requirement. The default value is
mandatory .

See Also mandatory, optional

10.3.3.11 public static final String RESOLUTION_MANDATORY = "mandatory"

The directive value identifying a mandatory requirement resolution type. A mandatory resolution
type indicates that the requirement must be resolved when the resource is resolved. If such a re-
quirement cannot be resolved, the resource fails to resolve.

See Also REQUIREMENT_RESOLUTION_DIRECTIVE

Framework API org.osgi.resource

OSGi Core Release 7 Page 287

10.3.3.12 public static final String RESOLUTION_OPTIONAL = "optional"

The directive value identifying an optional requirement resolution type. An optional resolution
type indicates that the requirement is optional and the resource may be resolved without the re-
quirement being resolved.

See Also REQUIREMENT_RESOLUTION_DIRECTIVE

10.3.3.13 protected Namespace()

□ Protected constructor for Namespace sub-types.

10.3.4 public interface Requirement
A requirement that has been declared from a Resource .

Instances of this type must be effectively immutable. That is, for a given instance of this interface, the
methods defined by this interface must always return the same result.

Concurrency Thread-safe

10.3.4.1 public boolean equals(Object obj)

obj The object to compare against this Requirement .

□ Compares this Requirement to another Requirement .

This Requirement is equal to another Requirement if they have the same namespace, directives and
attributes and are declared by the same resource.

Returns true if this Requirement is equal to the other object; fa lse otherwise.

10.3.4.2 public Map<String, Object> getAttributes()

□ Returns the attributes of this requirement.

Requirement attributes have no specified semantics and are considered extra user defined informa-
tion.

Returns An unmodifiable map of attribute names to attribute values for this requirement, or an empty map
if this requirement has no attributes.

10.3.4.3 public Map<String, String> getDirectives()

□ Returns the directives of this requirement.

Returns An unmodifiable map of directive names to directive values for this requirement, or an empty map
if this requirement has no directives.

10.3.4.4 public String getNamespace()

□ Returns the namespace of this requirement.

Returns The namespace of this requirement.

10.3.4.5 public Resource getResource()

□ Returns the resource declaring this requirement.

Returns The resource declaring this requirement. This can be nul l if this requirement is synthesized.

10.3.4.6 public int hashCode()

□ Returns the hashCode of this Requirement .

Returns The hashCode of this Requirement .

org.osgi.resource Framework API

Page 288 OSGi Core Release 7

10.3.5 public interface Resource
A resource is the representation of a uniquely identified and typed data. A resource declares require-
ments that need to be satisfied by capabilities before it can provide its capabilities.

Instances of this type must be effectively immutable. That is, for a given instance of this interface, the
methods defined by this interface must always return the same result.

Concurrency Thread-safe

10.3.5.1 public boolean equals(Object obj)

obj The object to compare against this Resource .

□ Compares this Resource to another Resource .

This Resource is equal to another Resource if both have the same content and come from the same
location. Location may be defined as the bundle location if the resource is an installed bundle or the
repository location if the resource is in a repository.

Returns true if this Resource is equal to the other object; fa lse otherwise.

10.3.5.2 public List<Capability> getCapabilities(String namespace)

namespace The namespace of the declared capabilities to return or nul l to return the declared capabilities from
all namespaces.

□ Returns the capabilities declared by this resource.

Returns An unmodifiable list containing the declared Capabilitys from the specified namespace. The re-
turned list will be empty if this resource declares no capabilities in the specified namespace.

10.3.5.3 public List<Requirement> getRequirements(String namespace)

namespace The namespace of the declared requirements to return or nul l to return the declared requirements
from all namespaces.

□ Returns the requirements declared by this bundle resource.

Returns An unmodifiable list containing the declared Requirement s from the specified namespace. The re-
turned list will be empty if this resource declares no requirements in the specified namespace.

10.3.5.4 public int hashCode()

□ Returns the hashCode of this Resource .

Returns The hashCode of this Resource .

10.3.6 public interface Wire
A wire connecting a Capability to a Requirement.

Instances of this type must be effectively immutable. That is, for a given instance of this interface, the
methods defined by this interface must always return the same result.

Concurrency Thread-safe

10.3.6.1 public boolean equals(Object obj)

obj The object to compare against this Wire .

□ Compares this Wire to another Wire .

This Wire is equal to another Wire if they have the same capability, requirement, provider and re-
quirer.

Returns true if this Wire is equal to the other object; fa lse otherwise.

Framework API org.osgi.resource

OSGi Core Release 7 Page 289

10.3.6.2 public Capability getCapability()

□ Returns the Capability for this wire.

Returns The Capability for this wire.

10.3.6.3 public Resource getProvider()

□ Returns the resource providing the capability.

The returned resource may differ from the resource referenced by the capability.

Returns The resource providing the capability.

10.3.6.4 public Requirement getRequirement()

□ Returns the Requirement for this wire.

Returns The Requirement for this wire.

10.3.6.5 public Resource getRequirer()

□ Returns the resource who requires the capability.

The returned resource may differ from the resource referenced by the requirement.

Returns The resource who requires the capability.

10.3.6.6 public int hashCode()

□ Returns the hashCode of this Wire .

Returns The hashCode of this Wire .

10.3.7 public interface Wiring
A wiring for a resource. A wiring is associated with a resource and represents the dependencies with
other wirings.

Instances of this type must be effectively immutable. That is, for a given instance of this interface, the
methods defined by this interface must always return the same result.

Concurrency Thread-safe

10.3.7.1 public List<Wire> getProvidedResourceWires(String namespace)

namespace The namespace of the capabilities for which to return wires or nul l to return the wires for the capa-
bilities in all namespaces.

□ Returns the Wires to the provided capabilities of this wiring.

Returns A list containing a snapshot of the Wires for the capabilities of this wiring, or an empty list if this
wiring has no capabilities in the specified namespace. For a given namespace, the list contains the
wires in the order the capabilities were specified in the manifests of the resource and the attached
fragment resources of this wiring. There is no ordering defined between capabilities in different
namespaces.

10.3.7.2 public List<Wire> getRequiredResourceWires(String namespace)

namespace The namespace of the requirements for which to return wires or nul l to return the wires for the re-
quirements in all namespaces.

□ Returns the Wires to the requirements in use by this wiring.

Returns A list containing a snapshot of the Wires for the requirements of this wiring, or an empty list if this
wiring has no requirements in the specified namespace. For a given namespace, the list contains the
wires in the order the requirements were specified in the manifests of the resource and the attached

org.osgi.framework.wiring Framework API

Page 290 OSGi Core Release 7

fragment resources of this wiring. There is no ordering defined between requirements in different
namespaces.

10.3.7.3 public Resource getResource()

□ Returns the resource associated with this wiring.

Returns The resource associated with this wiring.

10.3.7.4 public List<Capability> getResourceCapabilities(String namespace)

namespace The namespace of the capabilities to return or nul l to return the capabilities from all namespaces.

□ Returns the capabilities provided by this wiring.

Only capabilities considered by the resolver are returned. For example, capabilities with effective di-
rective not equal to resolve are not returned.

A capability may not be required by any wiring and thus there may be no wires for the capability.

A wiring for a non-fragment resource provides a subset of the declared capabilities from the re-
source and all attached fragment resources†. Not all declared capabilities may be provided since
some may be discarded. For example, if a package is declared to be both exported and imported, only
one is selected and the other is discarded.

A wiring for a fragment resource with a symbolic name must provide exactly one osgi . identity capa-
bility.

† The osgi . identity capability provided by attached fragment resource must not be included in the
capabilities of the host wiring.

Returns A list containing a snapshot of the Capabilitys, or an empty list if this wiring provides no capabili-
ties in the specified namespace. For a given namespace, the list contains the capabilities in the order
the capabilities were specified in the manifests of the resource and the attached fragment resources†

of this wiring. There is no ordering defined between capabilities in different namespaces.

10.3.7.5 public List<Requirement> getResourceRequirements(String namespace)

namespace The namespace of the requirements to return or nul l to return the requirements from all name-
spaces.

□ Returns the requirements of this wiring.

Only requirements considered by the resolver are returned. For example, requirements with effec-
tive directive not equal to resolve are not returned.

A wiring for a non-fragment resource has a subset of the declared requirements from the resource
and all attached fragment resources. Not all declared requirements may be present since some may
be discarded. For example, if a package is declared to be both exported and imported, only one is se-
lected and the other is discarded.

Returns A list containing a snapshot of the Requirements, or an empty list if this wiring uses no require-
ments in the specified namespace. For a given namespace, the list contains the requirements in the
order the requirements were specified in the manifests of the resource and the attached fragment re-
sources of this wiring. There is no ordering defined between requirements in different namespaces.

10.4 org.osgi.framework.wiring

Framework Wiring Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. For example:

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 291

 Import-Package: org.osgi.framework.wiring; version="[1.2,2.0)"

10.4.1 Summary

• BundleCapabi l i ty - A capability that has been declared from a bundle revision.
• BundleRequirement - A requirement that has been declared from a bundle revision.
• BundleRevis ion - Bundle Revision.
• BundleRevis ions - The bundle revisions of a bundle.
• BundleWire - A wire connecting a BundleCapability to a BundleRequirement.
• BundleWir ing - A wiring for a bundle.
• FrameworkWir ing - Query and modify wiring information for the framework.

10.4.2 public interface BundleCapability
extends Capability
A capability that has been declared from a bundle revision.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.2.1 public Map<String, Object> getAttributes()

□ Returns the attributes of this capability.

Returns An unmodifiable map of attribute names to attribute values for this capability, or an empty map if
this capability has no attributes.

10.4.2.2 public Map<String, String> getDirectives()

□ Returns the directives of this capability.

All capability directives not specified by the wiring namespaces have no specified semantics and are
considered extra user defined information.

Returns An unmodifiable map of directive names to directive values for this capability, or an empty map if
this capability has no directives.

10.4.2.3 public String getNamespace()

□ Returns the namespace of this capability.

Returns The namespace of this capability.

10.4.2.4 public BundleRevision getResource()

□ Returns the resource declaring this capability.

This method returns the same value as getRevision().

Returns The resource declaring this capability.

Since 1.1

10.4.2.5 public BundleRevision getRevision()

□ Returns the bundle revision declaring this capability.

Returns The bundle revision declaring this capability.

org.osgi.framework.wiring Framework API

Page 292 OSGi Core Release 7

10.4.3 public interface BundleRequirement
extends Requirement
A requirement that has been declared from a bundle revision.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.3.1 public Map<String, Object> getAttributes()

□ Returns the attributes of this requirement.

Requirement attributes have no specified semantics and are considered extra user defined informa-
tion.

Returns An unmodifiable map of attribute names to attribute values for this requirement, or an empty map
if this requirement has no attributes.

10.4.3.2 public Map<String, String> getDirectives()

□ Returns the directives of this requirement.

All requirement directives not specified by the wiring namespaces have no specified semantics and
are considered extra user defined information.

Returns An unmodifiable map of directive names to directive values for this requirement, or an empty map
if this requirement has no directives.

10.4.3.3 public String getNamespace()

□ Returns the namespace of this requirement.

Returns The namespace of this requirement.

10.4.3.4 public BundleRevision getResource()

□ Returns the resource declaring this requirement.

This method returns the same value as getRevision().

Returns The resource declaring this requirement. This can be nul l if this requirement is synthesized.

Since 1.1

10.4.3.5 public BundleRevision getRevision()

□ Returns the bundle revision declaring this requirement.

Returns The bundle revision declaring this requirement.

10.4.3.6 public boolean matches(BundleCapability capability)

capability The capability to match to this requirement.

□ Returns whether the specified capability matches this requirement.

Returns true if the specified capability has the same namespace as this requirement and the filter for this re-
quirement matches the attributes of the specified capability; fa lse otherwise.

10.4.4 public interface BundleRevision
extends BundleReference, Resource
Bundle Revision. When a bundle is installed and each time a bundle is updated, a new bundle re-
vision of the bundle is created. Since a bundle update can change the entries in a bundle, different
bundle wirings for the same bundle can be associated with different bundle revisions.

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 293

For a bundle that has not been uninstalled, the most recent bundle revision is defined to be the cur-
rent bundle revision. A bundle in the UNINSTALLED state does not have a current revision. The cur-
rent bundle revision for a bundle can be obtained by calling bundle.adapt (BundleRevision.class).
Since a bundle in the UNINSTALLED state does not have a current revision, adapting such a bundle
returns nul l .

The framework defines namespaces for package, bundle and host capabilities and requirements.
These namespaces are defined only to express wiring information by the framework. They must not
be used in Provide-Capability and Require-Capability manifest headers.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.4.1 public static final String BUNDLE_NAMESPACE = "osgi.wiring.bundle"

Namespace for bundle capabilities and requirements.

The bundle symbolic name of the bundle is stored in the capability attribute of the same name as
this namespace (osgi.wiring.bundle). The other directives and attributes of the bundle, from the
Bundle-SymbolicName manifest header, can be found in the capability's directives and attribut-
es. The bundle-version capability attribute must contain the Version of the bundle from the Bun-
dle-Version manifest header if one is specified or Version.emptyVersion if not specified.

A non-fragment revision declares exactly one† bundle capability (that is, the bundle can be required
by another bundle). A fragment revision must not declare a bundle capability.

A bundle wiring for a non-fragment revision provides exactly one† bundle capability (that is, the
bundle can be required by another bundle) and requires zero or more bundle capabilities (that is, re-
quires other bundles).

† A bundle with no bundle symbolic name (that is, a bundle with Bundle-ManifestVersion < 2) must
not provide a bundle capability.

See Also BundleNamespace

10.4.4.2 public static final String HOST_NAMESPACE = "osgi.wiring.host"

Namespace for host capabilities and requirements.

The bundle symbolic name of the bundle is stored in the capability attribute of the same name as
this namespace (osgi.wiring.host). The other directives and attributes of the bundle, from the Bun-
dle-SymbolicName manifest header, can be found in the capability's directives and attributes. The
bundle-version capability attribute must contain the Version of the bundle from the Bundle-Version
manifest header if one is specified or Version.emptyVersion if not specified.

A non-fragment revision declares zero or one† host capability if the bundle allows fragments to be
attached. A fragment revision must declare exactly one host requirement.

A bundle wiring for a non-fragment revision provides zero or one† host capability if the bundle al-
lows fragments to be attached. A bundle wiring for a fragment revision requires a host capability for
each host to which it is attached.

† A bundle with no bundle symbolic name (that is, a bundle with Bundle-ManifestVersion < 2) must
not provide a host capability.

See Also HostNamespace

10.4.4.3 public static final String PACKAGE_NAMESPACE = "osgi.wiring.package"

Namespace for package capabilities and requirements.

The name of the package is stored in the capability attribute of the same name as this namespace
(osgi.wiring.package). The other directives and attributes of the package, from the Export-Package
manifest header, can be found in the capability's directives and attributes. The version capability at-

org.osgi.framework.wiring Framework API

Page 294 OSGi Core Release 7

tribute must contain the Version of the package if one is specified or Version.emptyVersion if not
specified. The bundle-symbolic-name capability attribute must contain the symbolic name of the
provider if one is specified. The bundle-version capability attribute must contain the version of the
provider if one is specified or Version.emptyVersion if not specified.

The package capabilities provided by the system bundle, that is the bundle with id zero, must
include the package specified by the Constants.FRAMEWORK_SYSTEMPACKAGES and
Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA framework properties as well as any other
package exported by the framework implementation.

A bundle revision declares zero or more package capabilities (this is, exported packages) and de-
clares zero or more package requirements.

A bundle wiring provides zero or more resolved package capabilities (that is, exported packages)
and requires zero or more resolved package requirements (that is, imported packages). The number
of package wires required by a bundle wiring may change as the bundle wiring may dynamically
import additional packages.

See Also PackageNamespace

10.4.4.4 public static final int TYPE_FRAGMENT = 1

Bundle revision type indicating the bundle revision is a fragment.

See Also getTypes()

10.4.4.5 public List<Capability> getCapabilities(String namespace)

namespace The namespace of the declared capabilities to return or nul l to return the declared capabilities from
all namespaces.

□ Returns the capabilities declared by this resource.

This method returns the same value as getDeclaredCapabilities(String).

Returns An unmodifiable list containing the declared Capabilitys from the specified namespace. The re-
turned list will be empty if this resource declares no capabilities in the specified namespace.

Since 1.1

10.4.4.6 public List<BundleCapability> getDeclaredCapabilities(String namespace)

namespace The namespace of the declared capabilities to return or nul l to return the declared capabilities from
all namespaces.

□ Returns the capabilities declared by this bundle revision.

Returns An unmodifiable list containing the declared BundleCapabilitys from the specified namespace. The
returned list will be empty if this bundle revision declares no capabilities in the specified name-
space. The list contains the declared capabilities in the order they are specified in the manifest.

10.4.4.7 public List<BundleRequirement> getDeclaredRequirements(String namespace)

namespace The namespace of the declared requirements to return or nul l to return the declared requirements
from all namespaces.

□ Returns the requirements declared by this bundle revision.

Returns An unmodifiable list containing the declared BundleRequirements from the specified namespace.
The returned list will be empty if this bundle revision declares no requirements in the specified
namespace. The list contains the declared requirements in the order they are specified in the mani-
fest.

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 295

10.4.4.8 public List<Requirement> getRequirements(String namespace)

namespace The namespace of the declared requirements to return or nul l to return the declared requirements
from all namespaces.

□ Returns the requirements declared by this bundle resource.

This method returns the same value as getDeclaredRequirements(String).

Returns An unmodifiable list containing the declared Requirement s from the specified namespace. The re-
turned list will be empty if this resource declares no requirements in the specified namespace.

Since 1.1

10.4.4.9 public String getSymbolicName()

□ Returns the symbolic name for this bundle revision.

Returns The symbolic name for this bundle revision.

See Also Bundle.getSymbolicName()

10.4.4.10 public int getTypes()

□ Returns the special types of this bundle revision. The bundle revision type values are:

• TYPE_FRAGMENT

A bundle revision may be more than one type at a time. A type code is used to identify the bundle re-
vision type for future extendability.

If this bundle revision is not one or more of the defined types then 0 is returned.

Returns The special types of this bundle revision. The type values are ORed together.

10.4.4.11 public Version getVersion()

□ Returns the version for this bundle revision.

Returns The version for this bundle revision, or Version.emptyVersion if this bundle revision has no version
information.

See Also Bundle.getVersion()

10.4.4.12 public BundleWiring getWiring()

□ Returns the bundle wiring which is using this bundle revision.

Returns The bundle wiring which is using this bundle revision or nul l if no bundle wiring is using this bun-
dle revision.

See Also BundleWiring.getRevision()

10.4.5 public interface BundleRevisions
extends BundleReference
The bundle revisions of a bundle. When a bundle is installed and each time a bundle is updat-
ed, a new bundle revision of the bundle is created. For a bundle that has not been uninstalled, the
most recent bundle revision is defined to be the current bundle revision. A bundle in the UNINS-
TALLED state does not have a current revision. An in use bundle revision is associated with an in
use BundleWiring. The current bundle revision, if there is one, and all in use bundle revisions are re-
turned.

The bundle revisions for a bundle can be obtained by calling bundle.adapt(BundleRevisions.class).
getRevisions() on the bundle.

org.osgi.framework.wiring Framework API

Page 296 OSGi Core Release 7

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.5.1 public List<BundleRevision> getRevisions()

□ Return the bundle revisions for the referenced bundle.

The result is a list containing the current bundle revision, if there is one, and all in use bundle revi-
sions. The list may also contain intermediate bundle revisions which are not in use.

The list is ordered in reverse chronological order such that the first item is the most recent bundle
revision and last item is the oldest bundle revision.

Generally the list will have at least one bundle revision for the bundle: the current bundle revision.
However, for an uninstalled bundle with no in use bundle revisions, the list may be empty.

Returns A list containing a snapshot of the BundleRevisions for the referenced bundle.

10.4.6 public interface BundleWire
extends Wire
A wire connecting a BundleCapability to a BundleRequirement.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.6.1 public BundleCapability getCapability()

□ Returns the BundleCapability for this wire.

Returns The BundleCapability for this wire.

10.4.6.2 public BundleRevision getProvider()

□ Returns the resource providing the capability.

The returned resource may differ from the resource referenced by the capability.

This method returns the same value as getProviderWiring(). getRevision().

Returns The resource providing the capability.

Since 1.1

10.4.6.3 public BundleWiring getProviderWiring()

□ Returns the bundle wiring providing the capability.

The bundle revision referenced by the returned bundle wiring may differ from the bundle revision
referenced by the capability.

Returns The bundle wiring providing the capability. If the bundle wiring providing the capability is not in
use, nul l will be returned.

10.4.6.4 public BundleRequirement getRequirement()

□ Return the BundleRequirement for this wire.

Returns The BundleRequirement for this wire.

10.4.6.5 public BundleRevision getRequirer()

□ Returns the resource who requires the capability.

The returned resource may differ from the resource referenced by the requirement.

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 297

This method returns the same value as getRequirerWiring(). getRevision().

Returns The resource who requires the capability.

Since 1.1

10.4.6.6 public BundleWiring getRequirerWiring()

□ Returns the bundle wiring who requires the capability.

The bundle revision referenced by the returned bundle wiring may differ from the bundle revision
referenced by the requirement.

Returns The bundle wiring whose requirement is wired to the capability. If the bundle wiring requiring the
capability is not in use, nul l will be returned.

10.4.7 public interface BundleWiring
extends BundleReference, Wiring
A wiring for a bundle. Each time a bundle is resolved, a new bundle wiring for the bundle is creat-
ed. A bundle wiring is associated with a bundle revision and represents the dependencies with other
bundle wirings.

The bundle wiring for a bundle is the current bundle wiring if it is the most recent bundle wiring
for the current bundle revision. A bundle wiring is in use if it is the current bundle wiring or if some
other in use bundle wiring is dependent upon it. For example, another bundle wiring is wired to a
capability provided by the bundle wiring. An in use bundle wiring for a non-fragment bundle has a
class loader. All bundles with non-current, in use bundle wirings are considered removal pending.
Once a bundle wiring is no longer in use, it is considered stale and is discarded by the framework.

The current bundle wiring for a bundle can be obtained by calling
bundle.adapt(BundleWiring.class). A bundle in the INSTALLED or UNINSTALLED state does not
have a current wiring, adapting such a bundle returns nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.7.1 public static final int FINDENTRIES_RECURSE = 1

The find entries operation must recurse into subdirectories.

This bit may be set when calling findEntries(String, String, int) to specify the result must include
the matching entries from the specified path and its subdirectories. If this bit is not set, then the re-
sult must only include matching entries from the specified path.

See Also findEntries(String, String, int)

10.4.7.2 public static final int LISTRESOURCES_LOCAL = 2

The list resource names operation must limit the result to the names of matching resources con-
tained in this bundle wiring's bundle revision and its attached fragment revisions. The result must
not include resource names for resources in package names which are imported by this wiring.

This bit may be set when calling listResources(String, String, int) to specify the result must only in-
clude the names of matching resources contained in this bundle wiring's bundle revision and its at-
tached fragment revisions. If this bit is not set, then the result must include the names of matching
resources reachable from this bundle wiring's class loader which may include the names of match-
ing resources contained in imported packages and required bundles.

See Also listResources(String, String, int)

10.4.7.3 public static final int LISTRESOURCES_RECURSE = 1

The list resource names operation must recurse into subdirectories.

org.osgi.framework.wiring Framework API

Page 298 OSGi Core Release 7

This bit may be set when calling listResources(String, String, int) to specify the result must include
the names of matching resources from the specified path and its subdirectories. If this bit is not set,
then the result must only include names of matching resources from the specified path.

See Also listResources(String, String, int)

10.4.7.4 public List<URL> findEntries(String path, String filePattern, int options)

path The path name in which to look. The path is always relative to the root of this bundle wiring and
may begin with "/". A path value of "/" indicates the root of this bundle wiring.

filePattern The file name pattern for selecting entries in the specified path. The pattern is only matched against
the last element of the entry path. If the entry is a directory then the trailing "/" is not used for pat-
tern matching. Substring matching is supported, as specified in the Filter specification, using the
wildcard character ("*"). If nul l is specified, this is equivalent to "*" and matches all files.

options The options for listing resource names. See FINDENTRIES_RECURSE. The method must ignore un-
recognized options.

□ Returns entries in this bundle wiring's bundle revision and its attached fragment revisions. This
bundle wiring's class loader is not used to search for entries. Only the contents of this bundle
wiring's bundle revision and its attached fragment revisions are searched for the specified entries.

This method takes into account that the "contents" of this bundle wiring can have attached frag-
ments. This "bundle space" is not a namespace with unique members; the same entry name can be
present multiple times. This method therefore returns a list of URL objects. These URLs can come
from different JARs but have the same path name. This method can either return only entries in the
specified path or recurse into subdirectories returning entries in the directory tree beginning at the
specified path.

URLs for directory entries must have their path end with "/".

Note: Jar and zip files are not required to include directory entries. URLs to directory entries will not
be returned if the bundle contents do not contain directory entries.

Returns An unmodifiable list of URL objects for each matching entry, or an empty list if no matching entry
could be found, if this bundle wiring is for a fragment revision or if the caller does not have the ap-
propriate AdminPermission[bundle,RESOURCE] and the Java Runtime Environment supports per-
missions. The list is ordered such that entries from the bundle revision are returned first followed by
the entries from attached fragment revisions in attachment order. If this bundle wiring is not in use,
nul l must be returned.

See Also Bundle.findEntries(String, String, boolean)

10.4.7.5 public List<BundleCapability> getCapabilities(String namespace)

namespace The namespace of the capabilities to return or nul l to return the capabilities from all namespaces.

□ Returns the capabilities provided by this bundle wiring.

Only capabilities considered by the resolver are returned. For example, capabilities with effective di-
rective not equal to resolve are not returned.

A capability may not be required by any bundle wiring and thus there may be no wires for the capa-
bility.

A bundle wiring for a non-fragment revision provides a subset of the declared capabilities from the
bundle revision and all attached fragment revisions†. Not all declared capabilities may be provided
since some may be discarded. For example, if a package is declared to be both exported and import-
ed, only one is selected and the other is discarded.

A bundle wiring for a fragment revision with a symbolic name must provide exactly one identity ca-
pability.

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 299

† The identity capability provided by attached fragment revisions must not be included in the capa-
bilities of the host bundle wiring.

Returns A list containing a snapshot of the BundleCapabilitys, or an empty list if this bundle wiring provides
no capabilities in the specified namespace. If this bundle wiring is not in use, nul l will be returned.
For a given namespace, the list contains the capabilities in the order the capabilities were specified
in the manifests of the bundle revision and the attached fragments† of this bundle wiring. There is
no ordering defined between capabilities in different namespaces.

10.4.7.6 public ClassLoader getClassLoader()

□ Returns the class loader for this bundle wiring. Since a bundle refresh creates a new bundle wiring
for a bundle, different bundle wirings for the same bundle will have different class loaders.

Returns The class loader for this bundle wiring. If this bundle wiring is not in use or this bundle wiring is for
a fragment revision, nul l will be returned.

Throws SecurityException– If the caller does not have the appropriate
RuntimePermission("getClassLoader") , and the Java Runtime Environment supports permissions.

10.4.7.7 public List<Wire> getProvidedResourceWires(String namespace)

namespace The namespace of the capabilities for which to return wires or nul l to return the wires for the capa-
bilities in all namespaces.

□ Returns the Wires to the provided capabilities of this wiring.

This method returns the same value as getProvidedWires(String).

Returns A list containing a snapshot of the Wires for the capabilities of this wiring, or an empty list if this
wiring has no capabilities in the specified namespace. For a given namespace, the list contains the
wires in the order the capabilities were specified in the manifests of the resource and the attached
fragment resources of this wiring. There is no ordering defined between capabilities in different
namespaces.

Since 1.1

10.4.7.8 public List<BundleWire> getProvidedWires(String namespace)

namespace The namespace of the capabilities for which to return wires or nul l to return the wires for the capa-
bilities in all namespaces.

□ Returns the BundleWires to the provided capabilities of this bundle wiring.

Returns A list containing a snapshot of the BundleWires for the capabilities of this bundle wiring, or an
empty list if this bundle wiring has no capabilities in the specified namespace. If this bundle wiring
is not in use, nul l will be returned. For a given namespace, the list contains the wires in the order the
capabilities were specified in the manifests of the bundle revision and the attached fragments of this
bundle wiring. There is no ordering defined between capabilities in different namespaces.

10.4.7.9 public List<Wire> getRequiredResourceWires(String namespace)

namespace The namespace of the requirements for which to return wires or nul l to return the wires for the re-
quirements in all namespaces.

□ Returns the Wires to the requirements in use by this wiring.

This method returns the same value as getRequiredWires(String).

Returns A list containing a snapshot of the Wires for the requirements of this wiring, or an empty list if this
wiring has no requirements in the specified namespace. For a given namespace, the list contains the
wires in the order the requirements were specified in the manifests of the resource and the attached
fragment resources of this wiring. There is no ordering defined between requirements in different
namespaces.

org.osgi.framework.wiring Framework API

Page 300 OSGi Core Release 7

Since 1.1

10.4.7.10 public List<BundleWire> getRequiredWires(String namespace)

namespace The namespace of the requirements for which to return wires or nul l to return the wires for the re-
quirements in all namespaces.

□ Returns the BundleWires to the requirements in use by this bundle wiring.

This method may return different results if this bundle wiring establishes additional wires to more
requirements. For example, dynamically importing a package will establish a new wire to the dy-
namically imported package.

Returns A list containing a snapshot of the BundleWires for the requirements of this bundle wiring, or an
empty list if this bundle wiring has no requirements in the specified namespace. If this bundle
wiring is not in use, nul l will be returned. For a given namespace, the list contains the wires in the
order the requirements were specified in the manifests of the bundle revision and the attached frag-
ments of this bundle wiring followed by dynamically established wires, if any, in the order they
were established. There is no ordering defined between requirements in different namespaces.

10.4.7.11 public List<BundleRequirement> getRequirements(String namespace)

namespace The namespace of the requirements to return or nul l to return the requirements from all name-
spaces.

□ Returns the requirements of this bundle wiring.

Only requirements considered by the resolver are returned. For example, requirements with effec-
tive directive not equal to resolve are not returned.

A bundle wiring for a non-fragment revision has a subset of the declared requirements from the
bundle revision and all attached fragment revisions. Not all declared requirements may be present
since some may be discarded. For example, if a package is declared to be both exported and import-
ed, only one is selected and the other is discarded.

Returns A list containing a snapshot of the BundleRequirements, or an empty list if this bundle wiring uses
no requirements in the specified namespace. If this bundle wiring is not in use, nul l will be returned.
For a given namespace, the list contains the requirements in the order the requirements were speci-
fied in the manifests of the bundle revision and the attached fragments of this bundle wiring. There
is no ordering defined between requirements in different namespaces.

10.4.7.12 public BundleRevision getResource()

□ Returns the resource associated with this wiring.

This method returns the same value as getRevision().

Returns The resource associated with this wiring.

Since 1.1

10.4.7.13 public List<Capability> getResourceCapabilities(String namespace)

namespace The namespace of the capabilities to return or nul l to return the capabilities from all namespaces.

□ Returns the capabilities provided by this wiring.

Only capabilities considered by the resolver are returned. For example, capabilities with effective di-
rective not equal to resolve are not returned.

A capability may not be required by any wiring and thus there may be no wires for the capability.

A wiring for a non-fragment resource provides a subset of the declared capabilities from the re-
source and all attached fragment resources†. Not all declared capabilities may be provided since

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 301

some may be discarded. For example, if a package is declared to be both exported and imported, only
one is selected and the other is discarded.

A wiring for a fragment resource with a symbolic name must provide exactly one osgi . identity capa-
bility.

† The osgi . identity capability provided by attached fragment resource must not be included in the
capabilities of the host wiring.

This method returns the same value as getCapabilities(String).

Returns A list containing a snapshot of the Capabilitys, or an empty list if this wiring provides no capabili-
ties in the specified namespace. For a given namespace, the list contains the capabilities in the order
the capabilities were specified in the manifests of the resource and the attached fragment resources†

of this wiring. There is no ordering defined between capabilities in different namespaces.

Since 1.1

10.4.7.14 public List<Requirement> getResourceRequirements(String namespace)

namespace The namespace of the requirements to return or nul l to return the requirements from all name-
spaces.

□ Returns the requirements of this wiring.

Only requirements considered by the resolver are returned. For example, requirements with effec-
tive directive not equal to resolve are not returned.

A wiring for a non-fragment resource has a subset of the declared requirements from the resource
and all attached fragment resources. Not all declared requirements may be present since some may
be discarded. For example, if a package is declared to be optionally imported and is not actually im-
ported, the requirement must be discarded.

This method returns the same value as getRequirements(String).

Returns A list containing a snapshot of the Requirements, or an empty list if this wiring uses no require-
ments in the specified namespace. For a given namespace, the list contains the requirements in the
order the requirements were specified in the manifests of the resource and the attached fragment re-
sources of this wiring. There is no ordering defined between requirements in different namespaces.

Since 1.1

10.4.7.15 public BundleRevision getRevision()

□ Returns the bundle revision for the bundle in this bundle wiring. Since a bundle update can change
the entries in a bundle, different bundle wirings for the same bundle can have different bundle revi-
sions.

The bundle object referenced by the returned BundleRevis ion may return different information than
the returned BundleRevis ion since the returned BundleRevis ion may refer to an older revision of the
bundle.

Returns The bundle revision for this bundle wiring.

See Also BundleRevision.getWiring()

10.4.7.16 public boolean isCurrent()

□ Returns true if this bundle wiring is the current bundle wiring. The bundle wiring for a bundle is
the current bundle wiring if it is the most recent bundle wiring for the current bundle revision. All
bundles with non-current, in use bundle wirings are considered removal pending.

Returns true if this bundle wiring is the current bundle wiring; fa lse otherwise.

org.osgi.framework.wiring Framework API

Page 302 OSGi Core Release 7

10.4.7.17 public boolean isInUse()

□ Returns true if this bundle wiring is in use. A bundle wiring is in use if it is the current wiring or if
some other in use bundle wiring is dependent upon it. Once a bundle wiring is no longer in use, it is
considered stale and is discarded by the framework.

Returns true if this bundle wiring is in use; fa lse otherwise.

10.4.7.18 public Collection<String> listResources(String path, String filePattern, int options)

path The path name in which to look. The path is always relative to the root of this bundle wiring's class
loader and may begin with "/". A path value of "/" indicates the root of this bundle wiring's class
loader.

filePattern The file name pattern for selecting resource names in the specified path. The pattern is only
matched against the last element of the resource path. If the resource is a directory then the trailing
"/" is not used for pattern matching. Substring matching is supported, as specified in the Filter spec-
ification, using the wildcard character ("*"). If nul l is specified, this is equivalent to "*" and matches
all files.

options The options for listing resource names. See LISTRESOURCES_LOCAL and
LISTRESOURCES_RECURSE. This method must ignore unrecognized options.

□ Returns the names of resources visible to this bundle wiring's class loader. The returned names can
be used to access the resources via this bundle wiring's class loader.

• Only the resource names for resources in bundle wirings will be returned. The names of re-
sources visible to a bundle wiring's parent class loader, such as the bootstrap class loader, must
not be included in the result.

• Only established wires will be examined for resources. This method must not cause new wires
for dynamic imports to be established.

Returns An unmodifiable collection of resource names for each matching resource, or an empty collection if
no matching resource could be found, if this bundle wiring is for a fragment revision or if the caller
does not have the appropriate AdminPermission[bundle,RESOURCE] and the Java Runtime Envi-
ronment supports permissions. The collection is unordered and must contain no duplicate resource
names. If this bundle wiring is not in use, nul l must be returned.

10.4.8 public interface FrameworkWiring
extends BundleReference
Query and modify wiring information for the framework. The framework wiring object for the
framework can be obtained by calling bundle.adapt(FrameworkWiring.class) on the system bundle.
Only the system bundle can be adapted to a FrameworkWiring object.

The system bundle associated with this FrameworkWiring object can be obtained by calling
BundleReference.getBundle().

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.4.8.1 public Collection<BundleCapability> findProviders(Requirement requirement)

requirement The requirement to find matching bundle capabilities. Must not be nul l .

□ Find bundle capabilities that match the given requirement.

The returned collection contains BundleCapability objects where the revision must be the declaring
revision of the capability and the revision must either be the current bundle revision or an in use
bundle revision.

Framework API org.osgi.framework.wiring

OSGi Core Release 7 Page 303

Each returned capability must match the given requirement. This means that the filter in the re-
quirement must match as well as any namespace specific directives. For example, the mandatory at-
tributes for the osgi.wiring.package namespace.

The returned collection has not been filtered to remove capabilities that are non-effective, substi-
tuted or for which the providing bundle does not have permission to provide. No resolve hooks are
called to filter matching capabilities.

Returns A collection of BundleCapability objects that match the specified requirement.

Since 1.2

10.4.8.2 public Collection<Bundle> getDependencyClosure(Collection<Bundle> bundles)

bundles The initial bundles for which to generate the dependency closure.

□ Returns the dependency closure for the specified bundles.

A graph of bundles is computed starting with the specified bundles. The graph is expanded by
adding any bundle that is either wired to a package that is currently exported by a bundle in the
graph or requires a bundle in the graph. The graph is fully constructed when there is no bundle out-
side the graph that is wired to a bundle in the graph. The graph may contain UNINSTALLED bundles
that are removal pending.

Returns A collection containing a snapshot of the dependency closure of the specified bundles, or an empty
collection if there were no specified bundles.

Throws I l legalArgumentException– If the specified Bundles were not created by the same framework in-
stance associated with this FrameworkWiring.

10.4.8.3 public Collection<Bundle> getRemovalPendingBundles()

□ Returns the bundles that have non-current, in use bundle wirings. This is typically the bundles
which have been updated or uninstalled since the last call to refreshBundles(Collection, Frame-
workListener...).

Returns A collection containing a snapshot of the Bundles which have non-current, in use BundleWir ings, or
an empty collection if there are no such bundles.

10.4.8.4 public void refreshBundles(Collection<Bundle> bundles, FrameworkListener... listeners)

bundles The bundles to be refreshed, or nul l to refresh the removal pending bundles.

listeners Zero or more listeners to be notified when the bundle refresh has been completed. The specified lis-
teners do not need to be otherwise registered with the framework. If a specified listener is already
registered with the framework, it will be notified twice.

□ Refreshes the specified bundles. This forces the update (replacement) or removal of packages export-
ed by the specified bundles.

The technique by which the framework refreshes bundles may vary among different framework im-
plementations. A permissible implementation is to stop and restart the framework.

This method returns to the caller immediately and then performs the following steps on a separate
thread:

1. Compute the dependency closure of the specified bundles. If no bundles are specified, compute
the dependency closure of the removal pending bundles.

2. Each bundle in the dependency closure that is in the ACTIVE state will be stopped as described in
the Bundle.stop method.

3. Each bundle in the dependency closure that is in the RESOLVED state is unresolved and thus
moved to the INSTALLED state. The effect of this step is that bundles in the dependency closure
are no longer RESOLVED .

org.osgi.framework.startlevel Framework API

Page 304 OSGi Core Release 7

4. Each bundle in the dependency closure that is in the UNINSTALLED state is removed from the
dependency closure and is now completely removed from the Framework.

5. Each bundle in the dependency closure that was in the ACTIVE state prior to Step 2 is started as
described in the Bundle.start method, causing all bundles required for the restart to be resolved.
It is possible that, as a result of the previous steps, packages that were previously exported no
longer are. Therefore, some bundles may be unresolvable until bundles satisfying the dependen-
cies have been installed in the Framework.

For any exceptions that are thrown during any of these steps, a framework event of type
FrameworkEvent.ERROR is fired containing the exception. The source bundle for these events
should be the specific bundle to which the exception is related. If no specific bundle can be associat-
ed with the exception then the System Bundle must be used as the source bundle for the event. All
framework events fired by this method are also delivered to the specified FrameworkListeners in the
order they are specified.

When this process completes after the bundles are refreshed, the Framework will fire a
Framework event of type FrameworkEvent.PACKAGES_REFRESHED to announce it has com-
pleted the bundle refresh. The specified FrameworkListeners are notified in the order spec-
ified. Each specified FrameworkListener will be called with a Framework event of type
FrameworkEvent.PACKAGES_REFRESHED .

Throws I l legalArgumentException– If the specified Bundles were not created by the same framework in-
stance associated with this FrameworkWiring.

SecurityException– If the caller does not have AdminPermission[System Bundle,RESOLVE] and the
Java runtime environment supports permissions.

10.4.8.5 public boolean resolveBundles(Collection<Bundle> bundles)

bundles The bundles to resolve or nul l to resolve all unresolved bundles installed in the Framework.

□ Resolves the specified bundles. The Framework must attempt to resolve the specified bundles that
are unresolved. Additional bundles that are not included in the specified bundles may be resolved
as a result of calling this method. A permissible implementation of this method is to attempt to re-
solve all unresolved bundles installed in the framework.

If no bundles are specified, then the Framework will attempt to resolve all unresolved bundles. This
method must not cause any bundle to be refreshed, stopped, or started. This method will not return
until the operation has completed.

Returns true if all specified bundles are resolved; fa lse otherwise.

Throws I l legalArgumentException– If the specified Bundles were not created by the same framework in-
stance associated with this FrameworkWiring.

SecurityException– If the caller does not have AdminPermission[System Bundle,RESOLVE] and the
Java runtime environment supports permissions.

10.5 org.osgi.framework.startlevel

Framework Start Level Package Version 1.0.

The Framework Start Level package allows management agents to manage a start level assigned to
each bundle and the active start level of the Framework. This package is a replacement for the now
deprecated org.osgi .service.start level package.

A start level is defined to be a state of execution in which the Framework exists. Start level values
are defined as unsigned integers with 0 (zero) being the state where the Framework is not launched.

Framework API org.osgi.framework.startlevel

OSGi Core Release 7 Page 305

Progressively higher integral values represent progressively higher start levels. For example, 2 is a
higher start level than 1.

AdminPermission is required to modify start level information.

Start Level support in the Framework includes the ability to modify the active start level of the
Framework and to assign a specific start level to a bundle. The beginning start level of a Framework
is specified via the org.osgi.framework.Constants.FRAMEWORK_BEGINNING_STARTLEVEL frame-
work property when configuring a framework.

When the Framework is first started it must be at start level zero. In this state, no bundles are
running. This is the initial state of the Framework before it is launched. When the Framework is
launched, the Framework will enter start level one and all bundles which are assigned to start lev-
el one and whose autostart setting indicates the bundle should be started are started as described in
the org.osgi.framework.Bundle.start(int) method. The Framework will continue to increase the start
level, starting bundles at each start level, until the Framework has reached a beginning start level. At
this point the Framework has completed starting bundles and will then fire a Framework event of
type org.osgi.framework.FrameworkEvent.STARTED to announce it has completed its launch.

Within a start level, bundles may be started in an order defined by the Framework implementation.
This may be something like ascending org.osgi.framework.Bundle.getBundleId() order or an order
based upon dependencies between bundles. A similar but reversed order may be used when stop-
ping bundles within a start level.

The Framework Start Level package can be used by management bundles to alter the active start lev-
el of the framework.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. For example:

 Import-Package: org.osgi.framework.startlevel; version="[1.0,2.0)"

10.5.1 Summary

• BundleStartLevel - Query and modify the start level information for a bundle.
• FrameworkStartLevel - Query and modify the start level information for the framework.

10.5.2 public interface BundleStartLevel
extends BundleReference
Query and modify the start level information for a bundle. The start level object for a bundle can be
obtained by calling bundle.adapt(BundleStartLevel.class) on the bundle.

The bundle associated with this BundleStartLevel object can be obtained by calling
BundleReference.getBundle().

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.5.2.1 public int getStartLevel()

□ Return the assigned start level value for the bundle.

Returns The start level value of the bundle.

Throws I l legalStateException– If the bundle has been uninstalled.

See Also setStartLevel(int)

10.5.2.2 public boolean isActivationPolicyUsed()

□ Returns whether the bundle's autostart setting indicates that the activation policy declared in the
bundle manifest must be used.

org.osgi.framework.startlevel Framework API

Page 306 OSGi Core Release 7

The autostart setting of a bundle indicates whether the bundle's declared activation policy is to be
used when the bundle is started.

Returns true if the bundle's autostart setting indicates the activation policy declared in the manifest must be
used. fa lse if the bundle must be eagerly activated.

Throws I l legalStateException– If the bundle has been uninstalled.

See Also Bundle.START_ACTIVATION_POLICY

10.5.2.3 public boolean isPersistentlyStarted()

□ Returns whether the bundle's autostart setting indicates it must be started.

The autostart setting of a bundle indicates whether the bundle is to be started when its start level is
reached.

Returns true if the autostart setting of the bundle indicates it is to be started. fa lse otherwise.

Throws I l legalStateException– If this bundle has been uninstalled.

See Also Bundle.START_TRANSIENT

10.5.2.4 public void setStartLevel(int startlevel)

startlevel The new start level for the bundle.

□ Assign a start level value to the bundle.

The bundle will be assigned the specified start level. The start level value assigned to the bundle will
be persistently recorded by the Framework.

If the new start level for the bundle is lower than or equal to the active start level of the Frame-
work and the bundle's autostart setting indicates this bundle must be started, the Framework will
start the bundle as described in the Bundle.start(int) method using the Bundle.START_TRANSIENT
option. The Bundle.START_ACTIVATION_POLICY option must also be used if isActivationPoli-
cyUsed() returns true . The actual starting of the bundle must occur asynchronously.

If the new start level for the bundle is higher than the active start level of the Framework,
the Framework will stop the bundle as described in the Bundle.stop(int) method using the
Bundle.STOP_TRANSIENT option. The actual stopping of the bundle must occur asynchronously.

Throws I l legalArgumentException– If the specified start level is less than or equal to zero, or if the bundle is
the system bundle.

I l legalStateException– If the bundle has been uninstalled.

SecurityException– If the caller does not have AdminPermission[bundle,EXECUTE] and the Java
runtime environment supports permissions.

10.5.3 public interface FrameworkStartLevel
extends BundleReference
Query and modify the start level information for the framework. The start level object for the frame-
work can be obtained by calling bundle.adapt(FrameworkStartLevel.class) on the system bundle.
Only the system bundle can be adapted to a FrameworkStartLevel object.

The system bundle associated with this FrameworkStartLevel object can be obtained by calling
BundleReference.getBundle().

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

10.5.3.1 public int getInitialBundleStartLevel()

□ Return the initial start level value that is assigned to a Bundle when it is first installed.

Framework API org.osgi.framework.startlevel

OSGi Core Release 7 Page 307

Returns The initial start level value for Bundles.

See Also setInitialBundleStartLevel(int)

10.5.3.2 public int getStartLevel()

□ Return the active start level value of the Framework. If the Framework is in the process of changing
the start level this method must return the active start level if this differs from the requested start
level.

Returns The active start level value of the Framework.

10.5.3.3 public void setInitialBundleStartLevel(int startlevel)

startlevel The initial start level for newly installed bundles.

□ Set the initial start level value that is assigned to a Bundle when it is first installed.

The initial bundle start level will be set to the specified start level. The initial bundle start level val-
ue will be persistently recorded by the Framework.

When a Bundle is installed via BundleContext. instal lBundle , it is assigned the initial bundle start
level value.

The default initial bundle start level value is 1 unless this method has been called to assign a differ-
ent initial bundle start level value.

This method does not change the start level values of installed bundles.

Throws I l legalArgumentException– If the specified start level is less than or equal to zero.

SecurityException– If the caller does not have AdminPermission[System Bundle,STARTLEVEL] and
the Java runtime environment supports permissions.

10.5.3.4 public void setStartLevel(int startlevel, FrameworkListener... listeners)

startlevel The requested start level for the Framework.

listeners Zero or more listeners to be notified when the start level change has been completed. The specified
listeners do not need to be otherwise registered with the framework. If a specified listener is already
registered with the framework, it will be notified twice.

□ Modify the active start level of the Framework and notify when complete.

The Framework will move to the requested start level. This method will return immediately to the
caller and the start level change will occur asynchronously on another thread. The specified Frame-
workListener s are notified, in the order specified, when the start level change is complete. When
the start level change completes normally, each specified FrameworkListener will be called with a
Framework event of type FrameworkEvent.STARTLEVEL_CHANGED . If the start level change does
not complete normally, each specified FrameworkListener will be called with a Framework event of
type FrameworkEvent.ERROR .

If the specified start level is higher than the active start level, the Framework will continue to in-
crease the start level until the Framework has reached the specified start level. At each intermediate
start level value on the way to and including the target start level, the Framework must:

1. Change the active start level to the intermediate start level value.
2. Start bundles at the intermediate start level whose autostart setting indicate they must

be started. They are started as described in the Bundle.start(int) method using the
Bundle.START_TRANSIENT option. The Bundle.START_ACTIVATION_POLICY option must al-
so be used if BundleStartLevel.isActivationPolicyUsed() returns true for the bundle.

When this process completes after the specified start level is reached, the Framework will fire a
Framework event of type FrameworkEvent.STARTLEVEL_CHANGED to announce it has moved to the
specified start level.

org.osgi.framework.namespace Framework API

Page 308 OSGi Core Release 7

If the specified start level is lower than the active start level, the Framework will continue to de-
crease the start level until the Framework has reached the specified start level. At each intermediate
start level value on the way to and including the specified start level, the framework must:

1. Stop bundles at the intermediate start level as described in the Bundle.stop(int) method using
the Bundle.STOP_TRANSIENT option.

2. Change the active start level to the intermediate start level value.

When this process completes after the specified start level is reached, the Framework will fire a
Framework event of type FrameworkEvent.STARTLEVEL_CHANGED to announce it has moved to the
specified start level.

If the specified start level is equal to the active start level, then no bundles are
started or stopped, however, the Framework must fire a Framework event of type
FrameworkEvent.STARTLEVEL_CHANGED to announce it has finished moving to the specified start
level. This event may arrive before this method returns.

Throws I l legalArgumentException– If the specified start level is less than or equal to zero.

SecurityException– If the caller does not have AdminPermission[System Bundle,STARTLEVEL] and
the Java runtime environment supports permissions.

10.6 org.osgi.framework.namespace

Namespace Package Version 1.1.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

10.6.1 Summary

• AbstractWir ingNamespace - Wiring Capability and Requirement Namespaces base class.
• BundleNamespace - Bundle Capability and Requirement Namespace.
• ExecutionEnvironmentNamespace - Execution Environment Capability and Requirement

Namespace.
• HostNamespace - Host Capability and Requirement Namespace.
• IdentityNamespace - Identity Capability and Requirement Namespace.
• NativeNamespace - Native Capability and Requirement Namespace.
• PackageNamespace - Package Capability and Requirement Namespace.

10.6.2 public abstract class AbstractWiringNamespace
extends Namespace
Wiring Capability and Requirement Namespaces base class.

This class is the common class shared by all OSGi defined wiring namespaces. It defines the names
for the common attributes and directives for the OSGi specified wiring namespaces.

The values associated with these keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

Provider Type Consumers of this API must not implement this type

10.6.2.1 public static final String CAPABILITY_BUNDLE_VERSION_ATTRIBUTE = "bundle-version"

The capability attribute contains the Version of the resource providing the capability if one is speci-
fied or 0.0.0 if not specified. The value of this attribute must be of type Version .

Framework API org.osgi.framework.namespace

OSGi Core Release 7 Page 309

10.6.2.2 public static final String CAPABILITY_MANDATORY_DIRECTIVE = "mandatory"

The capability directive used to specify the comma separated list of mandatory attributes which
must be specified in the filter of a requirement in order for the capability to match the requirement.

10.6.3 public final class BundleNamespace
extends AbstractWiringNamespace
Bundle Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Unless otherwise noted, all directives specified on the Bundle-Symbol icName header are visible in
the capability and all directives specified on the Require-Bundle header are visible in the require-
ment.

• The uses directive must be ignored. A uses directive specified on the Bundle-Symbol icName
header must be ignored. A uses directive must not be present in the capability.

• The effective directives must be ignored. This namespace is only effective at resolve time. An ef-
fect ive directive specified on the Bundle-Symbol icName or Require-Bundle headers must be ig-
nored. An effect ive directive must not be present in a capability or requirement.

• The cardinality directive must be ignored. A cardinal ity directive specified on the Require-Bun-
dle header must be ignored. A cardinal ity directive must not be present in a requirement.

A non-fragment resource with the osgi.bundle type identity provides exactly one† bundle capability
(that is, the bundle can be required by another bundle). A fragment resource with the osgi.fragment
type identity must not declare a bundle capability. A resource requires zero or more bundle require-
ments (that is, required bundles).

† A resource with no symbolic name must not provide a bundle capability.

Concurrency Immutable

10.6.3.1 public static final String BUNDLE_NAMESPACE = "osgi.wiring.bundle"

Namespace name for bundle capabilities and requirements.

Also, the capability attribute used to specify the symbolic name of the bundle.

10.6.3.2 public static final String CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE = "fragment-attachment"

The capability directive identifying if and when a fragment may attach to a host bundle.

This directive should be examined using the host namespace.

See Also HostNamespace.CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE

10.6.3.3 public static final String CAPABILITY_SINGLETON_DIRECTIVE = "singleton"

The capability directive identifying if the resource is a singleton. A Str ing value of "true" indicates
the resource is a singleton; any other value or nul l indicates the resource is not a singleton.

This directive should be examined using the identity namespace.

See Also IdentityNamespace.CAPABILITY_SINGLETON_DIRECTIVE

10.6.3.4 public static final String REQUIREMENT_EXTENSION_DIRECTIVE = "extension"

The requirement directive used to specify the type of the extension fragment.

This directive should be examined using the host namespace.

org.osgi.framework.namespace Framework API

Page 310 OSGi Core Release 7

See Also HostNamespace.REQUIREMENT_EXTENSION_DIRECTIVE

10.6.3.5 public static final String REQUIREMENT_VISIBILITY_DIRECTIVE = "visibility"

The requirement directive used to specify the visibility type for a requirement. The default value is
private.

See Also private, reexport

10.6.3.6 public static final String VISIBILITY_PRIVATE = "private"

The directive value identifying a private visibility type. A private visibility type indicates that any
packages that are exported by the required bundle are not made visible on the export signature of
the requiring bundle. .

See Also REQUIREMENT_VISIBILITY_DIRECTIVE

10.6.3.7 public static final String VISIBILITY_REEXPORT = "reexport"

The directive value identifying a reexport visibility type. A reexport visibility type indicates any
packages that are exported by the required bundle are re-exported by the requiring bundle.

See Also REQUIREMENT_VISIBILITY_DIRECTIVE

10.6.4 public final class ExecutionEnvironmentNamespace
extends Namespace
Execution Environment Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

10.6.4.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the versions of the execution environment. The value of this at-
tribute must be of type List<Version> .

10.6.4.2 public static final String EXECUTION_ENVIRONMENT_NAMESPACE = "osgi.ee"

Namespace name for execution environment capabilities and requirements.

Also, the capability attribute used to specify the name of the execution environment.

10.6.5 public final class HostNamespace
extends AbstractWiringNamespace
Host Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Unless otherwise noted, all directives specified on the Bundle-Symbol icName header are visible in
the capability and all directives specified on the Fragment-Host header are visible in the require-
ment.

• The uses directive must be ignored. A uses directive specified on the Bundle-Symbol icName
header must be ignored. A uses directive must not be present in the capability.

Framework API org.osgi.framework.namespace

OSGi Core Release 7 Page 311

• The effective directives must be ignored. This namespace is only effective at resolve time. An ef-
fect ive directive specified on the Bundle-Symbol icName or Fragment-Host headers must be ig-
nored. An effect ive directive must not be present in a capability or requirement.

• The cardinality directive has limited applicability to this namespace. A cardinal ity directive spec-
ified on the Fragment-Host header must be ignored. All requirements must have the cardinal ity
directive set to multiple.

A non-fragment resource with the with the osgi.bundle type identity provides zero or one† host ca-
pabilities. A fragment resource with the osgi.fragment type identity must not declare a host capabil-
ity and must declare exactly one host requirement.

† A resource with no bundle symbolic name must not provide a host capability.

Concurrency Immutable

10.6.5.1 public static final String CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE = "fragment-attachment"

The capability directive identifying if and when a fragment may attach to a host bundle. The default
value is always.

See Also FRAGMENT_ATTACHMENT_ALWAYS, FRAGMENT_ATTACHMENT_RESOLVETIME,
FRAGMENT_ATTACHMENT_NEVER

10.6.5.2 public static final String CAPABILITY_SINGLETON_DIRECTIVE = "singleton"

The capability directive identifying if the resource is a singleton. A Str ing value of "true" indicates
the resource is a singleton; any other value or nul l indicates the resource is not a singleton.

This directive should be examined using the identity namespace.

See Also IdentityNamespace.CAPABILITY_SINGLETON_DIRECTIVE

10.6.5.3 public static final String EXTENSION_BOOTCLASSPATH = "bootclasspath"

The directive value indicating that the extension fragment is to be loaded by the boot class loader.

See Also REQUIREMENT_EXTENSION_DIRECTIVE

10.6.5.4 public static final String EXTENSION_FRAMEWORK = "framework"

The directive value indicating that the extension fragment is to be loaded by the framework's class
loader.

See Also REQUIREMENT_EXTENSION_DIRECTIVE

10.6.5.5 public static final String FRAGMENT_ATTACHMENT_ALWAYS = "always"

The directive value indicating that fragments are allowed to attach to the host bundle at any time
(while the host is resolved or during the process of resolving the host bundle).

See Also CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE

10.6.5.6 public static final String FRAGMENT_ATTACHMENT_NEVER = "never"

The directive value indicating that no fragments are allowed to attach to the host bundle at any
time.

See Also CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE

10.6.5.7 public static final String FRAGMENT_ATTACHMENT_RESOLVETIME = "resolve-time"

The directive value indicating that fragments are allowed to attach to the host bundle only during
the process of resolving the host bundle.

See Also CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE

org.osgi.framework.namespace Framework API

Page 312 OSGi Core Release 7

10.6.5.8 public static final String HOST_NAMESPACE = "osgi.wiring.host"

Namespace name for host capabilities and requirements.

Also, the capability attribute used to specify the symbolic name of the host.

10.6.5.9 public static final String REQUIREMENT_EXTENSION_DIRECTIVE = "extension"

The requirement directive used to specify the type of the extension fragment. The default value is
framework.

See Also EXTENSION_FRAMEWORK, EXTENSION_BOOTCLASSPATH

10.6.5.10 public static final String REQUIREMENT_VISIBILITY_DIRECTIVE = "visibility"

The requirement directive used to specify the visibility type for a requirement.

This directive should be examined using the bundle namespace.

See Also BundleNamespace.REQUIREMENT_VISIBILITY_DIRECTIVE

10.6.6 public final class IdentityNamespace
extends Namespace
Identity Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Each resource provides exactly one† identity capability that can be used to identify the resource.

The bundle wiring for the bundle revision provides exactly one† identity capability.

† A resource with no symbolic name must not provide an identity capability.

Concurrency Immutable

10.6.6.1 public static final String CAPABILITY_COPYRIGHT_ATTRIBUTE = "copyright"

The capability attribute that contains a human readable copyright notice for the resource. See the
Bundle-Copyright manifest header.

10.6.6.2 public static final String CAPABILITY_DESCRIPTION_ATTRIBUTE = "description"

The capability attribute that contains a human readable description for the resource. See the Bun-
dle-Descr ipt ion manifest header.

10.6.6.3 public static final String CAPABILITY_DOCUMENTATION_ATTRIBUTE = "documentation"

The capability attribute that contains the URL to documentation for the resource. See the Bun-
dle-DocURL manifest header.

10.6.6.4 public static final String CAPABILITY_LICENSE_ATTRIBUTE = "license"

The capability attribute that contains the URL to the license for the resource. See the name portion
of the Bundle-License manifest header.

10.6.6.5 public static final String CAPABILITY_SINGLETON_DIRECTIVE = "singleton"

The capability directive identifying if the resource is a singleton. A Str ing value of "true" indicates
the resource is a singleton; any other value or nul l indicates the resource is not a singleton.

10.6.6.6 public static final String CAPABILITY_TYPE_ATTRIBUTE = "type"

The capability attribute identifying the resource type. If the resource has no type then the value un-
known must be used for the attribute.

Framework API org.osgi.framework.namespace

OSGi Core Release 7 Page 313

See Also TYPE_BUNDLE, TYPE_FRAGMENT, TYPE_UNKNOWN

10.6.6.7 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute identifying the Version of the resource if one is specified or 0.0.0 if not spec-
ified. The value of this attribute must be of type Version .

10.6.6.8 public static final String CLASSIFIER_JAVADOC = "javadoc"

The attribute value identifying the resource classifier as an archive containing the javadoc in the
same directory layout as the resource.

See Also REQUIREMENT_CLASSIFIER_DIRECTIVE

10.6.6.9 public static final String CLASSIFIER_SOURCES = "sources"

The attribute value identifying the resource classifier as an archive containing the source code in
the same directory layout as the resource.

See Also REQUIREMENT_CLASSIFIER_DIRECTIVE

10.6.6.10 public static final String IDENTITY_NAMESPACE = "osgi.identity"

Namespace name for identity capabilities and requirements.

Also, the capability attribute used to specify the symbolic name of the resource.

10.6.6.11 public static final String REQUIREMENT_CLASSIFIER_DIRECTIVE = "classifier"

The requirement directive that classifies the relationship with another resource.

See Also CLASSIFIER_SOURCES, CLASSIFIER_JAVADOC

10.6.6.12 public static final String TYPE_BUNDLE = "osgi.bundle"

The attribute value identifying the resource type as an OSGi bundle.

See Also CAPABILITY_TYPE_ATTRIBUTE

10.6.6.13 public static final String TYPE_FRAGMENT = "osgi.fragment"

The attribute value identifying the resource type as an OSGi fragment.

See Also CAPABILITY_TYPE_ATTRIBUTE

10.6.6.14 public static final String TYPE_UNKNOWN = "unknown"

The attribute value identifying the resource type as unknown.

See Also CAPABILITY_TYPE_ATTRIBUTE

10.6.7 public final class NativeNamespace
extends Namespace
Native Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Since 1.1

Concurrency Immutable

org.osgi.framework.namespace Framework API

Page 314 OSGi Core Release 7

10.6.7.1 public static final String CAPABILITY_LANGUAGE_ATTRIBUTE = "osgi.native.language"

The capability attribute contains the org.osgi.framework.language launching property value. The
value of this attribute must be of type Str ing .

10.6.7.2 public static final String CAPABILITY_OSNAME_ATTRIBUTE = "osgi.native.osname"

The capability attribute contains alias values of the org.osgi.framework.os.name launching proper-
ty value according to the OSGi Specification References [https://www.osgi.org/developer/specifica-
tions/reference/]. The value of this attribute must be of type List<Str ing> .

10.6.7.3 public static final String CAPABILITY_OSVERSION_ATTRIBUTE = "osgi.native.osversion"

The capability attribute contains a Version parsed from the org.osgi.framework.os.version launching
property value. The value of this attribute must be of type Version .

10.6.7.4 public static final String CAPABILITY_PROCESSOR_ATTRIBUTE = "osgi.native.processor"

The capability attribute contains alias values of the org.osgi.framework.processor launching prop-
erty value according to the OSGi Specification References [https://www.osgi.org/developer/specifica-
tions/reference/]. The value of this attribute must be of type List<Str ing> .

10.6.7.5 public static final String NATIVE_NAMESPACE = "osgi.native"

Namespace name for native capabilities and requirements.

10.6.8 public final class PackageNamespace
extends AbstractWiringNamespace
Package Capability and Requirement Namespace.

A resource provides zero or more package capabilities (this is, exported packages) and requires zero
or more package requirements (that is, imported packages).

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Unless otherwise noted, all directives specified on the Export-Package header are visible in the capa-
bility and all directives specified on the Import-Package and DynamicImport-Package headers are
visible in the requirement.

• The effective directives must be ignored. This namespace is only effective at resolve time. An ef-
fect ive directive specified on the Export-Package , Import-Package or DynamicImport-Package
headers must be ignored. An effect ive directive must not be present in a capability or require-
ment.

• The cardinality directive has limited applicability to this namespace. A cardinal ity directive spec-
ified on the Import-Package or DynamicImport-Package headers must be ignored. Only require-
ments with resolution set to dynamic and the package name contains a wildcard must have the
cardinal ity directive set to multiple. Otherwise, a cardinal ity directive must not be present in a re-
quirement.

Concurrency Immutable

10.6.8.1 public static final String CAPABILITY_BUNDLE_SYMBOLICNAME_ATTRIBUTE = "bundle-symbolic-name"

The capability attribute contains the symbolic name of the resource providing the package.

10.6.8.2 public static final String CAPABILITY_EXCLUDE_DIRECTIVE = "exclude"

The capability directive used to specify the comma separated list of classes which must not be al-
lowed to be exported.

https://www.osgi.org/developer/specifications/reference/
https://www.osgi.org/developer/specifications/reference/
https://www.osgi.org/developer/specifications/reference/
https://www.osgi.org/developer/specifications/reference/
https://www.osgi.org/developer/specifications/reference/
https://www.osgi.org/developer/specifications/reference/

Framework API org.osgi.annotation.versioning

OSGi Core Release 7 Page 315

10.6.8.3 public static final String CAPABILITY_INCLUDE_DIRECTIVE = "include"

The capability directive used to specify the comma separated list of classes which must be allowed
to be exported.

10.6.8.4 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the package if one is specified or 0.0.0 if not speci-
fied. The value of this attribute must be of type Version .

10.6.8.5 public static final String PACKAGE_NAMESPACE = "osgi.wiring.package"

Namespace name for package capabilities and requirements.

Also, the capability attribute used to specify the name of the package.

10.6.8.6 public static final String RESOLUTION_DYNAMIC = "dynamic"

The directive value identifying a dynamic requirement resolution type. A dynamic resolution type
indicates that the requirement is resolved dynamically at runtime (such as a dynamically imported
package) and the resource will be resolved without the requirement being resolved.

See Also Namespace.REQUIREMENT_RESOLUTION_DIRECTIVE

10.7 org.osgi.annotation.versioning

OSGi Versioning Annotations Package Version 1.1.

This package is not used at runtime.

See Also Semantic Versioning [https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf]

10.7.1 Summary

• ConsumerType - A type implemented by, or extended by, the Consumer Role.
• ProviderType - A type implemented by, or extended by, the Provider Role.
• Version - Specify the version of a package.

10.7.2 @ConsumerType
A type implemented by, or extended by, the Consumer Role.

A non-binary-compatible change to a consumer type or a binary-compatible change to a consumer
type affecting an abstract method normally requires incrementing the major version of the type's
package. This change will require all providers and all consumers to be updated to handle the
change since consumers that implement or extend the consumer type and all providers must under-
stand the change in the consumer type.

A binary-compatible change to a consumer type not affecting an abstract method normally requires
incrementing the minor version of the type's package. This change will require all providers to be
updated to handle the change, but consumers will not require changes since no abstract methods re-
quiring implementation by the consumer are affected.

A type can be marked ConsumerType or ProviderType but not both. A type is assumed to be Con-
sumerType if it is not marked either ConsumerType or ProviderType.

A package can be marked ProviderType. In this case, all types in the package are considered to be a
provider type regardless of whether they are marked ConsumerType or ProviderType.

This annotation is not retained at runtime. It is for use by tools to understand the semantic version
of a package. When a bundle implements a consumer type from an imported package, then the

https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf

org.osgi.annotation.bundle Framework API

Page 316 OSGi Core Release 7

bundle's import range for that package must require the exact major version and a minor version
greater than or equal to the package's version.

See Also Semantic Versioning [https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf]

Retention CLASS

Target TYPE

10.7.3 @ProviderType
A type implemented by, or extended by, the Provider Role.

A non-binary-compatible change to a provider type normally requires incrementing the major ver-
sion of the type's package. This change will require all providers and all consumers to be updated
to handle the change. However, a non-binary-compatible change affecting a protected access mem-
ber only requires incrementing the minor version of the type's package. This change will require all
providers to be updated to handle the change, but consumers will not require changes since they on-
ly use, and do not extend, the provider type and thus could not access protected access members of
the provider type.

A binary-compatible change to a provider type normally requires incrementing the minor version
of the type's package. This change will require all providers to be updated to handle the change,
but consumers will not require changes since they only use, and do not implement or extend, the
provider type.

A type can be marked ConsumerType or ProviderType but not both. A type is assumed to be Con-
sumerType if it is not marked either ConsumerType or ProviderType.

A package can be marked ProviderType. In this case, all types in the package are considered to be a
provider type regardless of whether they are marked ConsumerType or ProviderType.

This annotation is not retained at runtime. It is for use by tools to understand the semantic ver-
sion of a package. When a bundle implements a provider type from an imported package, then the
bundle's import range for that package must require the package's exact major and minor version.

See Also Semantic Versioning [https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf]

Retention CLASS

Target TYPE , PACKAGE

10.7.4 @Version
Specify the version of a package.

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests or oth-
erwise process the version of a package.

See Also Semantic Versioning [https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf]

Retention CLASS

Target PACKAGE

10.7.4.1 String value

□ The version of the annotated package.

The version must be a valid OSGi version string.

10.8 org.osgi.annotation.bundle

OSGi Bundle Annotations Package Version 1.0.

https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf

Framework API org.osgi.annotation.bundle

OSGi Core Release 7 Page 317

This package is not used at runtime.

10.8.1 Summary

• Attr ibute - Mark an annotation element as an attribute.
• Capabi l i t ies - Container annotation for repeated Capability annotations.
• Capabi l i ty - Define a capability for a bundle.
• Direct ive - Mark an annotation element as a directive.
• Export - Mark a package to be exported from its bundle.
• Export .Substitut ion - Substitution policy for this package.
• Header - Define a manifest header for a bundle.
• Headers - Container annotation for repeated Header annotations.
• Requirement - Define a requirement for a bundle.
• Requirement.Cardinal ity - Cardinality for this requirement.
• Requirement.Resolut ion - Resolution for this requirement.
• Requirements - Container annotation for repeated Requirement annotations.

10.8.2 @Attribute
Mark an annotation element as an attribute.

This is used when applying Capability or Requirement as a meta annotation to an annotation dec-
laration. The value of the annotation element annotated with Attr ibute is used as the value of an at-
tribute in the generated capability or requirement clause. For example:

 @Capability(namespace = "my.namespace")
 public @interface MyCapability {
 @Attribute("attr")
 String value() default "";
 }

 @MyCapability("foo")
 public MyClass {}

The use of the MyCapabi l i ty annotation, which is meta annotated with the Capabi l i ty and Attr ibute
annotations, will result in a capability in the namespace my.namespace with the attribute attr=foo .

If the element annotated with Attr ibute is unspecified when applied, then the attribute must not be
generated in the generated capability or requirement clause. For example:

 @MyCapability
 public MyClass {}

will not have the attr attribute in the generated capability.

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests.

Retention CLASS

Target METHOD

10.8.2.1 String value default ""

□ The name of the attribute.

If not specified, the name of the annotated element is used as the name of the attribute.

10.8.3 @Capabilities
Container annotation for repeated Capability annotations.

org.osgi.annotation.bundle Framework API

Page 318 OSGi Core Release 7

Retention CLASS

Target TYPE , PACKAGE

10.8.3.1 Capability[] value

□ Repeated Capability annotations.

10.8.4 @Capability
Define a capability for a bundle.

For example:

 @Capability(namespace=ExtenderNamespace.EXTENDER_NAMESPACE,
 name="osgi.component", version="1.3.0")

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests or oth-
erwise process the type or package.

This annotation can be used to annotate an annotation. If the meta-annotated annotation declares
an element of the same name as an element in this annotation, the element is considered to override
the element in this annotation.

Retention CLASS

Target TYPE , PACKAGE

10.8.4.1 String namespace

□ The namespace of this capability.

10.8.4.2 String name default ""

□ The name of this capability within the namespace.

If specified, adds an attribute with the name of the namespace and the value of the specified name
to the capability clause.

10.8.4.3 String version default ""

□ The version of this capability.

If specified, adds an attribute with the name and type of version:Version and the value of the speci-
fied version to the capability clause.

The specified version must be a valid OSGi version string.

10.8.4.4 Class<?>[] uses default {}

□ A list of classes whose packages are inspected to calculate the uses directive for this capability.

If not specified, the uses directive is omitted from the capability clause.

10.8.4.5 String effective default "resolve"

□ The effective time of this capability.

Specifies the time the capability is available. The OSGi framework resolver only considers capabili-
ties without an effective directive or effective:=resolve. Capabilities with other values for the effec-
tive directive can be considered by an external agent.

If not specified, the effect ive directive is omitted from the capability clause.

10.8.4.6 String[] attribute default {}

□ A list of attribute or directive names and values.

Framework API org.osgi.annotation.bundle

OSGi Core Release 7 Page 319

Each string should be specified in the form:

• "name=value" for attributes.
• "name:type=value" for typed attributes.
• "name:=value" for directives.

These are added, separated by semicolons, to the export package clause.

10.8.5 @Directive
Mark an annotation element as a directive.

This is used when applying Capability or Requirement as a meta annotation to an annotation decla-
ration. The value of the annotation element annotated with Direct ive is used as the value of a direc-
tive in the generated capability or requirement clause. For example:

 @Capability(namespace = "my.namespace")
 public @interface MyCapability {
 @Directive("resource")
 String value() default "";
 }

 @MyCapability("foo")
 public MyClass {}

The use of the MyCapabi l i ty annotation, which is meta annotated with the Capabi l i ty and Direc-
t ive annotations, will result in a capability in the namespace my.namespace with the directive
resource:=foo .

If the element annotated with Direct ive is unspecified when applied, then the directive must not be
generated in the generated capability or requirement clause. For example:

 @MyCapability
 public MyClass {}

will not have the resource directive in the generated capability.

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests.

Retention CLASS

Target METHOD

10.8.5.1 String value default ""

□ The name of the directive.

If not specified, the name of the annotated element is used as the name of the directive.

10.8.6 @Export
Mark a package to be exported from its bundle.

The package must also be annotation with the Version annotation to specify the export version of
the package.

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests or oth-
erwise process the package.

Retention CLASS

Target PACKAGE

org.osgi.annotation.bundle Framework API

Page 320 OSGi Core Release 7

10.8.6.1 String[] uses default {}

□ A list of package names that are used by this package.

If the uses directive must be omitted from the export package clause for this package, the empty val-
ue {} must be specified.

If not specified, the uses directive for the export package clause is calculated by inspection of the
classes in this package.

10.8.6.2 String[] attribute default {}

□ A list of attribute or directive names and values.

Each string should be specified in the form:

• "name=value" for attributes.
• "name:type=value" for typed attributes.
• "name:=value" for directives.

These are added, separated by semicolons, to the export package clause.

10.8.6.3 Export.Substitution substitution default CALCULATED

□ Specify the policy for substitutably importing this package.

Bundles that collaborate require the same class loader for types used in the collaboration. If multiple
bundles export packages with collaboration types then they will have to be placed in disjoint class
spaces, making collaboration impossible. Collaboration is significantly improved when bundles are
willing to import exported packages; these imports will allow a framework to substitute exports for
imports.

If not specified, the Substitution.CALCULATED substitution policy is used for this package.

10.8.7 enum Export.Substitution
Substitution policy for this package.

10.8.7.1 CONSUMER

Use a consumer type version range for the import package clause when substitutably importing a
package.

See Also ConsumerType

10.8.7.2 PROVIDER

Use a provider type version range for the import package clause when substitutably importing a
package.

See Also ProviderType

10.8.7.3 NOIMPORT

The package must not be substitutably imported.

10.8.7.4 CALCULATED

The policy value is calculated by inspection of the classes in the package.

10.8.8 @Header
Define a manifest header for a bundle.

For example:

Framework API org.osgi.annotation.bundle

OSGi Core Release 7 Page 321

 @Header(name=Constants.BUNDLE_CATEGORY, value="osgi")

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests.

Retention CLASS

Target TYPE , PACKAGE

10.8.8.1 String name

□ The name of this header.

10.8.8.2 String value

□ The value of this header.

10.8.9 @Headers
Container annotation for repeated Header annotations.

Retention CLASS

Target TYPE , PACKAGE

10.8.9.1 Header[] value

□ Repeated Header annotations.

10.8.10 @Requirement
Define a requirement for a bundle.

For example:

 @Requirement(namespace=ExtenderNamespace.EXTENDER_NAMESPACE,
 name="osgi.component", version="1.3.0")

This annotation is not retained at runtime. It is for use by tools to generate bundle manifests or oth-
erwise process the a package.

This annotation can be used to annotate an annotation. If the meta-annotated annotation declares
an element of the same name as an element in this annotation, the element is considered to override
the element in this annotation.

Retention CLASS

Target TYPE , PACKAGE

10.8.10.1 String namespace

□ The namespace of this requirement.

10.8.10.2 String name default ""

□ The name of this requirement within the namespace.

If specified, adds an expression, using the & operator with any specified filter(), to the requirement's
filter directive to test that an attribute with the name of the namespace is equal to the value of the
specified name.

10.8.10.3 String version default ""

□ The floor version of the version range for this requirement.

If specified, adds a version range expression, using the & operator with any specified filter(), to the
requirement's filter directive. The ceiling version of the version range is the next major version from

org.osgi.annotation.bundle Framework API

Page 322 OSGi Core Release 7

the floor version. For example, if the specified version is 1.3 , then the version range expression is
(&(version>=1.3)(!(vers ion>=2.0))) .

The specified version must be a valid OSGi version string.

10.8.10.4 String filter default ""

□ The filter expression of this requirement, if any.

10.8.10.5 String effective default "resolve"

□ The effective time of this requirement.

Specifies the time the requirement is available. The OSGi framework resolver only considers re-
quirement without an effective directive or effective:=resolve. Requirements with other values for
the effective directive can be considered by an external agent.

If not specified, the effect ive directive is omitted from the requirement clause.

10.8.10.6 String[] attribute default {}

□ A list of attribute or directive names and values.

Each string should be specified in the form:

• "name=value" for attributes.
• "name:type=value" for typed attributes.
• "name:=value" for directives.

These are added, separated by semicolons, to the export package clause.

10.8.10.7 Requirement.Cardinality cardinality default SINGLE

□ The cardinality of this requirement.

Indicates if this requirement can be wired a single time or multiple times.

If not specified, the cardinal ity directive is omitted from the requirement clause.

10.8.10.8 Requirement.Resolution resolution default MANDATORY

□ The resolution policy of this requirement.

A mandatory requirement forbids the bundle to resolve when this requirement is not satisfied; an
optional requirement allows a bundle to resolve even if this requirement is not satisfied.

If not specified, the resolut ion directive is omitted from the requirement clause.

10.8.11 enum Requirement.Cardinality
Cardinality for this requirement.

10.8.11.1 SINGLE

Indicates if the requirement can only be wired a single time.

10.8.11.2 MULTIPLE

Indicates if the requirement can be wired multiple times.

10.8.12 enum Requirement.Resolution
Resolution for this requirement.

10.8.12.1 MANDATORY

A mandatory requirement forbids the bundle to resolve when the requirement is not satisfied.

Framework API org.osgi.annotation.bundle

OSGi Core Release 7 Page 323

10.8.12.2 OPTIONAL

An optional requirement allows a bundle to resolve even if the requirement is not satisfied.

10.8.13 @Requirements
Container annotation for repeated Requirement annotations.

Retention CLASS

Target TYPE , PACKAGE

10.8.13.1 Requirement[] value

□ Repeated Requirement annotations.

org.osgi.annotation.bundle Framework API

Page 324 OSGi Core Release 7

Conditional Permission Admin Service Specification Version 1.1 Introduction

OSGi Core Release 7 Page 325

50 Conditional Permission Admin
Service Specification

Version 1.1

50.1 Introduction
The OSGi security model is based on the powerful and flexible Java security architecture, specifical-
ly the permission model. This specification adds several new features to the Java model to adapt it to
the typical use cases of OSGi deployments.

Key aspects of this security management API is the use of policies. Policies contain a set of permis-
sions that are applicable when the related conditions are met. A policy can both allow (the Java
model) as well as deny access when the permissions are implied. Deny permissions can significant-
ly simplify security management. The real time management of Conditional Permission Admin en-
ables management applications to control the permissions of other applications with immediate ef-
fect; no restart is required.

Policies are based on the very general concept of conditions. Conditions guard access to the policy's
permissions. If they are not satisfied, then the permissions are not applicable. Conditions can be
based on the bundle signer, the bundle location, as well as on user-defined conditions. The advan-
tage of this model is that groups of permissions can be shared based on signers or locations. Con-
ditions can also be used to enable or disable a group of permissions when an external condition is
true, for example, an inserted SIM card, an online connection to the management system is estab-
lished, a specific roaming area, or a user has approved a permission after prompting. This model al-
lows an operator to create and enforce a dynamic security policies for its devices.

This specification defines a Conditional Permission Admin that supersedes the Permission Admin
(albeit its relation to Permission Admin is well-defined in this specification).

50.1.1 Essentials

• Policies - Provide a security policy system where conditions control the actual permissions that
bundles have at a certain moment in time to be allowed or denied access.

• Java Security - Provide full compatibility with the existing Java security model, existing applica-
tions must not require modifications.

• Delegation - Support a management delegation model where an Operator can delegate part of the
management of a device to another party in a secure way.

• Digital Signatures - Support the use of digital signatures in a bundle's policy decisions.
• Real Time - Changes in the environment must be reflected immediately in the bundle's permis-

sions.
• Operator Specific Conditions - It must be possible for operators, manufacturers, selected developers,

and others to provide custom conditions.
• User Confirmation - The policy model must support end user prompting and confirmations.
• Allow/Deny Policies - It must be possible to both allow access as well as specifically deny access.
• Ordering - Policies must be ordered in a table and evaluated in the given order, which is from in-

dex 0 upwards.

Introduction Conditional Permission Admin Service Specification Version 1.1

Page 326 OSGi Core Release 7

• Backward Compatibility - The model must be backward compatible with the Permission Admin of
earlier releases.

50.1.2 Entities

• Conditional Permission Admin - The administrative service that provides the functions to manipu-
late the policy table.

• Policy - Provides the information to allow or deny access to a resource. A policy contains a name,
an access type, a set of conditions that must all be satisfied and a set of permissions of which at
least one should be implied to specifically allow or deny access. A policy is encoded in a Condi-
tional Permission Info.

• Policy Table - A conceptual table containing all the Conditional Permission Infos.
• Conditional Permission Info - The encoded form of a Policy.
• Conditional Permission Update - Holds a temporary copy of the Policy Table so that a number of

changes can be committed as a whole.
• Permission Info - Holds a string based encoding of a Permission object.
• Condition Info - Holds a string based encoding of a Condit ion object.
• Condition - A Condit ion object is associated with a single Bundle Protection Domain. It abstracts

an external condition that can be evaluated. A condition can be mutable or immutable as well as
immediate or postponed.

• Bundle Location Condition - An immutable Condit ion object that is satisfied when the associated
bundle has the given location.

• Bundle Signer Condition - An immutable Condit ion object that is satisfied when the associated
bundle is signed by a certificate that matched the given DN.

• Permission - An object that defines a certain permission type. Same as the Java Security model.
• Bundle Protection Domain - The class that implements the Protection Domain of a bundle, this

specification does not define an interface for this class, but it plays an important role in this spec-
ification.

Conditional Permission Admin Service Specification Version 1.1 Introduction

OSGi Core Release 7 Page 327

Figure 50.1 org.osgi.service.condpermadmin package

<<interface>>
Conditional
Perm. Admin

selects by
location

<<interface>>
Condition Info

<<interface>>
Condition

<<interface>>
Permission Info

Conditional
Permission
Admin Impl.

Permission

Manager Impl.

Bundle Protection
Domain

<<class>>
Bundle Loc.
Condition

Protection
Domain

a Bundle

<<class>>
Bundle Signer
Condition

selects by
signer

*

1

1 *

User Condition
Impl

administers

has

has

encodes

encodes

<<interface>>
Cond. Perm.
Update

<<interface>>
Cond. Perm.
Info

1 *
has

1 *
planned

50.1.3 Synopsis
A Conditional Permission Admin service maintains a system wide ordered table of Condit ionalPer-
missionInfo objects. This table is called the policy table. The policy table holds an encoded form of
conditions, permissions, and their allow/deny access type. A manager can enumerate, delete, and
add new policies to this table via a Condit ionalPermissionsUpdate object.

When a bundle is created, it creates a Bundle Protection Domain. This protection domain calculates
the system permissions for that bundle by instantiating the policy table, potentially pruning any
policies that can never apply to that bundle and optimizing entries that always apply.

A bundle can have local permissions defined in a Bundle Permission Resource. These are the actual
detailed permissions needed by this bundle to operate. A bundle's effective permissions are the in-
tersection of the local permissions and the system permissions. During the permission check of the
Java Security Manager, each Protection Domain is first checked for the local permissions, if this fails,
the complete check fails.

Otherwise, the Bundle Protection Domains of the calling bundles are consulted to see if they imply
the requested permission. To imply the requested permission, the Bundle Protection Domain must
find a policy in its policy table where all conditions are satisfied and where one of the policy's per-
missions imply the requested permission. If one of the permissions is implied, then the policy's ac-
cess type decides success or failure.

Certain conditions must postpone their evaluation so that their evaluation can be minimized and
grouped to prevent unwanted side effects. Postponed conditions can leverage a Dictionary object to
maintain state during a single permission check.

Permission Management Model Conditional Permission Admin Service Specification Version 1.1

Page 328 OSGi Core Release 7

50.2 Permission Management Model
The Conditional Permission Admin provides a flexible security model for bundles. However, the
price of this flexibility is additional complexity. The amount of configuration necessary to setup a
working system can easily become overwhelming. It is therefore necessary to be very careful imple-
menting a deployment security model. This section defines a series of possible deployment security
models while simultaneously defining the terminology that is used in later sections.

50.2.1 Local Permissions
A good working principle is to minimize permissions as much as possible, as early as possible. This
principle is embodied with the local permissions of a bundle. Local permissions are defined by a Bun-
dle Permission Resource that is contained in the bundle; this resource defines a set of permissions.
These permissions must be enforced by the Framework for the given bundle. That is, a bundle can
get less permissions than the local permissions but it can never get more permissions. If no such
permission resource is present then the local permissions must be All Permission. The Bundle Per-
mission Resource is defined in Bundle Permission Resource on page 347.

For example, if the local permissions do not imply
ServicePermission[org.osgi .service. log.LogService,GET] , then the bundle can never get the
LogService object, regardless of any other security setup in the device.

The fine-grained permissions allowed by the OSGi framework are very effective with the local per-
missions because they can be defined by the developer instead of the deployer. The developer knows
exactly what services are needed, what packages the bundle requires, and what network hosts are
accessed. Tools can be used that analyze bundles and provide the appropriate local permissions to
simplify the task of the developer. However, without detailed knowledge of the bundle's intrinsics,
it is very difficult to create the local permissions due to their fine-grained granularity.

At first sight, it can seem odd that a bundle carries its own permissions. However, the local permis-
sions define the maximum permissions that the bundle needs, providing more permissions to the
bundle is irrelevant because the Framework must not allow the bundle to use them. The purpose of
the local permissions is therefore auditing by the deployer. Analyzing a bundle's byte codes for its se-
curity requirements is cumbersome, if not impossible. Auditing a bundle's permission resource is
(relatively) straightforward. For example, if the local permissions request permission to access the
Internet, it is clear that the bundle has the potential to access the network. By inspecting the local
permissions, the Operator can quickly see the security impact of the bundle. It can trust this audit
because it must be enforced by the Framework when the bundle is executed.

An Operator that runs a fully closed system can use the local permissions to run third party appli-
cations that are not trusted to run unchecked, thereby mitigating risks. The Framework guarantees
that a bundle is never granted a permission that is not implied by its local permissions. A simple au-
dit of the application's local permissions will reveal any potential threats.

This scenario is depicted in Figure 50.2. A developer creates a bundle with local permissions, the op-
erator verifies the local permissions, and if it matches the expectations, it is deployed to the device
where the Framework verifies that the local permissions are never exceeded.

Conditional Permission Admin Service Specification Version 1.1 Permission Management Model

OSGi Core Release 7 Page 329

Figure 50.2 Local permissions and Deployment

installsauditsdevelops
and ships

local permissions
bundle, unsigned

code, classes

security scope

de
ve

lo
pe

r

op
er

at
or

Fr
am

ew
or

k

Summarizing, the benefits of local permissions are:

• Fine-grained - The developer has the knowledge to provide the fine-grained permissions that are
necessary to minimize the sandbox of the bundle without constraining it.

• Auditable - The Operator has a relatively small and readable file that shows the required sandbox.
It can therefore assesses the risk of running a bundle.

• Sandboxed - The Operator has the guarantee from the Framework that a bundle cannot escape its
local permissions.

50.2.2 Open Deployment Channels
From a business perspective it is sometimes too restrictive to maintain a fully closed system. There
are many use cases where users should be able to deploy bundles from a CD, via a PC, or from an In-
ternet web sites. In those scenarios, relying on the local permissions is not sufficient because the
Framework cannot verify that the local permissions have not been tampered with.

The de facto solution to tampering is to digitally sign the bundles. The rules for OSGi signing are de-
fined in Digitally Signed JAR Files on page 20. A digital signing algorithm detects modifications of the
JAR as well as provide the means for authenticating the signer. A Framework therefore must refuse
to run a bundle when a signature does not match the contents or it does not recognize the signer.
Signing makes it possible to use an untrusted deployment channel and still rely on the enforcement
of the local permissions.

For example, an Operator can provision its applications via the Internet. When such an application
is downloaded from an untrusted site, the Framework verifies the signature. It should install the ap-
plication only when the signature is trusted or when it has default permissions for untrusted bun-
dles.

Permission Management Model Conditional Permission Admin Service Specification Version 1.1

Page 330 OSGi Core Release 7

Figure 50.3 with signing

local
permissionsinstallsaudits and

signs
develops
and ships

local permissions
bundle, unsigned

code, classes

bundle, signed

OSGi framework

de
ve

lo
pe

r

op
er

at
or

en
d

us
er

50.2.3 Delegation
A model where the local permissions are secured with a signature works for an Operator that fully
controls a device. The operator must sign all bundles before they are provisioned. In this case, the
Operator acts as a gatekeeper, no authority is delegated.

This can become expensive when there are third parties involved. For example, an Enterprise could
provide applications to its employees on a mobile phone that is managed by an Operator. This mod-
el is depicted in Figure 50.4. If the Enterprise always has to contact the Operator before it can provi-
sion a new version, bottlenecks quickly arise.

Figure 50.4 Delegation model

Developer

Operator

Enterprise

OSGi
Framework

Employee

grants
permissions

uses

provides

installs

provides signing
certificate

This bottleneck problem can also be solved with signing. Signing does not only provide tamper de-
tection, it can also provide an authenticated principal. The principal can be authenticated with a cer-
tificate chain. The device contains a set of trusted certificates (depending on implementation) that
are used to authenticate the certificate of the signer.

The operator can therefore safely associate a principal with a set of permissions. These permissions
are called the system permissions. Bundles signed by that principal are then automatically granted
those system permissions.

In this model, the Operator is still fully in control. At any moment in time, the Operator can change
the system permissions associated with the principal and thereby immediately deny access to all
bundles of that principal, while they are running. Alternatively, the Operator can add additional
system permissions to the principal if a new service has become available to the signer's applica-
tions. For example, if the Operator installs a org.tourist .PointOfInterest service, it can grant the
ServicePermission[org.tourist .PointOfInterest ,GET] and PackagePermission[org.tourist , IMPORT]

Conditional Permission Admin Service Specification Version 1.1 Permission Management Model

OSGi Core Release 7 Page 331

to all principals that are allowed to use this service. The Operator can inform the involved parties af-
ter the fact, if at all. This model therefore does not create a bottleneck.

Using digital signing to assign system permissions can therefore delegate the responsibility of provi-
sioning to other parties. The Operator completely defines the limits of the permissions of the princi-
pal, but the signing and deployment can be done by the other parties.

For example, an Operator can define that the ACME company can provision bundles without any
intervention of the Operator. The Operator has to provide ACME once with a signing certificate and
the Operator must associate the ACME principal with the appropriate system permissions on the
device.

The key advantage of this model is the reduced communication between ACME and the Operator:
The Operator can modify the system permissions of ACME applications and be in control at any mo-
ment in time. The ACME company can develop new applications without the need to coordinate
these efforts in any way with the Operator. This model is depicted in Figure 50.5, which also shows
the possible sandboxes for Daffy Inc. and unsigned bundles.

Figure 50.5 Typical Delegation model

unsigned

signed by
ACME

signed by Operator

signed by
Daffy

send certificate

send certificate

set system
permissions

Daffy Inc.

ACMEsign & deploy

sign & deploy

sandboxes

The local permissions can still play an important role in the delegation model because it provides
the signer the possibility to mitigate its risk, just as it did for the Operator. Signers can verify the lo-
cal permissions before they sign a bundle. Like the Operator in the earlier scenario, the signer can
quickly verify the security requirements of a bundle. For example, if a game bundle requests Admin-
Permission[*,*] , it is unlikely that the bundle will pass the security audit of the signer. However, in
the unlikely case it did, it will not be granted this permission unless the Operator gave such a per-
mission to the signer's principal on the device.

50.2.4 Grouping
The grouping model is traditionally used because it minimizes the administration of the security
setup. For example, an operator can define the following security levels:

• Untrusted - Applications that are not trusted. These applications must run in a very limited secu-
rity scope. They could be unsigned.

• Trusted - Applications that are trusted but that are not allowed to manage the device or provide
system services.

• System - Applications that provide system services.
• Manage - Applications that manage the device.

The operator signs the bundle with an appropriate certificate before it is deployed, when the bundle
is installed, it will be automatically be assigned to the appropriate security scope.

However, the behavior can also be obtained using the local permissions of a bundle.

50.2.5 Typical Example
This example provides a simple setup for a delegation model. The example is intended for readabili-
ty, certain concepts will be explained later. The basic syntax for the policies is:

Permission Management Model Conditional Permission Admin Service Specification Version 1.1

Page 332 OSGi Core Release 7

policy ::= access '{' conditions permissions '}' name?
access ::= 'ALLOW' | 'DENY' // case insensitive
conditions ::= ('[' qname quoted-string* ']')*
permissions ::= ('(' qname (quoted-string
 quoted-string?)? ')')+
name ::= quoted-string

For readability, package prefixes that can be guessed are replaced with ". ." .

The following policy has a condition that limits the permissions to bundles that are signed by
ACME. The permissions given are related to managing other bundles.

ALLOW {
 [..BundleSignerCondition "* ; o=ACME"]

 (..AdminPermission "(signer=* ; o=ACME)" "*")
 (..ServicePermission "..ManagedService" "register")
 (..ServicePermission "..ManagedServiceFactory" "register")
} "1"

The next permission policy is for bundles signed by the operator. The operator bundles get full man-
aging capabilities as well as permissions to provide any service.

ALLOW {
 [..BundleSignerCondition "*; o=Operator"]
 (..AdminPermission "*" "*")
 (..ServicePermission "*" "get,register")
 (..PackagePermission "*" "import,exportonly")
} "2"

The following block indicates that all bundles not signed by ACME will not have access to the
com.acme.secret package, nor can they provide it. In this case, only bundles that are signed by
ACME may use the com.acme.secret.* packages. Instead of explicitly specifying all allowed pack-
ages for bundles not signed by ACME, it is easier to deny them the protected packages. The exclama-
tion mark (' ! ' \u0021) is a parameter for the Bundle Signer Condition to reverse its normal answer.
This facility is also available in the Bundle Location Condition.

That is, the following policy specifies that bundles not signed by ACME will be denied permission to
package com.acme.secret.* .

DENY {
 [..BundleSignerCondition "* ; o=ACME" "!"]
 (..PackagePermission "com.acme.secret.*"
 "import,exportonly")
} "3"

Basic permissions define the permissions that are available to all bundles. The basic permissions
therefore have no conditions associated with them so all bundles will be able to use these permis-
sions. All bundles may use the Log Service as well as use any package that was not yet denied earlier.

ALLOW {
 (..ServicePermission "..LogService" "get")
 (..PackagePermission "*" "import")
} "4"

The resulting permissions are summarized in Table 50.1. The + indicates allow, the - means deny.
The number is the deciding policy.

Conditional Permission Admin Service Specification Version 1.1 Effective Permissions

OSGi Core Release 7 Page 333

Table 50.1 Assigned Permissions. + indicates allow, - deny.

Un
sig

ne
d

AC
M

E

O
pe

ra
to

r

. .LogService get +4 +4 +2

. .ManagedService* register - +1 +2

. .ManagedService* get - - +2
com.acme.FooService get - - +2
com.acme.secret import -3 +4 +2
com.acme.secret.bar exportonly -3 - +2
com.acme.foo import +4 +4 +2
bundle s igned by ACME start - +1 +2
bundle s igned by Operator start - - +2

50.3 Effective Permissions
Once a bundle is installed, it gets Java permissions associated from the framework. Some of these per-
missions are implied. Implied permissions are given by the framework because they are required for
normal operation, for example every bundle has the File Permission to read and write the bundle da-
ta area. See Implied Permissions on page 29.

A framework can also provide an administrative service to associate a set of permissions with a bun-
dle. The set of permissions given by such an administrative agent to a bundle are called the system
permissions. For example, the Permission Admin service and the Conditional Permission Admin ser-
vice can be used by a managing application to define the system permissions. Additionally, a bundle
can carry its own permissions; these are called the local permissions. All these permission sets interact
in a non-trivial way to give the effective permissions.

The purpose of the local permissions is to mitigate the bundle signer's risk. The Framework guaran-
tees that a bundle's effective permissions are always smaller or equal than the local permissions be-
cause the effective permissions are the intersection of the local permissions with the system permis-
sions, except for the implied permissions that are always granted.

Effective = (Local ∩ System) ∪ Implied

The system permissions have two possible sources. The system permissions can be bound via the
Permission Admin service to a locat ion . This mechanism is provided for backward compatibility on-
ly. New management applications should use the Conditional Permission Admin service if possible.

If the Permission Admin locat ion is not bound, all the conditional permissions from Conditional Per-
mission Admin act as the system permissions. The relationship between the system permissions
and local permissions is depicted in Figure 50.6.

Conditional Permissions Conditional Permission Admin Service Specification Version 1.1

Page 334 OSGi Core Release 7

Figure 50.6 System, Local and Security permissions

system permissions

local permissions

effective

location

Bundle Permission
Resource

permissions Condition[]

Permission
Admin

Conditional
Permission
Admin

or otherwise

50.4 Conditional Permissions
The conditional permissions provide a very general model that is related to the Java Security model.
The Java Security model assigns a set of permissions to a code base or signer. During the permission
check, this set is consulted for permissions that imply the checked permissions. If the checked per-
mission is implied, access is granted.

The Conditional Permission Admin service model assumes a more general approach. It conceptually
has a system wide policy table, that is shared between all bundles.

A policy consists of:

• An access type (ALLOW or DENY)
• A set of conditions
• A set of permissions
• A name

During a permission check, the table is traversed in ascending index order and each policy is evalu-
ated. The first policy that is matching controls the outcome of the permission check as given by its
access type. A policy is only matching a permission P when:

• All of the policy's conditions are satisfied
• At least one of its permissions implies P , as defined by Java security.

For example, assume the following setup for bundle A :

ALLOW {
 [...BundleSignerCondition "cn=*, o=ACME, c=US"]
 [com.acme.Online]
 (...AdminPermission "*" "*")
}

In the example, both the BundleSignerCondit ion must be satisfied as well as the com.acme.Onl ine
condition before Admin Permission is granted.

Deny policies significantly simplify the security configuration setup because they handle the com-
mon case of an exception to a general rule. For example, a bundle that is allowed to use all package
imports and exports except packages in the com.acme.secret.* namespace. The set of all possible
packages is impossible to enumerate because it is an infinite set. In this case, * cannot be used be-
cause the com.acme.secret.* should not be included. With a deny policy it is possible to first deny
access to com.acme.secret.* for all bundles bar the exception, and then later allow * for everybody.
The policies for this look like:

Conditional Permission Admin Service Specification Version 1.1 Conditions

OSGi Core Release 7 Page 335

DENY {
 [...BundleSignerCondition "cn=*, o=ACME" "!"]
 (...PackagePermission "com.acme.secret.*"
 "import,exportonly")
}
ALLOW {
 (...PackagePermission "*" "*")
}

50.4.1 Encoding versus Instantiation
The system wide policy table does not contain instances, it contains encoded forms of the permissions
and conditions. The policy table acts as a template for each Bundle Protection Domain; the Bundle
Protection Domain creates instances with the associated bundle as their context.

It is a dynamic template because a Bundle Protection Domain must track the changes to the
framework's policy table immediately and update any instances from the new encoded forms. Once
the atomic commit() method of the update object has successfully returned, all subsequent use of
Bundle Protection Domains must be based on the new configuration. See Permission Management on
page 343 for more information of how to manage this table.

The conditions and permissions of the policy table must be instantiated before the conditions can
be checked. This instantiation can happen, when a Bundle Protection Domain is created, or the first
time when the conditional permissions are needed because of a permission check. Figure 50.7 shows
the central table and its instantiation for different Bundle Protection Domains.

Figure 50.7 Instantiation of the policy table

PermissionInfo[]ConditionInfo[]

Conditional
PermissionInfo[]

Bundle
Protection
Domain

Bundle
Protection
Domain

instantiate

instantiate

System wide
policy table

Name Access

Condit ion objects must always belong to a single Bundle Protection Domain and must never be
shared.

50.5 Conditions
The purpose of a Condition is to decide if a policy is applicable or not. That is, it acts as a guard for
the permissions. The conditions must therefore be evaluated when a Permission object is checked
against the effective permissions of a bundle.

The state of a Condit ion object can be obtained with its isSat isf ied() method. A condition that re-
turns true to this method is called to be satisfied. If the method throws an Exception, this should be
logged and treated as if the condition is not satisfied.

Certain Condit ion objects could optimize their evaluations if they are activated multiple times in
the same permission check. For example, a user prompt could appear several times in a permission
check but the prompt should only be given once to the user. These conditions are called postponed
conditions, conditions that can be verified immediately are called immediate conditions. The isPost-
poned() method can inform if the condition is immediate or postponed. A Condition must always
return the same value for the isPostponed method so that the Conditional Permission Admin can

The Permission Check Conditional Permission Admin Service Specification Version 1.1

Page 336 OSGi Core Release 7

cache this value. If this method returns fa lse , the isSat isf ied() method must be quick and can be
called during the permission check, otherwise the decision must be postponed until the end of the
permission check because it is potentially expensive to evaluate. Postponed conditions must always
be postponed the first time they are evaluated.

For example, a condition could verify that a mobile phone is roaming. This information is readily
available in memory and therefore the isPostponed() method could always return fa lse . Alterna-
tively, a Condit ion object that gets an authorization over the network should only be evaluated at
most once during a permission check to minimize the delay caused by the network latency. Such a
Condit ion object should return true for the isPostponed method so all the Condit ion objects are eval-
uated together at the end of the permission check.

Condit ion objects only need to be evaluated multiple times when the answer can change. A Con-
dit ion object that can vary its satisfiability is called mutable, it can be checked with the isMutable()
method. If the condition is immutable, the Condition object must always return the same result for
the isSat isf ied() method. The isMutable() method answers the mutability of the next isSat isf ied()
method. The answer of the next call to the isSat isf ied method could still differ from the previous
call, even if the isMutable method returns true.

A mutable Condition can become immutable over time but it cannot go from immutable to muta-
ble. Optimizations can take advantage of the immutability by, for example, caching the result of the
isSat isf ied() method.

Except for immediate conditions, the isSat isf ied method must only be called inside a permission
check.

For example, the Bundle Protection Domain can prune any policy from its view of the policy table
that contains a Condit ion object that is immutable and not satisfied. The Bundle Signer Condition
and Bundle Location Condition are examples of immutable conditions that can easily be discarded
when they do not match the context bundle when the policy table is instantiated. See Optimizing Im-
mutable Conditions on page 349 for more information about optimizing immutable conditions.

50.6 The Permission Check
The Java security model has both a Security Manager and an Access Controller to perform a permis-
sion check. The core functionality is located in the AccessControl ler and the AccessControlContext
classes that cooperate with Protect ionDomain objects to detect if a permission is allowed or denied.
In the OSGi Framework, each bundle must have a single Bundle Protection Domain that holds the
instantiated policy table.

The Access Controller provides the full functionality for checking a permission. However, all per-
mission checks should be tunneled through the SecurityManager checkPermission methods. The
Security Manager can be replaced by a custom implementation, unlike the Access Controller (it is a
final class). This model is depicted in Figure 50.8.

Conditional Permission Admin Service Specification Version 1.1 The Permission Check

OSGi Core Release 7 Page 337

Figure 50.8 in OSGi bundles

SecurityManager

Access ControllerFramework Sec.
Manager Impl

Access Control
Context

Protection
Domain

Bundle Protection
Domain Impl

active security
manager

for each caller
1..*

1

checkPermission

1

check
Permission

current
call stack

1

50.6.1 Security Manager checkPermission Method
A permission check starts when the Security Manager checkPermission method is called with per-
mission P as argument. The current Security Manager must be implemented by the Framework and
is therefore called the Framework Security Manager; it must be fully integrated with the Condition-
al Permission Admin service.

The Framework Security Manager must get the Access Control Context in effect. It must call the Ac-
cessControl ler getContext() method to get the default context if it is not passed a specific context.

The AccessControlContext checkPermission method must then be called, which causes the call
stack to be traversed. At each stack level the Bundle Protection Domain of the calling class is eval-
uated for the permission P using the Protect ionDomain impl ies method. The complete evaluation
must take place on the same thread.

50.6.2 Bundle Protection Domain implies Method
Permission P must be implied by the local permissions of the Bundle Protection Domain. If this is
not the case, the complete check must immediately end with a failure. Local permissions are de-
scribed in Local Permissions on page 328 and Bundle Permission Resource on page 347.

The permission check now depends on the instantiated policy table, called Ts . During the Bun-
dle Protection Domain impl ies method, the goal is to decide if the permission P is denied, or can
progress because it is potentially allowed. Potentially, because the table can contain postponed con-
ditions that need to be executed after all protection domains are checked.

The policy table must therefore be traversed in ascending index order until the first policy is match-
ing that can give an immediate access type. If this access type is DENY , the implies method fails and
aborts the check. If an ALLOW is found, the next domain must be checked. To ensure that there is
at least one immediate matching policy in the table, a virtual DENY { (Al lPermission) } is added at
the end of the table. This virtual policy has the effect of making the default policy DENY when no
matching entries are found.

During the traversal, an optimized policy list per bundle is constructed containing the postponed
conditions and at the end a matching policy. This list is evaluated after all the protection domains
are checked and none of them failed.

Therefore, the following definitions begin the Bundle Protection Domain implies method's algo-
rithm:

The Permission Check Conditional Permission Admin Service Specification Version 1.1

Page 338 OSGi Core Release 7

Ts = instantiated policy table + DENY {(AllPermission)}
PL = {}

PL will be copied from Ts until the first policy that matches. A matching policy has all of its condi-
tions immediately satisfied and one of the permissions implies permission P . If a policy can never be
matched because it has an immediate condition that cannot be satisfied, then it is not copied to PL.
At the end, PL contains zero or more postponed policies followed by exactly one matching policy.

In pseudo code:

policy:
for each policy T in Ts
 for each condition C in T conditions
 if C is immediate and C is not satisfied
 continue policy

 found = false
 for permission X in T permissions
 found |= X implies P

 if not found
 continue policy

 add T to PL

 if T has no postponed conditions
 break

PL must now be optimized to remove superfluous policies. A postponed policy can be removed if it
cannot change the outcome from the last (which is an immediate) policy. That is, if the immediate
policy at the end has the same access type as the previous policy in PL , then it can be ignored. The
following pseudo code removes these superfluous postponed conditions.

while PL length > 1
 if PL[PL length -2] access = PL[PL length -1] access
 remove PL[PL length -2]
 else
 break

After discarding these superfluous postponed conditions, the contents of PL has the structure out-
line in Figure 50.9, where Tp(x) is a postponed policy with a access type x , and Tm is a matching poli-
cy, ! is the not operator for the condition.

Figure 50.9 Structure of Postponed List PL

Tp(x) Tp(!x)

Tm(x)

If PL contains only one policy and it is a DENY policy, then the Bundle Protection Domain can direct-
ly answer fa lse from the impl ies method, which will abort the complete permission check evalua-
tion. In all other cases, it must remember the postponed list PL for the given bundle, and return true .

if PL = {DENY{...}}
 return false
Bundle.pl = PL

Conditional Permission Admin Service Specification Version 1.1 The Permission Check

OSGi Core Release 7 Page 339

return true

50.6.2.1 Example Bundle Protection Domain Check

This example demonstrated the per bundle evaluation aspect of the Bundle Protection Domain's im-
pl ies method. Assume the following policies are active:

DENY {
 [BundleSignerCondition "cn=ACME" "!"]
 (FilePermission "/tmp/acme/-" "READ,WRITE")
} "0"
ALLOW {
 (FilePermission "/tmp/-" "READ,WRITE")
} "1"
ALLOW {
 [PromptCondition "Allowed to Read?"]
 (FilePermission "*" "READ")
} "2"
DENY {
 [PromptCondition "Deny Writing?"]
 (FilePermission "*" "READ,WRITE")
} "3"

This setup reserves unconditionally the /tmp/acme/- file system for bundles signed by ACME be-
cause the first line denies any bundle not signed by ACME access to this part of the file system. Read-
ing and writing of the remainder of the /tmp file tree is allowed for all. For the rest of the file system,
read access is prompted to allow, and write access is prompted to deny.

Assume that a bundle signed by ACME wants to read /etc/passwd . Policy 0, and 1 do not match be-
cause the File Permission in these policies are not applicable. Policy 2 has a permission that implies
this file and its condition is postponed, so it will be postponed and policy 3 will also included. There
is no matching policy, so a virtual matching DENY policy (D) will be included as the last entry. This
makes PL : 2, 3 , and D .

Tp(ALLOW) # 2
Tp(DENY) # 3
Tm(DENY) # virtual (D)

In this case, there is a superfluous Tp(DENY) #3 because it can not change the final answer of the
last matching DENY . It is therefore removed. The list is thus:

Tp(ALLOW) # 2
Tm(DENY) # virtual

This list must be saved for later evaluation when all the Bundle Protection Domains have finished
successfully.

50.6.3 Postponed Evaluation
If all protection domains have been checked and none has denied the permission by returning fa lse ,
then each checked Bundle Protection Domain has a postponed list.

This per bundle postponed list contains one or more policies that must now be evaluated in se-
quence. The first policy in the list that can satisfy all its postponed conditions decides the access. If
this policy has an access type of ALLOW , the list of the next domain is evaluated otherwise the evalu-
ation fails.

The evaluation always ends because the last entry in each of the postponed lists is guaranteed to be
a matching policy. As a special case, a postponed list with one entry indicates success. This must be a
matching ALLOW because an immediate DENY would have failed earlier.

The Permission Check Conditional Permission Admin Service Specification Version 1.1

Page 340 OSGi Core Release 7

For example, if bundle A postponed policy Tp1 and bundle B postponed policy Tp2 , and bundle C
was immediately satisfied for ALLOW , then the constellation would like Figure 50.10.

Figure 50.10 Evaluation of postponed policies

A

B

C

Tp1

Tp2

postponed

postponed

bundle

policy

Tm

Tm

Tm must be ALLOW

The Conditional Permission Admin provides a type specific Dictionary object to all evaluations of
the same postponed Condition implementation class during a single permission check. It is the re-
sponsibility of the Condition implementer to use this Dictionary to maintain states between in-
vocations. The condition is evaluated with a method that takes an array and a Dictionary object:
isSat isf ied(Condit ion[] ,Dict ionary) . The array always contains a single element that is the receiver.
An array is used because an earlier version of this specification could verify multiple conditions si-
multaneously.

The Dictionary object has the following qualities:

• It is specific to a Condit ion implementation class, different implementation classes will not share
this Dictionary object.

• It is created before the isSat isf ied(Condit ion[] ,Dict ionary) is called for the first time during this
permission check.

• It is only valid during the invocation of a single checkPermission session. That is, it is not main-
tained between checkPermission invocations.

• It is shared between invocations of isSat isf ied(Condit ion[] , Dict ionary) method for different
Bundle Protection Domains.

The algorithm for the postponed processing can now be explained with the following pseudo code:

bundle:
for each bundle B
 policy:
 for each policy T in B.pl
 for C in T conditions
 if C is postponed and
 C is not satisfied with Dictionary
 continue policy

 if T access = DENY
 return false
 else
 continue bundle
 assert false // can not reach

return true

50.6.4 Example
A permission P is checked while bundle A , B , and C are on the call stack. Their security setup is as fol-
lows:

• IC = a condition that is immediately evaluated,

Conditional Permission Admin Service Specification Version 1.1 The Permission Check

OSGi Core Release 7 Page 341

• PC is a postponed condition,
• P , Q , and R are permissions.

The situation for C is as follows:

ALLOW { (Q) } "C1"
ALLOW { [IC0] (P) } "C2"
ALLOW { [PC2] (P) } "C3"

First, the Bundle Protection Domain of bundle C is asked if it implies permission P . Bundle C has
three policies. Policy C1 has no conditions, only a permission that does not imply permission P , it is
therefore ignored. The second policy has an immediate condition IC0 , which is not satisfied. There-
fore, the policy's permissions are not even considered. The last policy contains a mutable postponed
condition PC2 . The permission P is implied by the related permissions. However, it is not possible to
make the decision at this moment in time, therefore the evaluation of policy C3 is postponed. The
postponed list for bundle C is therefore:

ALLOW {[PC2]} "C3"
DENY {(AllPermission)}

This list can not be optimized because the final access type differs from the earlier access types.

The setup for bundle B is as follows:

ALLOW { [IC1][PC2][PC1] (P) (R) } "B1"
ALLOW { [PC2] (P) (R) } "B2"
DENY { (P) } "B3"
ALLOW { (Q) } "B4"

Bundle B is considered, its first policy has and immediate Condit ion object that is IC1 . This condi-
tion turns out to be satisfied. This policy is a potential candidate because it has two postponed con-
ditions left. It is a possibility because its permissions imply permission P . The policy is therefore
placed on the postponed list.

Policy B2 is similar, it must also be placed on the postponed list because it implies permission P and
it has a postponed condition PC2 .

Policy B3 matches, it is therefore placed on the postponed list and the evaluation is stopped because
there is an immediate decision, therefore it is not necessary to look at policy B4 .

There are 2 policies postponed, the bundle is potentially permitted. Bundle's B postponed list there-
fore looks like:

ALLOW {[PC2][PC1]} "B1"
ALLOW {[PC2]} "B2"
DENY { }

This list cannot be optimized because the final access type differs from the earlier postponed condi-
tions.

Last and least, bundle A.

 A: ALLOW { [IC1] [PC1] (P) (Q) } "A1"
 ALLOW { [IC2] (P) (R) } "A2"
 ALLOW { (S) } "A3"

Bundle A 's IC1 is evaluated first and it is satisfied. Permission P is implied by the policy A1 's permis-
sions, therefore this policy is postponed for evaluation.

Policy A2 is also satisfied and it directly implies permission P . This policy is therefore also placed on
the postponed list and further evaluation is no longer necessary because it is the first matching poli-
cy. That is, policy A3 is ignored. The postponed list looks like:

The Permission Check Conditional Permission Admin Service Specification Version 1.1

Page 342 OSGi Core Release 7

ALLOW { [PC1] } "A1"
ALLOW { } "A2"

This list is optimized to:

ALLOW {} "A2"

After the checkPermission method of the Access Control Context method returns, the Framework
Security Manager must evaluate the postponed lists of all the bundles. The list of postponed policies
looks like Figure 50.10.

Figure 50.11 Evaluation of postponed policies

A

B

C

T1

T4

postponed

postponed

bundle

allow policy

T2

PC2 PC1 PC2

PC2

deny policy

call stack

T5

condition
T3

T0immediate

The Framework Security Manager must now evaluate the postponed lists for each bundle. In this
example, postponed condition PC2 occurs 3 times. All these evaluations of PC2 get the same Dictio-
nary object. If PC2 prompts the users with a specific question, then it should not ask the same ques-
tion again when another PC2 is evaluated later. The Dictionary object can be used to maintain this
state.

Both PC1 and PC2 prompt the user. PC1 will be rejected in this example, and PC2 will be affirmed.

First the postponed list of bundle A is evaluated. This is the trivial case of ALLOW {} , and the post-
poned list for bundle A succeeds with ALLOW .

For bundle B , policy T1 must prompt for PC2 and PC1 . PC2 records the answer in the Dictionary that
is specific for PC2 . Because PC1 fails, T1 is not applicable and policy T2 must be evaluated. PC2 had
recorded its answer so it does not prompt but returns true immediately. Policy T2 is an ALLOW policy
and bundle B therefore ends positively.

Last, bundle C requires evaluation of policy T4 . PC2 retrieves its answer from the given Dictionary
object and succeeds. Policy T4 has an access type of ALLOW and this concludes the complete permis-
sion check positively.

50.6.5 Using the Access Control Context Directly
Bundle programmers should always use the Java Security Manager to do security checks. When the
Access Controller is used directly (or the Access Control Context) to do the security check instead,
then the evaluation cannot handle postponed conditions. Therefore, the postponed conditions must
be treated as immediate conditions by the Bundle Protection Domain when the permissions check
does not go through the Framework's security manager. The implication of this is that the result of
checking a permission can depend on the way the check is initiated.

For example, a bundle on the stack has the needed permission P tied to a User Prompt Condition and
another bundle on the stack does not have the Permission P . The check would fail if the Security

Conditional Permission Admin Service Specification Version 1.1 Permission Management

OSGi Core Release 7 Page 343

Manager was called and the user would never be prompted because the failure was detected before
the conditional permissions could be evaluated. However, if the Access Control Context was called
directly, the user would be prompted and fail even if the user acknowledged the request.

50.7 Permission Management
The policy model provided by the Conditional Permission Admin service requires that the policies
in the policy table are ordered. This requires a management interface that allows easy manipulation
of the ordered table. The List interface fulfills this requirement, but an OSGi Framework is a dynam-
ic environment and there can be other parties editing the same policy table. Therefore, the Condi-
tional Permission Admin service uses an indirection. If a bundle wants to edit the table, it can get
the table in a ConditonalPermissionUpdate object with the newCondit ionalPermissionUpdate()
method from the Conditional Permission Admin service. This method creates a copy of the policy
table in the returned update object. This update object provides access to a List object with Condi-
t ionalPermissionInfo objects, which are the encoded form of the policies.

New objects can be created with the
newCondit ionalPermissionInfo(Str ing,Condit ionInfo[] ,PermissionInfo[] ,Str ing) method on the
Conditional Permission Admin service, and then added to this list. The method requires a name, an
array of Condit ionInfo objects, an array of PermissionInfo objects, and the access decision. The name
parameter can be nul l . Each Condit ionalPermissionInfo object has a name to distinguish it from oth-
ers, as well as identifying it to a management server. If the name is nul l , the Conditional Permission
Admin service will automatically create a unique name. Though it is possible to create policies with
the same name, during the commit the names will be verified for uniqueness. If a duplicate name
appears, an exception will be thrown.

Conditional Permission Infos can also be removed from this list. Modifications like remove, do not
change or influence the running system, they only affect the update object.

All changes are effectuated when the commit method is called. If there had been a change in the un-
derlying policy table since the update object was created, the commit method will abort and return
fa lse . Otherwise, the actual policy table is atomically updated and true is returned. There is no oblig-
ation to ever call commit; a canceled update can just be forgotten.

The data structures of the update model are depicted in Figure 50.12.

Figure 50.12 Structure of the Info objects.

<<interface>>
Conditional
Perm. Info

<<class>>
Conditional
Info

<<class>>
Permission
Info

<<interface>>
Conditional
Perm. Admin

*1

**

1

*

<<interface>>
Conditional
Perm. Update

*1

1

Both the Condit ional Info and PermissionInfo objects can be constructed from encoded strings. The
syntax for these strings are:

conditions ::= ('[' qname quoted-string* ']')*
permissions ::= ('(' qname (quoted-string
 quoted-string?)? ')')+

The strings are converted by getting the class with the qname , and then creating an instance
through a constructor that takes the given number of arguments. The exclamation mark is conven-

Implementing Conditions Conditional Permission Admin Service Specification Version 1.1

Page 344 OSGi Core Release 7

tion for a negated condition, it indicates that the condition should reverse its result. Deny policies
often require the negation of the conditions. For example, often a bundle should not be signed by a
specific signer to exclude it from a resource.

Both the PermissionInfo and Condit ionInfo are concrete classes with appropriate methods to con-
struct them from their encoded form. The encoded form given to a Condition implementation con-
structor must not contain the exclamation mark for negation.

A policy is specified with the following syntax:

policy ::= access '{' conditions permissions '}' name?
access ::= 'ALLOW' | 'DENY' // case insensitive
name ::= quoted-string

The Conditional Permission Admin provides a convenience method to create a Condit ionalPermis-
sionInfo object with the newCondit ionalPermissionInfo(Str ing) method.

The following example is a code snippet the reads a stream with conditional permissions using the
encoded form. The method parses the file line by line. Each line is scanned and split with regular ex-
pressions. The following example shows how a text string can be parsed and added to the update ob-
ject.

static Pattern CP_MATCHER = Pattern.compiler(...);
public void manage(ConditionalPermissionAdmin admin,
 String text) {
 ConditionalPermissionUpdate update = admin
 .newConditionalPermissionUpdate();
 List list = update.getConditionalPermissionInfos();
 list.clear();

 Matcher m = CP_MATCHER.matcher(text);
 int n = 1;
 while (m.find()) {
 String policy = m.group(1);
 ConditionalPermissionInfo info =
 admin.newConditionalPermissionInfo(policy);

 list.add(info);
 }
 if (!update.commit())
 throw new ConcurrentModificationException(
 "Conditional Permission Admin was updated concurrently");
}

50.7.1 Default Permissions
Conditional Permission Admin does not have a specific concept of default permissions. Default per-
missions are derived from the policies that do not have any Condit ion objects. These policies are ap-
plied to all bundles, effectively making them default permissions. This is a different from Permis-
sion Admin; in Permission Admin default permissions only apply when there are no specific permis-
sions set.

50.8 Implementing Conditions
Condit ion objects are constructed from Condit ionInfo objects when the policy table is instantiated
for a Bundle Protection Domain. The Condit ionInfo object supports a variable number of arguments.

Conditional Permission Admin Service Specification Version 1.1 Implementing Conditions

OSGi Core Release 7 Page 345

The Conditional Permission Admin must use reflection to find a publ ic stat ic getCondit ion method
on the Condit ion implementation class that takes a Bundle object and a Condit ionInfo object as ar-
guments. This method must return a object that implements the Condit ion interface.

However, this does not have to be a new object, the getCondit ion method can reuse objects if it so
desires. For example, a Bundle Location Condition is immutable, it therefore maintains only 2 in-
stances: One for bundles that match the given location and one for the others. In the getCondit ion
method it can verify the bundle's location with argument and return either instance.

This is such a common pattern that the Condit ion interface provides two such immutable instances:

• TRUE - A condition object that will always evaluate to true and that is never postponed.
• FALSE - A condition object that will always evaluate to fa lse and that is never postponed.

If no static getCondit ion method can be found, the Conditional Permission Admin service must try
to find a public constructor that takes a Bundle object and a Condit ionInfo object as arguments. For
the com.acme.AcmeCondit ion , the Conditional Permission Admin must look for:

public static Condition com.acme.AcmeCondition.getCondition(
 Bundle, ConditionInfo)
public com.acme.AcmeCondition(Bundle, Condit ionInfo)

If it is not possible to create a condition object, the given condition must be treated as a
Condit ion.FALSE object and an error should be logged.

A Condit ion object will be unique to a Bundle Protection Domain as explained in Encoding versus In-
stantiation on page 335. Thus, any queries made on a Condit ion object will be with the given Bun-
dle object as context.

The cheapest Condit ion objects are immutable; they have almost no overhead. If a Condit ion object
is immutable directly after it is created, then the Framework Security Manager can immediately
shortcut future evaluations. That is, if an immutable Condit ion object is not satisfied, its parent pol-
icy can be immediately be discarded; it is not even necessary to instantiate any further Condit ion or
Permission objects for that policy.

Mutable Condit ion objects must be evaluated during a permission check. Permission checks are
common and the evaluation of a permission should therefore be highly optimized and preferably
not cause additional security checks on the same thread. A mutable condition is system code, it
must be designed to work in a constrained environment. The isSat isf ied() method should be de-
signed to quickly return. It should normally base its decision on variables and limit its side effects.

However, side effects are sometimes necessary; a key example is user prompting. As discussed in
Security Manager checkPermission Method on page 337, the evaluation can be postponed towards
the end of the check, where a special version of isSat isf ied method is called. The Condit ion object
must always return true for the isPostponed() method to be postponed and it must always return
the same value.

Mutable postponed conditions must optimize their evaluation by implementing an instance
method isSat isf ied(Condit ion[] ,Dict ionary) . This method must only be called with a single element
in the array; this element is unrelated to the given instance (except that the class is the same).

The following is the code for a condition that verifies that an action is granted by a network server.
This is a postponed condition that groups all requests before it asks the host for authorization. The
network code is abstracted in a Host class that is not shown here.

public class HostCondition implements Condition{
 String action;

 public HostCondition(Bundle, ConditionInfo info) {
 action = info.getArgs()[0];

Standard Conditions Conditional Permission Admin Service Specification Version 1.1

Page 346 OSGi Core Release 7

 }

 public boolean isSatisfied() { return false; }
 public boolean isPostponed() { return true; }
 public boolean isMutable() { return false; }

 static Host host = new Host();

 public synchronized boolean isSatisfied(
 Condition[] conditions, Dictionary state) {
 Set granted = (Set) state.get("granted");
 if (granted == null) {
 granted = new TreeSet();
 state.put("granted", granted);
 }
 Set pending = new TreeSet();
 // There will only be one condition
 for (int i=0; i<conditions.length; i++) {
 String a = ((HostCondition)conditions[i]).action;
 if (! granted.contains(a))
 pending.add(a);
 }
 if (pending.isEmpty())
 return true;

 if (! host.permits(pending))
 return false;

 granted.addAll(pending);
 return true;
 }
}

The Host Condition has the following Condition Info representation:

[HostCondition "payment"]

The majority of the code is in the isSat isf ied method which takes an array of Condit ion . The con-
structor only stores the action.

This isSat isf ied method first gets the set of granted permissions. The first time the method is called
this set does not exist. It is then created and stored in the state dictionary for use in later invocations.

Next, a temporary set pending is created to hold all the actions of the conditions that are checked,
minus any conditions that were already granted during this invocation of the Security Manager
checkPermission method. If the pending list turns out to be empty because all actions were already
granted, the method returns true. Otherwise it asks the host. If the host allows the actions, the pend-
ing actions are added to the granted set in the state dictionary.

50.9 Standard Conditions
This specification provides a number of standard conditions. These conditions are explained in the
following sections.

Conditional Permission Admin Service Specification Version 1.1 Bundle Permission Resource

OSGi Core Release 7 Page 347

50.9.1 Bundle Signer Condition
A Bundle Signer Condition is satisfied when the related bundle is signed with a certificate that
matches its argument. That is, this condition can be used to assign permissions to bundles that are
signed by certain principals.

The Bundle Signer Condition must be created through its static
getCondit ion(Bundle,Condit ionInfo) method. The first string argument is a matching Distinguished
Name as defined in Certificate Matching on page 27. The second argument is optional, if used, it must
be an exclamation mark (' ! ' \u0021). The exclamation mark indicates that the result for this condi-
tion must be reversed. For example:

[...BundleSignerCondition "* ;cn=S&V,o=Tweety Inc., c=US"]
[...BundleSignerCondition "* ;cn=S&V" "!"]

The Bundle Signer Condition is immutable and can be completely evaluated during the getCondi-
t ion method.

50.9.2 Bundle Location Condition
The Bundle Location Condition matches its argument against the location string of the bundle argu-
ment. Bundle location matching provides many of the advantages of signing without the overhead.
However, using locations as the authenticator requires that the download locations are secured and
cannot be spoofed. For example, an Operator could permit Enterprises by forcing them to download
their bundles from specific locations. To make this reasonable secure, at least the HTTPS protocol
should be used. The Operator can then use the location to assign permissions.

https://www.acme.com/download/* Appsfrom ACME
https://www.operator.com/download/* Operatorapps

The Bundle Location Condition must be created through its static
getCondit ion(Bundle,Condit ionInfo) method. The first string argument is a location string with
possible wildcard asterisks ('* ' \u002A). Wildcards are matched using Filter string matching. The
second argument is optional, if used, it must be an exclamation mark (' ! ' \u0021). The exclamation
mark indicates that the result for this condition must be reversed. For example:

..BundleLocationCondition "http://www.acme.com/*"

..BundleLocationCondition "*://www.acme.com/*"

The Bundle Location Condition is satisfied when its argument can be matched with the actual loca-
tion.

The Bundle Location Condition is immutable and can be completely evaluated during the getCon-
dit ion method.

50.10 Bundle Permission Resource
Bundles can convey their local permissions using the file OSGI-INF/permissions.perm . This must be
a UTF-8 encoded file. The format of the file is line based; lines are not limited in length but must be
readable with the BufferedReader readLine method:

 permissions.perm ::= line *
 line ::= (comment | pinfo) ('\r\n'| '\n')
 comment ::= ('#' | '//')
 pinfo ::= '(' qname (quoted-string
 (quoted-string)?)? ')'

Relation to Permission Admin Conditional Permission Admin Service Specification Version 1.1

Page 348 OSGi Core Release 7

 // See 1.3.2

Each permission must be listed on its own line using the encoded form of Permission Info. Com-
ment lines are allowed. They consist of lines starting with a # or // , where leading spaces must be ig-
nored. Multiple spaces outside quotes must be treated as a single space.

For example (. . must be replaced with the appropriate package prefix.):

Friday, Feb 24 2005
ACME, chess game
(..ServicePermission "..log.LogService" "GET")
(..PackagePermission "..log" "IMPORT")
(..ServicePermission "..cm.ManagedService" "REGISTER")
(..PackagePermission "..cm" "IMPORT")
(..ServicePermission "..useradmin.UserAdmin" "GET")
(..PackagePermission "com.acme.chess" "IMPORT,EXPORTONLY")
(..PackagePermission "com.acme.score" "IMPORT")

If this resource is present in the Bundle JAR, it will set the local permissions. If it is not present, the
local permissions must be All Permission.

50.10.1 Removing the Bundle Permission Resource
An attacker could circumvent the local permission by simply removing the permissions.perm
file from the bundle. This would remove any local permissions that were required by a signer of
the bundle. To prevent this type of attack the Conditional Permission Admin must detect that the
permissions.perm resource was signed, that is, present in the Manifest, but that it is not in the JAR.
If the bundle is being installed when this condition is detected, the install must fail with a Bundle
Exception.

50.11 Relation to Permission Admin
If the framework provides a Conditional Permission Admin service and a Permission Admin service
then a bundle A will receive its permissions according to the following steps:

1. If the Permission Admin defines the permissions for bundle A (location is set), then these per-
missions override any Conditional Permission Admin information.

2. If the Conditional Permission Admin has a non-empty table, then this table is used to calculate
the permissions for bundle A.

3. If the default permissions are set in Permission Admin, then these are given to bundle A.
4. All Permission is given to bundle A.

The Permission Admin defines a concept of Default Permissions, which is not supported by Condi-
tional Permission Admin. Default permissions are now modeled with an empty set of conditions.
Empty sets of conditions apply to all bundles, this in addition to any more specific conditions. This is
very different from the Permission Admin service where the default permissions only apply when
there is no location bound permission for that bundle. The default conditions of Permission Admin
are therefore never used when Conditional Permission Admin is present and its table is non-empty.

New applications should use the Conditional Permission Admin service. The Permission Admin ser-
vice will be deprecated in a future release.

Conditional Permission Admin Service Specification Version 1.1 Implementation Issues

OSGi Core Release 7 Page 349

50.12 Implementation Issues

50.12.1 Optimizing Immutable Conditions
There is a subtle interaction between mutability and postponement. An immutable postponed con-
dition must be treated as a postponed conditions. This first result can then be cached. The following
table shows the interaction between mutability and postponement. The Direct column indicates the
steps during the permission check, the After column indicates the step when all the permissions are
checked and found to allow the requested action.

isMutable isPostponed Direct After
fa lse false isSatisf ied() / cache
fa lse true use cache i f exists isSatisf ied(Condit ion[] , Dict io-

nary) / cache
true false isSatisf ied()
true true postpone isSatisf ied(Condit ion[] , Dict io-

nary) (grouped)

This significant optimization is leveraged by the provided BundleLocationCondit ion and
BundleSignerCondit ion classes. The Protection Domain will never have to consider conditional per-
missions that do not match the protection domain's bundle. However, a Condit ion object can also
start as a mutable condition and later become immutable. For example, a user prompt could have
the following states:

• Prompt - The user must be prompted to get the answer, the Conditional Permission Admin will
evaluate the answer to detect if it is satisfied.

• Blanket - The user, during an earlier prompt, has indicated it approves or denies access for that re-
mainder of the lifetime of the bundle. In this state, the Condit ion object has become immutable.

This specification provides a number of condition classes to bind permission sets to specific bun-
dles. However, custom code can also provide conditions. See Implementing Conditions on page 344
for more information about custom conditions.

50.12.2 Optimizing the Permission Check
Theoretically, every checkPermission method must evaluate every condition for every bundle on
the call stack. That is, the Framework Security Manager must iterate through all bundles on the
stack, run through the instantiated policy table of that bundle, evaluate all the conditions, test the
permissions, until it finds a permission that is implied. This model would be prohibitively expen-
sive.

Implementations are therefore urged to optimize the evaluation of the permission checks as much
as possible. They are free to change the algorithms described in this specification as long as the ex-
ternal effect remains the same.

One optimization is pruning the instantiated policy table. A Condit ion object can be pruned if it is
immutable.

If an immutable Condit ion object is satisfied, it can be removed from the policy's Condit ion objects
because it cannot influence the evaluation anymore. If it is not satisfied, the corresponding policy
can be completely discarded because one of the Condit ion objects is not satisfied, making it impossi-
ble for the policy to be used.

For example, assume the following policy table:

ALLOW {

Implementation Issues Conditional Permission Admin Service Specification Version 1.1

Page 350 OSGi Core Release 7

 [...BundleLocationCondition
 "http://www.acme.com/*"]
 (...SocketPermission "www.acme.com" "connect,accept")
}
ALLOW {
 [...BundleLocationCondition
 "http://www.et.com/*"]
 [...Prompt "Phone home?"]
 (...SocketPermission "www.et.com" "connect,accept")
}

Assume this table is instantiated for a bundle with a location of http://www.acme.com/bundle. jar .
The first policy's permissions can be placed in a the special Permission Collection because the Bun-
dle Location condition is immutable and in this case satisfied.

The second policy can be discarded for this bundle because it is immutable and not satisfied for the
bundle's location. Any condition that is not satisfied and immutable makes the policy ignorable.

50.12.3 Using Permission Checks in Conditions
If there is a chance that permissions will be checked in code being called by isSat isf ied , the imple-
menter of the Condition should use the AccessControl ler doPriv i leged to ensure needed permis-
sions. For example, a User Prompt Condition has the potential to cause many permission checks as
it interacts with the UI.

However, the same Condition object must not be evaluated recursively. The Framework must detect
the recursive evaluation of a Condit ion object and act as if the second invocation returns an unsatis-
fied, not postponed Condit ion object.

For example, if a User Prompt Condition is evaluated and this evaluation accesses the UI, which in
its turn checks a permission that causes the evaluation of the same User Prompt Condition, then
this second evaluation must not take place and be treated as not postponed and fa lse .

50.12.4 Concurrency
A Condition implementation is guaranteed that all evaluations necessary for a single checkPermis-
sion invocation are carried out on the same thread. However, multiple permission checks can take
place on different threads. It is the responsibility of the Condition class implementers to handle
these synchronization issues.

50.12.5 Class Loading
All conditions must come from the boot class path or from the Framework class loader. This is due
to security reasons as well as to prevent the case that there are multiple versions of the implementa-
tion packages present. Conditions can still be downloaded with bundles by using a Framework ex-
tension bundle, see Extension Bundles on page 90.

50.12.6 Condition Life Cycle
Condit ion objects will get instantiated when the framework is restarted or the Bundle Protection
Domain is created. Framework implementations can also use optimizations that cause Condit ion
objects to be created and destroyed multiple times within the lifetime of an instance of a Bundle Pro-
tection Domain. An implementation of a Condit ion class must not make any assumptions about its
creation or dereferencing.

Conditional Permission Admin Service Specification Version 1.1 Security

OSGi Core Release 7 Page 351

50.13 Security

50.13.1 Service Registry Security

50.13.1.1 Conditional Permission Admin Service

The Conditional Permission Admin service should be part of the Framework and therefore has All
Permission.

50.13.1.2 Client

ServicePermission ..ConditionalPermissionAdmin GET
PackagePermission ..condpermadmin IMPORT
AllPermission

Clients of the Conditional Permission Admin service that set permissions must themselves have All
Permission because they can give All Permission to any bundle.

50.14 org.osgi.service.condpermadmin

Conditional Permission Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.condpermadmin; vers ion="[1.1 ,2.0)"

50.14.1 Summary

• BundleLocationCondit ion - Condition to test if the location of a bundle matches or does not
match a pattern.

• BundleSignerCondit ion - Condition to test if the signer of a bundle matches or does not match a
pattern.

• Condit ion - The interface implemented by a Condition.
• Condit ionalPermissionAdmin - Framework service to administer Conditional Permissions.
• Condit ionalPermissionInfo - A list of Permissions guarded by a list of conditions with an access

decision.
• Condit ionalPermissionUpdate - Update the Conditional Permission Table.
• Condit ionInfo - Condition representation used by the Conditional Permission Admin service.

50.14.2 public class BundleLocationCondition
Condition to test if the location of a bundle matches or does not match a pattern. Since the bundle's
location cannot be changed, this condition is immutable.

Pattern matching is done according to the filter string matching rules.

Concurrency Thread-safe

50.14.2.1 public static Condition getCondition(Bundle bundle, ConditionInfo info)

bundle The Bundle being evaluated.

info The ConditionInfo from which to construct the condition. The ConditionInfo must specify one
or two arguments. The first argument of the ConditionInfo specifies the location pattern against

org.osgi.service.condpermadmin Conditional Permission Admin Service Specification Version 1.1

Page 352 OSGi Core Release 7

which to match the bundle location. Matching is done according to the filter string matching rules.
Any '*' characters in the first argument are used as wildcards when matching bundle locations un-
less they are escaped with a '\' character. The Condition is satisfied if the bundle location matches
the pattern. The second argument of the ConditionInfo is optional. If a second argument is present
and equal to "!", then the satisfaction of the Condition is negated. That is, the Condition is satisfied
if the bundle location does NOT match the pattern. If the second argument is present but does not
equal "!", then the second argument is ignored.

□ Constructs a condition that tries to match the passed Bundle's location to the location pattern.

Returns Condition object for the requested condition.

50.14.3 public class BundleSignerCondition
Condition to test if the signer of a bundle matches or does not match a pattern. Since the bundle's
signer can only change when the bundle is updated, this condition is immutable.

The condition expressed using a single String that specifies a Distinguished Name (DN) chain to
match bundle signers against. DN's are encoded using IETF RFC 2253. Usually signers use certifi-
cates that are issued by certificate authorities, which also have a corresponding DN and certificate.
The certificate authorities can form a chain of trust where the last DN and certificate is known by
the framework. The signer of a bundle is expressed as signers DN followed by the DN of its issuer
followed by the DN of the next issuer until the DN of the root certificate authority. Each DN is sepa-
rated by a semicolon.

A bundle can satisfy this condition if one of its signers has a DN chain that matches the DN chain
used to construct this condition. Wildcards (`*') can be used to allow greater flexibility in specifying
the DN chains. Wildcards can be used in place of DNs, RDNs, or the value in an RDN. If a wildcard
is used for a value of an RDN, the value must be exactly "*" and will match any value for the corre-
sponding type in that RDN. If a wildcard is used for a RDN, it must be the first RDN and will match
any number of RDNs (including zero RDNs).

Concurrency Thread-safe

50.14.3.1 public static Condition getCondition(Bundle bundle, ConditionInfo info)

bundle The Bundle being evaluated.

info The ConditionInfo from which to construct the condition. The ConditionInfo must specify one or
two arguments. The first argument of the ConditionInfo specifies the chain of distinguished names
pattern to match against the signer of the bundle. The Condition is satisfied if the signer of the bun-
dle matches the pattern. The second argument of the ConditionInfo is optional. If a second argu-
ment is present and equal to "!", then the satisfaction of the Condition is negated. That is, the Con-
dition is satisfied if the signer of the bundle does NOT match the pattern. If the second argument is
present but does not equal "!", then the second argument is ignored.

□ Constructs a Condition that tries to match the passed Bundle's location to the location pattern.

Returns A Condition which checks the signers of the specified bundle.

50.14.4 public interface Condition
The interface implemented by a Condition. Conditions are bound to Permissions using Conditional
Permission Info. The Permissions of a ConditionalPermission Info can only be used if the associated
Conditions are satisfied.

Concurrency Thread-safe

50.14.4.1 public static final Condition FALSE

A Condition object that will always evaluate to false and that is never postponed.

Conditional Permission Admin Service Specification Version 1.1 org.osgi.service.condpermadmin

OSGi Core Release 7 Page 353

50.14.4.2 public static final Condition TRUE

A Condition object that will always evaluate to true and that is never postponed.

50.14.4.3 public boolean isMutable()

□ Returns whether the Condition is mutable. A Condition can go from mutable (true) to immutable
(fa lse) over time but never from immutable (fa lse) to mutable (true).

Returns true isSatisfied() can change. Otherwise, fa lse if the value returned by isSatisfied() will not change
for this condition.

50.14.4.4 public boolean isPostponed()

□ Returns whether the evaluation must be postponed until the end of the permission check. If this
method returns fa lse (or this Condition is immutable), then this Condition must be able to directly
answer the isSatisfied() method. In other words, isSatisfied() will return very quickly since no exter-
nal sources, such as for example users or networks, need to be consulted.

This method must always return the same value whenever it is called so that the Conditional Per-
mission Admin can cache its result.

Returns true to indicate the evaluation must be postponed. Otherwise, fa lse if the evaluation can be per-
formed immediately.

50.14.4.5 public boolean isSatisfied()

□ Returns whether the Condition is satisfied. This method is only called for immediate Con-
dition objects or immutable postponed conditions, and must always be called inside a per-
mission check. Mutable postponed Condition objects will be called with the grouped version
isSatisfied(Condition[],Dictionary) at the end of the permission check.

Returns true to indicate the Conditions is satisfied. Otherwise, fa lse if the Condition is not satisfied.

50.14.4.6 public boolean isSatisfied(Condition[] conditions, Dictionary<Object, Object> context)

conditions The array of Condition objects, which must all be of the same class and mutable. The receiver must
be one of those Condition objects.

context A Dictionary object that implementors can use to track state. If this method is invoked multiple
times in the same permission check, the same Dictionary will be passed multiple times. The Secu-
rityManager treats this Dictionary as an opaque object and simply creates an empty dictionary and
passes it to subsequent invocations if multiple invocations are needed.

□ Returns whether the specified set of Condition objects are satisfied. Although this method is not
static, it must be implemented as if it were static. All of the passed Condition objects will be of the
same type and will correspond to the class type of the object on which this method is invoked. This
method must be called inside a permission check only.

Returns true if all the Condition objects are satisfied. Otherwise, fa lse if one of the Condition objects is not
satisfied.

50.14.5 public interface ConditionalPermissionAdmin
Framework service to administer Conditional Permissions. Conditional Permissions can be added to,
retrieved from, and removed from the framework. Conditional Permissions are conceptually man-
aged in an ordered table called the Conditional Permission Table.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

org.osgi.service.condpermadmin Conditional Permission Admin Service Specification Version 1.1

Page 354 OSGi Core Release 7

50.14.5.1 public ConditionalPermissionInfo addConditionalPermissionInfo(ConditionInfo[] conditions,
PermissionInfo[] permissions)

conditions The conditions that need to be satisfied to enable the specified permissions. This argument can be
nul l or an empty array indicating the specified permissions are not guarded by any conditions.

permissions The permissions that are enabled when the specified conditions, if any, are satisfied. This argument
must not be nul l and must specify at least one permission.

□ Create a new Conditional Permission Info in the Conditional Permission Table.

The Conditional Permission Info will be given a unique, never reused name. This entry will be
added at the beginning of the Conditional Permission Table with an access decision of ALLOW.

Since this method changes the Conditional Permission Table any ConditionalPermissionUpdates
that were created prior to calling this method can no longer be committed.

Returns The ConditionalPermissionInfo for the specified Conditions and Permissions.

Throws I l legalArgumentException– If no permissions are specified.

SecurityException– If the caller does not have AllPermission .

Deprecated As of 1.1. Use newConditionalPermissionUpdate() instead.

50.14.5.2 public AccessControlContext getAccessControlContext(String[] signers)

signers The signers for which to return an Access Control Context.

□ Returns the Access Control Context that corresponds to the specified signers. The returned Access
Control Context must act as if its protection domain came from a bundle that has the following
characteristics:

• It is signed by all of the given signers
• It has a bundle id of -1
• Its location is the empty string
• Its state is UNINSTALLED
• It has no headers
• It has the empty version (0.0.0)
• Its last modified time=0
• Many methods will throw I l legalStateException because the state is UNINSTALLED
• All other methods return a nul l

Returns An AccessControlContext that has the Permissions associated with the signer.

50.14.5.3 public ConditionalPermissionInfo getConditionalPermissionInfo(String name)

name The name of the Conditional Permission Info to be returned.

□ Return the Conditional Permission Info with the specified name.

Returns The Conditional Permission Info with the specified name or nul l if no Conditional Permission Info
with the specified name exists in the Conditional Permission Table.

Deprecated As of 1.1. Use newConditionalPermissionUpdate() instead.

50.14.5.4 public Enumeration<ConditionalPermissionInfo> getConditionalPermissionInfos()

□ Returns the Conditional Permission Infos from the Conditional Permission Table.

The returned Enumeration will return elements in the order they are kept in the Conditional Per-
mission Table.

Conditional Permission Admin Service Specification Version 1.1 org.osgi.service.condpermadmin

OSGi Core Release 7 Page 355

The Enumeration returned is based on a copy of the Conditional Permission Table and therefore will
not throw exceptions if the Conditional Permission Table is changed during the course of reading el-
ements from the Enumeration.

Returns An enumeration of the Conditional Permission Infos that are currently in the Conditional Permis-
sion Table.

Deprecated As of 1.1. Use newConditionalPermissionUpdate() instead.

50.14.5.5 public ConditionalPermissionInfo newConditionalPermissionInfo(String name, ConditionInfo[] conditions,
PermissionInfo[] permissions, String access)

name The name of the created Condit ionalPermissionInfo or nul l to have a unique name generated when
the returned Condit ionalPermissionInfo is committed in an update to the Conditional Permission
Table.

conditions The conditions that need to be satisfied to enable the specified permissions. This argument can be
nul l or an empty array indicating the specified permissions are not guarded by any conditions.

permissions The permissions that are enabled when the specified conditions, if any, are satisfied. This argument
must not be nul l and must specify at least one permission.

access Access decision. Must be one of the following values:

• allow
• deny

The specified access decision value must be evaluated case insensitively.

□ Creates a new ConditionalPermissionInfo with the specified fields suitable for insertion into a Con-
ditionalPermissionUpdate. The delete method on Condit ionalPermissionInfo objects created with
this method must throw UnsupportedOperationException.

Returns A Condit ionalPermissionInfo object suitable for insertion into a ConditionalPermissionUpdate.

Throws I l legalArgumentException– If no permissions are specified or if the specified access decision is not a
valid value.

Since 1.1

50.14.5.6 public ConditionalPermissionInfo newConditionalPermissionInfo(String encodedConditionalPermissionInfo)

encodedCondition-
alPermissionInfo

The encoded Condit ionalPermissionInfo . White space in the encoded Condit ionalPermissionInfo
is ignored. The access decision value in the encoded Condit ionalPermissionInfo must be evaluated
case insensitively. If the encoded Condit ionalPermissionInfo does not contain the optional name,
nul l must be used for the name and a unique name will be generated when the returned Condit ion-
alPermissionInfo is committed in an update to the Conditional Permission Table.

□ Creates a new Condit ionalPermissionInfo from the specified encoded Condit ionalPermissionInfo
string suitable for insertion into a ConditionalPermissionUpdate. The delete method on Condit ion-
alPermissionInfo objects created with this method must throw UnsupportedOperationException.

Returns A Condit ionalPermissionInfo object suitable for insertion into a ConditionalPermissionUpdate.

Throws I l legalArgumentException– If the specified encodedCondit ionalPermissionInfo is not properly for-
matted.

See Also ConditionalPermissionInfo.getEncoded()

Since 1.1

50.14.5.7 public ConditionalPermissionUpdate newConditionalPermissionUpdate()

□ Creates a new update for the Conditional Permission Table. The update is a working copy of the cur-
rent Conditional Permission Table. If the running Conditional Permission Table is modified before

org.osgi.service.condpermadmin Conditional Permission Admin Service Specification Version 1.1

Page 356 OSGi Core Release 7

commit is called on the returned update, then the call to commit on the returned update will fail.
That is, the commit method will return false and no change will be made to the running Condition-
al Permission Table. There is no requirement that commit is eventually called on the returned up-
date.

Returns A new update for the Conditional Permission Table.

Since 1.1

50.14.5.8 public ConditionalPermissionInfo setConditionalPermissionInfo(String name, ConditionInfo[] conditions,
PermissionInfo[] permissions)

name The name of the Conditional Permission Info, or nul l .

conditions The conditions that need to be satisfied to enable the specified permissions. This argument can be
nul l or an empty array indicating the specified permissions are not guarded by any conditions.

permissions The permissions that are enabled when the specified conditions, if any, are satisfied. This argument
must not be nul l and must specify at least one permission.

□ Set or create a Conditional Permission Info with a specified name in the Conditional Permission Ta-
ble.

If the specified name is nul l , a new Conditional Permission Info must be created and will be given
a unique, never reused name. If there is currently no Conditional Permission Info with the speci-
fied name, a new Conditional Permission Info must be created with the specified name. Otherwise,
the Conditional Permission Info with the specified name must be updated with the specified Con-
ditions and Permissions. If a new entry was created in the Conditional Permission Table it will be
added at the beginning of the table with an access decision of ALLOW.

Since this method changes the underlying permission table any ConditionalPermissionUpdates that
were created prior to calling this method can no longer be committed.

Returns The ConditionalPermissionInfo for the specified name, Conditions and Permissions.

Throws I l legalArgumentException– If no permissions are specified.

SecurityException– If the caller does not have AllPermission .

Deprecated As of 1.1. Use newConditionalPermissionUpdate() instead.

50.14.6 public interface ConditionalPermissionInfo
A list of Permissions guarded by a list of conditions with an access decision. Instances of this inter-
face are obtained from the Conditional Permission Admin service.

Concurrency Immutable

Provider Type Consumers of this API must not implement this type

50.14.6.1 public static final String ALLOW = "allow"

This string is used to indicate that a row in the Conditional Permission Table should return an ac-
cess decision of "allow" if the conditions are all satisfied and at least one of the permissions is im-
plied.

Since 1.1

50.14.6.2 public static final String DENY = "deny"

This string is used to indicate that a row in the Conditional Permission Table should return an ac-
cess decision of "deny" if the conditions are all satisfied and at least one of the permissions is im-
plied.

Since 1.1

Conditional Permission Admin Service Specification Version 1.1 org.osgi.service.condpermadmin

OSGi Core Release 7 Page 357

50.14.6.3 public void delete()

□ Removes this Conditional Permission Info from the Conditional Permission Table.

Since this method changes the underlying permission table, any ConditionalPermissionUpdates
that were created prior to calling this method can no longer be committed.

Throws UnsupportedOperationException– If this object was created by
ConditionalPermissionAdmin.newConditionalPermissionInfo(String) or
ConditionalPermissionAdmin.newConditionalPermissionInfo(String, ConditionInfo[] , Permis-
sionInfo[] , String) or obtained from a ConditionalPermissionUpdate. This method only functions if
this object was obtained from one of the ConditionalPermissionAdmin methods deprecated in ver-
sion 1.1.

SecurityException– If the caller does not have AllPermission .

Deprecated As of 1.1. Use ConditionalPermissionAdmin.newConditionalPermissionUpdate() instead to manage
the Conditional Permissions.

50.14.6.4 public boolean equals(Object obj)

obj The object to test for equality with this Condit ionalPermissionInfo object.

□ Determines the equality of two Condit ionalPermissionInfo objects. This method checks that speci-
fied object has the same access decision, conditions, permissions and name as this Condit ionalPer-
missionInfo object.

Returns true if obj is a Condit ionalPermissionInfo , and has the same access decision, conditions, permissions
and name as this Condit ionalPermissionInfo object; fa lse otherwise.

Since 1.1

50.14.6.5 public String getAccessDecision()

□ Returns the access decision for this Conditional Permission Info.

Returns One of the following values:

• allow - The access decision is "allow".
• deny - The access decision is "deny".

Since 1.1

50.14.6.6 public ConditionInfo[] getConditionInfos()

□ Returns the Condition Infos for the Conditions that must be satisfied to enable the Permissions.

Returns The Condition Infos for the Conditions in this Conditional Permission Info.

50.14.6.7 public String getEncoded()

□ Returns the string encoding of this Condit ionalPermissionInfo in a form suitable for restoring this
Condit ionalPermissionInfo .

The encoded format is:

 access {conditions permissions} name

where access is the access decision, conditions is zero or more encoded conditions, permissions is one or
more encoded permissions and name is the name of the Condit ionalPermissionInfo .

name is optional. If name is present in the encoded string, it must quoted, beginning and ending with
" . The name value must be encoded for proper parsing. Specifically, the " , \ , carriage return, and line
feed characters must be escaped using \" , \\ , \r , and \n , respectively.

org.osgi.service.condpermadmin Conditional Permission Admin Service Specification Version 1.1

Page 358 OSGi Core Release 7

The encoded string contains no leading or trailing whitespace characters. A single space character
is used between access and { and between } and name, if name is present. All encoded conditions and
permissions are separated by a single space character.

Returns The string encoding of this Condit ionalPermissionInfo .

Since 1.1

50.14.6.8 public String getName()

□ Returns the name of this Conditional Permission Info.

Returns The name of this Conditional Permission Info. This can be nul l if this Conditional Permission Info
was created without a name.

50.14.6.9 public PermissionInfo[] getPermissionInfos()

□ Returns the Permission Infos for the Permissions in this Conditional Permission Info.

Returns The Permission Infos for the Permissions in this Conditional Permission Info.

50.14.6.10 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

Since 1.1

50.14.6.11 public String toString()

□ Returns the string representation of this Condit ionalPermissionInfo . The string is created by calling
the getEncoded method on this Condit ionalPermissionInfo .

Returns The string representation of this Condit ionalPermissionInfo .

Since 1.1

50.14.7 public interface ConditionalPermissionUpdate
Update the Conditional Permission Table. There may be many update objects in the system at one
time. If commit is called and the Conditional Permission Table has been modified since this update
was created, then the call to commit will fail and this object should be discarded.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

50.14.7.1 public boolean commit()

□ Commit this update. If no changes have been made to the Conditional Permission Table since
this update was created, then this method will replace the Conditional Permission Table with this
update's Conditional Permissions. This method may only be successfully called once on this object.

If any of the ConditionalPermissionInfos in the update list has nul l as a name it will be replaced with
a new ConditionalPermissionInfo object that has a generated name which is unique within the list.

No two entries in this update's Conditional Permissions may have the same name. Other consisten-
cy checks may also be performed. If this update's Conditional Permissions are determined to be in-
consistent in some way then an I l legalStateException will be thrown.

This method returns fa lse if the commit did not occur because the Conditional Permission Table has
been modified since the creation of this update.

Conditional Permission Admin Service Specification Version 1.1 org.osgi.service.condpermadmin

OSGi Core Release 7 Page 359

Returns true if the commit was successful. fa lse if the commit did not occur because the Conditional Permis-
sion Table has been modified since the creation of this update.

Throws SecurityException– If the caller does not have AllPermission .

I l legalStateException– If this update's Conditional Permissions are not valid or inconsistent. For ex-
ample, this update has two Conditional Permissions in it with the same name.

50.14.7.2 public List<ConditionalPermissionInfo> getConditionalPermissionInfos()

□ This method returns the list of ConditionalPermissionInfos for this update. This list is originally
based on the Conditional Permission Table at the time this update was created. The list returned by
this method will be replace the Conditional Permission Table if commit is called and is successful.

The delete() method of the ConditionalPermissionInfos in the list must throw UnsupportedOpera-
tionException.

The list returned by this method is ordered and the most significant table entry is the first entry in
the list.

Returns A List of the ConditionalPermissionInfos which represent the Conditional Permissions maintained
by this update. Modifications to this list will not affect the Conditional Permission Table until suc-
cessfully committed. The list may be empty if the Conditional Permission Table was empty when
this update was created.

50.14.8 public class ConditionInfo
Condition representation used by the Conditional Permission Admin service.

This class encapsulates two pieces of information: a Condition type (class name), which must imple-
ment Condit ion , and the arguments passed to its constructor.

In order for a Condition represented by a Condit ionInfo to be instantiated and considered during a
permission check, its Condition class must be available from the system classpath.

The Condition class must either:

• Declare a public static getCondit ion method that takes a Bundle object and a Condit ionInfo ob-
ject as arguments. That method must return an object that implements the Condit ion interface.

• Implement the Condit ion interface and define a public constructor that takes a Bundle object and
a Condit ionInfo object as arguments.

Concurrency Immutable

50.14.8.1 public ConditionInfo(String type, String[] args)

type The fully qualified class name of the Condition represented by this Condit ionInfo .

args The arguments for the Condition. These arguments are available to the newly created Condition by
calling the getArgs() method.

□ Constructs a Condit ionInfo from the specified type and args.

Throws NullPointerException– If type is nul l .

50.14.8.2 public ConditionInfo(String encodedCondition)

encodedCondition The encoded Condit ionInfo .

□ Constructs a Condit ionInfo object from the specified encoded Condit ionInfo string. White space in
the encoded Condit ionInfo string is ignored.

Throws I l legalArgumentException– If the specified encodedCondit ion is not properly formatted.

See Also getEncoded()

org.osgi.service.condpermadmin Conditional Permission Admin Service Specification Version 1.1

Page 360 OSGi Core Release 7

50.14.8.3 public boolean equals(Object obj)

obj The object to test for equality with this Condit ionInfo object.

□ Determines the equality of two Condit ionInfo objects. This method checks that specified object has
the same type and args as this Condit ionInfo object.

Returns true if obj is a Condit ionInfo , and has the same type and args as this Condit ionInfo object; fa lse oth-
erwise.

50.14.8.4 public final String[] getArgs()

□ Returns arguments of this Condit ionInfo .

Returns The arguments of this Condit ionInfo . An empty array is returned if the Condit ionInfo has no argu-
ments.

50.14.8.5 public final String getEncoded()

□ Returns the string encoding of this Condit ionInfo in a form suitable for restoring this Condit ionInfo .

The encoded format is:

 [type "arg0" "arg1" ...]

where argN are strings that must be encoded for proper parsing. Specifically, the " , \ , carriage return,
and line feed characters must be escaped using \" , \\ , \r , and \n , respectively.

The encoded string contains no leading or trailing whitespace characters. A single space character is
used between type and "arg0" and between the arguments.

Returns The string encoding of this Condit ionInfo .

50.14.8.6 public final String getType()

□ Returns the fully qualified class name of the condition represented by this Condit ionInfo .

Returns The fully qualified class name of the condition represented by this Condit ionInfo .

50.14.8.7 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

50.14.8.8 public String toString()

□ Returns the string representation of this Condit ionInfo . The string is created by calling the getEn-
coded method on this Condit ionInfo .

Returns The string representation of this Condit ionInfo .

Permission Admin Service Specification Version 1.2 Introduction

OSGi Core Release 7 Page 361

51 Permission Admin Service
Specification

Version 1.2

51.1 Introduction
Note: The Permission Admin has been superseded by the Conditional Permission Admin. See Condi-
tional Permission Admin Service Specification on page 325.

In the Framework, a bundle can have a single set of permissions. These permissions are used to veri-
fy that a bundle is authorized to execute privileged code. For example, a Fi lePermission defines what
files can be used and in what way.

The policy of providing the permissions to the bundle should be delegated to a Management Agent.
For this reason, the Framework provides the Permission Admin service so that a Management Agent
can administrate the permissions of a bundle and provide defaults for all bundles.

Related mechanisms of the Framework are discussed in Security Overview on page 19.

51.1.1 Essentials

• Status information - The Permission Admin Service must provide status information about the
current permissions of a bundle.

• Administrative - The Permission Admin Service must allow a Management Agent to set the per-
missions before, during, or after a bundle is installed.

• Defaults - The Permission Admin Service must provide control over default permissions. These
are the permissions for a bundle with no specific permissions set.

51.1.2 Entities

• Permiss ionAdmin - The service that provides access to the permission repository of the Frame-
work.

• Permiss ionInfo - An object that holds the information needed to construct a Permission object.
• Bundle location - The string that specifies the bundle location. This is described in Bundle Identifiers

on page 113.

Figure 51.1 org.osgi.service.permissionadmin package

<<interface>>
Permission
Admin

<<class>>
Permission
Info

0..n1

java.security.
Permission

constructs

1

1
bundle location

Permission Admin service Permission Admin Service Specification Version 1.2

Page 362 OSGi Core Release 7

51.1.3 Operation
The Framework maintains a repository of permissions. These permissions are stored under the bun-
dle location string. Using the bundle location allows the permissions to be set before a bundle is
downloaded. The Framework must consult this repository when it needs the permissions of a bun-
dle. When no specific permissions are set, the bundle must use the default permissions. If no de-
fault is set, the bundle must use java.security.Al lPermission . If the default permissions are changed,
a bundle with no specific permissions must immediately start using the new default permissions.

The Permission Admin service is registered by the Framework's system bundle under the
org.osgi .service.permissionadmin.PermissionAdmin interface. This is an optional singleton service,
so at most one Permission Admin service is registered at any moment in time.

The Permission Admin service provides access to the permission repository. A Management Agent
can get, set, update, and delete permissions from this repository. A Management Agent can also use
a SynchronousBundleListener object to set the permissions during the installation or updating of a
bundle.

51.2 Permission Admin service
The Permission Admin service needs to manipulate the default permissions and the permissions
associated with a specific bundle. The default permissions and the bundle-specific permissions are
stored persistently. It is possible to set a bundle's permissions before the bundle is installed in the
Framework because the bundle's location is used to set the bundle's permissions.

The manipulation of a bundle's permissions, however, may also be done in real time when a bundle
is downloaded or just before the bundle is downloaded. To support this flexibility, a Synchronous-
BundleListener object may be used by a Management Agent to detect the installation or update of a
bundle, and set the required permissions before the installation completes.

Permissions are activated before the first time a permission check for a bundle is performed. This
means that if a bundle has opened a file, this file must remain usable even if the permission to open
that file is removed at a later time.

Permission information is not specified using java.security.Permission objects. The reason for this
approach is the relationship between the required persistence of the information across the Frame-
work restarts and the concept of class loaders in the Framework. Actual Permission classes must be
subclasses of Permission and may be exported from any bundle. The Framework can access these
permissions as long as they are exported, but the Management Agent would have to import all pos-
sible packages that contain permissions. This requirement would severely limit permission types.
Therefore, the Permission Admin service uses the PermissionInfo class to specify permission infor-
mation. Objects of this class are used by the Framework to create Permission objects.

PermissionInfo objects restrict the possible Permission objects that can be used. A Permission sub-
class can only be described by a PermissionInfo object when it has the following characteristics:

• It must be a subclass of java.security.Permission .
• It must use the two-argument public constructor type(name,act ions) .
• The class must be available to the Framework code from the system class path or from any ex-

ported package so it can be loaded by the Framework.
• The class must be public.

If any of these conditions is not met, the PermissionInfo object must be ignored and an error mes-
sage should be logged.

The permissions are always set as an array of PermissionInfo objects to make the assignment of all
permissions atomic.

Permission Admin Service Specification Version 1.2 Security

OSGi Core Release 7 Page 363

The PermissionAdmin interface provides the following methods:

• getLocations() - Returns a list of locations that have permissions assigned to them. This method
allows a Management Agent to examine the current set of permissions.

• getPermissions(Str ing) - Returns a list of PermissionInfo objects that are set for that location, or
returns nul l if no permissions are set.

• setPermissions(Str ing,PermissionInfo[]) - Associates permissions with a specific location, or re-
turns nul l when the permissions should be removed.

• getDefaultPermissions() - This method returns the list of default permissions.
• setDefaultPermissions(PermissionInfo[]) - This method sets the default permissions.

51.2.1 File Permission for Relative Path Names
A java. io.F i lePermission assigned to a bundle via the setPermissions method must receive special
treatment if the path argument for the Fi lePermission is a relative path name. A relative path name
is one that is not absolute. See the java. io.F i le . isAbsolute method for more information on absolute
path names.

When a bundle is assigned a Fi lePermission for a relative path name, the path name is taken to be
relative to the bundle's persistent storage area. This allows additional permissions, such as execute ,
to be assigned to files in the bundle's persistent storage area. For example:

 java.io.FilePermission "-" "execute"

can be used to allow a bundle to execute any file in the bundle's persistent storage area.

This only applies to Fi lePermission objects assigned to a bundle via the setPermission method. This
does not apply to default permissions. A Fi lePermission for a relative path name assigned via the
setDefaultPermission method must be ignored.

51.3 Security
The Permission Admin service is a system service that can be abused. A bundle that can access and
use the Permission Admin service has full control over the OSGi framework. However, many bun-
dles can have ServicePermission[PermissionAdmin,GET] because all methods that change the state
of the Framework require AdminPermission .

No bundle must have ServicePermission[PermissionAdmin,REGISTER] for this service because only
the Framework should provide this service.

51.4 org.osgi.service.permissionadmin

Permission Admin Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.permissionadmin; vers ion="[1.2,2.0)"

51.4.1 Summary

• PermissionAdmin - The Permission Admin service allows management agents to manage the
permissions of bundles.

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.2

Page 364 OSGi Core Release 7

• PermissionInfo - Permission representation used by the Permission Admin service.

51.4.2 public interface PermissionAdmin
The Permission Admin service allows management agents to manage the permissions of bundles.
There is at most one Permission Admin service present in the OSGi environment.

Access to the Permission Admin service is protected by corresponding ServicePermission . In addi-
tion AdminPermission is required to actually set permissions.

Bundle permissions are managed using a permission table. A bundle's location serves as the key in-
to this permission table. The value of a table entry is the set of permissions (of type PermissionInfo)
granted to the bundle named by the given location. A bundle may have an entry in the permission
table prior to being installed in the Framework.

The permissions specified in setDefaultPermissions are used as the default permissions which are
granted to all bundles that do not have an entry in the permission table.

Any changes to a bundle's permissions in the permission table will take effect no later than when
bundle's java.security.Protect ionDomain is next involved in a permission check, and will be made
persistent.

Only permission classes on the system classpath or from an exported package are consid-
ered during a permission check. Additionally, only permission classes that are subclasses of
java.security.Permission and define a 2-argument constructor that takes a name string and an actions
string can be used.

Permissions implicitly granted by the Framework (for example, a bundle's permission to access its
persistent storage area) cannot be changed, and are not reflected in the permissions returned by get-
Permissions and getDefaultPermissions .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

51.4.2.1 public PermissionInfo[] getDefaultPermissions()

□ Gets the default permissions.

These are the permissions granted to any bundle that does not have permissions assigned to its loca-
tion.

Returns The default permissions, or nul l if no default permissions are set.

51.4.2.2 public String[] getLocations()

□ Returns the bundle locations that have permissions assigned to them, that is, bundle locations for
which an entry exists in the permission table.

Returns The locations of bundles that have been assigned any permissions, or nul l if the permission table is
empty.

51.4.2.3 public PermissionInfo[] getPermissions(String location)

location The location of the bundle whose permissions are to be returned.

□ Gets the permissions assigned to the bundle with the specified location.

Returns The permissions assigned to the bundle with the specified location, or nul l if that bundle has not
been assigned any permissions.

51.4.2.4 public void setDefaultPermissions(PermissionInfo[] permissions)

permissions The default permissions, or nul l if the default permissions are to be removed from the permission ta-
ble.

Permission Admin Service Specification Version 1.2 org.osgi.service.permissionadmin

OSGi Core Release 7 Page 365

□ Sets the default permissions.

These are the permissions granted to any bundle that does not have permissions assigned to its loca-
tion.

Throws SecurityException– If the caller does not have AllPermission .

51.4.2.5 public void setPermissions(String location, PermissionInfo[] permissions)

location The location of the bundle that will be assigned the permissions.

permissions The permissions to be assigned, or nul l if the specified location is to be removed from the permission
table.

□ Assigns the specified permissions to the bundle with the specified location.

Throws SecurityException– If the caller does not have AllPermission .

51.4.3 public class PermissionInfo
Permission representation used by the Permission Admin service.

This class encapsulates three pieces of information: a Permission type (class name), which must be a
subclass of java.security.Permission , and the name and actions arguments passed to its constructor.

In order for a permission represented by a PermissionInfo to be instantiated and considered during
a permission check, its Permission class must be available from the system classpath or an exported
package. This means that the instantiation of a permission represented by a PermissionInfo may be
delayed until the package containing its Permission class has been exported by a bundle.

Concurrency Immutable

51.4.3.1 public PermissionInfo(String type, String name, String actions)

type The fully qualified class name of the permission represented by this PermissionInfo . The class must
be a subclass of java.security.Permission and must define a 2-argument constructor that takes a
name string and an actions string.

name The permission name that will be passed as the first argument to the constructor of the Permission
class identified by type .

actions The permission actions that will be passed as the second argument to the constructor of the Permis-
sion class identified by type .

□ Constructs a PermissionInfo from the specified type, name, and actions.

Throws NullPointerException– If type is nul l .

I l legalArgumentException– If action is not nul l and name is nul l .

51.4.3.2 public PermissionInfo(String encodedPermission)

encodedPermission The encoded PermissionInfo .

□ Constructs a PermissionInfo object from the specified encoded PermissionInfo string. White space in
the encoded PermissionInfo string is ignored.

Throws I l legalArgumentException– If the specified encodedPermission is not properly formatted.

See Also getEncoded()

51.4.3.3 public boolean equals(Object obj)

obj The object to test for equality with this PermissionInfo object.

□ Determines the equality of two PermissionInfo objects. This method checks that specified object has
the same type, name and actions as this PermissionInfo object.

org.osgi.service.permissionadmin Permission Admin Service Specification Version 1.2

Page 366 OSGi Core Release 7

Returns true if obj is a PermissionInfo , and has the same type, name and actions as this PermissionInfo ob-
ject; fa lse otherwise.

51.4.3.4 public final String getActions()

□ Returns the actions of the permission represented by this PermissionInfo .

Returns The actions of the permission represented by this PermissionInfo , or nul l if the permission does not
have any actions associated with it.

51.4.3.5 public final String getEncoded()

□ Returns the string encoding of this PermissionInfo in a form suitable for restoring this PermissionIn-
fo .

The encoded format is:

 (type)

or

 (type "name")

or

 (type "name" "actions")

where name and actions are strings that must be encoded for proper parsing. Specifically, the " ,\ , car-
riage return, and line feed characters must be escaped using \" , \\ , \r , and \n , respectively.

The encoded string contains no leading or trailing whitespace characters. A single space character is
used between type and "name" and between "name" and "actions".

Returns The string encoding of this PermissionInfo .

51.4.3.6 public final String getName()

□ Returns the name of the permission represented by this PermissionInfo .

Returns The name of the permission represented by this PermissionInfo , or nul l if the permission does not
have a name.

51.4.3.7 public final String getType()

□ Returns the fully qualified class name of the permission represented by this PermissionInfo .

Returns The fully qualified class name of the permission represented by this PermissionInfo .

51.4.3.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

51.4.3.9 public String toString()

□ Returns the string representation of this PermissionInfo . The string is created by calling the getEn-
coded method on this PermissionInfo .

Returns The string representation of this PermissionInfo .

URL Handlers Service Specification Version 1.0 Introduction

OSGi Core Release 7 Page 367

52 URL Handlers Service Specification

Version 1.0

52.1 Introduction
This specification standardizes the mechanism to extend the Java run-time with new URL schemes
and content handlers through bundles. Dynamically extending the URL schemes that are supported
in an OSGi framework is a powerful concept.

This specification is necessary because the standard Java mechanisms for extending the URL class
with new schemes and different content types is not compatible with the dynamic aspects of an
OSGi framework. The registration of a new scheme or content type is a one time only action in Ja-
va, and once registered, a scheme or content type can never be revoked. This singleton approach to
registration makes the provided mechanism impossible to use by different, independent bundles.
Therefore, it is necessary for OSGi Framework implementations to hide this mechanism and pro-
vide an alternative mechanism that can be used.

52.1.1 Essentials

• Multiple Access - Multiple bundles should be allowed to register ContentHandler objects and
URLStreamHandler objects.

• Existing Schemes Availability - Existing schemes in an OSGi framework should not be overridden.
• life cycle Monitored - The life cycle of bundles must be supported. Scheme handlers and content

type handlers must become unavailable when the registering bundle is stopped.
• Simplicity - Minimal effort should be required for a bundle to provide a new URL scheme or con-

tent type handler.

52.1.2 Entities

• Scheme - An identifier for a specific protocol. For example, "http" is a scheme for the Hyper Text
Transfer Protocol. A scheme is implemented in a java.net.URLStreamHandler sub-class.

• Content Type - An identifier for the type of the content. Content types are usually referred to as
MIME types. A content type handler is implemented as a java.net.ContentHandler sub-class.

• Uniform Resource Locator (URL) - An instance of the java.net.URL class that holds the name of a
scheme with enough parameters to identify a resource for that scheme.

• Factory - An object that creates other objects. The purpose is to hide the implementation types
(that may vary) from the caller. The created objects are a subclass/implementation of a specific
type.

• Proxy - The object that is registered with Java and that forwards all calls to the real implementa-
tion that is registered with the service registry.

• java.net.URLStreamHandler - An instance of the java.net.URLStreamHandler class that can create
URLConnection objects that represent a connection for a specific protocol.

• Singleton Operation - An operation that can only be executed once.
• URLStreamHandlerService - An OSGi service interface that contains the methods of the

URLStreamHandler class with public visibility so they can be called from the Framework.
• AbstractURLStreamHandlerService - An implementation of the URLStreamHandlerService inter-

face that implements the interface's methods by calling the implementation of the super class

Introduction URL Handlers Service Specification Version 1.0

Page 368 OSGi Core Release 7

(java.net.ur l .URLStreamHandler). This class also handles the setting of the java.net.URL object
via the java.net.URLStreamHandlerSetter interface.

• URLStreamHandlerSetter - An interface needed to abstract the setting of the java.net.URL object.
This interface is related to the use of a proxy and security checking.

• java.net.URLStreamHandlerFactory - A factory, registered with the java.net.URL class, that is used
to find java.net.URLStreamHandler objects implementing schemes that are not implemented
by the Java environment. Only one java.net.URLStreamHandlerFactory object can be registered
with Java.

• java.net.URLConnection - A connection for a specific, scheme-based protocol. A
java.net.URLConnection object is created by a java.net.URLStreamHandler object when the
java.net.URL.openConnection method is invoked.

• java.net.ContentHandler - An object that can convert a stream of bytes to a Java object. The class of
this Java object depends on the MIME type of the byte stream.

• java.net.ContentHandlerFactory - A factory that can extend the set of java.net.ContentHandler ob-
jects provided by the java.net.URLConnection class, by creating new ones on demand. Only one
java.net.ContentHandlerFactory object can be registered with the java.net.URLConnection class.

• MIME Type - A namespace for byte stream formats. See [2] MIME Multipurpose Internet Mail Exten-
sion.

The following class diagram is surprisingly complex due to the complicated strategy that Java uses
to implement extendable stream handlers and content handlers.

URL Handlers Service Specification Version 1.0 Introduction

OSGi Core Release 7 Page 369

Figure 52.1 Class Diagram, java.net (URL and associated classes)

java.net.URL

java.net.URL
StreamHandler

java.net.URL
StreamHandler
Factory

java.net.URL
Connection

java.net.Content
Handler

java.net.Content
HandlerFactory

<<interface>>
URLStream
HandlerServ.

URLConnection
subclass impl.

URL Stream
Handler Proxy
impl.

Content Handler
Proxy impl.

Stream Handler
implement.

Content Handler
implement.

URL Stream
Handler Fact.
impl.

URL Content
handler Fact.
implement.

1

0..1

gets URLStreamHandlers
from

0..*

1

is tracked by

gets content via

1

0..1

1 0..*

is found in registry by (keyed by m
im

e)

0..*

0..1

<<interface>>
URLStream
HandlerSetter

setURL

AbstractURL
Stream
HandlerServ.

creates connections of

is called by

0..* 1

52.1.3 Operation
A bundle that can implement a new URL scheme should register a service object under the
URLStreamHandlerService interface with the OSGi Framework. This interface contains public ver-
sions of the java.net.URLStreamHandler class methods, so that these methods can be called by the
proxy (the object that is actually registered with the Java run-time).

The OSGi Framework implementation must make this service object available to the underlying
java.net implementation. This must be supported by the OSGi Framework implementation because
the java.net.URL .setStreamHandlerFactory method can only be called once, making it impossible to
use by bundles that come and go.

Bundles that can convert a content-typed stream should register a service object under the name
java.net.ContentHandler . These objects should be made available by the OSGi Framework to the
java.net.URLConnection class.

Factories in java.net URL Handlers Service Specification Version 1.0

Page 370 OSGi Core Release 7

52.2 Factories in java.net
Java provides the java.net.URL class which is used by the OSGi Framework and many of the bundles
that run on the OSGi framework. A key benefit of using the URL class is the ease with which a URL
string is translated into a request for a resource.

The extensibility of the java.net.URL class allows new schemes (protocols) and content types to
be added dynamically using java.net.URLStreamHandlerFactory objects. These new handlers al-
low existing applications to use new schemes and content types in the same way as the handlers
provided by the Java run-time environment. This mechanism is described in the Javadoc for the
URLStreamHandler and ContentHandler class.

For example, the URL http://www.osgi .org/sample.txt addresses a file on the OSGi web server that
is obtained with the HTTP scheme (usually a scheme provided by the Java run-time). A URL such as
rsh://www.acme.com/agent.z ip is addressing a ZIP file that can be obtained with the non-built-in
RSH scheme. A java.net.URLStreamHandlerFactory object must be registered with the java.net.URL
class prior to the successful use of an RSH scheme.

There are several problems with using only the existing Java facilities for extending the handlers
used by the java.net.URL class:

• Factories Are Singleton Operations - One java.net.URLStreamHandlerFactory object can be regis-
tered once with the java.net.URL class. Similarly, one java.net.ContentHandlerFactory object can
be registered once with the java.net.URLConnection class. It is impossible to undo the registra-
tion of a factory or register a replacement factory.

• Caching Of Schemes - When a previously unused scheme is first used by the java.net.URL
class, the java.net.URL class requests a java.net.URLStreamHandler object for that specific
scheme from the currently registered java.net.URLStreamHandlerFactory object. A returned
java.net.URLStreamHandler object is cached and subsequent requests for that scheme use the
same java.net.URLStreamHandler object. This means that once a handler has been constructed
for a specific scheme, this handler can no longer be removed, nor replaced, by a new handler for
that scheme. This caching is likewise done for java.net.ContentHandler objects.

Both problems impact the OSGi operating model, which allows a bundle to go through different life
cycle stages that involve exposing services, removing services, updating code, replacing services pro-
vided by one bundle with services from another, etc. The existing Java mechanisms are not compati-
ble when used by bundles.

52.3 Framework Procedures
The OSGi Framework must register a java.net.URLStreamHandlerFactory object and a
java.net.ContentHandlerFactory object with the java.net.URL.setURLStreamHandlerFactory and
java.net.URLConnection.setContentHandlerFactory methods, respectively.

When these two factories are registered, the OSGi Framework service registry must be tracked for
the registration of URLStreamHandlerService services and java.net.ContentHandler services.

A URL Stream Handler Service must be associated with a service registration property named
URL_HANDLER_PROTOCOL . The value of this url .handler.protocol property must be an array of
scheme names (Str ing[] or Str ing).

A Content Handler service must be associated with a service registration property named
URL_CONTENT_MIMETYPE . The value of the URL_CONTENT_MIMETYPE property must be an array
of MIME types names (Str ing[] or Str ing) in the form type/subtype. See [2] MIME Multipurpose Inter-
net Mail Extension.

URL Handlers Service Specification Version 1.0 Framework Procedures

OSGi Core Release 7 Page 371

52.3.1 Constructing a Proxy and Handler
When a URL is used with a previously unused scheme, it must query the registered
java.net.URLStreamHandlerFactory object (that should have been registered by the OSGi Frame-
work). The OSGi Framework must then search the service registry for services that are registered un-
der URLStreamHandlerService and that match the requested scheme.

If one or more service objects are found, a proxy object must be constructed. A proxy object is neces-
sary because the service object that provides the implementation of the java.net.URLStreamHandler
object can become unregistered and Java does not provide a mechanism to withdraw a
java.net.URLStreamHandler object once it is returned from a java.net.URLStreamHandlerFactory
object.

Once the proxy is created, it must track the service registry for registrations and unregistrations of
services matching its associated scheme. The proxy must be associated with the service that match-
es the scheme and has the highest value for the org.osgi .f ramework.Constants.SERVICE_RANKING
service registration property (see Service Properties on page 137) at any moment in time. If a proxy is
associated with a URL Stream Handler Service, it must change the associated handler to a newly reg-
istered service when that service has a higher value for the ranking property.

The proxy object must forward all method requests to the associated URL Stream Handler Service
until this service object becomes unregistered.

Once a proxy is created, it cannot be withdrawn because it is cached by the Java run-time. How-
ever, service objects can be withdrawn and it is possible for a proxy to exist without an associated
URLStreamHandlerService/java.net.ContentHandler object.

In this case, the proxy must handle subsequent requests until another appropriate service is regis-
tered. When this happens, the proxy class must handle the error.

In the case of a URL Stream Handler proxy, it must throw a java.net.MalformedURLException
exception if the signature of a method allows throwing this exception. Otherwise, a
java. lang. I l legalStateException exception is thrown.

In the case of a Content Handler proxy, it must return InputStream to the data.

Bundles must ensure that their URLStreamHandlerService or java.net.ContentHandler service ob-
jects throw these exceptions also when they have become unregistered.

Proxies for Content Handler services operate slightly differently from URL Stream Handler Service
proxies. In the case that nul l is returned from the registered ContentHandlerFactory object, the fac-
tory will not get another chance to provide a ContentHandler object for that content-type. Thus, if
there is no built-in handler, nor a registered handler for this content-type, a ContentHandler proxy
must be constructed that returns the InputStream object from the URLConnection object as the con-
tent object until a handler is registered.

52.3.2 Built-in Handlers
Implementations of Java provide a number of sub-classes of java.net.URLStreamHandler classes that
can handle protocols like HTTP, FTP, NEWS etc. Most Java implementations provide a mechanism
to add new handlers that can be found on the class path through class name construction.

If a registered java.net.URLStreamHandlerFactory object returns nul l for a built-in handler (or one
that is available through the class name construction mechanism), it will never be called again for
that specific scheme because the Java implementation will use its built-in handler or uses the class
name construction.

As a result, even though it is not forbidden for URL Handlers Service implementations to override
built-in handlers, it is not possible to guarantee that a registered URLStreamHandlerService object
will be used when it is overriding a built-in handler. For consistency reasons, it is therefore recom-
mended to never override built-in handlers.

Framework Procedures URL Handlers Service Specification Version 1.0

Page 372 OSGi Core Release 7

The Content Handler Factory is implemented using a similar technique and has therefore the same
problems.

To facilitate the discovery of built-in handlers that are available through the name construction,
the method described in the next section must be used by the Framework before any handlers are
searched for in the service registry.

52.3.3 Finding Built-in Handlers
If the system properties java.protocol .handler.pkgs or java.content.handler.pkgs are defined, they
must be used to locate built-in handlers. Each property must be defined as a list of package names
that are separated by a vertical line (' | ' \u007C) and that are searched in the left-to-right order (the
names must not end in a full stop ('.' \u002E). For example:

org.osgi.impl.handlers | com.acme.url

The package names are the prefixes that are put in front of a scheme or content type to form a class
name that can handle the scheme or content-type.

A URL Stream Handler name for a scheme is formed by appending the string ".Handler" to the
scheme name. Using the packages in the previous example, the rsh scheme handler class is searched
by the following names:

org.osgi.impl.handlers.rsh.Handler
com.acme.url.rsh.Handler

MIME type names contain the solidus (' / ' \u002F) character and can contain other characters that
must not be part of a Java class name. A MIME type name must be processed as follows before it can
be converted to a class name:

1. First, all solidi in the MIME name must be converted to a full stop ('.' \u002E). All other charac-
ters that are not allowed in a Java class name must be converted to an underscore ('_ ' \u005F).

application/zip application.zip
text/uri-list text.uri_list
image/vnd.dwg image.vnd_dwg

2. After this conversion, the name is appended to the list of packages specified in
java.content.handler.pkgs . For example, if the content type is appl icat ion/zip, and the packages
are defined as in the previous example, then the following classes are searched:

org.osgi.impl.handlers.application.zip
com.acme.url.application.zip

The Java run-time specific packages should be listed in the appropriate properties so that implemen-
tations of the URL Stream Handler Factory and Content Handler Factory can be made aware of these
packages.

52.3.4 Protected Methods and Proxy
Implementations of java.net.URLStreamHandler class cannot be registered in the service registry
for use by the proxy because the methods of the URLStreamHandler class are protected and thus
not available to the proxy implementation. Also, the URLStreamHandler class checks that only the
URLStreamHandler object that was returned from the URLStreamHandlerFactory object can invoke
the setURL method. This means that URLStreamHandler objects in the service registry would be
unable to invoke the setURL method. Invoking this method is necessary when implementing the
parseURL method.

URL Handlers Service Specification Version 1.0 Framework Procedures

OSGi Core Release 7 Page 373

Therefore, the URLStreamHandlerService and URLStreamHandlerSetter interfaces were created.
The URLStreamHandlerService interface provides public versions of the URLStreamHandler meth-
ods, except that the setURL method is missing and the parseURL method has a new first argument
of type URLStreamHandlerSetter . In general, sub-classes of the URLStreamHandler class can be con-
verted to URLStreamHandlerService classes with minimal code changes. Apart from making the rel-
evant methods public, the parseURL method needs to be changed to invoke the setURL method on
the URLStreamHandlerSetter object that the URLStreamHandlerService object was passed, rather
then the setURL method of URLStreamHandler class.

Figure 52.2 Proxy Issues

<<<interface>>
URLStream
HandlerService

forward all methods
Proxy Impl, the
actual URL
Stream Handler.

URLStream
Handler Impl.

java.net.
URLStreamHandler

<<interface>>
URLStream
HandlerSetter

setURL is called by

called by
Java

To aid in the conversion of URLStreamHandler implementation classes, the Abstrac-
tURLStreamHandlerService has been provided. Apart from making the relevant methods public, the
AbstractURLStreamHandlerService stores the URLStreamHandlerSetter object in a private variable.
To make the setURL method work properly, it overrides the setURL method to invoke the setURL
method on the saved URLStreamHandlerSetter object rather then the URLStreamHandler.setURL
method. This means that a subclass of URLStreamHandler should be changed to become a sub-class
of the AbstractURLStreamHandlerService class and be recompiled.

Normally, the parseURL method will have the following form:

class URLStreamHandlerImpl {
 ...
 protected URLStreamHandlerSetter realHandler;
 ...
 public void parseURL(
 URLStreamHandlerSetter realHandler,
 URL u, String spec, int start, int limit) {
 this.realHandler = realHandler;
 parseURL(u, spec, start, limit);
 }
 protected void setURL(URL u,
 String protocol, String host,
 int port, String authority,
 String userInfo, String path,
 String query,String ref) {
 realHandler.setURL(u, protocol, host,
 port, authority, userInfo, path,
 query, ref);
 }
 ...
}

Providing a New Scheme URL Handlers Service Specification Version 1.0

Page 374 OSGi Core Release 7

The URLStreamHandler.parseURL method will call the setURL method which must be invoked
on the proxy rather than this . That is why the setURL method is overridden to delegate to the
URLStreamHandlerSetter object in realHandler as opposed to super .

52.3.5 Stream Handlers that use java.net.Proxy
Java 1.5 introduced a new method on the URLStreamHandler class: URLConnection
openConnection(URL,Proxy) . Adding this method to the URL Stream Handler service poses the fol-
lowing problems:

• It would have broken all existing implementations.
• The references to the java.net.Proxy class would make the API dependent on Java 1.5

Therefore, scheme providers can optionally implement the openConnection(URL,Proxy) method as
a public method. If the scheme provider implements this method, then the framework must call it
(using reflection). If this method is not implemented in the URL Stream Handler service an Unsup-
ported Operation Exception must be thrown.

Framework implementations should be careful not to create unwanted dependencies on Java 1.5.
This will require two different implementation classes for the URLStreamHandler class that is used
to proxy the URL Stream Handler services.

52.4 Providing a New Scheme
The following example provides a scheme that returns the path part of the URL. The first class
that is implemented is the URLStreamHandlerService . When it is started, it registers itself with
the OSGi Framework. The OSGi Framework calls the openConnection method when a new
java.net.URLConnection must be created. In this example, a DataConnection object is returned.

public class DataProtocol
 extends AbstractURLStreamHandlerService
 implements BundleActivator {
 public void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(URLConstants.URL_HANDLER_PROTOCOL,
 new String[] { "data" });
 context.registerService(
 URLStreamHandlerService.class.getName(),
 this, properties);
 }
 public void stop(BundleContext context) {}

 public URLConnection openConnection(URL url) {
 return new DataConnection(url);
 }
}

The following example DataConnection class extends java.net.URLConnection and overrides
the constructor so that it can provide the URL object to the super class, the connect method,
and the getInputStream method. This last method returns the path part of the URL as an
java. io. InputStream object.

class DataConnection extends java.net.URLConnection{
 DataConnection(URL url) {super(url);}
 public void connect() {}

URL Handlers Service Specification Version 1.0 Providing a Content Handler

OSGi Core Release 7 Page 375

 public InputStream getInputStream() throws IOException {
 String s = getURL().getPath();
 byte [] buf = s.getBytes();
 return new ByteArrayInputStream(buf,1,buf.length-1);
 }
 public String getContentType() {
 return "text/plain";
 }
}

52.5 Providing a Content Handler
A Content Handler should extend the java.net.ContentHandler class and implement the getCon-
tent method. This method must get the InputStream object from the java.net.URLConnection pa-
rameter object and convert the bytes from this stream to the applicable type. In this example, the
MIME type is text/plain and the return object is a Str ing object.

public class TextPlainHandler extends ContentHandler
 implements BundleActivator {

 public void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(URLConstants.URL_CONTENT_MIMETYPE,
 new String[] { "text/plain" });
 context.registerService(
 ContentHandler.class.getName(),
 this, properties);
 }
 public void stop(BundleContext context) {}

 public Object getContent(URLConnection conn)
 throws IOException {
 InputStream in = conn.getInputStream();
 InputStreamReader r = new InputStreamReader(in);
 StringBuffer sb = new StringBuffer();
 int c;
 while ((c=r.read()) >= 0)
 sb.append((char) c);
 r.close(); in.close();
 return sb.toString();
 }
}

52.6 Security Considerations
The ability to specify a protocol and add content handlers makes it possible to directly affect the be-
havior of a core Java VM class. The java.net.URL class is widely used by network applications and
can be used by the OSGi Framework itself.

Therefore, care must be taken when providing the ability to register handlers. The two
types of supported handlers are URLStreamHandlerService and java.net.ContentHandler .
Only trusted bundles should be allowed to register these services and have

org.osgi.service.url URL Handlers Service Specification Version 1.0

Page 376 OSGi Core Release 7

ServicePermission[URLStreamHandlerService|ContentHandler, REGISTER] for these
classes. Since these services are made available to other bundles through the java.net.URL
class and java.net.URLConnection class, it is advisable to deny the use of these services
(ServicePermission[<name>, GET]) to all, so that only the Framework can get them. This pre-
vents the circumvention of the permission checks done by the java.net.URL class by using the
URLStreamHandlerServices service objects directly.

52.7 org.osgi.service.url

URL Stream and Content Handlers Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.ur l ; vers ion="[1.0,2.0)"

52.7.1 Summary

• AbstractURLStreamHandlerService - Abstract implementation of the URLStreamHandlerSer-
vice interface.

• URLConstants - Defines standard names for property keys associated with URLStreamHan-
dlerService and java.net.ContentHandler services.

• URLStreamHandlerService - Service interface with public versions of the protected
java.net.URLStreamHandler methods.

• URLStreamHandlerSetter - Interface used by URLStreamHandlerService objects to call the se-
tURL method on the proxy URLStreamHandler object.

52.7.2 public abstract class AbstractURLStreamHandlerService
extends URLStreamHandler
implements URLStreamHandlerService
Abstract implementation of the URLStreamHandlerService interface. All the methods simply in-
voke the corresponding methods on java.net.URLStreamHandler except for parseURL and setURL ,
which use the URLStreamHandlerSetter parameter. Subclasses of this abstract class should not need
to override the setURL and parseURL(URLStreamHandlerSetter, . . .) methods.

Concurrency Thread-safe

52.7.2.1 protected volatile URLStreamHandlerSetter realHandler

The URLStreamHandlerSetter object passed to the parseURL method.

52.7.2.2 public AbstractURLStreamHandlerService()

52.7.2.3 public boolean equals(URL u1, URL u2)

□ This method calls super.equals(URL,URL) .

See Also java.net.URLStreamHandler.equals(URL,URL)

52.7.2.4 public int getDefaultPort()

□ This method calls super.getDefaultPort .

See Also java.net.URLStreamHandler.getDefaultPort

URL Handlers Service Specification Version 1.0 org.osgi.service.url

OSGi Core Release 7 Page 377

52.7.2.5 public InetAddress getHostAddress(URL u)

□ This method calls super.getHostAddress .

See Also java.net.URLStreamHandler.getHostAddress

52.7.2.6 public int hashCode(URL u)

□ This method calls super.hashCode(URL) .

See Also java.net.URLStreamHandler.hashCode(URL)

52.7.2.7 public boolean hostsEqual(URL u1, URL u2)

□ This method calls super.hostsEqual .

See Also java.net.URLStreamHandler.hostsEqual

52.7.2.8 public abstract URLConnection openConnection(URL u) throws IOException

See Also java.net.URLStreamHandler.openConnection

52.7.2.9 public void parseURL(URLStreamHandlerSetter realHandler, URL u, String spec, int start, int limit)

realHandler The object on which the setURL method must be invoked for the specified URL.

□ Parse a URL using the URLStreamHandlerSetter object. This method sets the realHandler field with
the specified URLStreamHandlerSetter object and then calls parseURL(URL,Str ing, int , int) .

See Also java.net.URLStreamHandler.parseURL

52.7.2.10 public boolean sameFile(URL u1, URL u2)

□ This method calls super.sameFi le .

See Also java.net.URLStreamHandler.sameFi le

52.7.2.11 protected void setURL(URL u, String proto, String host, int port, String file, String ref)

□ This method calls realHandler.setURL(URL,Str ing,Str ing, int ,Str ing,Str ing) .

See Also java.net.URLStreamHandler.setURL(URL,Str ing,Str ing, int ,Str ing,Str ing)

Deprecated This method is only for compatibility with handlers written for JDK 1.1.

52.7.2.12 protected void setURL(URL u, String proto, String host, int port, String auth, String user, String path, String
query, String ref)

□ This method calls realHandler.setURL(URL,Str ing,Str ing, int ,Str ing,Str ing,Str ing,Str ing) .

See Also java.net.URLStreamHandler.setURL(URL,Str ing,Str ing, int ,Str ing,Str ing,Str ing,Str ing)

52.7.2.13 public String toExternalForm(URL u)

□ This method calls super.toExternalForm .

See Also java.net.URLStreamHandler.toExternalForm

52.7.3 public interface URLConstants
Defines standard names for property keys associated with URLStreamHandlerService and
java.net.ContentHandler services.

org.osgi.service.url URL Handlers Service Specification Version 1.0

Page 378 OSGi Core Release 7

The values associated with these keys are of type java. lang.Str ing[] or java. lang.Str ing , unless other-
wise indicated.

Provider Type Consumers of this API must not implement this type

52.7.3.1 public static final String URL_CONTENT_MIMETYPE = "url.content.mimetype"

Service property naming the MIME types serviced by a java.net.ContentHandler. The property's val-
ue is a MIME type or an array of MIME types.

52.7.3.2 public static final String URL_HANDLER_PROTOCOL = "url.handler.protocol"

Service property naming the protocols serviced by a URLStreamHandlerService. The property's val-
ue is a protocol name or an array of protocol names.

52.7.4 public interface URLStreamHandlerService
Service interface with public versions of the protected java.net.URLStreamHandler methods.

The important differences between this interface and the URLStreamHandler class are that the se-
tURL method is absent and the parseURL method takes a URLStreamHandlerSetter object as the first
argument. Classes implementing this interface must call the setURL method on the URLStreamHan-
dlerSetter object received in the parseURL method instead of URLStreamHandler.setURL to avoid a
SecurityException .

See Also AbstractURLStreamHandlerService

Concurrency Thread-safe

52.7.4.1 public boolean equals(URL u1, URL u2)

See Also java.net.URLStreamHandler.equals(URL, URL)

52.7.4.2 public int getDefaultPort()

See Also java.net.URLStreamHandler.getDefaultPort

52.7.4.3 public InetAddress getHostAddress(URL u)

See Also java.net.URLStreamHandler.getHostAddress

52.7.4.4 public int hashCode(URL u)

See Also java.net.URLStreamHandler.hashCode(URL)

52.7.4.5 public boolean hostsEqual(URL u1, URL u2)

See Also java.net.URLStreamHandler.hostsEqual

52.7.4.6 public URLConnection openConnection(URL u) throws IOException

See Also java.net.URLStreamHandler.openConnection

52.7.4.7 public void parseURL(URLStreamHandlerSetter realHandler, URL u, String spec, int start, int limit)

realHandler The object on which setURL must be invoked for this URL.

□ Parse a URL. This method is called by the URLStreamHandler proxy, instead of
java.net.URLStreamHandler.parseURL , passing a URLStreamHandlerSetter object.

See Also java.net.URLStreamHandler.parseURL

52.7.4.8 public boolean sameFile(URL u1, URL u2)

See Also java.net.URLStreamHandler.sameFi le

URL Handlers Service Specification Version 1.0 References

OSGi Core Release 7 Page 379

52.7.4.9 public String toExternalForm(URL u)

See Also java.net.URLStreamHandler.toExternalForm

52.7.5 public interface URLStreamHandlerSetter
Interface used by URLStreamHandlerService objects to call the setURL method on the proxy
URLStreamHandler object.

Objects of this type are passed to the
URLStreamHandlerService.parseURL(URLStreamHandlerSetter, URL, String, int, int) method. In-
voking the setURL method on the URLStreamHandlerSetter object will invoke the setURL method
on the proxy URLStreamHandler object that is actually registered with java.net.URL for the protocol.

Concurrency Thread-safe

52.7.5.1 public void setURL(URL u, String protocol, String host, int port, String file, String ref)

See Also java.net.URLStreamHandler.setURL(URL,Str ing,Str ing, int ,Str ing,Str ing)

Deprecated This method is only for compatibility with handlers written for JDK 1.1.

52.7.5.2 public void setURL(URL u, String protocol, String host, int port, String authority, String userInfo, String path,
String query, String ref)

See Also java.net.URLStreamHandler.setURL(URL,Str ing,Str ing, int ,Str ing,Str ing,Str ing,Str ing)

52.8 References

[1] URLs
http://www.ietf.org/rfc/rfc1738.txt

[2] MIME Multipurpose Internet Mail Extension
http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html

[3] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

http://www.ietf.org/rfc/rfc1738.txt
http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html
http://www.iana.org/assignments/media-types

References URL Handlers Service Specification Version 1.0

Page 380 OSGi Core Release 7

Resolver Hook Service Specification Version 1.0 Introduction

OSGi Core Release 7 Page 381

53 Resolver Hook Service
Specification

Version 1.0

53.1 Introduction
The module layer is responsible for the resolve operation that wires requirements (Import-Package,
Require-Bundle etc.) to capabilities (Export-Package, Bundle-SymbolicName/Bundle-Version etc.).
The resolve operation is designed to work stand-alone but in certain use cases it is important to be
able to influence the resolver's decisions. This specification defines a Resolver Hook Factory service
that allows third party bundles to influence the resolve operation. Primary use cases for this hook
are scoping of groups of bundles. However, the hooks also allows bundle to find out about, and con-
trol, the resolve operation for other purposes.

53.1.1 Essentials

• Reduction - Allow third party bundles to remove capabilities from a set of capabilities that match-
es a requirement.

• Complete - Support all built-in namespaces as well as the generic capability and requirement
headers.

• Singletons - Allow third party bundles to remove candidates from a set of singleton capabilities
before the resolver selects one.

• Secure - Support full security but allow operation without security present.

53.1.2 Entities

• Resolver Hook Factory - The service registered by a bundle that wants to control the resolve opera-
tion. This service is used to create an instance of the Resolver Hook for each resolve operation.

• Resolver Hook - Is created by the Resolver Hook Factory service for each resolver process. Is con-
sulted to reduce candidate capabilities for resolving and selecting singletons.

• Client - A bundle that is considered during the resolve operation.
• Handler - A bundle that registers a Resolver Hook Factory service for influencing the resolve oper-

ation.
• Bundle Capability - A capability represents a feature of a bundle described with attributes and di-

rectives defined in a namespace. Some namespaces are built-in to the OSGi framework, others
are generic.

• Bundle Requirement - A requirement represents a need from a bundle described as a filter on the at-
tributes of a Bundle Capability.

• Provider - A bundle that provides a Bundle Capability.
• Consumer - A bundle that requires a Bundle Capability
• Resolver - The internal framework machinery that resolves requirements to providers with

matching capabilities.

Resolve Operation Resolver Hook Service Specification Version 1.0

Page 382 OSGi Core Release 7

Figure 53.1 Resolver Hooks Entities

Find Hook Impl

Resolver Impl

<<interface>>
Resolver Hook

<<service>>
Resolver Hook
Factory

0..n

1

Resolver Hook
Factory Impl

Resolver Hook
Impl

10..n

1

0..n

53.1.3 Synopsis
A handler bundle that needs to manage the wiring between bundles must register a Resolver Hook
Factory service. For each resolve operation the Resolver needs to perform, the framework asks each
Resolver Hook Factory service for a new Resolver Hook specific for the operation. During the resolve
operation, the Resolver will allow the Resolver Hooks to remove candidate solutions and assist in se-
lecting singletons.

53.2 Resolve Operation

53.2.1 Trigger Bundles
The Resolver is triggered by activity in the OSGi framework. Calling certain methods on a bundle
when a bundle is in the INSTALLED state will cause the framework to begin a resolve operation in or-
der to resolve the bundle. Other API can also trigger a resolver. Frameworks can resolve on a per
bundle basis or they can resolve a number of bundles atomically in one operation. The bundles that
trigger a resolve operation are called the trigger bundles. The trigger bundles can be defined by the
following cases:

• Root Bundle - Calling certain methods on a bundle when a bundle is in the INSTALLED state will
cause the framework to begin a resolve operation in order to resolve the bundle. In general, a bun-
dle needs to be resolved when its class loader is needed. The following Bundle methods will start
a resolve operation when the subject is not yet resolved:
• start
• loadClass
• f indEntr ies
• getResource
• getResources

• Resolve Bundles - The set of bundle revisions of the unresolved bundles given as argument, or their
default when nul l is used, to the Framework Wiring resolveBundles method. See Using the Wiring
API on page 158.

Resolver Hook Service Specification Version 1.0 Resolve Operation

OSGi Core Release 7 Page 383

• Refresh Bundles - A refresh operation will have to re-resolve the bundles that will be unresolved in
the refresh. The trigger bundles are then the bundle revisions of the dependency closure, which
is described in Refreshing on page 167.

• Dynamic Import - A Dynamic Import can require the framework to start a resolve operation.
• Other - The Resolver Hook is a service so other parties can to start a resolver operation to run

what-if scenarios or for other purposes.

53.2.2 Resolving Types
Various types of resolve operations can be initiated:

• Static - A static bundle resolve operation. This resolve operation is necessary any time one or
more bundles transitions from the INSTALLED state to the RESOLVED state. During this resolve
operation the framework attempts to resolve static requirements specified by the bundles being
resolved.

• Dynamic - A dynamic import must be resolved.

The resolve operation is not limited to the trigger bundles only, they just provide the root bundles
that must be resolved. The Resolver is free to consider any present bundle to provide the required ca-
pabilities. If such bundles are in the INSTALLED state then they can also become a candidate to be re-
solved. The resolver is also free to use bundles that are actually not installed in the framework, for
example for what-if scenarios.

53.2.3 Preparing Handlers
Once the resolver is triggered, it must prepare the Handlers to participate in the resolve operation.
A Handler is an active bundle that needs to participate in the resolve operation, there can be multi-
ple Handlers in a framework. A Handler must register a Resolver Hook Factory service. This service
is the interface between a Handler bundle, a bundle that will handle some aspects of the resolve op-
eration, and the Resolver.

To prepare the Handlers, the Resolver must request a new Resolver Hook from each of the registered
Resolver Hook Factory services with the begin(Col lect ion) method. The parameter is the set of trig-
ger bundles. The Handler is expected to create a new ResolverHook object for each call. If nul l is re-
turned then the Handler abstains from participation. A Resolver Hook Factory must be thread-safe
and allow the creation of independent Resolver Hook objects that can be active on multiple threads.

A Resolver Hook is created for a single atomic resolve operation and does not have to be thread safe.
The Resolver must ensure that access to the Resolver Hook is serialized, that is, the can only be ac-
tive from a single thread. The ResolverHook object is called multiple times during a resolve opera-
tion to influence the outcome of a resolve operation. The following operations are provided:

• f i l terResolvable(Col lect ion) - Removes bundles that are candidates for resolving so they do not
resolve in the current operation. Provides an easy way to exclude bundles.

• f i l terMatches(BundleRequirement,Col lect ion) - Remove matching capabilities from the candi-
date capabilities. This effectively hides capabilities for certain requirers.

• f i l terSingletonCol l is ions(BundleCapabi l i ty,Col lect ion) - Remove potentially conflicting single-
tons from the collection. This provides the possibility to resolve a singleton multiple times in dif-
ferent groups.

A Resolver Hook can influence the outcome of a resolve operation by removing entries from shrink-
able collections. A shrinkable collection is a collection that can only shrink. The Handler can re-
move entries from the collection but it cannot add an entry to it. Any attempt to add to the collec-
tion must result in throwing an Unsupported Operation Exception. All collections in the Resolver
Hook API are shrinkable collections.

The Resolver Hook Factory services begin(Col lect ion) method is called in the ranking order, see Ser-
vice Ranking Order on page 139. This is the same order used for calling the resulting Resolver Hooks.

Resolve Operation Resolver Hook Service Specification Version 1.0

Page 384 OSGi Core Release 7

The Resolver Hook end() method notifies the Handler that the resolve operation has finished. The
framework must not hold on to this Resolver Hook instance after the end() method has been called.

53.2.4 Limiting the Set of Resolvable Bundles
There are use cases where a bundle that is being installed should not be allowed to resolve un-
til some activity has taken place. Sometimes certain bundles should never resolve. For example,
there are byte code weaving scenarios where a bundle is used as the source but a synthetic bundle
with the woven code provides the actual classes. The source bundle should then not resolve. The
f i l terResolvable(Col lect ion) method can be used to ensure that certain bundles are never resolved.
All the given Bundle Revisions are unresolved. The Handler can look at the given collection and re-
move any bundles it wants to prevent being resolved in this resolve operation.

The set of bundles passed will contain the trigger bundles. If a Handler removes one of the trigger
bundles the resolve of the removed bundle will not succeed and fail the call to the method that trig-
gered the resolve operation.

The framework can pass an empty collection of resolvable bundle revisions, this could for example
happen while resolving a dynamic import. An empty collection indicates that the framework will
not cause any bundles to transition from INSTALLED to RESOLVED during a dynamic import pack-
age resolving.

For example, a Handler wants to ensure certain bundles are not resolved, then it can do:

public class UnresolveHandler implements ResolverHook{
 Set<BundleRevision> neverResolve = ... ;

 public void filterResolvable(
 Collection<BundleRevision> toBeResolved) {
 toBeResolved.removeAll(neverResolve);
 }

 ... other methods
}

53.2.5 Hiding Capabilities
The f i l terMatches(BundleRequirement,Col lect ion) method is used to remove capabilities for con-
sideration for a specific requirer. The Handler receives the Bundle Requirement and the set of candi-
dates that already match the requirement. The Handler can now remove any candidates that are not
suitable. Removing the capability will prevent the requirement from getting wired to the capability.
If the Bundle Requirement is declared in a fragment then the host is not knowable.

For example, a Handler wants to ensure that a set of bundles in a group are only wired to a limited
set of infra-structure bundles and each other. This could be implemented as follows:

public class GroupHandler implements ResolverHook{
 Map<Bundle,Set<Bundle>> groups = ...;
 Set<Bundle> system = ... ;

 public void filterMatches(BundleRequirement r,
 Collection<BundleCapability> candidates) {
 Set<Bundle> group = groups.get(r.getRevision().getBundle());
 if (group == null)
 return; // not in a group

 for (Iterator<BundleCapability> i = candidates.iterator();
 i.hasNext();) {
 BundleCapability candidate = i.next();

Resolver Hook Service Specification Version 1.0 Resolve Operation

OSGi Core Release 7 Page 385

 Bundle other = candidate.getRevision().getBundle();

 if (group.contains(other) ||
 system.contains(other))
 continue;

 i.remove(); // not system, not in the same group
 }
 }

 ... other methods
}

53.2.6 Effect of Singleton Capabilities
Certain namespaces provide a singleton directive. For example, the osgi .wir ing.bundle namespace
defines that a bundle can be singleton, meaning that only one such bundle with a given symbolic
name can be resolved. The purpose is to ensure that a bundle that needs exclusiveness gets this.

In certain scenarios it is necessary to limit the singleton constraint to a group of bundles in-
stead of the whole framework. One of the primary use cases of the Resolver Hooks is to al-
low scoping of bundles. Some Handlers can interpret the singleton constraints as to ap-
ply to the group, not the whole framework. For this purpose, the Resolver Hook API al-
lows the Handler to influence which bundle revision is selected for the singleton with the
f i l terSingletonCol l is ions(BundleCapabi l i ty,Col lect ion) method.

The first parameter is the capability that is under consideration by the resolver, called the viewpoint
capability. The resolver needs to find out what other capabilities can collide with the viewpoint. A
collision takes place when multiple bundles with the same symbolic name and singleton directive
set to true can potentially be resolved at the same time. For example, a Handler implements a group-
ing model. A singleton is therefore only valid for the bundles in this group. A Handler must there-
fore be able to indicate which bundles can collide. This model is asymmetric. If a group has for ex-
ample outer and inner bundles, then inner bundles can collide with outer bundles but not vice ver-
sa.

The second parameters of the f i l terSingletonCol l is ions(BundleCapabi l i ty,Col lect ion) method is a
set of capabilities called the candidates. The Handler can shrink this collection by removing capabil-
ities. Removing a capability from the list of collision candidates will effectively hide the collision
candidate from the target singleton bundle. This will allow the target singleton bundle to resolve re-
gardless of the resolving state of the collision candidate.

If S is the group of infrastructure bundles (acting as an outer bundles) and a non-infrastructure
group is A , then the following cases exist:

S S collide, leave in set
A A collide, leave in set
A !A remove from set, not visible
A S collide, leave in set
S A do not collide, remove from set

The following example implements this strategy:

public class GroupHandler implements ResolverHook{
 Map<Bundle,Set<Bundle>> groups = ...;

 public void filterSingletonCollisions(BundleCapability c,
 Collection<BundleCapability> candidates) {
 Set<Bundle> group = groups.get(c.getRevision().getBundle());

The Resolve Operation Resolver Hook Service Specification Version 1.0

Page 386 OSGi Core Release 7

 for (Iterator<BundleCapability> i = candidates.iterator();
 i.hasNext();) {
 BundleCapability candidate = i.next();
 Bundle other = candidate.getRevision().getBundle();
 Set<Bundle> otherGroup = groups.get(other);

 if (group == otherGroup || otherGroup == null) // Samegroup
 continue;

 i.remove(); // not system, not in the same group
 }
 }

 ... other methods
}

The framework can call this method multiple times for the same singleton capability. For exam-
ple, as a first pass a framework may want to determine if a singleton bundle is resolvable first based
on the presence of other already resolved singleton capabilities. Later the framework may call this
method again to determine which singleton capabilities from unresolved bundles to allow to re-
solve.

53.3 The Resolve Operation
The following steps outline the way a framework uses the resolver hooks during a resolve opera-
tion. Any callbacks to the hook services must be done in a privileged block, see Privileged Callbacks
on page 131.

1. Collect a snapshot of registered Resolver Hook Factory services that will be called during the cur-
rent resolve operation. If a Resolver Hook Factory contained in the snapshot unregisters then the
resolve must fail, see Failures on page 388. Each registered Resolver Hook Factory service in
the snapshot will be obtained by the framework through the system's bundle context.

2. For each Resolver Hook Factory in the snapshot, in ranking order, call the begin(Col lect ion)
method to inform the Handler about the begin of a new resolve operation. This method must re-
turn a Resolver Hook. If this hook is not null, must be added to list H . If a corresponding Resolver
Hook Factory service is unregistered then the Resolver Hook must be removed from H .

3. Determine the collection of unresolved bundle revisions that may be considered for resolving
during the current resolve operation and place each of the bundle revisions in a shrinkable col-
lection U(nresolved) .
• For each active Resolver Hook in H(ooks) , call the f i l terResolvable(Col lect ion) method with

U . The Handler can remove any candidate that should not be resolved.

U now contains all the unresolved bundle revisions that potentially could be resolved during
this resolve operation. Any bundle revisions that were removed by Handlers must not resolve in
this operation.

This step can be repeated multiple times interspersed with other calls except to the begin and
end methods.

4. S = {}
5. For each bundle revision B in U that represents a singleton capability:

• Determine the collection of available capabilities that have a namespace of
osgi .wir ing.bundle , are singletons, and have the same symbolic name as the singleton bundle
revision B and place each of the matching capabilities into a shrinkable collection S .

Resolver Hook Service Specification Version 1.0 The Resolve Operation

OSGi Core Release 7 Page 387

• Remove the osgi .wir ing.bundle capability provided by the bundle revision B from S . A single-
ton bundle cannot collide with itself.

• For each resolver hook call the f i l terSingletonCol l is ions(BundleCapabi l i ty,Col lect ion)
method with the osgi .wir ing.bundle capability provided by bundle revision B and S .

S now contains all the singleton osgi .wir ing.bundle capabilities that can influence the ability of
bundle revision B to resolve.

This step can be repeated multiple times interspersed with other calls except to the begin and
end methods.

6. During a resolve operation the Resolver can resolve any or all bundles contained in U . For each
bundle revision B in U which the Resolver attempts to resolve the following steps must be fol-
lowed:
• For each requirement R(equirement) specified by bundle revision B , determine the collec-

tion of capabilities that satisfy the requirement R and place each matching capability into a
shrinkable collection C(apabi l i t ies) . A capability is considered to satisfy a particular require-
ment if its attributes match the requirement's filter and the requirer bundle has permission
to access the capability.

• For each Resolver Hook in H , call the f i l terMatches(BundleRequirement,Col lect ion) method
with the Bundle Requirement R and the shrinkable collection C .

C now contains all the capabilities that can be used to satisfy the requirement R . Any other capa-
bilities that got removed from C must not be used to satisfy requirement R.

This step can be repeated multiple times interspersed with other calls except begin and end .
7. For each Resolver Hook in H

• Call the end method to inform the Handler about a resolve operation ending.
8. For each Resolve Hook still in H , ensure that the Resolver Hook is no longer referenced.

In cases where the a shrinkable collection becomes empty the framework must continue calling the
remaining hooks because these hooks can also be used to trace progress.

The above steps are meant to illustrate how the Resolve Hooks are used by the Resolver, they are not
normative. The nature of the resolve operation and the Resolver algorithm can require back track-
ing by the Resolver implementation. It is therefore acceptable for the Resolver to call the Resolver
Hook multiple times with similar or identical parameters during a single resolve operation. This is
true for all methods except the begin and end methods that are only called once during a resolve op-
eration.

A Resolver Hook must always return the same answer for the same set of inputs, that is, it must be
stable.

53.3.1 Resolver Hook Limitations
Resolver hooks are system level components. Handlers must be careful not to create an unresolvable
state which is very hard for a developer or a provisioner to diagnose. Resolver Hooks also must not
be allowed to start another resolve operation, for example by starting a bundle or resolving bundles.
The framework must detect this and throw an Illegal State Exception.

In cases where a Bundle Exception can be thrown, such as the Bundle start method, the Illegal State
Exception must be the cause of the Bundle Exception and the Bundle Exception must be of type
RESOLVE_ERROR . In cases where an exception cannot be propagated to a caller, for example during
dynamic import resolving, a Framework Event of type ERROR must be published.

All hooks are treated as ordinary services, they can be used by the system bundle or other bundles.

Security Resolver Hook Service Specification Version 1.0

Page 388 OSGi Core Release 7

53.3.2 Failures
If during the resolving anything goes wrong then the Resolver must abort the resolve operation,
clean up and report an error.

If the begin(Col lect ion) method successfully returns a ResolverHook , then the end() method must
be called on that hook if it is still valid (its ResolverHookFactory is still registered) at the end of the
Resolve. A ResolverHook can therefore safely allocate resources in the begin(Col lect ion) method be-
cause it is guaranteed that it can deallocate them in the end() method.

The following are potential failures:

• A Resolver Hook Factory used in a resolve operation is unregistered
• A Resolver Hook throws an exception.

If the Resolver fails, it must throw a Bundle Exception to the caller if possible. Otherwise it must
publish a Framework Event of type ERROR .

53.4 Security
The Resolver Hook Factory service described in this specification is a highly complex facility that
requires great care in their implementation to maintain the Framework invariants. It is therefore
important that in a secure system the permission to register these hooks is only given to privileged
bundles.

In this case, the user of the Resolver Hook Factory service is the framework. Therefore, there is never
a need to provide this service. Implementers of these hooks must have:

• ServicePermission[. .ResolverHookFactory,REGISTER] for Event Listener Hook services.

53.5 org.osgi.framework.hooks.resolver

Framework Resolver Hooks Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.hooks.resolver ; vers ion="[1.0,2.0)"

53.5.1 Summary

• ResolverHook - OSGi Framework Resolver Hook instances are obtained from the OSGi Frame-
work Resolver Hook Factory service.

• ResolverHookFactory - OSGi Framework Resolver Hook Factory Service.

53.5.2 public interface ResolverHook
OSGi Framework Resolver Hook instances are obtained from the OSGi Framework Resolver Hook
Factory service.

A Resolver Hook instance is called by the framework during a resolve process. A resolver hook may
influence the outcome of a resolve process by removing entries from shrinkable collections that are
passed to the hook during a resolve process. A shrinkable collection is a Collect ion that supports all
remove operations. Any other attempts to modify a shrinkable collection will result in an Unsup-
portedOperationException being thrown.

Resolver Hook Service Specification Version 1.0 org.osgi.framework.hooks.resolver

OSGi Core Release 7 Page 389

The following steps outline the way a framework uses the resolver hooks during a resolve process.

1. Collect a snapshot of registered resolver hook factories that will be called during the current re-
solve process. Any hook factories registered after the snapshot is taken must not be called dur-
ing the current resolve process. A resolver hook factory contained in the snapshot may become
unregistered during the resolve process. The framework should handle this and stop calling
the resolver hook instance provided by the unregistered hook factory and the current resolve
process must fail. If possible, an exception must be thrown to the caller of the API which trig-
gered the resolve process. In cases where the caller is not available a framework event of type er-
ror should be fired.

2. For each registered hook factory call the ResolverHookFactory.begin(Collection) method to in-
form the hooks about a resolve process beginning and to obtain a Resolver Hook instance that
will be used for the duration of the resolve process.

3. Determine the collection of unresolved bundle revisions that may be considered for resolution
during the current resolution process and place each of the bundle revisions in a shrinkable col-
lection Resolvable . For each resolver hook call the filterResolvable(Collection) method with the
shrinkable collection Resolvable .

4. The shrinkable collection Resolvable now contains all the unresolved bundle revisions that may
end up as resolved at the end of the current resolve process. Any other bundle revisions that got
removed from the shrinkable collection Resolvable must not end up as resolved at the end of the
current resolve process.

5. For each bundle revision B left in the shrinkable collection Resolvable and any bundle revision B
which is currently resolved that represents a singleton bundle do the following:
• Determine the collection of available capabilities that have a namespace of osgi.identity, are

singletons, and have the same symbolic name as the singleton bundle revision B and place
each of the matching capabilities into a shrinkable collection Coll is ions .

• Remove the osgi.identity capability provided by bundle revision B from shrinkable collection
Coll is ions . A singleton bundle cannot collide with itself.

• For each resolver hook call the filterSingletonCollisions(BundleCapability, Collection) with
the osgi.identity capability provided by bundle revision B and the shrinkable collection Coll i-
s ions

• The shrinkable collection Coll is ions now contains all singleton osgi.identity capabilities that
can influence the ability of bundle revision B to resolve.

• If the bundle revision B is already resolved then any resolvable bundle revision contained in
the collection Coll is ions is not allowed to resolve.

6. During a resolve process a framework is free to attempt to resolve any or all bundles contained
in shrinkable collection Resolvable . For each bundle revision B left in the shrinkable collection
Resolvable which the framework attempts to resolve the following steps must be followed:
• For each requirement R specified by bundle revision B determine the collection of capabilities

that satisfy (or match) the requirement and place each matching capability into a shrinkable
collection Candidates . A capability is considered to match a particular requirement if its at-
tributes satisfy a specified requirement and the requirer bundle has permission to access the
capability.

• For each resolver hook call the filterMatches(BundleRequirement, Collection) with the re-
quirement R and the shrinkable collection Candidates .

• The shrinkable collection Candidates now contains all the capabilities that may be used to
satisfy the requirement R . Any other capabilities that got removed from the shrinkable col-
lection Candidates must not be used to satisfy requirement R .

7. For each resolver hook call the end() method to inform the hooks about a resolve process end-
ing.

In all cases, the order in which the resolver hooks are called is the reverse compareTo ordering of
their Service References. That is, the service with the highest ranking number must be called first. In

org.osgi.framework.hooks.resolver Resolver Hook Service Specification Version 1.0

Page 390 OSGi Core Release 7

cases where a shrinkable collection becomes empty the framework is required to call the remaining
registered hooks.

Resolver hooks are low level. Implementations of the resolver hook must be careful not to create an
unresolvable state which is very hard for a developer or a provisioner to diagnose. Resolver hooks al-
so must not be allowed to start another synchronous resolve process (e.g. by calling Bundle.start() or
FrameworkWiring.resolveBundles(Collection)). The framework must detect this and throw an Ille-
galStateException.

See Also ResolverHookFactory

Concurrency Not Thread-safe

53.5.2.1 public void end()

□ This method is called once at the end of the resolve process. After the end method is called the re-
solve process has ended. The framework must not hold onto this resolver hook instance after end
has been called.

53.5.2.2 public void filterMatches(BundleRequirement requirement, Collection<BundleCapability> candidates)

requirement the requirement to filter candidates for

candidates a collection of candidates that match the requirement

□ Filter matches hook method. This method is called during the resolve process for the specified re-
quirement. The collection of candidates match the specified requirement. This method can filter
the collection of matching candidates by removing candidates from the collection. Removing a can-
didate will prevent the resolve process from choosing the removed candidate to satisfy the require-
ment.

All of the candidates will have the same namespace and will match the specified requirement.

If the Java Runtime Environment supports permissions then the collection of candidates will only
contain candidates for which the requirer has permission to access.

53.5.2.3 public void filterResolvable(Collection<BundleRevision> candidates)

candidates the collection of resolvable candidates available during a resolve process.

□ Filter resolvable candidates hook method. This method may be called multiple times during a sin-
gle resolve process. This method can filter the collection of candidates by removing potential can-
didates. Removing a candidate will prevent the candidate from resolving during the current resolve
process.

53.5.2.4 public void filterSingletonCollisions(BundleCapability singleton, Collection<BundleCapability>
collisionCandidates)

singleton the singleton involved in a resolve process

collisionCandi-
dates

a collection of singleton collision candidates

□ Filter singleton collisions hook method. This method is called during the resolve process for the
specified singleton. The specified singleton represents a singleton capability and the specified col-
lection represent a collection of singleton capabilities which are considered collision candidates.
The singleton capability and the collection of collision candidates must all use the same namespace.

Currently only capabilities with the namespace of osgi.wiring.bundle and osgi.identity can be sin-
gletons. The collision candidates will all have the same namespace, be singletons, and have the same
symbolic name as the specified singleton capability.

In the future, capabilities in other namespaces may support the singleton concept. Hook implemen-
tations should be prepared to receive calls to this method for capabilities in namespaces other than
osgi.wiring.bundle or osgi.identity.

Resolver Hook Service Specification Version 1.0 org.osgi.framework.hooks.resolver

OSGi Core Release 7 Page 391

This method can filter the list of collision candidates by removing potential collisions. Removing a
collision candidate will allow the specified singleton to resolve regardless of the resolution state of
the removed collision candidate.

53.5.3 public interface ResolverHookFactory
OSGi Framework Resolver Hook Factory Service.

Bundles registering this service will be called by the framework during a bundle resolver process to
obtain a resolver hook instance which will be used for the duration of a resolve process.

See Also ResolverHook

Concurrency Thread-safe

53.5.3.1 public ResolverHook begin(Collection<BundleRevision> triggers)

triggers an unmodifiable collection of bundles which triggered the resolve process. This collection may be
empty if the collection of trigger bundles cannot be determined.

□ This method is called by the framework each time a resolve process begins to obtain a resolver hook
instance. This resolver hook instance will be used for the duration of the resolve process. At the end
of the resolve process the method ResolverHook.end() must be called by the framework and the
framework must not hold any references of the resolver hook instance.

The triggers represent the collection of bundles which triggered the resolve process. This collection
may be empty if the triggers cannot be determined by the framework. In most cases the triggers can
easily be determined. Calling certain methods on bundle when a bundle is in the INSTALLED state
will cause the framework to begin a resolve process in order to resolve the bundle. The following
methods will start a resolve process in this case:

• start
• loadClass
• findEntries
• getResource
• getResources

In such cases the collection will contain the single bundle which the framework is trying to resolve.
Other cases will cause multiple bundles to be included in the trigger bundles collection. When re-
solveBundles is called the collection of triggers must include all the current bundle revisions for
bundles passed to resolveBundles which are in the INSTALLED state.

When FrameworkWiring.refreshBundles(Collection, org.osgi.framework.FrameworkListener...) is
called the collection of triggers is determined with the following steps:

• If the collection of bundles passed is null then FrameworkWiring.getRemovalPendingBundles()
is called to get the initial collection of bundles.

• The equivalent of calling FrameworkWiring.getDependencyClosure(Collection) is called with
the initial collection of bundles to get the dependency closure collection of the bundles being re-
freshed.

• Remove any non-active bundles from the dependency closure collection.
• For each bundle remaining in the dependency closure collection get the current bundle revision

and add it to the collection of triggers.

As described above, a resolve process is typically initiated as a result of calling API that causes the
framework to attempt to resolve one or more bundles. The framework is free to start a resolve
process at any time for reasons other than calls to framework API. For example, a resolve process
may be used by the framework for diagnostic purposes and result in no bundles actually becom-
ing resolved at the end of the process. Resolver hook implementations must be prepared for resolve
processes that are initiated for other reasons besides calls to framework API.

org.osgi.framework.hooks.resolver Resolver Hook Service Specification Version 1.0

Page 392 OSGi Core Release 7

Returns a resolver hook instance to be used for the duration of the resolve process. A nul l value may be re-
turned which indicates this resolver hook factory abstains from the resolve process.

Bundle Hook Service Specification Version 1.1 Introduction

OSGi Core Release 7 Page 393

54 Bundle Hook Service Specification

Version 1.1

54.1 Introduction
The basic framework provides complete visibility for any bundle to any other bundle. In certain use
cases it can be important to provide the impression to application bundles that they are part of a
limited group of bundles. Bundle Hook services allow Handlers to hide bundles from other bundles
by filtering the Bundle Events and return values of methods that return bundles.

Though Bundle Hooks can effectively control bundle visibility of other bundles by filtering some of
the key Bundle Context methods as well as event delivery, it does not provide proper isolation. Bun-
dles that use other API will be able to see bundles even if they are hidden by the Bundle Hooks.

54.1.1 Essentials

• Filtering - Remove bundles from the view of specific bundles.

54.1.2 Entities

• Find Hook - A service used by the framework to filter methods that return bundles.
• Event Hook - A service used by the framework to filter Bundle Events before they are delivered to

their listeners.
• Collision Hook - A service used by the framework to filter colliding bundles during an install or

update operation when the org.osgi .f ramework.bsnversion is set to managed .
• Collision - Two bundles collide when they have the same version and bundle symbolic name.
• Client - The bundle that finds bundles or receives events about bundles.
• Handler - The bundle that registers a hook service.
• Target - The bundle performing the install or update operation.

Figure 54.1 Bundle Hooks, org.osgi.framework.hooks.bundle package

Find Hook Impl

Framework
Impl

1

Find Hook Collision Hook

0..n0..n

1

Collision Hook
Impl

Event Hook

0..n

Event Hook Impl

1

About the Hooks Bundle Hook Service Specification Version 1.1

Page 394 OSGi Core Release 7

54.1.3 Synopsis
A Handler registers Bundle Hook services to filter the view on the bundles stored in the framework.
Whenever the framework has to deliver Bundle events to one or more bundles the Event Hook ser-
vices are asked to look at the target bundles and remove any targets from the collection. Removed
bundles are then not notified.

If a bundle calls a method that returns a bundle like the Bundle Context getBundles method or the
getBundle method, the Find Hook is called. The Find Hook can then look at the bundles that will be
returned to the caller and filter that list accordingly.

If the Framework installs or updates a bundle it is possible that the new bundle symbolic name/ver-
sion pair collides with an existing bundle. The org.osgi .f ramework.bsnversion property controls the
property in this case. The Collision Hook is used to control this policy when the property is set to
managed .

There can be multiple Bundle Hook services registered by different Handlers, multiple Bundle Hook
services are called in service ranking order.

54.2 About the Hooks
The Bundle hooks provide a basic mechanism to hide bundles from each other as well as control
bundle collisions. The Bundle Event Hook allows a Handler to hide Bundle Events from bundles, the
Bundle Find Hook allows a Handler to alter the result of framework methods that return bundles.
The Collision Hook is used for providing a policy when bundles collide. A collision takes place
when there is an attempt to install or update a bundle and the situation arises that there are two
bundles with the same bundle symbolic name and version.

A Find Hook or an Event Hook can influence the outcome of a number of operations that retrieve a
bundle or show a bundle related event by removing entries from shrinkable collections. A shrinkable
collection is a collection that can only remove entries, not add to it. Any attempt to add to the collec-
tion must result in throwing an Unsupported Operation Exception. All collections in the Find Hook
and Event Hook API are shrinkable collections.

The framework must call the hooks in a privileged block, see Privileged Callbacks on page 131. Hooks
are always called in service ranking order, Service Ranking Order on page 139.

54.3 Bundle Event Hook
Handlers must ensure that Client bundles continue to see a consistent set of Bundle Events that
strictly follow the transitions defined by the OSGi specifications because Bundle events can be used
in a state machine that depends on these transitions. Such state machines can get confused if some
Bundle Events are missed.

For example, if a Bundle Tracker sees a STARTED event but the corresponding STOPPED event is re-
moved for that Client then the tracker will still assume the associated bundle is active.

A simple solution is to stop the Client bundle when the Handler decides to start filtering the Bundle
Events. The Client bundle should then be started after the filter is in place. This model ensures that
the Handler can assume the Client has no knowledge of any hidden bundles.

However, when the bundle that implements the bundle event hook is stopped, it will of course no
longer be able to filter events and the target bundle might see bundle events for bundles it was not
aware of.

Bundle Hook Service Specification Version 1.1 Bundle Find Hook

OSGi Core Release 7 Page 395

As a best practice a Handler should not hide a Bundle from itself. That is, its own events should al-
ways be received and if it gets the bundles from the framework its own Bundle object should be in-
cluded.

A Handler must register a bundle Event Hook service to intercept and filter events before they are
delivered to bundles. The framework must call the event(BundleEvent,Col lect ion) method on all
registered hooks in service ranking order to filter the events before they are delivered to any of the
registered bundle listeners. The Handler can remove any BundleContext objects from the given
shrinkable collection it wants shield from the event's Bundle.

The event method must be called once for each Bundle Event, this includes Bundle Events that are
generated when there are no Bundle Listeners registered.

The event(BundleEvent,Col lect ion) method must be called on the same thread that is performing
the action which generated the specified event. The shrinkable collection includes BundleContext
objects with all Bundle Listeners registered with them.

A Bundle Event Hook must receive all Bundle Events:

• INSTALLED
• RESOLVED
• STARTING
• STARTED
• STOPPING
• STOPPED
• UNRESOLVED
• UPDATED
• UNINSTALLED
• Other if new events are defined in later versions

54.3.1 System Bundle Listeners
Bundle Listeners may be registered with the system bundle's BundleContext . If at least one Bundle
Listener is registered with the system bundle's BundleContext then the system bundle's BundleCon-
text must be contained in the shrinkable collection passed to the event(BundleEvent,Col lect ion)
bundle event hook method. Just like other BundleContext objects contained in the shrinkable col-
lection, the system bundle's BundleContext may be removed. If the system bundle's BundleContext
is removed by a bundle Event Hook then the BundleContext will not be contained in the collection
for the remaining bundle Event Hooks called. Unlike other BundleContext objects, if the system
bundle's BundleContext is removed from the shrinkable collection then the bundle event is still de-
livered to the Bundle Listeners added to the system bundle's BundleContext .

54.4 Bundle Find Hook
The purpose of the Bundle Find Hook, is to limit the visibility of bundles to selected Client bundles.
The Find Hook service is called with the f ind(BundleContext,Col lect ion) method on all Handler
Hook services in service ranking order when a Client bundle tries to get bundles from the frame-
work. A registered Find Hook service gets a chance to inspect the candidate set of bundles and can
remove any bundle that must be hidden from the receiver.

The Bundle Find Hook can filter the result of the following methods:

• getBundle(long)
• getBundles()

The Find Hook is not called for:

Bundle Collision Hook Bundle Hook Service Specification Version 1.1

Page 396 OSGi Core Release 7

• getBundle(Str ing) - If the caller knows the name then it is not necessary to hide the bundle.

The Bundle Find Hook is also used during an install operation when the to be installed bun-
dle is already installed at a given location. Normally, the install the returns the Bundle object
of the existing bundle but this can cause confusion for the installer when this bundle is hidden
by the Find Hook. Therefore, the REJECTED_BY_HOOK Bundle Exception is thrown when the
f ind(BundleContext,Col lect ion) method determines that the Bundle Context has no visibility of the
conflicting bundle.

54.4.1 System Bundle Context
When the getBundle(long) or getBundles() methods are called using the system bundle's Bundle-
Context then the bundle Find Hooks are called in the same way the hooks are called when a normal
BundleContext is used. The system bundle's BundleContext along with the shrinkable candidate
bundles collection is passed to the f ind(BundleContext,Col lect ion) method. Bundle Find Hooks may
remove bundles from the shrinkable collection. If a bundle is removed by a bundle Find Hook then
the bundle will not be contained in the collection for the remaining bundle Find Hooks called. Un-
like other BundleContext objects, if the system bundle's BundleContext is used to find bundles then
the Framework ignores the bundle removals performed by the bundle Find Hooks and allows the
bundles removed to remain visible in the find results.

The bundle Find Hook is also used during an install operation. When the system bundle's Bundle-
Context is used to install a bundle then the bundle Find Hooks are called in the same way the hooks
are called when a normal BundleContext is used. Unlike other BundleContext objects, if the system
bundle's BundleContext is used to install bundles then the Framework ignores the bundle removals
performed by the bundle Find Hooks. This implies that if the system bundle's BundleContext is used
to install a bundle at a location where an existing bundle is installed then the existing bundle is al-
ways returned.

54.5 Bundle Collision Hook
Two bundles collide when they have the same bundle symbolic name and version, although there
location must always be different. The org.osgi .f ramework.bsnversion launching property (see
Launching Properties on page 102) defines the policy when a collision is about to take place during
install or update operations. The launching property can have the following values:

• single - Collisions are not allowed, attempting to install/update a bundle that will cause a colli-
sion is rejected and all bundles can assume there are no collisions between installed bundles.

• mult iple - Collisions are allowed and bundles must assume that there are collisions in the set of
installed bundles.

• managed - Collisions are managed via a Collision Hook service, specified in the remainder of this
section.

There are two types of operation that can create a new bundle revision: Install and Update. During this
creation the framework has to consider its bsnversion policy as defined by the launching proper-
ty. For each creation, there are a number of candidates to collide with. In single mode, any candidate
that exists will fail the creation. In mult iple mode, any number of candidates are allowed. In man-
aged mode, no candidates are allowed, like the single mode, but the Collision Hook services can
prune the list of candidates before the framework makes the decision. If the Collision Hook services
have emptied the list of candidates then the installation will succeed, if any bundle remains in this
list then the operation fails. In managed mode, creations are treated as in single mode but bundles
must assume as if the system operates in mult iple mode.

The purpose of the Collision Hook is to delegate the decision of bundle collisions to a management
agent. For example, using this and other hooks a management agent can create regions of bundles
that have limited visibility of each other. Since these bundles do not have visibility of all other bun-

Bundle Hook Service Specification Version 1.1 Security

OSGi Core Release 7 Page 397

dles a global collision does not necessarily translate into a collision inside a region. Using the Colli-
sion Hook the management agent can allow these collisions globally but restrict their impact local-
ly.

In managed mode the framework must call all registered Collision Hook services for each bundle
install and update operation. The calling order of the hooks is defined by ranking order, see Service
Ranking Order on page 139. The Collision Hook service is only called in managed mode and there ex-
ists one or more candidates during the creation phase of an install/update operation.

The Coll is ionHook interface has a single method:

• f i l terCol l is ions(int ,Bundle,Col lect ion) - An install or update operation is in progress that will re-
sult in a possible bundle collision. The implementer of this method can optionally shrink the
given collection of any collision candidates if it can decide that a collision cannot harm.

The f i l terCol l is ions(int ,Bundle,Col lect ion) method takes a type of operation value that must be one
of the following two values that indicate the operation that caused the Collision Hook to be called:

• INSTALLING
• UPDATING

54.5.1 System Bundle Context
When the system bundle's BundleContext is used to install a bundle then the Collision
Hooks are called in the same way the hooks are called when a normal BundleContext is used.
The system bundle along with the shrinkable candidate bundles collection is passed to the
f i l terCol l is ions(int ,Bundle,Col lect ion) method. Bundle Collision Hooks may remove bundles from
the shrinkable collection. If a bundle is removed by a bundle Collision Hook then the bundle will
not be contained in the collection for the remaining bundle Collision Hooks called. Unlike the other
bundle and service hooks, if the system bundle's BundleContext is used to install a bundle then the
Framework must not ignore the bundle removals performed by the bundle Collision Hooks. This
implies that the system bundle's BundleContext can be used to install the same bundle multiple
times when the org.osgi .f ramework.bsnversion launching property is set to managed .

54.6 Security
All hooks described in this specification are highly complex facilities that require great care in their
implementation to maintain the Framework invariants. It is therefore important that in a secure
system the permission to register these hooks is only given to privileged bundles.

In this case, the user of the hook services is the framework. Therefore, there is never a need to pro-
vide:

• ServicePermission[. .EventHook,GET] , or
• ServicePermission[. .F indHook,GET] , or
• ServicePermission[. .Col l is ionHook,GET]

Implementers of these hooks must have:

• ServicePermission[. .EventHook,REGISTER] for Event Hook services.
• ServicePermission[. .F indHook,REGISTER] for Find Hook services
• ServicePermission[. .Col l is ionHook,REGISTER] for Collision Hook services

54.7 org.osgi.framework.hooks.bundle

org.osgi.framework.hooks.bundle Bundle Hook Service Specification Version 1.1

Page 398 OSGi Core Release 7

Framework Bundle Hooks Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.hooks.bundle; vers ion="[1.1 ,2.0)"

54.7.1 Summary

• Coll is ionHook - OSGi Framework Bundle Collision Hook Service.
• EventHook - OSGi Framework Bundle Event Hook Service.
• FindHook - OSGi Framework Bundle Context Hook Service.

54.7.2 public interface CollisionHook
OSGi Framework Bundle Collision Hook Service.

If the framework was launched with the org.osgi.framework.bsnversion framework launching prop-
erty set to managed, then all registered collision hook services will be called during framework bun-
dle install and update operations to determine if an install or update operation will result in a bun-
dle symbolic name and version collision.

Concurrency Thread-safe

54.7.2.1 public static final int INSTALLING = 1

Specifies a bundle install operation is being performed.

54.7.2.2 public static final int UPDATING = 2

Specifies a bundle update operation is being performed.

54.7.2.3 public void filterCollisions(int operationType, Bundle target, Collection<Bundle> collisionCandidates)

operationType The operation type. Must be the value of installing or updating.

target The target bundle used to determine what collision candidates to filter.

collisionCandi-
dates

The collection of collision candidates. The collection supports all the optional Collect ion operations
except add and addAl l . Attempting to add to the collection will result in an UnsupportedOpera-
t ionException . The collection is not synchronized.

□ Filter bundle collisions hook method. This method is called during the install or update operation.
The operation type will be installing or updating. Depending on the operation type the target bun-
dle and the collision candidate collection are the following:

• installing - The target is the bundle associated with the BundleContext used to call one of the in-
stall methods. The collision candidate collection contains the existing bundles installed which
have the same symbolic name and version as the bundle being installed.

• updating - The target is the bundle used to call one of the update methods. The collision candi-
date collection contains the existing bundles installed which have the same symbolic name and
version as the content the target bundle is being updated to.

This method can filter the collection of collision candidates by removing potential collisions. For
the specified operation to succeed, the collection of collision candidates must be empty after all reg-
istered collision hook services have been called.

54.7.3 public interface EventHook
OSGi Framework Bundle Event Hook Service.

Bundle Hook Service Specification Version 1.1 org.osgi.framework.hooks.bundle

OSGi Core Release 7 Page 399

Bundles registering this service will be called during framework lifecycle (install, start, stop, update,
and uninstall bundle) operations.

Concurrency Thread-safe

54.7.3.1 public void event(BundleEvent event, Collection<BundleContext> contexts)

event The bundle event to be delivered

contexts A collection of Bundle Contexts for bundles which have listeners to which the specified event will
be delivered. The implementation of this method may remove bundle contexts from the collection
to prevent the event from being delivered to the associated bundles. The collection supports all the
optional Collect ion operations except add and addAl l . Attempting to add to the collection will result
in an UnsupportedOperationException . The collection is not synchronized.

□ Bundle event hook method. This method is called prior to bundle event delivery when a bundle is
installed, resolved, started, stopped, unresolved, or uninstalled. This method can filter the bundles
which receive the event.

This method must be called by the framework one and only one time for each bundle event generat-
ed, this included bundle events which are generated when there are no bundle listeners registered.
This method must be called on the same thread that is performing the action which generated the
specified event. The specified collection includes bundle contexts with synchronous and asynchro-
nous bundle listeners registered with them.

54.7.4 public interface FindHook
OSGi Framework Bundle Context Hook Service.

Bundles registering this service will be called during framework bundle find (get bundles) opera-
tions.

Concurrency Thread-safe

54.7.4.1 public void find(BundleContext context, Collection<Bundle> bundles)

context The bundle context of the bundle performing the find operation.

bundles A collection of Bundles to be returned as a result of the find operation. The implementation of this
method may remove bundles from the collection to prevent the bundles from being returned to the
bundle performing the find operation. The collection supports all the optional Collect ion opera-
tions except add and addAl l . Attempting to add to the collection will result in an UnsupportedOper-
at ionException . The collection is not synchronized.

□ Find hook method. This method is called for the following:

• Bundle find operations using BundleContext.getBundle(long) and BundleContext.getBundles()
methods. The find method can filter the result of the find operation. Note that a find operation
using the BundleContext.getBundle(String) method does not cause the find method to be called.

• Bundle install operations when an existing bundle is already installed at a given location. In this
case, the find method is called to determine if the context performing the install operation is able
to find the bundle. If the context cannot find the existing bundle then the install operation must
fail with a BundleException.REJECTED_BY_HOOK exception.

org.osgi.framework.hooks.bundle Bundle Hook Service Specification Version 1.1

Page 400 OSGi Core Release 7

Service Hook Service Specification Version 1.1 Introduction

OSGi Core Release 7 Page 401

55 Service Hook Service Specification

Version 1.1

55.1 Introduction
The OSGi framework has built-in support for the normal service primitives: publish, find, and bind.
Despite their simplicity, these primitives are surprisingly powerful and have become quite popular.
However, these primitives operate on information that is not completely visible to the bundles. For
example, it is impossible to find out what services are being waited upon by other bundles. This in-
formation can be useful to provide a service just in time to that bundle. Additionally, it is also not
possible to allow bundles functionality that interacts with the service engine. For example, a bun-
dle could proxy another service but to do this transparently, it is required to hide the original service
and offer the proxy only to a specific bundle. With the current primitives this is also not possible.

Therefore, this service hook specification provides a number of new mechanisms that closely in-
teract with the service engine. These interactions are not intended for use by application bundles.
The service primitives appear simple but require surprisingly complex code to make them appear
simple to the bundle developer. Modifying the behavior of the service engine requires developers to
closely follow the semantics of the OSGi service model and this is often hard, requiring a significant
amount of code.

However, the service hooks provide a more symmetric model for service based programming that
can act as a multiplier for the framework. The basic framework provides a powerful service engine
and this specification allows a bundle to interact with this service engine

55.1.1 Essentials

• Robust - The service primitives are very simple and work reliably in many scenarios. The speci-
fied hooks interact with this robust service engine. This interaction must not cause disruption of
the normal operations.

• Find listeners - Provide information about the services specific bundles are interested in.
• Control visibility - Provide a mechanism to hide the visibility of a service to one or more bundles.
• Intercept finds - Provide a mechanism to detect the searches of a bundle in the service registry and

restrict the set of found service references.
• Whiteboard based - Use the [1] Whiteboard Pattern to simplify the writing of the interceptors.

55.1.2 Entities

• Client - The bundle that finds services, gets services, and/or receives events about services.
• Handler - The bundle that registers a hook service and uses this to view or modify the state.
• Target - A client bundle being targeted by a Handler.
• Publisher - A client bundle that publishes services.
• Consumer - A client bundle that consumes services.
• Service Engine - The internal framework machinery that makes the service registry work.
• Event Listener Hook - An Event Listener Hook intercepts service events before they are delivered to

the client. The hook can select to remove events for specific bundles, which effective allows the
hook to hide service events from a bundle.

Service Hooks Service Hook Service Specification Version 1.1

Page 402 OSGi Core Release 7

• Find Hook - A find hook intercepts the getServiceReference(s) call just before it is returns the re-
sult to the client. The result can be influenced by removing service entries. The find hook can be
used to hide specific services for specific bundles.

• Listener Hook - The listener hook provides insight into what services are being waited for in the
system. It gets updated as service listeners are added and removed from the service registry.

Figure 55.1 Service Hooks, org.osgi.framework.hooks.service package

Find Hook Impl

Framework
Impl

1

0..n

1

Find Hook Event Listener
Hook

Listener Hook

Listener Hook
Impl

0..n0..n

1

Event Listener
Hook Impl

1

55.1.3 Synopsis
A bundle that needs to hide service references from other bundles, or wants to be informed about
the service events another bundle sees, can register a Find and Event Listener hook by registering a
Find Hook service and an Event Listener Hook service with the framework. If a service event is gen-
erated, it will pass this event to the hook. The Event Listener Hook method can then inspect the ar-
guments and optionally remove bundles from the event delivery list.

When a bundle uses the Bundle Context getServiceReference or getServiceReferences method, the
Find Hook is notified with the list of discovered services. The hook can then remove any service ref-
erences it wants to hide for the target bundle.

A bundle that wants to be aware of the services bundles are waiting for to be registered can register a
Listener Hook. The framework will notify such hooks of all existing listeners as well as any changes
in this list. The interceptor can use the filter information registered with the listener to detect the
services that are being listened for.

55.2 Service Hooks
Service hooks provide an interaction with the service engine. This service engine provides the fol-
lowing primitives to the bundle:

• Register a service under an interface/class name with a set of properties
• Modify the set of properties of a service
• Unregister a service
• Find services based on their interface class name and/or property values
• Listen for the life cycle events of a service

Service Hook Service Specification Version 1.1 Usage Scenarios

OSGi Core Release 7 Page 403

Figure 55.2 Service Primitives

Bundle A

Publisher

Bundle B

Consumer
0..n0..n register find 0..n0..n

listen

service

modify get0..n
0..n

These primitives provide the cornerstone for service oriented programming. Service oriented program-
ming consists of a code base that is de-coupled from the outside world through services. It can pro-
vide services to other bundles and it can consume services from other bundles. In the OSGi variation
of service oriented programming, a service is a plain Java object that can be registered and unregis-
tered at runtime.

The dynamics of OSGi services forces bundles to consider the absence, presence, and arrival of ser-
vices. The cause of these dynamics can be external events, the result of an update, a bundle that is
stopped, or the disappearance of a dependent service. A number of support libraries have been de-
veloped to minimize the amount of work for the developer that these dynamics can bring. The dy-
namic nature of services have made them an excellent tool to handle a wide array of dependency
scenarios. Services can easily model a real world concept that a bundle depends upon. The features
of the service model combined with support libraries like iPOJO, Declarative Services, Spring DM,
and others have made the OSGi service model easy to use and very powerful.

A key aspect of the service model is the centrality of the OSGi framework. The service model acts as
a guard between bundles. All service primitives pass through the framework and bundles can not
intercept the result of other bundles interacting with the service registry. This design was intention-
al because it creates a boundary between bundles that increases robustness and security. However,
the success of the service model also means that it becomes very attractive to interact with the ser-
vice engine because all inter-bundle communication runs through this engine.

For complexity reasons, this specification does not introduce any ordering dependencies between
the handlers and the client bundles.

All Service Hooks must be called in a privileged block, see Privileged Callbacks on page 131.

55.3 Usage Scenarios
The service hooks are general mechanisms but they were designed for some specific use cases. The
following sections detail some of those use cases.

55.3.1 Proxying
In an OSGi system, all communication is normally tunneled through services. This makes it a very
interesting place for a handler to intercept the service communications. These handlers can provide
facilities like proxying, extra security, authentication, and other functions completely transparent
to the parties that interact through services.

Proxying an existing service for a specific bundle requires the following steps:

• Hide the existing service X
• Register a proxy X' with the same properties as X

Registering a proxy service X' is trivial with the OSGi API, there are no special requirements on the
service. As long as it implements the listed interfaces and provides the same attributes then it can
pose as service X.

Hiding service X can be implemented with a combination of the Event Listener Hook and the Find
Hook. The Event Listener Hook can be used to hide any service events from the target bundle and

Usage Scenarios Service Hook Service Specification Version 1.1

Page 404 OSGi Core Release 7

the Find Hook can be used to remove X from the delivered results of the getServiceReference(s)
methods.

In the following figure the difference between a normal service interaction and a proxied interac-
tion is depicted. In the normal case, Bundle A directly uses Service X, in the proxying case, the Proxy
Bundle hides the original and provides an alternative.

Figure 55.3 Normal and proxied service interaction

Bundle A

Bundle B

Proxy Bundle

Bundle A

Bundle B

Same
Service
X

Normal Proxying

Service X
X’

X

restart to pick up switch

However, there is one complication with the service hiding: what is the observing state of the tar-
get bundle when proxying begins? The Event Listener Hook must be registered to act as a filter on
the service events. Just after this registration it can not determine what events have been seen by
the target bundle. If it has already checked out X, the hook has no possibility to make the target bun-
dle unget the service. A solution is to transiently stop the target bundle before the hook is registered
and then transiently started it again, if the bundle is active. It is usually not advised to start/stop oth-
er bundles but this seems to be the only reliable solution. The problem can be alleviated when the
start level is used to start the proxying handler bundle before the target bundles, in that case the tar-
get bundle is not started when the proxy is created. Though this optimizes the normal case, stop-
ping the target bundle remains necessary because any of the bundles can be updated or stopped at
any moment in time.

The following example shows how to hide a specific Service Reference from a specific bundle.

public class Hide implementsEventListenerHook, FindHook {
 final Bundle bundle;
 final ServiceReference reference;
 final BundleContext context;
 ServiceRegistration reg;

 Hide(BundleContext context,
 ServiceReference reference,
 Bundle bundle) {
 this.context = context;
 this.bundle = bundle;
 this.reference = reference;
 }

 void open() {
 boolean active =
 bundle.getBundleState() == Bundle.ACTIVE;
 if (active)

Service Hook Service Specification Version 1.1 Usage Scenarios

OSGi Core Release 7 Page 405

 bundle.stop(Bundle.STOP_TRANSIENTLY);
 reg = context.registerService(
 new String[] {
 FindHook.class.getName(),
 EventListenerHook.class.getName() }, this, null);
 if (active)
 bundle.start(Bundle.START_TRANSIENTLY);
 }

 public void close() { reg.unregister();}

The Hide class registers a Event Listener Hook and Find Hook service in the open method. Once reg-
istered, these services will receive their event callbacks. In the find hook, the target Service Refer-
ence is removed from the results if the bundle that called the getServiceReference(s) method is the
target bundle.

 public void find(BundleContext ctx,
 String name, String filter,
 boolean allServices, Collection refs) {
 if (ctx.getBundle() == bundle) {
 refs.remove(reference);
 }
 }

The event method is the opposite of the find method. In this method, the target bundle is removed
from the event destinations if the related Service Reference is the target Service Reference.

 public void event(ServiceEvent event,
 Collection bundles) {
 if (event.getServiceReference().equals(
 reference))
 bundles.remove(bundle);
 }
}

Once the Hide class is working, a proxy can be registered. For example:

void startProxy(ServiceReference ref,Bundlefor,
 Object proxy) {
 Hide hide = new Hide(ctx, ref, for);
 hide.open();
 ServiceRegistration reg = ctx.registerService(
 (String[]) ref.getProperty("objectClass"),
 proxy,
 makeProperties(ref) // copy the properties
);
}
...

55.3.2 Providing a Service on Demand
The Listener Hook provides information about services that bundles are listening for. This makes it
possible to look outside the OSGi framework to see if a listened for service could be provided in an-
other way. For example, this service could come from Jini, SLP, or through some other means.

A Listener Hook receives events every time a bundle adds or removes a Service Listener. The Listen-
er Hook is called with an added and removed method that take a collection of ListenerInfo objects.

Usage Scenarios Service Hook Service Specification Version 1.1

Page 406 OSGi Core Release 7

These objects provide the identity of the bundle that added a Service Listener and the optional filter
string. The Listener Hook can use this filter string to look for specific properties, for example the ob-
jectClass property to determine the type that is being sought. Extracting the property from this fil-
ter string is non-trivial though regular expressions can in general be used to extract the needed in-
formation.

The following class uses an unexplained Track object to do the low level details. The example only
shows how the Listener Hook can interact with these track objects.

public class OnDemand implements ListenerHook{
 final BundleContext context;
 final Map tracked = HashMap();
 ServiceRegistration reg;

The constructor saves the Bundle Context. The registration is done in an open method.

 public OnDemand(BundleContext context) {
 this.context = context; }
 public void open() {
 reg = context.registerService(
 ListenerHook.class.getName(), this, null); }

The Listener Hook has added and removed methods that take collections. It is easier to handle the
concurrency per object.

 public void added(Collection listeners) {
 for (Iterator i=listeners.iterator(); i.hasNext();) {
 add((ListenerHook.ListenerInfo) i.next());
 } }
 public void removed(Collection listeners) {
 for (Iterator i=listeners.iterator(); i.hasNext();) {
 remove((ListenerHook.ListenerInfo) i.next());
 } }

In the add hook, a ListenerInfo object provides the information about the Service Listener. In this
example, a Track object is created for each active listener and associated with the given info object.
This requires proper synchronization and should handle the rare case that the events are delivered
out of order. The ListenerInfo object contains an isRemoved method that provides this information.
If it is true, the corresponding removed event has already been called or will be called very soon. In
that case, it is safe to discard the added event. For proper cleanup, the reg field is tested to see if it is
set, if not, this call is during closing and should be ignored.

 synchronized void add(ListenerHook.ListenerInfoinfo) {
 if (reg == null || info.isRemoved())
 return;

 Track t = new Track(info);
 tracked.put(info, t);
 t.open();
 }

To remove a Track object it is necessary to consult the tracked map. If the track object is in the map,
it must be closed. If not, there is an out of order delivery and this event can be ignored, the add
method will ignore the corresponding ListenerInfo object because the isRemoved flag will be set. For
proper closing, the reg field is tested for nul l .

 synchronized void remove(ListenerHook.ListenerInfoinfo){

Service Hook Service Specification Version 1.1 Event Listener Hook

OSGi Core Release 7 Page 407

 if (reg == null)
 return;
 Track t = tracked.remove(info);
 if (t != null)
 t.close();
 }

The close method is straightforward. The hook services are unregistered and all the remaining Track
objects are closed. The reg field is used to make sure the event methods are ignoring any outstand-
ing calls by setting it to nul l . After the synchronized block, any incoming event is ignored.

 public void close() {
 reg.unregister();
 synchronized(this) { reg = null; }
 for (Track t : tracked.values()) { t.close(); }
 tracked.clear(); } }

55.4 Event Listener Hook
To intercept events being delivered to bundles, a handler must register an EventListenerHook object
as a service with the framework. The framework must then send a service events to all the registered
hooks. The calling order of the hooks is defined by the reversed compareTo ordering of their Service
Reference objects. That is, the service with the highest ranking number is called first. Event Listener
Hooks are called after the event is generated but before they are filtered by the optional filter expres-
sions of the service listeners. Before the return, the handler can remove bundles from the given list.
This allows an Event Listener Hook to hide service events for specific bundles.

The model is depicted in the Figure 55.4. A target bundle listens for service events but these events
can be filtered by the handler because it has registered an Event Listener Hook service that is accept-
ed by the Framework.

Figure 55.4 Event Listener Hook Interaction

a Service

Target Bundle A

event throttle

Target Bundle B

HandlerEvent Listener
Hook

Framework

An Event Listener Hook receives all events, REGISTERED , MODIFIED , UNREGISTERING , and
MODIFIED_ENDMATCH , that are to be delivered to all Service Listener objects registered with the
framework, regardless of the presence of a service listener filter.

The EventListenerHook class has a single method:

• event(ServiceEvent,Map) - A service event has been generated. The implementer of this method
can optionally shrink the given map of target bundles to service listeners.

Find Hook Service Hook Service Specification Version 1.1

Page 408 OSGi Core Release 7

One of the parameters of the event method is a map of target bundles to a collection of ListenerIn-
fo objects. The handler can shrink this map by removing bundles as well as specific service listen-
ers from the collection of ListenerHook.ListenerInfo objects. Both the map and the collection must
therefore implement the appropriate remove methods.

Removing a bundle from the list of target bundles will effectively hide the service event from the
target bundle. The target bundle can still get the service, though the Find Hook can be used to block
this access to the service.

Implementers of the Event Listener Hook must ensure that target bundles continue to see a consis-
tent set of service events. Service events are normally used in a state machine. Such state machines
can get confused if some events are missed. For example, if a Service Tracker sees a REGISTERED
event but is hidden from the corresponding UNREGISTERING event then the service will never be re-
leased. A simple solution is to stop the target bundle when the filter is put in place. However, when
the bundle that implements the Event Listener Hook is stopped, it will of course no longer be able to
filter events and the target bundle might see an service events for services it was not aware of.

55.4.1 System Service Listeners
Service Listeners may be registered with the system bundle's BundleContext . If at least one Service
Listener is registered with the system bundle's BundleContext then the system bundle's BundleCon-
text must be contained in the keys of the shrinkable map passed to the event(ServiceEvent,Map)
method. Just like other BundleContext keys contained in the shrinkable map, the system bundle's
BundleContext may be removed. If the system bundle's BundleContext is removed by a service Event
Listener Hook then the BundleContext will not be contained in the map for the remaining service
Event Listener Hooks called. Unlike other BundleContext objects, if the system bundle's BundleCon-
text is removed from the shrinkable map then the service event is still delivered to the Service Lis-
teners added to the system bundle's BundleContext .

55.5 Find Hook
The Find Hook is called when a target bundle searches the service registry with the getServiceRef-
erence or getServiceReferences methods. A registered Find Hook service gets a chance to inspect
the returned set of service references and can optionally shrink the set of returned services. The or-
der in which the find hooks are called is the reverse compareTo ordering of their Service References.
That is, the service with the highest ranking number must be called first.

• f ind(BundleContext,Str ing,Str ing,boolean,Col lect ion) - The callback when a bundle calls the
getServiceReference , getServiceReferences , or getAl lServiceReferences method. As parameters,
it gets the bundle context of the calling bundle, the service name, the filter name, the flag that in-
dicates that all services are considered or only the ones that are class compatible with the target
bundle. The last parameter is the set of service references that will be returned. This list can be
shortened by removing service references form the given list.

The purpose of the Find Hook is to limit the visibility of services to selected target bundles. For this
reason, the hook implementation can remove selected service references from the result collection.

55.5.1 System Bundle Context
When one of the getServiceReference or getServiceReferences methods is called using
the system bundle's BundleContext then the service Find Hooks are called in the same way
the hooks are called when a normal BundleContext is used. The system bundle's Bundle-
Context along with the shrinkable candidate service references collection is passed to the
f ind(BundleContext,Str ing,Str ing,boolean,Col lect ion) method. Service Find Hooks may remove
service references from the shrinkable collection. If a service reference is removed by a service Find
Hook then the service reference will not be contained in the collection for the remaining service

Service Hook Service Specification Version 1.1 Listener Hook

OSGi Core Release 7 Page 409

find hooks called. Unlike other BundleContext objects, if the system bundle's BundleContext is used
to find services then the Framework ignores the service reference removals performed by the service
Find Hooks and allows the service references removed to remain visible in the find results.

55.6 Listener Hook
The Framework API provides extensive insight in the registration, modification, and unregistration
of services. However, it does not provide the information about what services bundles are waiting
for. It is a common pattern that a bundle waits for a service to arrive before it is able to perform its
function, having the knowledge what bundles are waiting for, allows a number of interesting sce-
narios.

The Listener Hook is a [1] Whiteboard Pattern service that is informed about the coming and going of
all service listeners. When a Listener Hook service is registered with the Framework, the Framework
will inform this service of all existing listeners and keep it updated of all removed and newly regis-
tered service listeners. The events are dispatched in order of the Listener Hook service registration.

In the following figure, it is depicted how the interceptor can find out about target bundles listening
for services. It listens to registration and unregistration of Service Listeners.

Figure 55.5 Listener Hook Interaction

Handler

a Service
Target Bundle

Listener Hook
Framework

The ListenerHook interface is composed of the following methods:

• added(Col lect ion) - Inform the hook of the registered listeners. The collection is immutable and
contains ListenerInfo objects. These objects identify a unique ServiceListener object registration
with the framework. They provide the registering bundle as well as the optional filter. The Lis-
tenerInfo class is nested class of the ListenerHook class.

• removed(Col lect ion) -Inform the hook of listeners that have been removed because the bundle
is stopped or the bundle implementation has unregistered a listener. The ListenerInfo objects are
equal to their corresponding Info Listener object during the addition.

The ListenerHook.ListenerInfo class provides the following methods:

• getBundleContext() - The Bundle Context of the bundle that registered the service listener.
• getFi l ter() - The filter used in the registration.
• isRemoved() - Provides information if this Listener Info is still valid.

A ListenerInfo object is related to the registration of a ServiceListener with the Framework. The
Framework maintains only one registration for a specific, identity based, Service Listener object.
That is, registering the same object again, even with a different filter, will automatically unregister
the previous registration. This will be visible as a removed - added pair of calls.

The equal ity and hashCode method of a ListenerInfo object must guarantee that the hook can place
the Listener Info objects in hashed collections, such that an ListenerInfo object received in the
added method's collection parameter matches its corresponding ListenerInfo object in the removed

Listener Hook Service Hook Service Specification Version 1.1

Page 410 OSGi Core Release 7

method's collection parameter. This is trivially met by the identity equals and hashCode methods if
the same objects are used in both methods.

The reason the Listener Hook provides methods that take collection instead of a single ListenerInfo
object is because of performance optimization. When a Listener Hook service gets registered, there
can already be a large number of Service Listeners available. Similarly, when a bundle gets stopped,
it could have registered a number of service listeners that then need to be unregistered. Being able to
provide all changes in a batch improves performance.

The framework must report each registration of a Service Listener with the Bundle Context with a
new ListenerInfo object that is unequal to any other ListenerInfo object. If the same Service Listener
object is registered multiple times, each previous registration must be removed before the listener is
added again.

The event method in a Listener Hook is called synchronously with the registration of the Service
Listener to minimize the overhead for the framework. However, this does not imply that delivery is
always ordered. There are rare cases where a removal is reported before the corresponding addition.
Handling this case is simplified by the isRemoved method. If the removed and added methods are
synchronized, then the isRemoved method can be used in the added method to detect the out of or-
der delivery. A simple strategy is to ignore removed events without corresponding added events and
ignore added events where the ListenerInfo object is already removed.

The following code shows a skeleton of how the Listener Hook methods can be implemented.

final HashMap tracked = new HashMap();

public void added(Collection lis) {
 for (Iterator li = lis.iterator(); li.hasNext();) {
 ListenerHook.ListenerInfo li =
 (ListenerHook.ListenerInfo) li.next();
 synchronized(tracked) {
 if (li.isRemoved())
 return;
 ... create some object t
 tracked.put(li, t);
 }
 }
}
public void removed(Collection lis) {
 for (Iterator li = lis.iterator(); li.hasNext();) {
 ListenerHook.ListenerInfo li =
 (ListenerHook.ListenerInfo) li.next();
 synchronized(tracked) {
 Object t = tracked.remove(li);
 if (t != null)
 ... dispose object t
 }
 }
}

55.6.1 Filter
A key concept in the Listener Hook is the filter. When a bundle is interested in a specific set of ser-
vices, it registers a service listener with a filter. This filter is an indication of what services are inter-
esting to the target bundle. The objectclass property holds the names of the interfaces and classes.
However, just searching for this property with a regular expression is not guaranteed to return a us-
able value. The form of the sub-expressions can make the property part of an and or even negate. For

Service Hook Service Specification Version 1.1 Architectural Notes

OSGi Core Release 7 Page 411

example, looking for the objectclass in the following expression gives a result that is the opposite of
what is searched.

(!(objectclass=org.osgi.service.cm.ConfigurationAdmin))

However, understanding a full filter expression is quite difficult. An acceptable strategy is to look for
the object classes in the filter string with a regular expression but evaluate the filter against any con-
clusions that are being drawn. That is, testing a Configuration Admin service against the filter in the
previous example will not match.

Realistically, many scenarios that are enabled by the Listener Hook will require the filters to have a
simple structure.

55.7 Architectural Notes

55.7.1 Remove Only
The Event Listener Hook and Find Hook both allow the interceptor to remove elements from a col-
lection and not add elements. The reason is that adding almost inevitably violates framework in-
variants that can trip the receivers. These invariants are very important to keep the programming
model for the bundle developers simple.

55.7.2 Ordinary Services
All service hooks are treated as ordinary services. If the framework uses them, their Service Refer-
ences will show that the system bundle is using them, and if a hook is a Service Factory, then the ac-
tual instance will be properly created.

The only special treatment of the service hooks is that the framework must not use them for the
hooks themselves. That is, the Event and Find Hooks can not be used to hide the services from the
framework.

55.7.3 Ordering
The hooks are very sensitive to ordering because they modify the basic behavior of the OSGi Frame-
work. Before a hook is registered, a client bundle interacts with the framework directly. However, or-
dering in an OSGi Framework can never be relied upon from an programmer's perspective. It is bad
practice to rely on start level ordering in a program because updates and other disturbances will in-
evitably break this ordering. Start level ordering is a tool for deployers to smoothen initialization
problems, not to handle ordering dependencies.

Implementers of the hooks must therefore be intricately aware that they can be started before or af-
ter their target bundles are started.

55.7.4 Providing the Service Object
Many scenarios for the hooks specified here could be simplified by being able to intercept the
getService call of the target bundle. This design was investigated and rejected because it created a
dependency graph (registering bundle, proxying bundle, and target bundle) that could not be prop-
erly managed in a dynamic OSGi system. For example, if a proxying bundle provides an alternative
implementation for a service, how does the receiving bundle know that it should stop using this ser-
vice? It has no knowledge that the proxying bundle even exists. Instead of creating a much more
complex service registry, it was decided to keep the model simple and reuse the existing primitives.
This puts the complexity at implementing the hooks, but leaves the overall service model simple.

Security Service Hook Service Specification Version 1.1

Page 412 OSGi Core Release 7

55.7.5 Multi Threading
All hooks in this specification must be thread safe because the hooks can be called any time. All
hook methods must be re-entrant, the framework can enter them at any time, and in rare cases in
the wrong order. Most methods will be called synchronously with framework activities. It is fully
allowed to call the framework from any of the hook methods. However, even more than usual, it is
highly recommended to not hold any locks while calling the framework.

55.8 Security
All hooks described in this specification are highly complex facilities that require great care in their
implementation to maintain the Framework invariants concerning the service registry. It is there-
fore important that in a secure system the permission to register these hooks is only given to privi-
leged bundles.

In this case, the user of the hook services is the framework. Therefore, there is never a need to pro-
vide:

• ServicePermission[. .EventListenerHook,GET] ,
• ServicePermission[. .F indHook,GET] , or
• ServicePermission[. .L istenerHook,GET]

Implementers of these hooks must have:

• ServicePermission[. .EventListenerHook,REGISTER] for Event Listener Hook services.
• ServicePermission[. .F indHook,REGISTER] for Find Hook services
• ServicePermission[. .L istenerHook,REGISTER] for Listener Hook services

55.9 org.osgi.framework.hooks.service

Framework Service Hooks Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.hooks.service; vers ion="[1.1 ,2.0)"

55.9.1 Summary

• EventHook - OSGi Framework Service Event Hook Service.
• EventListenerHook - OSGi Framework Service Event Listener Hook Service.
• FindHook - OSGi Framework Service Find Hook Service.
• ListenerHook - OSGi Framework Service Listener Hook Service.
• ListenerHook.ListenerInfo - Information about a Service Listener.

55.9.2 public interface EventHook
OSGi Framework Service Event Hook Service.

Bundles registering this service will be called during framework service (register, modify, and unreg-
ister service) operations.

Deprecated As of 1.1. Replaced by EventListenerHook.

Service Hook Service Specification Version 1.1 org.osgi.framework.hooks.service

OSGi Core Release 7 Page 413

Concurrency Thread-safe

55.9.2.1 public void event(ServiceEvent event, Collection<BundleContext> contexts)

event The service event to be delivered.

contexts A collection of Bundle Contexts for bundles which have listeners to which the specified event will
be delivered. The implementation of this method may remove bundle contexts from the collection
to prevent the event from being delivered to the associated bundles. The collection supports all the
optional Collect ion operations except add and addAl l . Attempting to add to the collection will result
in an UnsupportedOperationException . The collection is not synchronized.

□ Event hook method. This method is called prior to service event delivery when a publishing bun-
dle registers, modifies or unregisters a service. This method can filter the bundles which receive the
event.

55.9.3 public interface EventListenerHook
OSGi Framework Service Event Listener Hook Service.

Bundles registering this service will be called during framework service (register, modify, and unreg-
ister service) operations.

Since 1.1

Concurrency Thread-safe

55.9.3.1 public void event(ServiceEvent event, Map<BundleContext, Collection<ListenerHook.ListenerInfo>>
listeners)

event The service event to be delivered.

listeners A map of Bundle Contexts to a collection of Listener Infos for the bundle's listeners to which the
specified event will be delivered. The implementation of this method may remove bundle contexts
from the map and listener infos from the collection values to prevent the event from being deliv-
ered to the associated listeners. The map supports all the optional Map operations except put and
putAl l . Attempting to add to the map will result in an UnsupportedOperationException . The col-
lection values in the map supports all the optional Collect ion operations except add and addAl l . At-
tempting to add to a collection will result in an UnsupportedOperationException . The map and the
collections are not synchronized.

□ Event listener hook method. This method is called prior to service event delivery when a publishing
bundle registers, modifies or unregisters a service. This method can filter the listeners which receive
the event.

55.9.4 public interface FindHook
OSGi Framework Service Find Hook Service.

Bundles registering this service will be called during framework service find (get service references)
operations.

Concurrency Thread-safe

55.9.4.1 public void find(BundleContext context, String name, String filter, boolean allServices,
Collection<ServiceReference<?>> references)

context The bundle context of the bundle performing the find operation.

name The class name of the services to find or nul l to find all services.

filter The filter criteria of the services to find or nul l for no filter criteria.

allServices true if the find operation is the result of a call to BundleContext.getAllServiceReferences(String,
String)

org.osgi.framework.hooks.service Service Hook Service Specification Version 1.1

Page 414 OSGi Core Release 7

references A collection of Service References to be returned as a result of the find operation. The implemen-
tation of this method may remove service references from the collection to prevent the references
from being returned to the bundle performing the find operation. The collection supports all the op-
tional Collect ion operations except add and addAl l . Attempting to add to the collection will result in
an UnsupportedOperationException . The collection is not synchronized.

□ Find hook method. This method is called during the service find operation (for example,
BundleContext.getServiceReferences(String, String)). This method can filter the result of the find
operation.

55.9.5 public interface ListenerHook
OSGi Framework Service Listener Hook Service.

Bundles registering this service will be called during service listener addition and removal.

Concurrency Thread-safe

55.9.5.1 public void added(Collection<ListenerHook.ListenerInfo> listeners)

listeners A collection of ListenerInfos for newly added service listeners which are now listening to service
events. Attempting to add to or remove from the collection will result in an UnsupportedOpera-
t ionException . The collection is not synchronized.

□ Added listeners hook method. This method is called to provide the hook implementation with in-
formation on newly added service listeners. This method will be called as service listeners are added
while this hook is registered. Also, immediately after registration of this hook, this method will be
called to provide the current collection of service listeners which had been added prior to the hook
being registered.

55.9.5.2 public void removed(Collection<ListenerHook.ListenerInfo> listeners)

listeners A collection of ListenerInfos for newly removed service listeners which are no longer listening to
service events. Attempting to add to or remove from the collection will result in an Unsupported-
Operat ionException . The collection is not synchronized.

□ Removed listeners hook method. This method is called to provide the hook implementation with
information on newly removed service listeners. This method will be called as service listeners are
removed while this hook is registered.

55.9.6 public static interface ListenerHook.ListenerInfo
Information about a Service Listener. This interface describes the bundle which added the Service
Listener and the filter with which it was added.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

55.9.6.1 public boolean equals(Object obj)

obj The object to compare against this ListenerInfo .

□ Compares this ListenerInfo to another ListenerInfo . Two ListenerInfos are equals if they refer to the
same listener for a given addition and removal life cycle. If the same listener is added again, it must
have a different ListenerInfo which is not equal to this ListenerInfo .

Returns true if the other object is a ListenerInfo object and both objects refer to the same listener for a given
addition and removal life cycle.

55.9.6.2 public BundleContext getBundleContext()

□ Return the context of the bundle which added the listener.

Service Hook Service Specification Version 1.1 References

OSGi Core Release 7 Page 415

Returns The context of the bundle which added the listener.

55.9.6.3 public String getFilter()

□ Return the filter string with which the listener was added.

Returns The filter string with which the listener was added. This may be nul l if the listener was added with-
out a filter.

55.9.6.4 public int hashCode()

□ Returns the hash code for this ListenerInfo .

Returns The hash code of this ListenerInfo .

55.9.6.5 public boolean isRemoved()

□ Return the state of the listener for this addition and removal life cycle. Initially this method will re-
turn fa lse indicating the listener has been added but has not been removed. After the listener has
been removed, this method must always return true .

There is an extremely rare case in which removed notification to ListenerHooks can be made before
added notification if two threads are racing to add and remove the same service listener. Because Lis-
tenerHooks are called synchronously during service listener addition and removal, the Framework
cannot guarantee in-order delivery of added and removed notification for a given service listener.
This method can be used to detect this rare occurrence.

Returns fa lse if the listener has not been removed, true otherwise.

55.10 References

[1] Whiteboard Pattern
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

References Service Hook Service Specification Version 1.1

Page 416 OSGi Core Release 7

Weaving Hook Service Specification Version 1.1 Introduction

OSGi Core Release 7 Page 417

56 Weaving Hook Service
Specification

Version 1.1

56.1 Introduction
Bytecode weaving is a popular technique that transforms class files to provide additional function-
ality. This is a powerful technique that, when used with care, can significantly reduce the coding ef-
fort for mundane programming chores.

This specification provides a means for a handler bundle to intercept any bundle class loading calls
in the framework, transform the byte codes, and add new dynamic imports. A means for observing
the final weaving results, both before and after they take effect, is also provided.

56.1.1 Essentials

• Ordering - Allow a weaver to weave a bundle before it is loaded and used.
• Dynamic Imports - Support additional imports.
• Strategy - Support both Static and Dynamic Weaving strategies.
• No Metadata - Allow standard bundles, without any specific metadata, to be woven.
• Java API - Use the existing Java byte code transformation APIs where possible.
• Multiple - Allow for multiple weavers per bundle in a defined order.
• Observation - Allow woven class state transitions to be observed.

56.1.2 Entities

• Weaving Hook - A service registered by a bundle that wants to weave other bundles.
• Woven Class - An object representing the class to be woven.
• Woven Class Listener - A service registered by a bundle that wants to observe woven class state

transitions.

Usage Weaving Hook Service Specification Version 1.1

Page 418 OSGi Core Release 7

Figure 56.1 Byte Code Weaving

Framework
Impl

Weaving Hook

0..n

1

Weaving Hook
handler

Woven Class Woven Class

0..n

Listener

1

Woven Class
Listener handler

56.2 Usage

56.2.1 Tracing
For tracing purposes, a bundle can weave a trace entry and exit message around each method. This
can be done with byte code weaving by inserting a call to a service at the beginning and end of a
method. In this example, a service is created that has two methods:

• trace(Bundle) - Byte code weave the given bundle with trace entry and exit methods.
• untrace(Bundle) - Remove any weavings.

The strategy chosen here is simple. The weaver registers a Weaving Hook service so it receives all
class loads. Any such class load is checked against a set of bundles that needs tracing, any class from
a traced bundle is then woven with the trace information. If a bundle is to be traced, the set is updat-
ed and the bundle is refreshed to ensure all classes are loaded anew so the tracing code can be woven
in.

public class TracingWeaver implements WeavingHook {
 final Set<Bundle> bundles = new HashSet<Bundle>();
 final List<String> imports = Arrays.asList(
 "com.acme.trace;version=\"[1,2)\"");
 BundleContext context;

The weave method is the service method of the Weaving Hook service. It receives a WovenClass ob-
ject that provides the information about the class to be woven. In this case, the bundles field con-
tains the bundles to be woven, so this is checked first. If the to-be-loaded class is in one of the traced
bundles, the byte codes are changed to provide trace information. Otherwise the no change is made.

In general, weaving code will require new imports for the to-be-woven bundle. These imports can
be added by adding Dynamic Import Package clauses to the list received from the getDynamicIm-
ports() method. This is a list of Str ing objects, the syntax of each string is equal to a clause in the Dy-
namicImport-Package header. See Dynamic Import Package on page 69 for the proper syntax.

 public void weave(WovenClass classInfo) {
 BundleWiring bw = classInfo.getBundleWiring();
 Bundle b = bw.getBundle();
 if (bundles.contains(b)) {

Weaving Hook Service Specification Version 1.1 Usage

OSGi Core Release 7 Page 419

 byte [] woven = weaveTracing(classInfo.getBytes());
 if (!classInfo.getDynamicImports().containsAll(imports))
 classInfo.getDynamicImports().addAll(imports);
 classInfo.setBytes(woven);
 }
 }

The following trace method is called when a bundle must be traced. It ignores the request if the bun-
dle is already traced. Otherwise, it will add the bundle to the set of traced bundles and refresh the
bundle.

 public void trace(Bundle b) {
 if (bundles.add(b))
 refresh(b);
 }

The untrace method is the reverse:

 public void untrace(Bundle b) {
 if (bundles.remove(b))
 refresh(b);
 }

The refresh method uses the Bundle Wiring API to refresh a bundle. Refreshing a bundle will throw
away its class loader so that all used classes are reloaded when needed.

 private void refresh(Bundle b) {
 Bundle fwb = context.getBundle(0);
 FrameworkWiring fw = fwb.adapt(FrameworkWiring.class);
 fw.refreshBundles(Arrays.asList(b));
 }

The trace method that does the final weaving is left as an exercise to the reader:

 byte[] weaveTracing(byte[] bytes) {
 ..
 }
}

56.2.2 Isolation
The Resolver Hook Service Specification on page 381 allows bundles to be separated into various re-
gions isolated by sharing policies. The dynamic imports added in the tracing example will need to
be taken into account by the sharing policies of regions containing bundles whose classes were wo-
ven in order for the bundles to resolve. This can be accomplished using a Woven Class Listener. Us-
ing a Weaving Hook would not be appropriate since there is no guarantee that a Weaving Hook ob-
serves the final list of dynamic imports.

The region registers a Woven Class Listener service so it receives notifications of Woven Class state
transitions. The sharing policy of the region containing the bundle whose class was woven is up-
dated with the dynamic imports, if any. This action occurs while the Woven Class is in the TRANS-
FORMED state to ensure the region is prepared to accept the imports before the bundle wiring is up-
dated upon entering the DEFINED state. The region is initialized with the set of bundles compos-
ing it and a static sharing policy consisting of namespaces mapped to sets of filters indicating the al-
lowed capabilities.

public class Region implements WovenClassListener, ResolverHook {
 final Set<Bundle> bundles;

Weaving Hook Weaving Hook Service Specification Version 1.1

Page 420 OSGi Core Release 7

 final Map<String, Set<Filter>> policy;

The modified method is the service method of the Woven Class Listener service. It receives a Woven
Class object that provides the information about the woven class that underwent a state transition.
If the current state is TRANSFORMED , and the associated bundle is part of the region, the sharing
policy is updated with the additional dynamic imports, if any.

 public void modified(WovenClass wovenClass) {
 if ((wovenClass.getState() & WovenClass.TRANSFORMED) == 0)
 return;
 Bundle bundle = wovenClass.getBundleWiring().getBundle();
 if (!bundles.contains(bundle))
 return;
 Set<Filter> filters = policy.get(PackageNamespace.PACKAGE_NAMESPACE);
 for (String dynamicImport : wovenClass.getDynamicImports())
 filters.add(toFilter(dynamicImport));
 }

The region also implements ResolverHook . When the f i l terMatches method is called, the require-
ment is inspected to see if its matching capabilities are allowed into the region. If not, the list of can-
didates is cleared.

 public void filterMatches(BundleRequirement requirement,
 Collection<BundleCapability> candidates) {
 Bundle bundle = requirement.getRevision().getBundle();
 if (!bundles.contains(bundle))
 return;
 String namespace = requirement.getNamespace();
 if (!policy.containsKey(namespace))
 return;
 Map<String, String> directives = requirement.getDirectives();
 String filter = directives.get(
 PackageNamespace.REQUIREMENT_FILTER_DIRECTIVE);
 Set<Filter> filters = policy.get(namespace);
 if (!filters.contains(toFilter(filter)))
 candidates.clear();
 }

The toFi l ter method responsible for converting the requirement filters and dynamic import package
clauses into a Filter is left as an exercise to the reader.

 private Filter toFilter(String s) {
 ...
 }
}

56.3 Weaving Hook
The Weaving Hook service is a [1] Whiteboard Pattern service. Any party that wants to participate in
weaving classes can register such a service. The framework obtains the Weaving Hook services and
calls their weave(WovenClass) method for each class that must be loaded. The Weaving Hook ser-
vices must be called in the service ranking order. See Service Ranking Order on page 139.

The Weaving Hook weave method is called with a WovenClass object that represents the class to be
woven. This class is similar to the Java ClassFi leTransformer class but adds bundle wiring informa-

Weaving Hook Service Specification Version 1.1 Weaving Hook

OSGi Core Release 7 Page 421

tion and can be made available in environments prior to Java 5. The methods must all be called in
privileged blocks. See Privileged Callbacks on page 131.

The WovenClass object provides access to:

• getClassName() - The name of the class being loaded,
• getBundleWir ing() - The bundle wiring, which provides access to the bundle, the bundle class

loaders and the capabilities.
• getProtect ionDomain() - The protection domain it is being defined in, and
• getBytes() - The class bytes to be defined.

A Weaving Hook service can use the WovenClass object to decide to weave or not to weave. This de-
cision can be based on the bundle wiring, the class name, the protection domain, or the bytes. For
example, the following code checks if the class comes from a specific bundle:

if (wovenClass.getBundleWiring().getBundle().equals(mybundle))
 ...

If the Weaving Hook service decides to weave the class, it must calculate new bytes for the provid-
ed Woven Class, these bytes can be set with the setBytes(byte[]) method. This implies that order-
ing is relevant. Weaving Hook services that are lower in ranking (called later) will weave any of the
changes of higher ranking Weaving Hook services. Not all combinations of Weaving Hook services
will therefore work as expected.

Weaving a class can create new dependencies that are unknown to the woven class. In the trace ex-
ample, the entry and exit traces require access to the tracing subsystem, a dependency the original
class did not have. The WovenClass object allows these extra imports to be added as new dynamic
import package clauses. The current set of dynamic imports for the Woven Class is available from
the WovenClass getDynamicImports() method. This method returns a mutable list of Str ing dur-
ing the weave method, the Weaving Hook service can add new dynamic import package clauses to
this list while the weave method is active. The syntax of the strings is defined by the DynamicIm-
port-Package header, see Dynamic Import Package on page 69. The dynamic imports must have a valid
syntax, otherwise an Illegal Argument Exception must be thrown. These dynamically added depen-
dencies are made visible through the Bundle Wiring API Specification on page 157 as new require-
ments. The getRevis ion method of these requirements must return the Bundle Revision of the bun-
dle that is woven; that revision will not include these synthetic requirements in the getDeclare-
dRequirements method.

Dynamic imports are the last resort for the framework to find a provider when the normal imports
fail. The woven class dynamic imports are consulted after the dynamic imports specified in the
bundle's manifest. Frameworks must append all additional dynamic imports in the given order but
are expected to filter out duplicates for performance reasons.

The management of the dynamic import is error prone and should be handled with care because dy-
namic imports use wildcards. Wildcards make the ordering of the imports important. In the patho-
logical case, a full wildcard in the beginning (for example in the manifest) will void any more specif-
ic clauses that were added by Handlers. Handlers should be as specific as possible when adding dy-
namic import clauses.

In many cases the additional imports must refer to classes that the Handler is already resolved to. In
an OSGi framework, the same package can be present multiple times. A Handler should therefore
ensure that the woven bundle gets wired to the correct bundle. One way to achieve this is to include
the bundle-version and bundle-symbolic-name synthetic attributes that are available on every ex-
ported package.

com.acme.weavesupport.core;version=1.2;bundle-version=3.2; «
 bundle-symbolic-name=com.acme.weavesupport

Woven Class Listener Weaving Hook Service Specification Version 1.1

Page 422 OSGi Core Release 7

After calling the last Weaving Hook service, the WovenClass object is made complete. The framework
must make the WovenClass object immutable when it is complete. After the Woven Class is com-
plete, the current bytes are then used to define the new class. Attempts to modify it, or any of its
properties, must throw an Exception. After completion, the getBytes() method must return a copy
of the byte array that was used to define the class.

56.3.1 Concurrency
Class loads can occur at any time and Weaving Hook services must be able to handle concurrent as
well as re-entrant calls to the weave method. The framework should not hold any locks when call-
ing the Weaving Hook services, and Weaving Hook service implementations must be thread-safe.
Furthermore Weaving Hook services may be re-entrant, and should be careful to avoid cycles when
weaving.

For example when a class is being woven, the Weaving Hook may implicitly load a class by having
a reference to it or the Weaving Hook can explicitly load a class. This new class load will also pass
through the Weaving Hook service, so care must be taken to avoid infinite looping.

56.3.2 Error Handling
Weaving hooks are very low level and care must be taken by the Weaving Hook services to not dis-
rupt normal class loading. In the case that a weaving hook throws an unexpected exception the
framework must do the following:

1. If the exception is not a Weaving Exception:
• The framework must blacklist the weaving hook registration and never call that Weaving

Hook service again as long as it is registered. This Weaving Hook service is considered black-
listed.

2. A framework event of type ERROR should be published that must include the Exception thrown
by the Weaving Hook service. The source must be the bundle registering the Weaving Hook ser-
vice.

3. The WovenClass object must be marked as complete. All remaining Weaving Hook services
must be skipped.

4. The bundle class loader must throw a ClassFormatError with the cause being the exception
thrown by the Weaving Hook service.

56.4 Woven Class Listener
The Woven Class Listener service is a [1] Whiteboard Pattern service. Any party that wants to receive
notifications of woven class state transitions can register such a service. The framework obtains the
Woven Class Listener services and calls their modified(WovenClass) method whenever a Woven
Class undergoes a state transition. The framework must not obtain Woven Class Listener services if
there are no Weaving Hook services registered. In this case, if the party needs to receive notifications
of woven class state transitions then a no-op Weaving Hook service implementation can be regis-
tered to ensure Woven Class Listener services are called.

The Woven Class Listener modified method is called with a WovenClass object that represents the
woven class that underwent a state transition. The method must be called in a privileged block. See
Privileged Callbacks on page 131.

The following diagram depicts the state transitions of a Woven Class.

Weaving Hook Service Specification Version 1.1 Woven Class Listener

OSGi Core Release 7 Page 423

Figure 56.2 Woven Class State Diagram

classload

TRANSFORMING_FAILEDTRANSFORMING

TRANSFORMED

DEFINED

DEFINE_FAILED

weaving complete

class defined

weaving hook
throws

except ion

class definit ion
failure

Woven Class Listeners are not notified of the TRANSFORMING state because the Woven Class is mu-
table and listeners are not permitted to mutate the Woven Class. For all states observed by Woven
Class Listeners, the Woven Class is effectively immutable. The first notification received for a giv-
en Woven Class is either the TRANSFORMED or TRANSFORMING_FAILED state. The TRANSFORMED
state occurs after all Weaving Hooks have been notified but before the class has been defined or the
bundle wiring has been updated for any additional dynamic imports. The TRANSFORMING_FAILED
state occurs if any Weaving Hook throws an exception. After the TRANSFORMED state, a Woven
Class can transition to either the DEFINED state or the DEFINE_FAILED state. The DEFINED state oc-
curs when the class was defined successfully and after the bundle wiring has been updated. The
DEFINE_FAILED state occurs if a class definition error occurred.

Table 56.1 describes the states of a Woven Class in more detail.

Table 56.1 Woven Class State Table

State Description
TRANSFORMING A bundle class load request was made.

• Weaving is incomplete.
• The class is undefined.
• The Woven Class is mutable.
• Weaving Hooks are notified but Woven Class Listeners are

not.
TRANSFORMED All Weaving Hooks have been notified.

• Weaving is complete.
• The class is undefined.
• The Woven Class is effectively immutable.
• Woven Class Listeners are notified.

TRANSFORMING_FAILED A Weaving Hook threw an exception.

• Weaving is incomplete.
• The class is undefined.
• The Woven Class is effectively immutable.
• Woven Class Listeners are notified.

Security Weaving Hook Service Specification Version 1.1

Page 424 OSGi Core Release 7

State Description
DEFINED All Woven Class Listeners have been notified. The class has been

defined.

• Weaving is complete.
• The class is defined.
• The Woven Class is effectively immutable.
• Woven Class Listeners are notified.

DEFINE_FAILED All Weaving Hooks have been notified. A class definition failure
occurred.

• Weaving is complete.
• The class is undefined.
• The Woven Class is effectively immutable.
• Woven Class Listeners are notified.

56.4.1 Concurrency
Class loads can occur at any time, and Woven Class Listeners must be able to handle concurrent
calls to the modified method. The framework should not hold any locks when calling Woven Class
Listeners, and Woven Class Listener implementations must be thread-safe. Woven Class Listeners
must be synchronously called by the framework when a Woven Class completes a state transition.
The woven class processing will not proceed until all Woven Class Listeners are done.

56.4.2 Error Handling
Woven Class Listeners must not cause the weaving process to fail. If a Woven Class Listener throws
an exception, the framework should log the exception but otherwise ignore it.

56.5 Security

56.5.1 Weaving Hooks
All hooks described in this specification are highly complex facilities that require great care in their
implementation to maintain the Framework invariants. It is therefore important that in a secure
system the permission to register these hooks is only given to privileged bundles.

In this case, the user of the hook services is the framework. Therefore, there is never a need to pro-
vide:

• ServicePermission[. .WeavingHook,GET]

Implementers of these hooks must have:

• ServicePermission[. .WeavingHook,REGISTER] for Weaving Hook services.

In addition, a Weaving Hook must have Admin Permission with the WEAVE action to be able to use
the methods on the WovenClass object that mutate the state like setBytes(byte[]) , getBytes() , and
the mutating methods on the list returned by getDynamicImports() . Moreover, a Weaving Hook
must have Package Permission with the IMPORT action in order to add or replace dynamic imports.

56.5.2 Woven Bundles
The Framework must grant implied PackagePermission[somePkg, IMPORT] permissions to bundles
whose classes are being woven with additional dynamic imports, assuming the weaver has a match-

Weaving Hook Service Specification Version 1.1 org.osgi.framework.hooks.weaving

OSGi Core Release 7 Page 425

ing package import permission. The permission check for the weaver must occur during any call to
the list that results in the addition or setting of a dynamic import. If the check fails, a SecurityExcep-
tion must be thrown. If it succeeds, the implied permission must be granted to the woven bundle
immediately before defining the class.

56.5.3 Woven Class Listeners
Implementers of these listeners must have:

• ServicePermission[. .WovenClassListener,REGISTER] for Woven Class Listener services.

56.6 org.osgi.framework.hooks.weaving

Framework Weaving Hooks Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.hooks.weaving; vers ion="[1.1 ,2.0)"

56.6.1 Summary

• WeavingException - A weaving exception used to indicate that the class load should be failed
but the weaving hook must not be blacklisted by the framework.

• WeavingHook - OSGi Framework Weaving Hook Service.
• WovenClass - A class being woven.
• WovenClassListener - Woven Class Listener Service.

56.6.2 public class WeavingException
extends RuntimeException
A weaving exception used to indicate that the class load should be failed but the weaving hook
must not be blacklisted by the framework.

This exception conforms to the general purpose exception chaining mechanism.

56.6.2.1 public WeavingException(String msg, Throwable cause)

msg The associated message.

cause The cause of this exception.

□ Creates a WeavingException with the specified message and exception cause.

56.6.2.2 public WeavingException(String msg)

msg The message.

□ Creates a WeavingException with the specified message.

56.6.3 public interface WeavingHook
OSGi Framework Weaving Hook Service.

Bundles registering this service will be called during framework class loading operations. Weaving
hook services are called when a class is being loaded by the framework and have an opportunity to
transform the class file bytes that represents the class being loaded. Weaving hooks may also ask the
framework to wire in additional dynamic imports to the bundle.

org.osgi.framework.hooks.weaving Weaving Hook Service Specification Version 1.1

Page 426 OSGi Core Release 7

When a class is being loaded, the framework will create a WovenClass object for the class and pass
it to each registered weaving hook service for possible modification. The first weaving hook called
will see the original class file bytes. Subsequently called weaving hooks will see the class file bytes
as modified by previously called weaving hooks.

Concurrency Thread-safe

56.6.3.1 public void weave(WovenClass wovenClass)

wovenClass The WovenClass object that represents the data that will be used to define the class.

□ Weaving hook method. This method can modify the specified woven class object to weave the class
being defined.

If this method throws any exception, the framework must log the exception and fail the class load
in progress. This weaving hook service must be blacklisted by the framework and must not be called
again. The blacklisting of this weaving hook service must expire when this weaving hook service
is unregistered. However, this method can throw a WeavingException to deliberately fail the class
load in progress without being blacklisted by the framework.

Throws WeavingException– If this weaving hook wants to deliberately fail the class load in progress with-
out being blacklisted by the framework

56.6.4 public interface WovenClass
A class being woven. This object represents a class being woven and is passed to each WeavingHook
for possible modification. It allows access to the most recently transformed class file bytes and to
any additional packages that should be added to the bundle as dynamic imports.

Upon entering one of the terminal states, this object becomes effectively immutable.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

56.6.4.1 public static final int DEFINE_FAILED = 16

The woven class failed to define.

The woven class is in this state when a failure occurs while defining the class. The woven class can-
not be further transformed or defined. This is a terminal state. Upon entering this state, this object is
effectively immutable.

Since 1.1

56.6.4.2 public static final int DEFINED = 4

The woven class has been defined.

The woven class is in this state after the class is defined. The woven class cannot be further trans-
formed. This is a terminal state. Upon entering this state, this object is effectively immutable, the
bundle wiring has been updated with the dynamic import requirements and the class has been de-
fined.

Since 1.1

56.6.4.3 public static final int TRANSFORMED = 2

The woven class has been transformed.

The woven class is in this state after weaving hooks have been called and before the class is defined.
The woven class cannot be further transformed. The woven class is in this state while defining the
class. If a failure occurs while defining the class, the state transitions to DEFINE_FAILED. Otherwise,
after the class has been defined, the state transitions to DEFINED.

Since 1.1

Weaving Hook Service Specification Version 1.1 org.osgi.framework.hooks.weaving

OSGi Core Release 7 Page 427

56.6.4.4 public static final int TRANSFORMING = 1

The woven class is being transformed.

The woven class is in this state while weaving hooks are being called. The woven class is mutable so
the class bytes may be modified and dynamic imports may be added. If a weaving hook throws an
exception the state transitions to TRANSFORMING_FAILED. Otherwise, after the last weaving hook
has been successfully called, the state transitions to TRANSFORMED.

Since 1.1

56.6.4.5 public static final int TRANSFORMING_FAILED = 8

The woven class failed to transform.

The woven class is in this state if a weaving hook threw an exception. The woven class cannot be
further transformed or defined. This is a terminal state. Upon entering this state, this object is effec-
tively immutable.

Since 1.1

56.6.4.6 public BundleWiring getBundleWiring()

□ Returns the bundle wiring whose class loader will define the woven class.

Returns The bundle wiring whose class loader will define the woven class.

56.6.4.7 public byte[] getBytes()

□ Returns the class file bytes to be used to define the named class.

While in the TRANSFORMING state, this method returns a reference to the class files byte array
contained in this object. After leaving the TRANSFORMING state, this woven class can no longer be
transformed and a copy of the class file byte array is returned.

Returns The bytes to be used to define the named class.

Throws SecurityException– If the caller does not have AdminPermission[bundle,WEAVE] and the Java run-
time environment supports permissions.

56.6.4.8 public String getClassName()

□ Returns the fully qualified name of the class being woven.

Returns The fully qualified name of the class being woven.

56.6.4.9 public Class<?> getDefinedClass()

□ Returns the class defined by this woven class. During weaving, this method will return nul l . Once
weaving is complete, this method will return the class object if this woven class was used to define
the class.

Returns The class associated with this woven class, or nul l if weaving is not complete, the class definition
failed or this woven class was not used to define the class.

56.6.4.10 public List<String> getDynamicImports()

□ Returns the list of dynamic import package descriptions to add to the bundle wiring for this woven
class. Changes made to the returned list will be visible to later weaving hooks called with this ob-
ject. The returned list must not be modified outside invocations of the weave method by the frame-
work.

After leaving the TRANSFORMING state, this woven class can no longer be transformed and the re-
turned list will be unmodifiable.

org.osgi.framework.hooks.weaving Weaving Hook Service Specification Version 1.1

Page 428 OSGi Core Release 7

If the Java runtime environment supports permissions, any modification to the returned list
requires AdminPermission[bundle,WEAVE] . Additionally, any add or set modification requires
PackagePermission[package, IMPORT] .

Returns A list containing zero or more dynamic import package descriptions to add to the bundle wiring for
this woven class. This list must throw I l legalArgumentException if a malformed dynamic import
package description is added.

See Also Core Specif icat ion, Dynamic Import Package, for the syntax of a dynamic import package de-
scr ipt ion.

56.6.4.11 public ProtectionDomain getProtectionDomain()

□ Returns the protection domain to which the woven class will be assigned when it is defined.

Returns The protection domain to which the woven class will be assigned when it is defined, or nul l if no
protection domain will be assigned.

56.6.4.12 public int getState()

□ Returns the current state of this woven class.

A woven class can be in only one state at any time.

Returns Either TRANSFORMING, TRANSFORMED, DEFINED, TRANSFORMING_FAILED or
DEFINE_FAILED.

Since 1.1

56.6.4.13 public boolean isWeavingComplete()

□ Returns whether weaving is complete in this woven class. Weaving is complete after the class is de-
fined.

Returns true if state is DEFINED, TRANSFORMING_FAILED or DEFINE_FAILED; fa lse otherwise.

56.6.4.14 public void setBytes(byte[] newBytes)

newBytes The new classfile that will be used to define the named class. The specified array is retained by this
object and the caller must not modify the specified array.

□ Set the class file bytes to be used to define the named class. This method must not be called outside
invocations of the weave method by the framework.

While in the TRANSFORMING state, this method replaces the reference to the array contained in
this object with the specified array. After leaving the TRANSFORMING state, this woven class can
no longer be transformed and this method will throw an IllegalStateException.

Throws NullPointerException– If newBytes is nul l .

I l legalStateException– If state is TRANSFORMED, DEFINED, TRANSFORMING_FAILED or
DEFINE_FAILED.

SecurityException– If the caller does not have AdminPermission[bundle,WEAVE] and the Java run-
time environment supports permissions.

56.6.5 public interface WovenClassListener
Woven Class Listener Service.

Bundles registering this service will receive notifications whenever a woven class completes a state
transition. Woven Class Listeners are not able to modify the woven class in contrast with weaving
hooks.

Weaving Hook Service Specification Version 1.1 References

OSGi Core Release 7 Page 429

Receiving a woven class in the TRANSFORMED state allows listeners to observe the modified byte
codes before the class has been DEFINED as well as the additional dynamic imports before the bun-
dle wiring has been updated.

Woven class listeners are synchronously called when a woven class completes a state transition. The
woven class processing will not proceed until all woven class listeners are done.

If the Java runtime environment supports permissions, the caller must have
ServicePermission[WovenClassListener,REGISTER] in order to register a listener.

Since 1.1

Concurrency Thread-safe

56.6.5.1 public void modified(WovenClass wovenClass)

wovenClass The woven class that completed a state transition.

□ Receives notification that a woven class has completed a state transition.

The listener will be notified when a woven class has entered the TRANSFORMED, DEFINED,
TRANSFORMING_FAILED and DEFINE_FAILED states.

If this method throws any exception, the Framework must log the exception but otherwise ignore it.

56.7 References

[1] Whiteboard Pattern
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

References Weaving Hook Service Specification Version 1.1

Page 430 OSGi Core Release 7

Data Transfer Objects Specification Version 1.1 Introduction

OSGi Core Release 7 Page 431

57 Data Transfer Objects
Specification

Version 1.1

57.1 Introduction
The OSGi API is rich and introspective supporting the local management of bundles, services and
other items. Since the API has a lot of behavior and is not designed for serialization, any manage-
ment model must design its own representation of the relevant OSGi objects for communication
with remote management systems. We see this in the Management Model Specification for JMX™
Technology, the Dmt Admin Service Specification and Residential Device Management Tree Speci-
fication: the Management Model Specification for JMX™ Technology must define the MBeans and
the Residential Device Management Tree Specification must define the tree representation.

The OSGi API continues to evolve and at each update of the OSGi API, the management models will
all need to update their representations of the OSGi objects. Having standard, simple, easy to serial-
ize and deserialize objects which represent the relevant OSGi objects will make it easier for the man-
agement model to keep up with changes in the OSGi API. Therefore, this specification defines Data
Transfer Objects for OSGi in general and well as specific Data Transfer Objects for the Core specifica-
tion. Other OSGi specifications may be updated over time to define Data Transfer Objects specific to
their domain.

57.1.1 Essentials

• Easy Serialization/Deserialization - Must be easily serializable. That is, no special serialization/dese-
rialization logic must be required. Serialization must be possible simply by introspection and ob-
ject graphs must be a tree.

• No Behavior - Must have no behavior. That is, no methods other than the default public construc-
tor.

• Public - Must have only public fields. That is, no private implementation detail.
• Limited Field Types - Must only use a limited selection of field types.
• Extendable - May extend other Data Transfer Object types.
• Snapshot - Does not track changes to represented runtime object.
• Not Thread Safe - External synchronization is needed.
• Instantiation - A means is provided to create Data Transfer Objects for the runtime objects they

represent.

57.1.2 Entities

• Data Transfer Object (DTO) - An object for carrying data between processes. A Data Transfer Ob-
ject does not have any behavior. See [1] Data Transfer Object.

• Runtime Object - A runtime object being represented by a Data Transfer Object. The runtime ob-
ject can have complex behavior.

Data Transfer Object Data Transfer Objects Specification Version 1.1

Page 432 OSGi Core Release 7

57.2 Data Transfer Object
A Data Transfer Object is used to represent the state of a related runtime object in a form suitable for
easy transfer to some receiver. The receiver can be in the same Java VM but is more likely in another
process or on another system that is remote. All Data Transfer Objects are easily serializable having
only public fields of a limited set of type. These types are:

• Primitive types
• Wrapper classes for the primitive types
• Str ing
• enum
• Version
• Data Transfer Objects
• List
• Set
• Map
• array

The List, Set, Map and array aggregates must only hold objects of the listed types.

Data Transfer Objects are public classes with no methods, other than the compiler supplied default
constructor, having only public fields limited to the easily serializable types mentioned above. The
org.osgi .dto package defines the basic rules and the abstract base DTO class which Data Transfer Ob-
jects must extend.

A Data Transfer Object is a representation of a runtime object at the point in time the Data Transfer
Object was created. Data Transfer Objects do not track state changes in the represented runtime ob-
ject. Since Data Transfer Objects are simply fields with no method behavior, modifications to Data
Transfer Object are inherently not thread safe. Care must be taken to safely publish Data Transfer
Objects for use by other threads as well as proper synchronization if a Data Transfer Object is mutat-
ed by one of the threads.

The object graph from a Data Transfer Object must be a tree to simplify serialization and deserializa-
tion.

57.2.1 Naming Conventions
Data Transfer Objects should follow a naming convention for the package containing the Data
Transfer Object as well as the Data Transfer Object type. For the package name, we start with the
package name containing the runtime type for which the Data Transfer Object is a representation.
A dto segment is suffixed to the package name. For example, a Data Transfer Object representing a
runtime type in the org.osgi .service.foo package will be in the Data Transfer Object package name
is org.osgi .service.foo.dto .

The name of the Data Transfer Object type should be the name of the runtime type for which the
Data Transfer Object is a representation followed by DTO . So for a type Widget , the Data Transfer
Object for that type should be WidgetDTO . Sometimes the entity for which the Data Transfer Object
provides a representation does not exists as a runtime type. In this case, the name of entity with a
DTO suffix should be used. For example, EntityDTO .

Putting both the package and type Data Transfer Object naming conventions togeth-
er, the fully qualified name for the Data Transfer Object representing the runtime type
org.osgi .service.foo.Widget would be org.osgi .service.foo.dto.WidgetDTO .

Data Transfer Objects Specification Version 1.1 Core Data Transfer Objects

OSGi Core Release 7 Page 433

57.3 Core Data Transfer Objects
Data Transfer Objects are defined for several important Core specification objects including Bundle ,
the Framework, and ServiceReference as well as the Resource API types, Start Level API types and
Bundle Wiring API types.

57.3.1 Framework Data Transfer Objects
A BundleDTO represents information about a single bundle such as the id of the bundle, the current
state of the bundle and the symbolic name and version of the bundle.

A ServiceReferenceDTO represents information about a single registered service such as the service
properties, the bundle which registered the service and the bundles using the service.

A FrameworkDTO represents information about the Framework such as the list of installed bundles,
the registered services and the launch properties of the framework.

57.3.2 Resource API Data Transfer Objects
Capabi l i tyDTO , RequirementDTO , ResourceDTO , WiringDTO and WireDTO represent the capabili-
ties and requirements wiring information of the Resource API. The following figure shows the effec-
tive relationship between these Data Transfer Object types. Since the graph of Data Transfer Objects
must be a tree, some references are indirect.

Figure 57.1 Resource API Data Transfer Objects

<<dto>>
Resource DTO

<<dto>>
Requirement
DTO

<<dto>>
Capability DTO

<<dto>>
Wiring DTO

1

0..n

0..n

1

0..n

0..n

<<dto>>
Wire DTO0..n

declares

declares

0..n

provider for

requirer for

1

1

1

1

provided

required

requirer for

provider for

1

57.3.3 Bundle Wiring API Data Transfer Objects
BundleRevis ionDTO , BundleWir ingDTO , and BundleWireDTO represent the capabilities and require-
ments wiring information of the Bundle Wiring API. The following figure shows the effective rela-
tionship between these Data Transfer Object types. Since the graph of Data Transfer Objects must be
a tree, some references are indirect.

Obtaining Core Data Transfer Objects Data Transfer Objects Specification Version 1.1

Page 434 OSGi Core Release 7

Figure 57.2 Bundle Wiring API Data Transfer Objects

<<dto>>
Bundle DTO

<<dto>>
Requirement DTO

<<dto>>
Bundle Wiring
DTO

<<dto>>
Bundle Wire
DTO

<<dto>>
Bundle Revision
DTO

<<dto>>
0..n1

1

0..n

0..n0..n

11

1

providerrequirer

<<dto>>
Wire DTO

<<dto>>
Resource DTO

<<dto>>
Wiring DTO

Capability DTO

1
1

1 1

providerrequirer

<<dto>>
Bundle Wiring
DTO.Node DTO

1..n

1..n1

1

1 root

FrameworkWir ingDTO represents the complete capabilities and requirements wiring information
for all the bundles in the framework.

57.3.4 Start Level API Data Transfer Objects
A BundleStartLevelDTO represents information about the start level information of a bundle such
as the assigned start level, the activation policy used and the whether the bundle is persistently
started.

A FrameworkStartLevelDTO provides the start level information about the Framework such as the
active start level and the initial bundle start level assigned to newly installed bundles.

57.4 Obtaining Core Data Transfer Objects
The adapt(Class) method allows the Bundle to be adapted to different types. The adapt method is
used to obtain the Core Data Transfer Objects. For example, the adapt method can be used to adapt a
Bundle object to the current BundleDTO object. The adapt method can be used as follows:

Data Transfer Objects Specification Version 1.1 Security

OSGi Core Release 7 Page 435

// DTO for the bundle
BundleDTO bundleDTO = bundle.adapt(BundleDTO.class);

// DTO for the current bundle wiring
BundleWiringDTO bundleWiringDTO = bundle.adapt(BundleWiringDTO.class);

// DTO for the current bundle revision
BundleRevisionDTO bundleRevisionDTO = bundle.adapt(BundleRevisionDTO.class);

The following table shows the Core Data Transfer Objects that can be obtained via the adapt
method.

Table 57.1 Data Transfer Objects that can be adapted from Bundle

Class Description
BundleDTO The Bundle Data Transfer Object for the bundle.
ServiceReferenceDTO [] An array of Service Reference Data Transfer Objects for the regis-

tered services of the bundle. If the bundle has no registered ser-
vices, the result is an empty array. If the bundle does not have a
valid bundle context, the result is nul l .

BundleRevis ionDTO The Bundle Revision Data Transfer Object for the bundle. If the
bundle is uninstalled or otherwise does not have a bundle revi-
sion, the result is nul l .

BundleRevis ionDTO [] The Bundle Revision Data Transfer Objects for the bundle. The
first revision is the current revision. If the bundle is uninstalled,
the result is nul l .

BundleWir ingDTO The Bundle Wiring Data Transfer Object for the bundle. If the
bundle is unresolved or otherwise does not have a bundle wiring,
the result is nul l .

BundleWir ingDTO[] The Bundle Wiring Data Transfer Objects for the bundle. The first
wiring is the current wiring. If the bundle is uninstalled, the re-
sult is nul l .

BundleStartLevelDTO The Bundle Start Level Data Transfer Object for the bundle. If the
bundle is uninstalled, the result is nul l .

FrameworkStartLevelDTO The Framework Start Level Data Transfer Object if the bundle is
the System Bundle. If the bundle is not the System Bundle, the re-
sult is nul l .

FrameworkDTO The Framework Data Transfer Object if the bundle is the System
Bundle. If the bundle is not the System Bundle, the result is nul l .

FrameworkWir ingDTO The Framework Wiring Data Transfer Object if the bundle is the
System Bundle. If the bundle is not the System Bundle, the result
is nul l .

57.5 Security
Data Transfer Objects have no behavior by definition and thus no permissions are applica-
ble to their use. To obtain Data Transfer Objects from a Bundle object via the adapt method,
AdaptPermission[<dtotype>,ADAPT] is required for the desired Data Transfer Object type.

57.6 org.osgi.dto

org.osgi.framework.dto Data Transfer Objects Specification Version 1.1

Page 436 OSGi Core Release 7

OSGi Data Transfer Object Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .dto; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .dto; vers ion="[1.1 ,1 .2)"

57.6.1 Summary

• DTO - Super type for Data Transfer Objects.

57.6.2 public abstract class DTO
Super type for Data Transfer Objects.

A Data Transfer Object (DTO) is easily serializable having only public fields of primitive types and
their wrapper classes, Strings, enums, Version, and DTOs. List, Set, Map, and array aggregates may al-
so be used. The aggregates must only hold objects of the listed types or aggregates.

The object graph from a Data Transfer Object must be a tree to simplify serialization and deserializa-
tion.

Concurrency Not Thread-safe

57.6.2.1 public DTO()

57.6.2.2 public String toString()

□ Return a string representation of this DTO suitable for use when debugging.

The format of the string representation is not specified and subject to change.

Returns A string representation of this DTO suitable for use when debugging.

57.7 org.osgi.framework.dto

OSGi Data Transfer Object Framework Package Version 1.8.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.dto; vers ion="[1.8,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .f ramework.dto; vers ion="[1.8,1.9)"

57.7.1 Summary

• BundleDTO - Data Transfer Object for a Bundle.
• FrameworkDTO - Data Transfer Object for a Framework.
• ServiceReferenceDTO - Data Transfer Object for a ServiceReference.

Data Transfer Objects Specification Version 1.1 org.osgi.framework.dto

OSGi Core Release 7 Page 437

57.7.2 public class BundleDTO
extends DTO
Data Transfer Object for a Bundle.

A Bundle can be adapted to provide a BundleDTO for the Bundle.

Concurrency Not Thread-safe

57.7.2.1 public long id

The bundle's unique identifier.

See Also Bundle.getBundleId()

57.7.2.2 public long lastModified

The time when the bundle was last modified.

See Also Bundle.getLastModified()

57.7.2.3 public int state

The bundle's state.

See Also Bundle.getState()

57.7.2.4 public String symbolicName

The bundle's symbolic name.

See Also Bundle.getSymbolicName()

57.7.2.5 public String version

The bundle's version.

See Also Bundle.getVersion()

57.7.2.6 public BundleDTO()

57.7.3 public class FrameworkDTO
extends DTO
Data Transfer Object for a Framework.

The System Bundle can be adapted to provide a FrameworkDTO for the framework of the system
bundle. A FrameworkDTO obtained from a framework will contain only the launch properties of the
framework. These properties will not include the System properties.

Concurrency Not Thread-safe

57.7.3.1 public List<BundleDTO> bundles

The bundles that are installed in the framework.

See Also BundleContext.getBundles()

57.7.3.2 public Map<String, Object> properties

The launch properties of the framework. The value type must be a numerical type, Boolean, String,
DTO or an array of any of the former.

See Also BundleContext.getProperty(String)

57.7.3.3 public List<ServiceReferenceDTO> services

The services that are registered in the framework.

org.osgi.framework.startlevel.dto Data Transfer Objects Specification Version 1.1

Page 438 OSGi Core Release 7

See Also BundleContext.getServiceReferences(String, String)

57.7.3.4 public FrameworkDTO()

57.7.4 public class ServiceReferenceDTO
extends DTO
Data Transfer Object for a ServiceReference.

ServiceReferenceDTO s for all registered services can be obtained from a FrameworkDTO. A started
Bundle can be adapted to provide a ServiceReferenceDTO[] of the services registered by the Bundle.
A ServiceReferenceDTO obtained from a framework must convert service property values which
are not valid value types for DTOs to type Str ing using Str ing.valueOf(Object) .

Concurrency Not Thread-safe

57.7.4.1 public long bundle

The id of the bundle that registered the service.

See Also ServiceReference.getBundle()

57.7.4.2 public long id

The id of the service.

See Also Constants.SERVICE_ID

57.7.4.3 public Map<String, Object> properties

The properties for the service. The value type must be a numerical type, Boolean, String, DTO or an
array of any of the former.

See Also ServiceReference.getProperty(String)

57.7.4.4 public long[] usingBundles

The ids of the bundles that are using the service.

See Also ServiceReference.getUsingBundles()

57.7.4.5 public ServiceReferenceDTO()

57.8 org.osgi.framework.startlevel.dto

OSGi Data Transfer Object Framework Start Level Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.start level .dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .f ramework.start level .dto; vers ion="[1.0,1.1)"

57.8.1 Summary

• BundleStartLevelDTO - Data Transfer Object for a BundleStartLevel.

Data Transfer Objects Specification Version 1.1 org.osgi.framework.wiring.dto

OSGi Core Release 7 Page 439

• FrameworkStartLevelDTO - Data Transfer Object for a FrameworkStartLevel.

57.8.2 public class BundleStartLevelDTO
extends DTO
Data Transfer Object for a BundleStartLevel.

An installed Bundle can be adapted to provide a BundleStartLevelDTO for the Bundle.

Concurrency Not Thread-safe

57.8.2.1 public boolean activationPolicyUsed

The bundle's autostart setting indicates that the activation policy declared in the bundle manifest
must be used.

See Also BundleStartLevel.isActivationPolicyUsed()

57.8.2.2 public long bundle

The id of the bundle associated with this start level.

See Also BundleStartLevel.getBundle()

57.8.2.3 public boolean persistentlyStarted

The bundle's autostart setting indicates it must be started.

See Also BundleStartLevel.isPersistentlyStarted()

57.8.2.4 public int startLevel

The assigned start level value for the bundle.

See Also BundleStartLevel.getStartLevel()

57.8.2.5 public BundleStartLevelDTO()

57.8.3 public class FrameworkStartLevelDTO
extends DTO
Data Transfer Object for a FrameworkStartLevel.

The System Bundle can be adapted to provide a FrameworkStartLevelDTO for the framework of the
Bundle.

Concurrency Not Thread-safe

57.8.3.1 public int initialBundleStartLevel

The initial start level value that is assigned to a bundle when it is first installed.

See Also FrameworkStartLevel.getInitialBundleStartLevel()

57.8.3.2 public int startLevel

The active start level value for the framework.

See Also FrameworkStartLevel.getStartLevel()

57.8.3.3 public FrameworkStartLevelDTO()

57.9 org.osgi.framework.wiring.dto

org.osgi.framework.wiring.dto Data Transfer Objects Specification Version 1.1

Page 440 OSGi Core Release 7

OSGi Data Transfer Object Framework Wiring Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .f ramework.wir ing.dto; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .f ramework.wir ing.dto; vers ion="[1.3,1 .4)"

57.9.1 Summary

• BundleRevis ionDTO - Data Transfer Object for a BundleRevision.
• BundleWireDTO - Data Transfer Object for a BundleWire.
• BundleWir ingDTO - Data Transfer Object for a BundleWiring graph.
• BundleWir ingDTO.NodeDTO - Data Transfer Object for a BundleWiring node.
• FrameworkWir ingDTO - Data Transfer Object for the wiring graph of the framework.

57.9.2 public class BundleRevisionDTO
extends ResourceDTO
Data Transfer Object for a BundleRevision.

An installed Bundle can be adapted to provide a BundleRevis ionDTO for the current revision of the
Bundle. BundleRevis ionDTO objects for all in use revisions of the Bundle can be obtained by adapt-
ing the bundle to BundleRevis ionDTO[] .

Concurrency Not Thread-safe

57.9.2.1 public long bundle

The id of the bundle associated with the bundle revision.

See Also BundleRevision.getBundle()

57.9.2.2 public String symbolicName

The symbolic name of the bundle revision.

See Also BundleRevision.getSymbolicName()

57.9.2.3 public int type

The type of the bundle revision.

See Also BundleRevision.getTypes()

57.9.2.4 public String version

The version of the bundle revision.

See Also BundleRevision.getVersion()

57.9.2.5 public BundleRevisionDTO()

57.9.3 public class BundleWireDTO
extends WireDTO
Data Transfer Object for a BundleWire.

Data Transfer Objects Specification Version 1.1 org.osgi.framework.wiring.dto

OSGi Core Release 7 Page 441

BundleWireDTO s are referenced BundleWiringDTO.NodeDTOs.

Concurrency Not Thread-safe

57.9.3.1 public int providerWiring

The identifier of the provider wiring for the bundle wire.

See Also WiringDTO.id, BundleWire.getProviderWiring()

57.9.3.2 public int requirerWiring

The identifier of the requiring wiring for the bundle wire.

See Also WiringDTO.id, BundleWire.getRequirerWiring()

57.9.3.3 public BundleWireDTO()

57.9.4 public class BundleWiringDTO
extends DTO
Data Transfer Object for a BundleWiring graph.

An installed Bundle can be adapted to provide a BundleWir ingDTO for the current wiring Bundle.
BundleWir ingDTO objects for all in use wirings of the Bundle can be obtained by adapting the bun-
dle to BundleWir ingDTO[] .

Concurrency Not Thread-safe

57.9.4.1 public long bundle

The id of the bundle associated with the bundle wiring graph.

See Also BundleWiring.getBundle()

57.9.4.2 public Set<BundleWiringDTO.NodeDTO> nodes

The set of wiring nodes referenced by the wiring graph.

All wiring nodes referenced by wiring node identifiers in the wiring graph are contained in this set.

57.9.4.3 public Set<BundleRevisionDTO> resources

The set of resources referenced by the wiring graph.

All resources referenced by resource identifiers in the wiring graph are contained in this set.

57.9.4.4 public int root

The identifier of the root wiring node of the bundle wiring graph.

See Also WiringDTO.id

57.9.4.5 public BundleWiringDTO()

57.9.5 public static class BundleWiringDTO.NodeDTO
extends WiringDTO
Data Transfer Object for a BundleWiring node.

The providedWires field must contain an array of BundleWireDTOs. The requiredWires field must
contain an array of BundleWireDTOs.

Concurrency Not Thread-safe

org.osgi.resource.dto Data Transfer Objects Specification Version 1.1

Page 442 OSGi Core Release 7

57.9.5.1 public boolean current

The current state of the bundle wiring. The bundle wiring's current setting indicates that the bundle
wiring is the current bundle wiring for the bundle.

See Also BundleWiring.isCurrent()

57.9.5.2 public boolean inUse

The bundle wiring's in use setting indicates that the bundle wiring is in use.

See Also BundleWiring.isInUse()

57.9.5.3 public NodeDTO()

57.9.6 public class FrameworkWiringDTO
extends DTO
Data Transfer Object for the wiring graph of the framework.

The system bundle can be adapted to provide the FrameworkWir ingDTO . Only the system bundle
can be adapted to a FrameworkWir ingDTO object

Since 1.3

Concurrency Not Thread-safe

57.9.6.1 public Set<BundleRevisionDTO> resources

The set of resources referenced by the wiring graph of the framework.

All resources referenced by resource identifiers in the wiring graph are contained in this set.

57.9.6.2 public Set<BundleWiringDTO.NodeDTO> wirings

The set of wiring nodes referenced by the wiring graph of the framework.

All wiring nodes referenced by wiring node identifiers in the wiring graph are contained in this set.

57.9.6.3 public FrameworkWiringDTO()

57.10 org.osgi.resource.dto

OSGi Data Transfer Object Resource Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . resource.dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . resource.dto; vers ion="[1.0,1.1)"

57.10.1 Summary

• Capabi l i tyDTO - Data Transfer Object for a Capability.
• Capabi l i tyRefDTO - Data Transfer Object for a reference to a Capability.
• RequirementDTO - Data Transfer Object for a Requirement.

Data Transfer Objects Specification Version 1.1 org.osgi.resource.dto

OSGi Core Release 7 Page 443

• RequirementRefDTO - Data Transfer Object for a reference to a Requirement.
• ResourceDTO - Data Transfer Object for a Resource.
• WireDTO - Data Transfer Object for a Wire.
• WiringDTO - Data Transfer Object for a Wiring node.

57.10.2 public class CapabilityDTO
extends DTO
Data Transfer Object for a Capability.

Concurrency Not Thread-safe

57.10.2.1 public Map<String, Object> attributes

The attributes for the capability.

The value type must be a numerical type, Boolean, String, DTO or an array of any of the former.

See Also Capability.getAttributes()

57.10.2.2 public Map<String, String> directives

The directives for the capability.

See Also Capability.getDirectives()

57.10.2.3 public int id

The unique identifier of the capability.

This identifier is transiently assigned and may vary across restarts.

57.10.2.4 public String namespace

The namespace for the capability.

See Also Capability.getNamespace()

57.10.2.5 public int resource

The identifier of the resource declaring the capability.

See Also ResourceDTO.id, Capability.getResource()

57.10.2.6 public CapabilityDTO()

57.10.3 public class CapabilityRefDTO
extends DTO
Data Transfer Object for a reference to a Capability.

Concurrency Not Thread-safe

57.10.3.1 public int capability

The identifier of the capability in the resource.

See Also CapabilityDTO.id

57.10.3.2 public int resource

The identifier of the resource declaring the capability.

See Also ResourceDTO.id

57.10.3.3 public CapabilityRefDTO()

org.osgi.resource.dto Data Transfer Objects Specification Version 1.1

Page 444 OSGi Core Release 7

57.10.4 public class RequirementDTO
extends DTO
Data Transfer Object for a Requirement.

Concurrency Not Thread-safe

57.10.4.1 public Map<String, Object> attributes

The attributes for the requirement.

The value type must be a numerical type, Boolean, String, DTO or an array of any of the former.

See Also Requirement.getAttributes()

57.10.4.2 public Map<String, String> directives

The directives for the requirement.

See Also Requirement.getDirectives()

57.10.4.3 public int id

The unique identifier of the requirement.

This identifier is transiently assigned and may vary across restarts.

57.10.4.4 public String namespace

The namespace for the requirement.

See Also Requirement.getNamespace()

57.10.4.5 public int resource

The identifier of the resource declaring the requirement.

See Also ResourceDTO.id, Requirement.getResource()

57.10.4.6 public RequirementDTO()

57.10.5 public class RequirementRefDTO
extends DTO
Data Transfer Object for a reference to a Requirement.

Concurrency Not Thread-safe

57.10.5.1 public int requirement

The identifier of the requirement in the resource.

See Also RequirementDTO.id

57.10.5.2 public int resource

The identifier of the resource declaring the requirement.

See Also ResourceDTO.id

57.10.5.3 public RequirementRefDTO()

57.10.6 public class ResourceDTO
extends DTO
Data Transfer Object for a Resource.

Data Transfer Objects Specification Version 1.1 org.osgi.resource.dto

OSGi Core Release 7 Page 445

Concurrency Not Thread-safe

57.10.6.1 public List<CapabilityDTO> capabilities

The capabilities of the resource.

See Also Resource.getCapabilities(String)

57.10.6.2 public int id

The unique identifier of the resource.

This identifier is transiently assigned and may vary across restarts.

57.10.6.3 public List<RequirementDTO> requirements

The requirements of the resource.

See Also Resource.getRequirements(String)

57.10.6.4 public ResourceDTO()

57.10.7 public class WireDTO
extends DTO
Data Transfer Object for a Wire.

Concurrency Not Thread-safe

57.10.7.1 public CapabilityRefDTO capability

Reference to the Capability for the wire.

See Also Wire.getCapability()

57.10.7.2 public int provider

The identifier of the provider resource for the wire.

See Also ResourceDTO.id, Wire.getProvider()

57.10.7.3 public RequirementRefDTO requirement

Reference to the Requirement for the wire.

See Also Wire.getRequirement()

57.10.7.4 public int requirer

The identifier of the requiring resource for the wire.

See Also ResourceDTO.id, Wire.getRequirer()

57.10.7.5 public WireDTO()

57.10.8 public class WiringDTO
extends DTO
Data Transfer Object for a Wiring node.

Concurrency Not Thread-safe

57.10.8.1 public List<CapabilityRefDTO> capabilities

The references to the capabilities for the wiring node.

References Data Transfer Objects Specification Version 1.1

Page 446 OSGi Core Release 7

See Also Wiring.getResourceCapabilities(String)

57.10.8.2 public int id

The unique identifier of the wiring node.

This identifier is transiently assigned and may vary across restarts.

57.10.8.3 public List<WireDTO> providedWires

The provided wires for the wiring node.

See Also Wiring.getProvidedResourceWires(String)

57.10.8.4 public List<WireDTO> requiredWires

The required wires for the wiring node.

See Also Wiring.getRequiredResourceWires(String)

57.10.8.5 public List<RequirementRefDTO> requirements

The references to the requirements for the wiring node.

See Also Wiring.getResourceRequirements(String)

57.10.8.6 public int resource

The identifier of the resource associated with the wiring node.

See Also ResourceDTO.id, Wiring.getResource()

57.10.8.7 public WiringDTO()

57.11 References

[1] Data Transfer Object
https://en.wikipedia.org/wiki/Data_transfer_object

57.12 Changes
• Added support for enums and Version fields in DTOs.
• A new DTO for the complete framework wiring, FrameworkWir ingDTO , is added.

https://en.wikipedia.org/wiki/Data_transfer_object

Resolver Service Specification Version 1.1 Introduction

OSGi Core Release 7 Page 447

58 Resolver Service Specification

Version 1.1

58.1 Introduction
Today very few applications are self contained, the predominant development model is that appli-
cations are built from (external) components, which are often open source. Application developers
add business logic, glue code, and assemble the diverse components into a resource that provides
the desired capabilities when installed in an environment. Designing the assembly has long been a
manual and error prone process, partly due to the complexity of external dependencies. Although
the direct dependencies are often given, the largest number of dependencies are usually the tran-
sitive dependencies: the dependencies of the dependencies. Modern applications can end up with
hundreds to thousands of external dependencies. Numbers that make tooling inevitable.

The OSGi framework is the first specification that provides a foundation for automating a signifi-
cant part of this assembly process. The Requirement-Capability model defined in Resource API Spec-
ification on page 151 provides a dependency model that allows resources to express dependencies,
constraints, and capabilities. If a resource's constraints are met it provides capabilities that can satis-
fy further requirements. The OSGi dependency model is fully generic and is not limited to bundles.
Resources can be bundles but also certificates, plugged in devices, etc.

Resolving transitive dependencies is a non-trivial process that requires careful design to achieve the
required performance since the underlying problem is NP-complete. OSGi frameworks have always
included such resolvers but these were built into the frameworks. They were not usable outside the
framework for tooling, for example automatically finding the dependencies of a bundle that needs
to be installed.

The number of dependencies is rapidly reaching a threshold where manual methods no longer can
provide reliable results. This specification therefore provides the Resolver service, a service that can
be the base for provisioning, deployment, build, and diagnostic tooling. The service can take a re-
quirement and resolve it to a wiring of resources. For example, with cloud computing a new re-
quirement can be translated into a new OSGi framework instance being started on a node and pro-
visioned with the set of bundles that satisfy the given requirement. The OSGi Resolver service is in-
tended be a corner stone of such an auto-provisioning tool.

However, the OSGi Resolver service is not limited to these higher end schemes. Build tools can use
the Resolver to find components for the build path and/or run time environment and predict the re-
sults of installing a set of bundles on a target environment. The OSGi Resolver service is an essential
part of a software model where applications are built out of independent components.

This specification is based on the concepts and API defined in the Resource API Specification on page
151, Bundle Wiring API Specification on page 157, and the Module Layer on page 33. These specifica-
tions are required reading for understanding this specification. This specification is for highly spe-
cialized use, it is not intended to be used in applications, the Resolver API is a low level service in-
tended for system developers with deep knowledge of the OSGi module layer.

58.1.1 Essentials

• Transitive - From a requirement, find a consistent set of resources that satisfy that requirement.
• Diagnostics - Provide diagnostic information when no resolution can be found.

Introduction Resolver Service Specification Version 1.1

Page 448 OSGi Core Release 7

• Scoped Repositories - Allow the environment to control the repositories to use.
• Build Tools - Must be useful in establishing build and run time class paths.
• Provisioning - Must be useful to find a set of bundles that can be installed in a system without run-

ning into unresolved dependencies.
• OSGi - Provide the semantics of all the OSGi namespaces, including the uses constraints.
• API - The API for the Resolver must provide the base for the Framework Bundle Wiring API.
• Performant - Enable highly performant implementations.
• Frameworks - Allow Frameworks to provide their resolver as a service.
• Scalable - Allow access to, and use of, very large repositories.

58.1.2 Entities

• Environment - A container or framework that can install resources and uses a Resolver to wire
these resources.

• Resolve Context - An interface implemented by the management agent to provide the context of
the resolution.

• Wiring - Represents the state of a resource's wires, requirements, and capabilities in an environ-
ment.

• Resolver - A service that can find a set of wires that can be applied to an existing wiring state
where a set of initial resources have all their mandatory requirements satisfied.

• Wire - Links requirement to a capability.
• Resource -An artifact with requirements that need to be provisioned and resolved to provide its

capabilities.
• Requirement - A necessity for a given resource before it can provide its capabilities; expressed as a

filter expression on the attributes of a capability in a given namespace.
• Capability - A set of attributes and directives defined by a namespace, describes what a resource

provides when resolved.
• Hosted Capability - Pairs a resource with a capability to model hosting capabilities in another re-

source.
• Namespace - The type for a capability and requirement.
• Resolution - The result of a resolve operation.

Figure 58.1 Class and Service overview

Management
Agent Impl

Resolver Impl

Resolver

<<class>>
Resolve
Context

Resolve Context
Impl

<<interface>>
Resource

<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Wire

<<interface>>
Hosted
Capability

1

1

Repository

Resolver Service Specification Version 1.1 The Resolve Context

OSGi Core Release 7 Page 449

58.1.3 Synopsis
The Resolver service can find a complete and consistent set of transitive dependencies starting with
an initial set of mandatory and optional resources. Such a set can be used to install resources in the
environment from local or remote repositories. To use the Resolver service, the client must provide
a ResolveContext object. This complex object represents the context of a resolution; it provides the
initial resources (optional and mandatory), defines a number of namespaces specific policies, and
provides the state of the environment.

A resolution can be based on an existing wiring in the environment, for example the current frame-
work state. For the framework, the Resolve Context can find this existing state via the Bundle Wiring
API Specification on page 157. The Resolver must then satisfy all the requirements of the mandatory
resources. The Resolver must always ask the Resolve Context to find additional capabilities for the
unsatisfied requirements. A capability is always associated with a resource, which is subsequently
associated with additional requirements. The final resolution must contain a set of resources that
include the initial set of mandatory resources, has no unsatisfied mandatory requirements, and is
consistent with the implied constraints. Otherwise it fails.

The Requirement-Capability model is fully generic but provides special semantics through the use
of namespaces. The Resolver must implement the standard OSGi namespaces as described in Bun-
dle Wiring API Specification on page 157, which includes the uses constraints. Part of the semantics
of the OSGi namespaces are delegated to the Resolve Context so that it can implement different poli-
cies. Singletons, ordering of capabilities, and matching are the responsibility of the Resolve Context;
the Resolver never matches a requirement to a capability.

Requirements have an effect ive directive that indicates in what situations the requirement must be
resolved. Also here, the Resolve Context decides if a particular requirement is effective or not. Only
effective requirements are wired in the resolution.

Since capabilities are declared by resources that have additional requirements, the Resolver must
create a set of resources where all transitive requirements are satisfied or fail with a Resolution Ex-
ception. This Resolution Exception can provide additional details why the resolution failed, if possi-
ble.

At the end of a successful resolve operation the Resolver returns a Map<Resource,L ist<Wire>> . These
wires are a delta on the existing state, if any. The wires can then be used to provision missing re-
sources or to provide diagnostic feedback.

58.2 The Resolve Context
Provisioning is the process of providing a framework with the necessary resources to allow it to op-
erate according to set goals. In OSGi terms, this consists of installing bundles and ensuring that the
configuration is set up correctly. With OSGi, bundles explicitly describe their capabilities and re-
quirements as manifest headers. This can range from Export-Package (a capability) to a generic Pro-
vide-Capability header.

OSGi Frameworks have a resolving stage that ensures requirements are satisfied before a bundle is
allowed to provide code to the shared space. As long as the requirements are not met, the bundle
remains in the INSTALLED state and is thus prohibited from contributing capabilities. Once all the
mandatory requirements are met, the bundle becomes RESOLVED . That is, a framework combines
two decisions when it resolves bundles:

• Find a resolution based on the existing set of installed bundles.
• Move the bundles that have all their mandatory requirements satisfied to the RESOLVED state.

The Resolver service separates these two stages and thus allows a third party, the management agent, to
define the environment of the resolution. A management agent can interact with the Resolver service

The Resolve Context Resolver Service Specification Version 1.1

Page 450 OSGi Core Release 7

while it is searching for a resolution because the Resolver service calls back the management agent
through a ResolveContext object. The Resolver service will therefore allow the management agent
to handle more scenarios, better diagnostics, etc.

The Resolve Context is provided by the management agent, it is an abstract base class and must
therefore be extended. It is a non-trivial class to implement since it is tightly coupled to the rules of
the environment; it represents the policies of the management agent for that environment. For OS-
Gi framework resolvers, the Resolve Context must understand and implement a part of the OSGi
framework namespaces.

With the Resolver service, a management agent can try out resolutions before any bundle can see
the result of such a resolution but it can also include extra bundles or other resources on demand.
The Resolver service will also allow resolutions to be calculated for other frameworks.

For example, a management agent could use a Resolver service to find missing dependencies and in-
stall them on demand from a local directory with bundles. Such a Provisioner could have the follow-
ing skeleton:

public class Provisioner {
 File bundles = ...;
 Map<String,Resource> resources = ...;
 Resolver resolver = ...;
 BundleContext context = ...;

 public void install(String location) {
 Resource resource = resources.get(location);
 if (resource == null) error(...);

 try {
 ResolveContextImpl rc = ...
 rc.addMandatory(resource);
 Set<Resource> provision = resolver.resolve(rc).keySet();

 for (Resource rb : provision) {
 String location = getLocation(rb);

 Bundle bundle = context.installBundle(location);
 if (!isFragment(bundle))
 bundle.start();
 }
 } catch(ResolutionException re) {
 ... // diagnostics
 } catch(BundleException be) {
 ... // diagnostics
 }
 }
}

58.2.1 Mandatory and Optional Resources
The Resolve Context provides all the parameters for the resolve operation, the Resolver does not
maintain any state between invocations. The Resolve Context must therefore provide the mandato-
ry and optional resources, which are essentially the input parameters to the resolve operation. The
resolver must find a solution that includes at least the initial mandatory resources and should in-
clude the optional resources.

Resolver Service Specification Version 1.1 The Resolve Context

OSGi Core Release 7 Page 451

58.2.2 Finding Capabilities
The Resolve Context's f indProviders(Requirement) method must be implemented in such a way
that it returns an ordered list of capabilities. The Resolver will treat the order of the capabilities as
preferences, the first element is more preferred than a later element. The Resolver cannot guarantee
that the wiring obeys this preference since there can be other constraints. However, a Resolver must
use this preference order for simple cases and try to use it in more constrained situations.

The Resolver does not make any assumptions, this means that the f indProviders(Requirement)
method must do all the matching. Even though the Resolver gets the mandatory and op-
tional resources it will not search these for capabilities to satisfy requirements. If the
f indProviders(Requirement) method does not search these resources then their capabilities will not
be used. The same is true for the existing wiring state used.

Since this section describes the Resolver with respect to a provisioning agent, the set of resources
is not limited to the installed set. That is, normally when a framework is resolved the Resolver on-
ly has to include installed resources. However, for a provisioning agent it is possible to retrieve ex-
ternal resources. The [1] Repository Service Specification provides access to resource repositories but a
management agent is free to find capabilities by any alternative means.

For resolving an OSGi framework the specifications outlines a number of heuristics that guide the
order of wiring bundles and packages:

1. A resource that is already resolved, that is, it is already wired
2. The highest version
3. The lowest bundle id

The Resolver can, and likely will, use the returned list to maintain its internal state during
the resolve operation while trying out different potential solutions. It can add and remove
capabilities at will. The returned list must therefore be mutable and not reused, after it is re-
turned; it becomes owned by the Resolver. However, the Resolver can call back later with the
insertHostedCapabi l i ty(List ,HostedCapabi l i ty) method, giving back the returned list as the first pa-
rameter, see Insert Hosted Capabilities on page 454.

For example, assume that all possible resources in the previous example can be gotten with the
getSortedResources method in the preferred resource order. This list contains all installed re-
sources as well as any potentially installable resources. This list is sorted once on the given ordering
criteria, this only has to be done once and not for each f indProviders(Requirement) method invoca-
tion. The following code, which does not order by capability versions, could then be a simple skele-
ton for the f indProviders(Requirement) method on the ResolveContextImpl inner class:

public List<Capability> findProviders(Requirement requirement) {
 List<Capability> result = new ArrayList<Capability>();

 for (Resource r : getSortedResources())
 for (Capability c : r.getCapabilities(null))
 if (match(requirement, c))
 result.add(c);

 return result;
}

58.2.3 Matching
The f indProviders(Requirement) method is responsible for only returning the capabilities that the
management agent wants to be considered by the Resolver. Since the Resolver must never match
any requirements to capabilities it allows the management agent to fully control the matching.
However, in an OSGi environment the following matching behavior is expected:

The Resolve Context Resolver Service Specification Version 1.1

Page 452 OSGi Core Release 7

• Requirements and capabilities must be in the same namespace.
• Only requirements and capabilities that have no effect ive directive or have the directive set to

resolve should be considered.
• The requirement's filter must match the capability's attributes.
• If the namespace is an osgi .wir ing.* namespace then the mandatory directive on the capability

must be supported. Mandatory attributes are defined with a mandatory directive on a capability,
they contain a list of attribute names. Each of these attributes must be used in the filter. Since the
filter must be constructed from the corresponding manifest header it is sufficient to search the
filter string with a regular expression that detects the usage of an attribute name.

The following example shows a skeleton match method that provides OSGi semantics:

boolean match(Requirement r, Capability c){
 if (!r.getNamespace().equals(c.getNamespace()))
 return false;

 String effective = c.getDirectives().get("effective");
 if (!(effective == null || effective.equals("resolve")))
 return false;

 String f = r.getDirectives().get("filter");
 if (f != null) {
 Filter filter = context.createFilter(f);
 if (!filter.matches(c.getAttributes()))
 return false;
 }

 if (!c.getNamespace().startsWith("osgi.wiring."))
 return true;

 String mandatory = c.getDirectives().get("mandatory");
 if (mandatory == null)
 return true;

 List<String> attrs =
 Arrays.asList(mandatory.toLowerCase().split("\\s*,\\s*"));

 Matcher m = FILTER_ASSERT_PATTERN.matcher(f == null ? "": f);
 while(m.find())
 attrs.remove(m.group(1)); // the attribute name

 return mandatory.isEmpty();
}

58.2.4 Repositories
Resolving to provision a framework is different than a framework resolving itself. During provision-
ing remote repositories can be consulted to find external resources while the framework only re-
solves a limited set (the installed bundles). These repositories generally contain magnitudes more
bundles than what is installed in a framework.

Repositories do not implement any namespace specific semantics and therefore do not understand
any directives. Repositories only verify the requirement's filter (if any) against the capability's attrib-
utes. The Resolver expects the Resolve Context to do the namespace specific matching. The [1] Repos-
itory Service Specification provides the details for a service that abstracts a Requirement-Capability
aware repository.

Resolver Service Specification Version 1.1 The Resolve Context

OSGi Core Release 7 Page 453

With such a repository service the f indProviders(Requirement) method can be implemented as fol-
lows:

List<Repository> repositories = new CopyOnWriteArrayList<Repository>();

void addRepository(Repository repository) { repositories.add(repository);}
void removeRepository(Repository repository){ repositories.remove(repository);}

public List<Capability> findProviders(Requirement requirement) {
 List<Capability> result = new ArrayList<Capability>();

 // previous findProviders that searches the initial resources

 for (Repository repository : repositories) {
 Collection<Capability> capabilities = repository.findProviders(
 Collections.singleton(requirement)).get(requirement);
 for (Capability c : capabilities)
 if (match(requirement, c))
 result.add(c);
 }
 return result;
}

58.2.5 Existing Wiring State
The Resolver service always creates a list of wires that should be added to an existing state. To get
the existing state, the ResolveContext interface specifies the getWir ings() method. This method
must return the existing state as a Map<Resource,Wir ing> . A Wiring is an object that reflects the
wired state of a resource in the environment. From this object, all declared and hosted capabilities
and requirements can be found, including their wires if any. The Resolver needs this existing state to
create a consistent resolution. For example, uses constraints require access to the existing state.

The Resolver service API is based on the generic Requirement-Capability model. This API is imple-
mented by the OSGi framework to reflect its internal wiring, see Bundle Wiring API Specification on
page 157. When the Resolver service is used for an OSGi framework then the Resolve Context can
provide the existing wiring state based on the Framework Wiring API. The interfaces used in the
org.osgi .f ramework.wir ing package all extend their counterpart in the org.osgi . resource package
(the generic model). For example, the BundleCapabi l i ty interface extends the Capabi l i ty interface.

The framework wiring API models all the power and complexities of the OSGi framework. One of
those aspects is removal pending. Each installed bundle is represented by one or more bundle revi-
sions. Each bundle revision is a Resource object but only one is the current bundle revision. Dur-
ing a resolve operation a framework can actually wire to the current bundle revision but is not for-
bidden to also select the pending removal bundle revisions. The Resolve Context must therefore de-
cide if it provides only the current bundle revisions or all. The best policy solution in this case is to
always refresh after a (batch) of install operations and only resolve when there are no pending-re-
moval bundle revisions. However, certain management agents attempt to manage a system that is in
this half-way state and will then be required to include the pending-removal revisions.

The following example code shows a possible implementation of the getWir ings() method. It only
uses the current wiring and ignores removal pending bundle revisions:

public Map<Resource,Wiring> getWirings(){
 Map<Resource,Wiring> wirings = new HashMap<Resource,Wiring>();

 for (Bundle b : context.getBundles()) {
 BundleRevision revision = b.adapt(BundleRevision.class);
 if (revision != null) {

The Resolve Context Resolver Service Specification Version 1.1

Page 454 OSGi Core Release 7

 Wiring wiring = revision.getWiring();
 if (wiring != null)
 wirings.put(revision, wiring);
 }
 }
 return wirings;
}

A wiring for a resource may also have a subset of required wires which substitute capabilities pro-
vided by the resource or one of its attached fragment resources. The getSubstitut ionWires(Wir ing)
method is called by the resolver in order to find the wires that substitute capabilities of the wiring.
For example, when a wiring provides a osgi .wir ing.bundle capability that is used to resolve one or
more osgi .wir ing.bundle requirements. In this case the resolver needs to discover which capabilities
have been substituted in order to ensure a consistent class space (see Requiring Bundles on page 84).
In order to get the capabilities which have been substituted, the resolver asks the resolve context to
return the substitution wires for the wiring.

Note that the default implementation of this method searches all the osgi .wir ing.package capabil-
ities which are declared as provided by the resource associated with the wiring and fragment re-
sources wired to the wiring with the osgi .wir ing.host namespace. The provided capabilities are com-
pared against the required package wires to determine which wires are substitution wires. Subclass-
es of ResolveContext should provide a more efficient implementation of this method.

58.2.6 Effective
The Resolver service is designed to work with OSGi frameworks but the scope is broader; its de-
sign allows many alternative usages. The effect ive directive on the capabilities and requirements
is meant to allow requirements and capabilities to be effective in different phases. The default is re-
solve , the value for an OSGi framework resolving process. Bundles and other OSGi defined artifacts
must declare their capabilities and requirements in the resolve effective time to be considered by an
OSGi resolver.

However, Resolvers can use the effect ive directive to run the Resolver at other times than the stan-
dard OSGi framework resolve. For example, it could be possible to define an active time to resolve the
service dependencies.

For this reason, the Resolver is designed to be agnostic for this directive, it will always ask the Re-
solveContext if a requirement is effective. It does this with the isEffect ive(Requirement) method.
Since the Resolver service never matches requirements to capabilities it is also up to the Resolve
Context to decide how to treat the effect ive directive. For an OSGi resolve operation, capabilities
should also have an effective time value of resolve (or not set since resolve is the default).

To make requirements effective during the resolving of bundles it will be necessary to implement
the isEffect ive(Requirement) method similar to:

public boolean isEffective(Requirement requirement) {
 String e = requirement.getDirectives().get("effective");
 return e==null || "resolve".equals(e);
}

58.2.7 Insert Hosted Capabilities
One of the complex aspects of resolving for an OSGi framework is handling fragments. For frag-
ments, the declared capabilities are going to be hosted by their hosts. The Requirement and Capabi l-
ity objects have a getResource method that returns the associated resource. For hosted capabilities
and requirements this must be the hosting resource and for others the declaring resource.

The HostedCapabi l i ty interface defines the interface for allowing the hosting resource to be
returned instead of the declaring resource. Since the Resolver service creates these Hosted

Resolver Service Specification Version 1.1 The Resolve Context

OSGi Core Release 7 Page 455

Capabilities the Resolver needs a way to add them to the lists of capabilities returned from
f indProviders(Requirement) . The Resolver service cannot add them itself since this list has a prefer-
ence order, the Resolver service must therefore ask the Resolve Context to insert this new capability
to allow the Resolve Context to maintain the desired order.

The Resolve Context must therefore implement an insertHostedCapabi l i ty(List ,HostedCapabi l i ty)
method. The given list must have been returned earlier from a f indProviders(Requirement) method
invocation. The Resolve Context must find the appropriate position to insert the HostedCapabi l i ty
object, insert it, and return the index of the inserted object.

It is the responsibility of the Resolve Context to find the proper position. In Finding Capabilities on
page 451 it was discussed how the f indProviders(Requirement) method must return an ordered
list. The insertHostedCapabi l i ty(List ,HostedCapabi l i ty) has that same responsibility.

The following example shows how the Hosted Capability is inserted based on the index of the host-
ed resource's index in the sorted list of resources the management agent maintained. The example
iterates through the capabilities and compares the index of sorted resources to indicate preference.
If it finds a capability from a resource that was later in the list of sorted resources then it inserts it at
that position. A real implementation should also take the version of the capability into account.

public int insertHostedCapability(
 List<Capability> caps, HostedCapability hc) {

 List<Resource> resources = getSortedResources();
 int index = resources.indexOf(hc.getResource());

 for (int i =0; i < caps.size(); i++) {
 Capability c = caps.get(i);
 int otherIndex = resources.indexOf(c.getResource());
 if (otherIndex > index) {
 caps.add(i, hc);
 return i;
 }
 }
 caps.add(hc);
 return caps.size()-1;
}

58.2.8 Fragments
Fragments are resources that have an osgi .wir ing.host requirement that must match a capability
from one or more host bundles. However, for example an Export-Package in a fragment must be
merged with its attached hosts. These capabilities and requirements from namespaces that appear
as if they come from the host bundle are called hosted.

When resolving a set of resources it must be possible to pull in any available fragments which may
attach to the resource. Since fragments are not required by the host bundle, there will be no resource
requiring the fragment bundles. However, fragments will require their hosts. A Resolver should at-
tach any fragments available in a resolution to suitable hosts.

In order to discover additional fragments which may be attached to the resources in a resolution the
f indRelatedResources(Resource) method is called by the resolver . The resolver attempts to also re-
solve the related resources during the current resolve operation. Failing to resolve one of the related
resources must not result in a resolution exception unless the related resource is also considered a
mandatory resource.

A resolve context may consider a fragment to be a related resource for the hosts it can attach to. In
order for the resolver to pull the fragments into the resolve operation the resolve context is asked
to return the related resources of each host bundle which is to be resolved. The resolve context may

The Resolve Context Resolver Service Specification Version 1.1

Page 456 OSGi Core Release 7

decide if the fragments of the host needs to be resolved along with the host. Note that fragments are
used as an example of a related resource. The resolve context is free to use any type of resource as a
related resource.

Fragments can of course also be found by the normal finding of capabilities.

58.2.9 Singleton Capabilities
A resource can be marked as a singleton. A singleton resource has the singleton directive set to true
on the osgi . identity capability. A singleton resource conflicts with another singleton resource if:

• They have the same osgi . identity , and
• They have the same type , and
• They have a different or identical version.

This constraint is not enforced by the Resolver service to give more flexibility to management
agents. The Resolve Context must ensure that it does not return capabilities from conflicting single-
ton resources from the f indProviders(Requirement) method. When the Resolver is used with a lim-
ited set of resources then it is possible to enumerate all singletons ahead of time and use permuta-
tions. However, when repositories are used an incremental method works better because the scope
is so much larger.

When the f indProviders(Requirement) method is called for a requirement that selects a capability
declared in a singleton then it is likely that repositories will return multiple versions of this single-
ton including the resource with the highest available version for conflicting resources. It is there-
fore possible to maintain a white list of singletons incrementally.

Once the f indProviders(Requirement) method has created a result list, it is possible to prune this list
of conflicting singletons. This can be an incremental process, the first time a singleton is encoun-
tered in such a list of capabilities the highest version can be selected as the singleton. Other single-
tons that are in that list or come in other invocations of f indProviders(Requirement) can then no
longer provide capabilities. For example:

 Map<String,Resource> whitelist = new HashMap<String,Resource>();

 void prune(List<Capability> list) {
 Map<String,Resource> singletons = new HashMap<String,Resource>();

 for (Capability c : list) {
 Resource r = c.getResource();
 Version now = getVersion(r);
 String identity = getIdentity(r);

 if (isSingleton(r) && !whitelist.containsKey(identity)) {
 Resource selected = singletons.get(identity);
 if (selected == null)
 singletons.put(identity, r);
 else {
 Version old = getVersion(selected);
 if (now.compareTo(old)> 0)
 singletons.put(identity, r);
 }
 }
 }

 this.whitelist.putAll(singletons);

Resolver Service Specification Version 1.1 Resolver Service

OSGi Core Release 7 Page 457

 for (Iterator<Capability> i=list.iterator(); i.hasNext();) {
 Capability c = i.next();
 Resource r = c.getResource();
 String identity = getIdentity(r);
 Resource selected = this.whitelist.get(identity);
 if (selected != null && !selected.equals(r))
 i.remove();
 }
 }

58.2.10 Diagnostics
The Resolver service throws a Resolut ionException when the resolve operation cannot find a so-
lution. This Exception provides the standard human readable message. However, there is also the
getUnresolvedRequirements() method. With this method it is possible to find what requirements
could not be matched. Though this is very useful in many cases it must be realized that resolving is
a complicated process. It is not possible to establish the exact set of missing requirements because
any unresolved resolution can have many, different, sets of unresolved requirements. This is an in-
trinsic part of the resolution problem. There is also no guarantee that providing capabilities that sat-
isfy these requirements will give a successful resolution. There could still be other constraints that
cannot be satisfied. In general, the Resolve Context can already detect any unresolved mandatory re-
quirements when it cannot find a matching capability in the f indProviders(Requirement) method.

That said, the getUnresolvedRequirements() can often point to a potential solution.

58.2.11 Cancel
Some resolution operations can be long running, and therefore a resolve context may want to
cancel the currently running resolve operation. The resolver must register a single runnable call-
back with the resolve context that is associated with the currently running resolve operation. The
onCancel(Runnable) method must be invoked by the resolver implementation before any other
method on the resolve context is invoked. The resolve context invokes the callback to cancel the
currently running resolve operation that appears to be running endlessly or at risk of running out
of resources. The resolve context may give up on the resolve operation or attempt to try another re-
solve operation with a smaller set of resources which may allow the resolve operation to complete
normally.

58.2.12 Complexity
Implementing a Resolve Context is a non-trivial task that requires extensive knowledge of the OS-
Gi framework, especially the module layer. Though this section contains numerous code examples,
they are not sufficient to implement a real Resolve Context since this would require too much code
for a specification.

58.3 Resolver Service
The Resolver service is an interface to a generic constraint solver based on the Require-Capability
model defined in Resource API Specification on page 151. This model defines a constraint-solving lan-
guage that is used by the Framework, see Module Layer on page 33, to create the mesh of class load-
ers. However, the Resolver service has been designed to be useful in solving other types of constraint
problems.

The task of the Resolver is to find a resolution. The resolve method returns a delta on an existing wiring
state. The total of existing wiring state and the applied delta is the resolution. The delta is a set of
wires between requirements and capabilities.

Resolver Service Resolver Service Specification Version 1.1

Page 458 OSGi Core Release 7

58.3.1 Variables
The resolve(ResolveContext) method uses a Resolve Context to provide the context and parameters
of the resolution. During the resolution process the Resolver service can callback the Resolve Con-
text to retrieve the following information:

Rm Collect ion<Resource> getMandatoryResources()
Ro Collect ion<Resource> getOptionalResources()
Cenv Map<Requirement,L ist<Capabi l i ty>> Combined answers from the

f indProviders(Requirement) method
Qeff Collect ion<Requirement> Set of effective requirements as defined by the

isEffect ive(Requirement) method
X Map<Resource,Wir ing> An existing Wiring state, getWir ings()
S Map<Wir ing,L ist<Wire>> The substitution wires of an existing Wiring

state, getSubstitut ionWires(Wir ing)

The Resolver service returns the following:

D Map<Resource,L ist<Wire>> The resolution, a delta on the existing state

The resolve(ResolveContext) method returns a resolution D that is a delta on the existing Wiring
state X . It is up to the Resolve Context to ensure that the delta D is installed. In for example the OSGi
framework the framework hooks can be used to guide the framework's resolving process.

58.3.2 Resolving
The goal of the Resolver is to provide a set of wires between a set of resolved resources. A resource is
resolved when all its mandatory and effective requirements are satisfied by capabilities from resolved
resources. A Resolver must not return wires between resources that have unsatisfied mandatory re-
quirements.

A mandatory requirement has a resolut ion directive that is not set or that is set to mandatory . The
effectiveness of a requirement is defined by the Resolve Context, a Resolver service must call the
isEffect ive(Requirement) method to establish if a requirement is effective for a given resolve opera-
tion. A Resolver must never create a wire from a requirement that is not effective.

To find a resolution, the Resolver must use the Resolve Context to find candidate capabilities for the
requirements declared in the resources that it needs to resolve. A candidate capability is a capabili-
ty that satisfies the requirement. From the perspective of the Resolver service, a requirement is satis-
fied by a capability when that capability is returned from the f indProviders(Requirement) method.
A Resolver has no alternative way to find out if a requirement is satisfied by a capability and must
therefore not make any assumptions about matching. Any matching rules like for example the
osgi .wir ing.* mandatory directive must be implemented by the Resolve Context. A Resolve Context
must always return the same capabilities during a resolving operation when given the same require-
ment.

Since the resolver cannot match requirements and capabilities the Resolve Context must return ca-
pabilities for all possible resources, this must include:

• The given mandatory resources R m
• The given optional resources R o
• The existing Wiring state X

It can include additional resources that were indirectly returned through the
f indProviders(Requirement) method.

The existing wiring X and its substitution wires S provides an existing set of constraints
that the Resolver service must abide by. It can get this state with the getWir ings() and
getSubstitut ionWires(Wir ing) methods. The purpose of the existing state is to ensure that any wires

Resolver Service Specification Version 1.1 Resolver Service

OSGi Core Release 7 Page 459

are compatible with existing wiring. For an OSGi framework it is crucial that the uses constraints
are maintained for the resolution, see Module Layer on page 33.

The Resolver service can wire new requirements to existing capabilities but it can never create wires
for an existing requirement from the existing wiring unless the resolve process is for a dynamic re-
solve, see Dynamic Resolving on page 459.

If the Resolver service attaches a hosted resource like a fragment, and thereby needs to add new
HostedCapabi l i ty objects to a previously returned list from f indProviders(Requirement) then it
must call the Resolve Context's insertHostedCapabi l i ty(List ,HostedCapabi l i ty) method.

Fragments can be attached to resolved resources or to resources that declare the capabilities re-
turned from f indProviders(Requirement) , that is, Cenv. Additional resources are also pulled into the
resolve operation by invoking the f indRelatedResources(Resource) method on the resolve context.
As part of the related resources the resolve context can include fragments to be considered as part of
the resolve operation. This allows the available fragments to be resolved when the host is being re-
solved.

This specification does not define the detailed rules and constraints associated with resolving; these
rules are defined in their namespaces. An OSGi Resolver service must support at least all name-
spaces defined in Framework Namespaces Specification on page 171 except for the following directives:

• mandatory - Mandatory attributes on the osgi .wir ing.* namespaces must be implement-
ed by the Resolve Context. The Resolve Context should not return capabilities from
f indProviders(Requirement) unless the rules of the OSGi mandatory directive are followed.

• singleton - Singletons are not implemented by the Resolver, the Resolve Context must not return
capabilities from f indProviders(Requirement) from conflicting singleton resources.

• effect ive - The Resolve Context decides what requirements are effective in the
isEffect ive(Requirement) method.

A Resolver service must support the uses constraints and any applicable rule defined in the Module
Layer on page 33 for the osgi .wir ing.* namespaces.

The Resolver must return a delta wiring to the existing state (potentially empty) or throw an Excep-
tion. The resolution:

• Must contain all mandatory resources Rm as provided by getMandatoryResources() .
• Must have all resources resolved.
• Must have no wired capabilities that are declared or hosted in resources that are not resolved.
• Should include optional resources Ro as provided by getOptionalResources() .

58.3.3 Dynamic Resolving
The resolveDynamic(ResolveContext,Wir ing,Requirement) method is used to resolve a dynamic
requirement for an existing host wiring. For example, this method can be used to resolve dynamic
package imports as specified by the DynamicImport-Package manifest header. This method may re-
solve additional resources in order to resolve the dynamic requirement. Dynamic resolving must re-
turn a resolution D that is a delta on the existing Wiring state X or throw a Resolut ionException if
the dynamic requirement cannot be resolved.

The delta must contain the host resource of the host wiring as a key. The list of wires for the host re-
source entry will contain a single wire that resolves the dynamic requirement to a valid capability.
The delta wiring may also contain additional resources that are necessary to resolve the dynamic re-
quirement.

To find a dynamic resolution D , the Resolver must use the Resolve Context in the same way as nor-
mal resolving except the Resolve Context is not asked for mandatory or optional resources as pro-
vided by getMandatoryResources() and getOptionalResources() . The Resolve Context is asked to
find providers for the dynamic requirement as provided by f indProviders(Requirement) .

Resolver Service Resolver Service Specification Version 1.1

Page 460 OSGi Core Release 7

The Resolver assumes the following about the host wiring and the dynamic requirement:

• The requirement uses the osgi .wir ing.package namespace.
• The requirement has a resolut ion directive of dynamic .
• The requirement is hosted by the host wiring.
• A requirement that has a cardinal ity directive of single is not used by an existing required wire of

the host wiring.

The Resolver is not required to validate these assumptions. If these assumptions are not true then
the result of the dynamic resolution is not specified.

The Resolver uses the dynamic requirement to call f indProviders(Requirement) in order to find
valid matching capabilities. In order for a matching capability to be considered as valid it must satis-
fy the following rules:

• The capability must use the osgi .wir ing.package namespace.
• The wiring must not provide an osgi .wir ing.package capability that has the same package name

as the matching capability. In other words, the resolved bundle must not already export the pack-
age name.

• The wiring must not have a required wire that wires to an osgi .wir ing.package capability that
has the same package name as the matching capability. In other words, the resolved bundle must
not already import the package name.

The Resolver assumes the matching capabilities are valid. If invalid capabilities are returned by the
Resolve Context then the result of the dynamic resolution is not specified.

At this point the dynamic resolution continues on as a normal resolution where the host wiring re-
source is considered a mandatory resource and the dynamic requirement is considered a mandato-
ry requirement. The resources providing the matching capabilities to the dynamic requirement are
then resolved as in a normal resolution operation.

58.3.4 Resolution Exception
If the Resolver cannot find a solution or it runs into problems then it must throw a Resolution Ex-
ception, which is a Runtime Exception.

The Resolut ionException provides the getUnresolvedRequirements() method. If the resolution
failed then it is possible that this was caused because it failed to find matches for certain require-
ments. The information in this method can be very helpful to find a solution that will work, howev-
er, there are a number of caveats.

Resolving is an NP-complete problem. For these problems there exists no algorithm that can infer a
solution from the desired outcome. Therefore, the Resolver tries a potential solution and if that solu-
tion does not match the constraints it will backtrack and attempt another solution. An unavoidable
aspect of such solutions is that it is impossible to pin-point a single failure point if the algorithm
fails to find a solution, in general the algorithm gives up after having exhausted its search space.
However, during its search it might have been very close to a solution, for example it only missed a
single requirement, but its final failure missed many requirements.

The implication is that the reported missing requirements neither give a guarantee for a resolution
when satisfied nor indicate that this is the smallest set of missing requirements.

Therefore, getUnresolvedRequirements() is intended for human consumption and not for automat-
ed solutions.

Resolver Service Specification Version 1.1 Security

OSGi Core Release 7 Page 461

58.4 Security

58.4.1 Resolving
The Resolver service is a pure function that has no state. The Resolve Context maintains the state
and is therefore the actor that requires most permissions. In general, it will require access to the
Wiring API and Repositories.

Since the Resolver requires no external access it does not have to be a trusted service. Resolve Con-
texts that support security must ensure that the callbacks are executed in a privileged block.

58.4.2 Minimum Implementation Permissions

PackagePermission[org.osgi.service.resolver,IMPORT]
ServicePermission[...Resolver, REGISTER]

58.4.3 Minimum Using Permissions

PackagePermission[org.osgi.service.repository,IMPORT]
PackagePermission[org.osgi.service.resolver,IMPORT]
PackagePermission[org.osgi.resource,IMPORT]
PackagePermission[org.osgi.framework.wiring,IMPORT]
PackagePermission[org.osgi.framework.namespaces,IMPORT]
ServicePermission[...Resolver, GET]
... likely needs AdaptPermissions and ServicePermission[...Repository,GET]

58.5 org.osgi.service.resolver

Resolver Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.resolver ; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.resolver ; vers ion="[1.1 ,1 .2)"

58.5.1 Summary

• HostedCapabi l i ty - A capability hosted by a resource.
• Resolut ionException - Indicates failure to resolve a set of requirements.
• ResolveContext - A resolve context provides resources, options and constraints to the potential

solution of a resolve operation.
• Resolver - A resolver service resolves the specified resources in the context supplied by the

caller.

58.5.2 public interface HostedCapability
extends Capability
A capability hosted by a resource.

org.osgi.service.resolver Resolver Service Specification Version 1.1

Page 462 OSGi Core Release 7

A HostedCapability is a Capability where the getResource() method returns a Resource that hosts
this Capability instead of declaring it. This is necessary for cases where the declaring Resource of a
Capability does not match the runtime state. For example, this is the case for fragments attached to
a host. Most fragment declared capabilities and requirements become hosted by the host resource.
Since a fragment can attach to multiple hosts, a single capability can actually be hosted multiple
times.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

58.5.2.1 public Capability getDeclaredCapability()

□ Return the Capability hosted by the Resource.

Returns The Capability hosted by the Resource.

58.5.2.2 public Resource getResource()

□ Return the Resource that hosts this Capability.

Returns The Resource that hosts this Capability.

58.5.3 public class ResolutionException
extends Exception
Indicates failure to resolve a set of requirements.

If a resolution failure is caused by a missing mandatory dependency a resolver may include any re-
quirements it has considered in the resolution exception. Clients may access this set of dependen-
cies via the getUnresolvedRequirements() method.

Resolver implementations may extend this class to provide extra state information about the reason
for the resolution failure.

58.5.3.1 public ResolutionException(String message, Throwable cause, Collection<Requirement>
unresolvedRequirements)

message The message.

cause The cause of this exception.

unresolve-
dRequirements

The unresolved mandatory requirements from mandatory resources or nul l if no unresolved require-
ments information is provided.

□ Create a Resolut ionException with the specified message, cause and unresolved requirements.

58.5.3.2 public ResolutionException(String message)

message The message.

□ Create a Resolut ionException with the specified message.

58.5.3.3 public ResolutionException(Throwable cause)

cause The cause of this exception.

□ Create a Resolut ionException with the specified cause.

58.5.3.4 public Collection<Requirement> getUnresolvedRequirements()

□ Return the unresolved requirements, if any, for this exception.

The unresolved requirements are provided for informational purposes and the specific set of unre-
solved requirements that are provided after a resolve failure is not defined.

Resolver Service Specification Version 1.1 org.osgi.service.resolver

OSGi Core Release 7 Page 463

Returns A collection of the unresolved requirements for this exception. The returned collection may be emp-
ty if no unresolved requirements information is available.

58.5.4 public abstract class ResolveContext
A resolve context provides resources, options and constraints to the potential solution of a resolve
operation.

Resolve Contexts:

• Specify the mandatory and optional resources to resolve. The mandatory and optional resources
must be consistent and correct. For example, they must not violate the singleton policy of the im-
plementer.

• Provide capabilities that the Resolver can use to satisfy requirements via the
findProviders(Requirement) method

• Constrain solutions via the getWirings() method. A wiring consists of a map of existing re-
sources to wiring.

• Filter requirements that are part of a resolve operation via the isEffective(Requirement).

A resolver may call the methods on the resolve context any number of times during a resolve opera-
tion using any thread. Implementors should ensure that this class is properly thread safe.

Except for insertHostedCapability(List, HostedCapability) and onCancel(Runnable), the resolve con-
text methods must be idempotent. This means that resources must have constant capabilities and re-
quirements and the resolve context must return a consistent set of capabilities, wires and effective
requirements.

Concurrency Thread-safe

58.5.4.1 public ResolveContext()

58.5.4.2 public abstract List<Capability> findProviders(Requirement requirement)

requirement The requirement that a resolver is attempting to satisfy. Must not be nul l .

□ Find Capabilities that match the given Requirement.

The returned list contains Capability objects where the Resource must be the declared Re-
source of the Capability. The Resolver can then add additional HostedCapability objects with the
insertHostedCapability(List, HostedCapability) method when it, for example, attaches fragments.
Those HostedCapability objects will then use the host's Resource which likely differs from the de-
clared Resource of the corresponding Capability.

The returned list is in priority order such that the Capabilities with a lower index have a preference
over those with a higher index. The resolver must use the insertHostedCapability(List, HostedCapa-
bility) method to add additional Capabilities to maintain priority order. In general, this is necessary
when the Resolver uses Capabilities declared in a Resource but that must originate from an attached
host.

Each returned Capability must match the given Requirement. This means that the filter in the Re-
quirement must match as well as any namespace specific directives. For example, the mandatory at-
tributes for the osgi .wir ing.package namespace.

Returns A list of Capability objects that match the specified requirement.

58.5.4.3 public Collection<Resource> findRelatedResources(Resource resource)

resource The Resource that a resolver is attempting to find related resources for. Must not be nul l .

□ Find resources that are related to the given resource.

org.osgi.service.resolver Resolver Service Specification Version 1.1

Page 464 OSGi Core Release 7

The resolver attempts to resolve related resources during the current resolve operation. Failing to
resolve one of the related resources will not result in a resolution exception unless the related re-
source is also a mandatory resource.

The resolve context is asked to return related resources for each resource that is pulled into a resolve
operation. This includes the mandatory and optional resources and each related resource returned
by this method.

For example, a fragment can be considered a related resource for a host bundle. When a host is being
resolved the resolve context will be asked if any related resources should be added to the resolve op-
eration. The resolve context may decide that the potential fragments of the host should be resolved
along with the host.

Returns A collection of the resources that the resolver should attempt to resolve for this resolve context.
May be empty if there are no related resources. The returned collection may be unmodifiable.

Since 1.1

58.5.4.4 public Collection<Resource> getMandatoryResources()

□ Return the resources that must be resolved for this resolve context.

The default implementation returns an empty collection.

Returns A collection of the resources that must be resolved for this resolve context. May be empty if there
are no mandatory resources. The returned collection may be unmodifiable.

58.5.4.5 public Collection<Resource> getOptionalResources()

□ Return the resources that the resolver should attempt to resolve for this resolve context. Inability to
resolve one of the specified resources will not result in a resolution exception.

The default implementation returns an empty collection.

Returns A collection of the resources that the resolver should attempt to resolve for this resolve context.
May be empty if there are no optional resources. The returned collection may be unmodifiable.

58.5.4.6 public List<Wire> getSubstitutionWires(Wiring wiring)

wiring the wiring to get the substitution wires for. Must not be nul l .

□ Returns the subset of required wires that provide wires to capabilities which substitute capabili-
ties of the wiring. For example, when a package name is both provided and required by the same re-
source. If the package requirement is resolved to a capability provided by a different wiring then the
package capability is considered to be substituted.

The resolver asks the resolve context to return substitution wires for each wiring that provides a
bundle namespace capability that is used to resolve one or more bundle requirements.

Note that this method searches all the package capabilities declared as provided by the resource as-
sociated with the wiring and fragment resources wired to the wiring with the host namespace. The
provided package names are compared against the required package wires to determine which wires
are substitution wires. Subclasses of ResolveContext should provide a more efficient implementa-
tion of this method.

Returns A list containing a snapshot of the substitution Wires for the requirements of the wiring, or an emp-
ty list if the wiring has no substitution wires. The list contains the wires in the order they are found
in the required wires of the wiring.

Since 1.1

58.5.4.7 public abstract Map<Resource, Wiring> getWirings()

□ Returns the wirings for existing resolved resources.

Resolver Service Specification Version 1.1 org.osgi.service.resolver

OSGi Core Release 7 Page 465

For example, if this resolve context is for an OSGi framework, then the result would contain all the
currently resolved bundles with each bundle's current wiring.

Multiple calls to this method for this resolve context must return the same result.

Returns The wirings for existing resolved resources. The returned map is unmodifiable.

58.5.4.8 public abstract int insertHostedCapability(List<Capability> capabilities, HostedCapability hostedCapability)

capabilities The list returned from findProviders(Requirement). Must not be nul l .

hostedCapability The HostedCapability to insert in the specified list. Must not be nul l .

□ Add a HostedCapability to the list of capabilities returned from findProviders(Requirement).

This method is used by the Resolver to add Capabilities that are hosted by another Resource to the
list of Capabilities returned from findProviders(Requirement). This function is necessary to allow
fragments to attach to hosts, thereby changing the origin of a Capability. This method must insert
the specified HostedCapability in a place that makes the list maintain the preference order. It must
return the index in the list of the inserted HostedCapability.

Returns The index in the list of the inserted HostedCapability.

58.5.4.9 public abstract boolean isEffective(Requirement requirement)

requirement The Requirement to test. Must not be nul l .

□ Test if a given requirement should be wired in the resolve operation. If this method returns fa lse ,
then the resolver should ignore this requirement during the resolve operation.

The primary use case for this is to test the effect ive directive on the requirement, though implemen-
tations are free to use any effective test.

Returns true if the requirement should be considered as part of the resolve operation.

58.5.4.10 public void onCancel(Runnable callback)

callback the callback to execute in order to cancel the resolve operation. Must not be nul l .

□ Registers a callback with the resolve context that is associated with the currently running resolve
operation. The callback can be executed in order to cancel the currently running resolve operation.

When a resolve operation begins, the resolver must call this method once and only once for the du-
ration of the resolve operation and that call must happen before calling any other method on this
resolve context. If the specified callback is executed then the resolver must cancel the currently run-
ning resolve operation and throw a ResolutionException with a cause of type CancellationExcep-
tion.

The callback allows a resolve context to cancel a long running resolve operation that appears to be
running endlessly or at risk of running out of resources. The resolve context may then decide to give
up on resolve operation or attempt to try another resolve operation with a smaller set of resources
which may allow the resolve operation to complete normally.

Throws I l legalStateException– if the resolver attempts to register more than one callback for a resolve oper-
ation

Since 1.1

58.5.5 public interface Resolver
A resolver service resolves the specified resources in the context supplied by the caller.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

org.osgi.service.resolver Resolver Service Specification Version 1.1

Page 466 OSGi Core Release 7

58.5.5.1 public Map<Resource, List<Wire>> resolve(ResolveContext context) throws ResolutionException

context The resolve context for the resolve operation. Must not be nul l .

□ Resolve the specified resolve context and return any new resources and wires to the caller.

The resolver considers two groups of resources:

• Mandatory - any resource in the mandatory group must be resolved. A failure to satisfy any
mandatory requirement for these resources will result in throwing a ResolutionException

• Optional - any resource in the optional group may be resolved. A failure to satisfy a mandatory
requirement for a resource in this group will not fail the overall resolution but no resources or
wires will be returned for that resource.

The resolve method returns the delta between the start state defined by
ResolveContext.getWirings() and the end resolved state. That is, only new resources and wires are
included.

The behavior of the resolver is not defined if the specified resolve context supplies inconsistent in-
formation.

Returns The new resources and wires required to satisfy the specified resolve context. The returned map is
the property of the caller and can be modified by the caller.

Throws Resolut ionException– If the resolution cannot be satisfied.

58.5.5.2 public Map<Resource, List<Wire>> resolveDynamic(ResolveContext context, Wiring hostWiring,
Requirement dynamicRequirement) throws ResolutionException

context The resolve context for the resolve operation. Must not be nul l .

hostWiring The wiring with the dynamic requirement. Must not be nul l .

dynamicRequire-
ment

The dynamic requirement. Must not be nul l .

□ Resolves a given requirement dynamically for the given host wiring using the given resolve context
and return any new resources and wires to the caller.

The requirement must be a requirement of the wiring and must use the package namespace with a
resolution of type dynamic.

The resolve context is not asked for mandatory resources or for optional resources. The resolve con-
text is asked to find providers for the given requirement. The matching package capabilities re-
turned by the resolve context must not have a osgi.wiring.package attribute equal to a package ca-
pability already wired to by the wiring or equal a package capability provided by the wiring. The re-
solve context may be requested to find providers for other requirements in order to resolve the re-
sources that provide the matching capabilities to the given requirement.

If the requirement cardinality is not multiple then no new wire must be created if the wires of the
wiring already contain a wire that uses the requirement

This operation may resolve additional resources in order to resolve the dynamic requirement. The
returned map will contain entries for each resource that got resolved in addition to the specified
wiring resource. The wire list for the wiring resource will only contain one wire which is for the dy-
namic requirement.

Returns The new resources and wires required to satisfy the specified dynamic requirement. The returned
map is the property of the caller and can be modified by the caller. If no new wires were created then
a ResolutionException is thrown.

Throws Resolut ionException– if the dynamic requirement cannot be resolved

Resolver Service Specification Version 1.1 References

OSGi Core Release 7 Page 467

58.6 References

[1] Repository Service Specification
OSGi Compendium, Chapter 132 Repository Service Specification

58.7 Changes
• Added new methods: findRelatedResources, onCancel, getSubstitutionWires, and resolveDynam-

ic.

Changes Resolver Service Specification Version 1.1

Page 468 OSGi Core Release 7

Tracker Specification Version 1.5 Introduction

OSGi Core Release 7 Page 469

701 Tracker Specification

Version 1.5

701.1 Introduction
The Framework provides a powerful and very dynamic programming environment: Bundles are in-
stalled, started, stopped, updated, and uninstalled without shutting down the Framework. Depen-
dencies between bundles are monitored by the Framework, but bundles must cooperate in handling
these dependencies correctly. Two important dynamic aspects of the Framework are the service reg-
istry and the set of installed bundles.

Bundle developers must be careful not to use service objects that have been unregistered and are
therefore stale. The dynamic nature of the Framework service registry makes it necessary to track
the service objects as they are registered and unregistered to prevent problems. It is easy to over-
look race conditions or boundary conditions that will lead to random errors. Similar problems exist
when tracking the set of installed bundles and their state.

This specification defines two utility classes, ServiceTracker and BundleTracker , that make tracking
services and bundles easier. A ServiceTracker class can be customized by implementing the Service-
TrackerCustomizer interface or by sub-classing the ServiceTracker class. Similarly, a BundleTracker
class can be customized by sub-classing or implementing the BundleTrackerCustomizer interface.

These utility classes significantly reduce the complexity of tracking services in the service registry
and the set of installed bundles.

701.1.1 Essentials

• Simplify - Make it simple to tracking services or bundles.
• Customizable - Allow a default implementation to be customized so that bundle developers can

start simply and later extend the implementation to meet their needs.
• Small - Every Framework implementation should have this utility implemented. It should there-

fore be very small because some Framework implementations target minimal OSGi frameworks.
• Services - Track a set of services, optionally filtered, or track a single service.
• Bundles - Track bundles based on their state.
• Cleanup - Properly clean up when tracking is no longer necessary
• Generified - Generics are used to promote type safety.

701.1.2 Operation
The fundamental tasks of a tracker are:

• To create an initial list of targets (service or bundle).
• To listen to the appropriate events so that the targets are properly tracked.
• To allow the client to customize the tracking process through programmatic selection of the ser-

vices/bundles to be tracked, as well as to perform client code when a service/bundle is added or
removed.

A ServiceTracker object is populated with a set of services that match given search criteria, and then
listens to ServiceEvent objects which correspond to those services. A Bundle Tracker is populated

Tracking Tracker Specification Version 1.5

Page 470 OSGi Core Release 7

with the set of installed bundles and then listens to BundleEvent objects to notify the customizer of
changes in the state of the bundles.

701.1.3 Entities
Figure 701.1 Class diagram of org.osgi.util.tracker

Service
Tracker

customized by

Service
Tracker
Customizer1 0..1

Bundle
Tracker

customized by

Bundle
Tracker
Customizer1 0..1

701.2 Tracking
The OSGi Framework is a dynamic multi-threaded environment. In such an environments callbacks
can occur on different threads at the same time. This dynamism causes many complexities. One of
the surprisingly hard aspects of this environment is to reliably track services and bundles (called tar-
gets from now on).

The complexity is caused by the fact that the BundleListener and ServiceListener interfaces are on-
ly providing access to the changed state, not to the existing state when the listener is registered. This
leaves the programmer with the problem to merge the set of existing targets with the changes to the
state as signified by the events, without unwantedly duplicating a target or missing a remove event
that would leave a target in the tracked map while it is in reality gone. These problems are caused by
the multi-threaded nature of OSGi.

The problem is illustrated with the following (quite popular) code:

// Bad Example! Do not do this!
Bundle[] bundles = context.getBundles();
for (Bundle bundle : bundles) {
 map.put(bundle.getLocation(), bundle);
}

context.addBundleListener(new BundleListener() {
 public void bundleChanged(BundleEvent event) {
 Bundle bundle = event.getBundle();
 switch(event.getType()) {
 case BundleEvent.INSTALLED:
 map.put(bundle.getLocation(), bundle);
 break;

 case BundleEvent.UNINSTALLED:
 map.remove(bundle.getLocation());
 break;

 default:
 // ignore
 }
 }
});

Tracker Specification Version 1.5 Tracking

OSGi Core Release 7 Page 471

Assume the code runs the first part, getting the existing targets. If during this time a targets state
changes, for example bundle is installed or uninstalled, then the event is missed and the map will
miss a bundle or it will contain a bundle that is already gone. An easy solution seems to be to first
register the listener and then get the existing targets. This solves the earlier problem but will be in-
troduce other problems. In this case, an uninstall event can occur before the bundle has been discov-
ered.

Proper locking can alleviate the problem but it turns out that this easily create solutions that are
very prone to deadlocks. Solving this tracking problem is surprisingly hard. For this reason, the OS-
Gi specifications contain a bundle tracker and a service tracker that are properly implemented. These
classes significantly reduce the complexity of the dynamics in an OSGi framework.

701.2.1 Usage
Trackers can be used with the following patterns:

• As-is - Each tracker can be used without further customizing. A tracker actively tracks a map of
targets and this map can be consulted with a number of methods when the information is need-
ed. This is especially useful for the Service Tracker because it provides convenience methods to
wait for services to arrive.

• Callback object - Each tracker provides a call back interface that can be implemented by the client
code.

• Sub-classing - The trackers are designed to be sub-classed. Sub-classes have access to the bundle
context and only have to override the callback methods they need.

701.2.2 General API
A tracker hides the mechanisms in the way the targets are stored and evented. From a high level,
a tracker maintains a map of targets to wrapper objects. The wrapper object can be defined by the
client, though the Bundle Tracker uses the Bundle object and the Service Tracker uses the service ob-
ject as default wrapper. The tracker notifies the client of any changes in the state of the target.

A tracker must be constructed with a Bundle Context. This context is used to register listeners and
obtain the initial list of targets during the call to the open method. At the end of the life of a tracker
it must be closed to release any remaining objects. It is advised to properly close all trackers in the
bundle activator's stop method.

A tracker provides a uniform callback interface, which has 3 different methods.

• Adding - Provide a new object, obtained from the store or from an event and return the wrapper
or a related object. The adding method can decide not to track the target by returning a nul l ob-
ject. When null is returned, no modified or remove methods are further called. However, it is
possible that the adding method is called again for the same target.

• Modified - The target is modified. For example, the service properties have changed or the bundle
has changed state. This callback provides a mechanism for the client to update its internal struc-
tures. The callback provides the wrapper object.

• Removing - The target is no longer tracked. This callback is provided the wrapper object returned
from the adding method. This allows for simplified cleanup if the client maintains state about
the target.

Each tracker is associated with a callback interface, which it implements itself. That is, a Service
Tracker implements the ServiceTrackerCustomizer interface. By implementing this customizer,
the tracker can also be sub-classed, this can be quite useful in many cases. Sub-classing can over-
ride only one or two of the methods instead of having to implement all methods. When overriding
the callback methods, it must be ensured that the wrapper object is treated accordingly to the base
implementation in all methods. For example, the Service Tracker's default implementation for the
adding method checks out the service and therefore the remove method must unget this same ser-

Service Tracker Tracker Specification Version 1.5

Page 472 OSGi Core Release 7

vice. Changing the wrapper object type to something else can therefore clash with the default im-
plementations.

Trackers can provide all the objects that are tracked, return the mapped wrapper from the target,
and deliver the number of tracked targets.

701.2.3 Tracking Count
The tracker also maintains a count that is updated each time that an object is added, modified, or
removed, that is any change to the implied map. This tracking count makes it straightforward to
verify that a tracker has changed; just store the tracking count and compare it later to see if it has
changed.

701.2.4 Multi Threading
The dynamic environment of OSGi requires that tracker are thread safe. However, the tracker close-
ly interacts with the client through a callback interface. The tracker implementation must provide
the following guarantees:

• The tracker code calling a callback must not hold any locks

Clients must be aware that their callbacks are reentrant though the tracker implementations guar-
antee that the add/modified/remove methods can only called in this order for a specific target. A
tracker must not call these methods out of order.

701.2.5 Synchronous
Trackers use synchronous listeners; the callbacks are called on the same thread as that of the initi-
ating event. Care should be taken to not linger in the callback and perform non-trivial work. Call-
backs should return immediately and move substantial work to other threads.

701.3 Service Tracker
The purpose of a Service Tracker is to track service references, that is, the target is the ServiceRefer-
ence object. The Service Tracker uses generics to provide a type safe interface. It has two type argu-
ments:

• S - The service type.
• T - The type used by the program. T can differ from S if the program creates a wrapper around the

service object, a common pattern.

The ServiceTracker interface defines three constructors to create ServiceTracker objects, each pro-
viding different search criteria:

• ServiceTracker(BundleContext,Str ing,ServiceTrackerCustomizer) - This constructor takes a ser-
vice interface name as the search criterion. The ServiceTracker object must then track all ser-
vices that are registered under the specified service interface name.

• ServiceTracker(BundleContext,F i l ter,ServiceTrackerCustomizer) - This constructor uses a Fi l ter
object to specify the services to be tracked. The ServiceTracker must then track all services that
match the specified filter.

• ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer) - This constructor
takes a ServiceReference object as the search criterion. The ServiceTracker must then track only
the service that corresponds to the specified ServiceReference . Using this constructor, no more
than one service must ever be tracked, because a ServiceReference refers to a specific service.

• ServiceTracker(BundleContext,Class,ServiceTrackerCustomizer) - This constructor takes a class
as argument. The tracker must only track services registered with this name. This is in general
the most convenient way to use the Service Tracker.

Tracker Specification Version 1.5 Service Tracker

OSGi Core Release 7 Page 473

Each of the ServiceTracker constructors takes a BundleContext object as a parameter. This Bundle-
Context object must be used by a ServiceTracker object to track, get, and unget services.

A new ServiceTracker object must not begin tracking services until its open method is called. There
are 2 versions of the open method:

• open() - This method is identical to open(false) . It is provided for backward compatibility rea-
sons.

• open(boolean) - The tracker must start tracking the services as were specified in its constructor.
If the boolean parameter is true , it must track all services, regardless if they are compatible with
the bundle that created the Service Tracker or not. See Multiple Version Export Considerations on
page 148 for a description of the compatibility issues when multiple variations of the same pack-
age can exist. If the parameter is fa lse , the Service Tracker must only track compatible versions.

701.3.1 Using a Service Tracker
Once a ServiceTracker object is opened, it begins tracking services immediately. A number of meth-
ods are available to the bundle developer to monitor the services that are being tracked, including
the ones that are in the service registry at that time. The ServiceTracker class defines these methods:

• getService() - Returns one of the services being tracked or nul l if there are no active services be-
ing tracked.

• getServices() - Returns an array of all the tracked services. The number of tracked services is re-
turned by the size method.

• getServices(T[]) - Like getServices() but provides a convenient way to get these services into a
correctly typed array.

• getServiceReference() - Returns a ServiceReference object for one of the services being tracked.
The service object for this service may be returned by calling the ServiceTracker object's getSer-
vice() method.

• getServiceReferences() - Returns a list of the ServiceReference objects for services being tracked.
The service object for a specific tracked service may be returned by calling the ServiceTracker
object's getService(ServiceReference) method.

• waitForService(long) - Allows the caller to wait until at least one instance of a service is tracked
or until the time-out expires. If the time-out is zero, the caller must wait until at least one in-
stance of a service is tracked. waitForService must not used within the BundleActivator methods,
as these methods are expected to complete in a short period of time. A Framework could wait for
the start method to complete before starting the bundle that registers the service for which the
caller is waiting, creating a deadlock situation.

• remove(ServiceReference) - This method may be used to remove a specific service from being
tracked by the ServiceTracker object, causing removedService to be called for that service.

• close() - This method must remove all services being tracked by the ServiceTracker object, caus-
ing removedService to be called for all tracked services.

• getTrackingCount() - A Service Tracker can have services added, modified, or removed at any mo-
ment in time. The getTrackingCount method is intended to efficiently detect changes in a Ser-
vice Tracker. Every time the Service Tracker is changed, it must increase the tracking count.

• isEmpty() - To detect that the tracker has no tracked services.
• getTracked() - Return the tracked objects.

701.3.2 Customizing the Service Tracker class
The behavior of the ServiceTracker class can be customized either by providing a ServiceTracker-
Customizer object, implementing the desired behavior when the ServiceTracker object is construct-
ed, or by sub-classing the ServiceTracker class and overriding the ServiceTrackerCustomizer meth-
ods.

The ServiceTrackerCustomizer interface defines these methods:

Bundle Tracker Tracker Specification Version 1.5

Page 474 OSGi Core Release 7

• addingService(ServiceReference) - Called whenever a service is being added to the ServiceTrack-
er object.

• modifiedService(ServiceReference,T) - Called whenever a tracked service is modified.
• removedService(ServiceReference,T) - Called whenever a tracked service is removed from the

ServiceTracker object.

When a service is being added to the ServiceTracker object or when a tracked service is modified
or removed from the ServiceTracker object, it must call addingService , modifiedService , or re-
movedService , respectively, on the ServiceTrackerCustomizer object (if specified when the Service-
Tracker object was created); otherwise it must call these methods on itself.

A bundle developer may customize the action when a service is tracked. Another reason for cus-
tomizing the ServiceTracker class is to programmatically select which services are tracked. A filter
may not sufficiently specify the services that the bundle developer is interested in tracking. By im-
plementing addingService , the bundle developer can use additional runtime information to deter-
mine if the service should be tracked. If nul l is returned by the addingService method, the service
must not be tracked.

Finally, the bundle developer can return a specialized object from addingService that differs from
the service object. This specialized object could contain the service object and any associated infor-
mation. This returned object is then tracked instead of the service object. When the removedService
method is called, the object that is passed along with the ServiceReference object is the one that was
returned from the earlier call to the addingService method.

701.3.3 Customizing Example
An example of customizing the action taken when a service is tracked might be registering a
MyServlet object with each Http Service that is tracked. This customization could be done by sub-
classing the ServiceTracker class and overriding the addingService and removedService methods as
follows:

new ServiceTracker<HttpService,MyServlet>(context,HttpService.class,null){
 public MyServlet addingService(ServiceReference<HttpService>reference) {
 HttpService svc = context.getService(reference);
 MyServlet ms = new MyServlet(scv); return ms;
 }
 public void removedService(ServiceReference<HttpService>reference,
 MyServlet ms) {
 ms.close();
 context.ungetService(reference);
 }
}

In this example, the service type is the HttpService class and the wrapper type is the servlet.

701.4 Bundle Tracker
The purpose of the Bundle Tracker is to simplify tracking bundles. A popular example where bun-
dles need to be tracked is the extender pattern. An extender uses information in other bundles to pro-
vide its function. For example, a Declarative Services implementation reads the component XML
file from the bundle to learn of the presence of any components in that bundle.

There are, however, other places where it is necessary to track bundles. The Bundle Tracker signifi-
cantly simplifies this task.

Tracker Specification Version 1.5 Bundle Tracker

OSGi Core Release 7 Page 475

701.4.1 Bundle States
The state diagram of a Bundle is significantly more complex than that of a service. However, the in-
terface is simpler because there is only a need to specify for which states the bundle tracker should
track a service.

Bundle states are defined as a bit in an integer, allowing the specifications of multiple states by set-
ting multiple bits. The Bundle Tracker therefore uses a bit mask to specify which states are of inter-
est. For example, if a client is interested in active and resolved bundles, it is possible to specify the
Bundle ACTIVE | RESOLVED | STARTING states in the mask.

The Bundle Tracker tracks bundles whose state matches the mask. That is, when a bundle is not
tracked it adds that bundle to the tracked map when its state matches the mask. If the bundle reach-
es a new state that is not listed in the mask, the bundle will be removed from the tracked map. If the
state changes but the bundle should still be tracked, then the bundle is considered to be modified.

701.4.2 Constructor
The BundleTracker interface defines the following constructors to create BundleTracker objects:

• BundleTracker(BundleContext, int ,BundleTrackerCustomizer) - Create a Bundle Tracker that
tracks the bundles which state is listed in the mask. The customizer may be nul l , in that case the
callbacks can be implemented in a subclass.

A new BundleTracker object must not begin tracking services until its open method is called.

• open() - Start tracking the bundles, callbacks can occur before this method is called.

701.4.3 Using a Bundle Tracker
Once a BundleTracker object is opened, it begins tracking bundles immediately. A number of meth-
ods are available to the bundle developer to monitor the bundles that are being tracked. The Bundle-
Tracker class defines the following methods:

• getBundles() - Returns an array of all the tracked bundles.
• getObject(Bundle) - Returns the wrapper object that was returned from the addingBundle

method.
• remove(Bundle) - Removes the bundle from the tracked bundles. The removedBundle method is

called when the bundle is not in the tracked map.
• size() - Returns the number of bundles being tracked.
• getTrackingCount() - A Bundle Tracker can have bundles added, modified, or removed at any mo-

ment in time. The getTrackingCount method is intended to efficiently detect changes in a Bundle
Tracker. Every time the Bundle Tracker is changed, it must increase the tracking count.

• isEmpty() - To detect that the tracker has no tracked bundles.
• getTracked() - Return the tracked objects.

701.4.4 Customizing the Bundle Tracker class
The behavior of the BundleTracker class can be customized either by providing a BundleTrackerCus-
tomizer object when the BundleTracker object is constructed, or by sub-classing the BundleTracker
class and overriding the BundleTrackerCustomizer methods on the BundleTracker class.

The BundleTrackerCustomizer interface defines these methods:

• addingBundle(Bundle,BundleEvent) - Called whenever a bundle is being added to the Bundle-
Tracker object. This method should return a wrapper object, which can be the Bundle object it-
self. If nul l is returned, the Bundle must not be further tracked.

Bundle Tracker Tracker Specification Version 1.5

Page 476 OSGi Core Release 7

• modifiedBundle(Bundle,BundleEvent,T) - Called whenever a tracked bundle is modified. The ob-
ject that is passed is the object returned from the addingBundle method, the wrapper object.

• removedBundle(Bundle,BundleEvent,T) - Called whenever a tracked bundle is removed from the
BundleTracker object. The passed object is the wrapper returned from the addingBundle method.

The BundleEvent object in the previous methods can be nul l .

When a bundle is being added the OSGi Framework, or when a tracked bundle is modified or unin-
stalled from the OSGi Framework, the Bundle Tracker must call addingBundle , modifiedBundle , or
removedBundle , respectively, on the BundleTrackerCustomizer object (if specified when the Bundle-
Tracker object was created); otherwise it must call these methods on itself, allowing them to be over-
ridden in a subclass.

The bundle developer can return a specialized object from addingBundle that differs from the Bun-
dle object. This wrapper object could contain the Bundle object and any associated client specific in-
formation. This returned object is then used as the wrapper instead of the Bundle object. When the
removedBundle method is called, the wrapper is passed as an argument.

701.4.5 Extender Model
The Bundle Tracker allows the implementation of extenders with surprisingly little effort. The fol-
lowing example checks a manifest header (Http-Mapper) in all active bundles to see if the bundle
has resources that need to be mapped to the HTTP service. This extender enables bundles that have
no code, just content.

This example is implemented with a BundleTrackerCustomizer implementation, though sub-class-
ing the BundleTracker class is slightly simpler because the open/close methods would be inherit-
ed, the tracker field is not necessary and it is not necessary to provide a dummy implementation of
modifiedBundle method. However, the Service Tracker example already showed how to use inheri-
tance.

The Extender class must implement the customizer and declare fields for the Http Service and a
Bundle Tracker.

public class Extender implements BundleTrackerCustomizer<ExtenderContext>{
 final HttpService http;
 final BundleTracker<ExtenderContext> tracker;

It is necessary to parse the Http-Mapper header. Regular expression allow this to be done very con-
cise.

final static Pattern HTTPMAPPER =
 Pattern.compile(
 "\\s*([-/\\w.]+)\\s*=\\s*([-/\\w.]+)\\s*");

The Bundle Tracker requires a specialized constructor. This example only works for active bundles.
This implies that a bundle only provides contents when it is started, enabling an administrator to
control the availability.

Extender(BundleContext context, HttpServicehttp) {
 tracker = new BundleTracker<ExtenderContext>(
 context,Bundle.ACTIVE, this);
 this.http = http;
}

The following method implements the callback from the Bundle Tracker when a new bundle is dis-
covered. In this method a specialized HttpContext object is created that knows how to retrieve its re-
sources from the bundle that was just discovered. This context is registered with the Http Service. If
no header is found nul l is returned so that non-participating bundles are no longer tracked.

Tracker Specification Version 1.5 Bundle Tracker

OSGi Core Release 7 Page 477

public ExtenderContext addingBundle(Bundlebundle,
 BundleEvent event) {
 String header = bundle.getHeaders()
 .get("Http-Mapper") + "";
 Matcher match = HTTPMAPPER.matcher(header);
 if (match.matches()) {
 try {
 ExtenderContext wrapper =
 new ExtenderContext(bundle, match.group(1));
 http.registerResources(
 match.group(1), // alias
 match.group(2), // resource path
 wrapper // the http context
);
 return wrapper;
 } catch (NamespaceException nspe) {
 // error is handled in the fall through
 }
 }
 System.err.println(
 "Invalid header for Http-Mapper: " + header);
 return null;
}

The modifiedBundle method does not have to be implemented because this example is not inter-
ested in state changes because the only state of interest is the ACTIVE state. Therefore, the remain-
ing method left to implement is the removedBundle method. If the wrapper object is non-null then
we need to unregister the alias to prevent collisions in the http namespace when the bundle is rein-
stalled or updated.

public void removedBundle(
 Bundle bundle, BundleEvent event,
 ExtenderContext wrapper) {
 http.unregister(wrapper.alias);
}

The remaining methods would be unnecessary if the Extender class had extended the BundleTracker
class. The BundleTrackerCustomizer interface requires a dummy implementation of the modified-
Bundle method:

public void modifiedBundle(
 Bundle bundle, BundleEvent event, ExtenderContext object){
 // Nothing to do
}

It is usually not a good idea to start a tracker in a constructor because opening a service tracker will
immediately cause a number of callbacks for the existing bundles. If the Extender class was sub-
classed, then this could call back the uninitialized sub class methods. It is therefore better to sepa-
rate the initialization from the opening. There is therefore a need for an open and close method.

 public void close() {
 tracker.close();
 }
 public void open() {
 tracker.open();
 }

Security Tracker Specification Version 1.5

Page 478 OSGi Core Release 7

}

The previous example uses an HttpContext subclass that can retrieve resources from the target bun-
dle:

public class ExtenderContext implements HttpContext{
 final Bundle bundle;
 final String alias;

 ExtenderContext(Bundle bundle, String alias) {
 this.bundle = bundle;
 this.alias = alias;
 }
 public boolean handleSecurity(
 HttpServletRequest rq, HttpServletResponse rsp) {
 return true;
 }
 public String getMimeType(String name) {
 return null;
 }
 public URL getResource(String name) {
 return bundle.getResource(name);
 }
}

701.5 Security
A tracker contains a BundleContext instance variable that is accessible to the methods in a subclass.
A BundleContext object should never be given to other bundles because it is a capability. The frame-
work makes allocations based on the bundle context with respect to security and resource manage-
ment.

The tracker implementations do not have a method to get the BundleContext object, however, sub-
classes should be careful not to provide such a method if the tracker is given to other bundles.

The services that are being tracked are available via a ServiceTracker . These services are dependent
on the BundleContext as well. It is therefore necessary to do a careful security analysis when Ser-
viceTracker objects are given to other bundles. The same counts for the Bundle Tracker. It is strongly
advised to not pass trackers to other bundles.

701.5.1 Synchronous Bundle Listener
The Bundle Tracker uses the synchronous bundle listener because it is impossible to provide some
of the guarantees the Bundle Tracker provides without handling the events synchronously. Syn-
chronous events can block the complete system, therefore Synchronous Bundle Listeners require
AdminPermission[*,LISTENER] . The wildcard * can be replaced with a specifier for the bundles that
should be visible to the Bundle Tracker. See Admin Permission on page 129 for more information.

Code that calls the open and close methods of Bundle Trackers must therefore have the appropriate
Admin Permission.

701.6 org.osgi.util.tracker

Tracker Package Version 1.5.

Tracker Specification Version 1.5 org.osgi.util.tracker

OSGi Core Release 7 Page 479

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .t racker; vers ion="[1.5,2.0)"

701.6.1 Summary

• BundleTracker - The BundleTracker class simplifies tracking bundles much like the Service-
Tracker simplifies tracking services.

• BundleTrackerCustomizer - The BundleTrackerCustomizer interface allows a BundleTracker to
customize the Bundles that are tracked.

• ServiceTracker - The ServiceTracker class simplifies using services from the Framework's ser-
vice registry.

• ServiceTrackerCustomizer - The ServiceTrackerCustomizer interface allows a ServiceTracker to
customize the service objects that are tracked.

701.6.2 public class BundleTracker<T>
implements BundleTrackerCustomizer<T>

<T> The type of the tracked object.

The BundleTracker class simplifies tracking bundles much like the ServiceTracker simplifies track-
ing services.

A BundleTracker is constructed with state criteria and a BundleTrackerCustomizer object. A Bundle-
Tracker can use the BundleTrackerCustomizer to select which bundles are tracked and to create a
customized object to be tracked with the bundle. The BundleTracker can then be opened to begin
tracking all bundles whose state matches the specified state criteria.

The getBundles method can be called to get the Bundle objects of the bundles being tracked. The
getObject method can be called to get the customized object for a tracked bundle.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer while holding
any locks. BundleTrackerCustomizer implementations must also be thread-safe.

Since 1.4

Concurrency Thread-safe

701.6.2.1 protected final BundleContext context

The Bundle Context used by this BundleTracker .

701.6.2.2 public BundleTracker(BundleContext context, int stateMask, BundleTrackerCustomizer<T> customizer)

context The BundleContext against which the tracking is done.

stateMask The bit mask of the ORing of the bundle states to be tracked.

customizer The customizer object to call when bundles are added, modified, or removed in this BundleTracker .
If customizer is nul l , then this BundleTracker will be used as the BundleTrackerCustomizer and this
BundleTracker will call the BundleTrackerCustomizer methods on itself.

□ Create a BundleTracker for bundles whose state is present in the specified state mask.

Bundles whose state is present on the specified state mask will be tracked by this BundleTracker .

See Also Bundle.getState()

701.6.2.3 public T addingBundle(Bundle bundle, BundleEvent event)

bundle The Bundle being added to this BundleTracker object.

org.osgi.util.tracker Tracker Specification Version 1.5

Page 480 OSGi Core Release 7

event The bundle event which caused this customizer method to be called or nul l if there is no bundle
event associated with the call to this method.

□ Default implementation of the BundleTrackerCustomizer.addingBundle method.

This method is only called when this BundleTracker has been constructed with a nul l BundleTrack-
erCustomizer argument.

This implementation simply returns the specified Bundle .

This method can be overridden in a subclass to customize the object to be tracked for the bundle be-
ing added.

Returns The specified bundle.

See Also BundleTrackerCustomizer.addingBundle(Bundle, BundleEvent)

701.6.2.4 public void close()

□ Close this BundleTracker .

This method should be called when this BundleTracker should end the tracking of bundles.

This implementation calls getBundles() to get the list of tracked bundles to remove.

701.6.2.5 public Bundle[] getBundles()

□ Return an array of Bundles for all bundles being tracked by this BundleTracker .

Returns An array of Bundles or nul l if no bundles are being tracked.

701.6.2.6 public T getObject(Bundle bundle)

bundle The Bundle being tracked.

□ Returns the customized object for the specified Bundle if the specified bundle is being tracked by
this BundleTracker .

Returns The customized object for the specified Bundle or nul l if the specified Bundle is not being tracked.

701.6.2.7 public Map<Bundle, T> getTracked()

□ Return a Map with the Bundles and customized objects for all bundles being tracked by this Bundle-
Tracker .

Returns A Map with the Bundles and customized objects for all services being tracked by this BundleTracker .
If no bundles are being tracked, then the returned map is empty.

Since 1.5

701.6.2.8 public int getTrackingCount()

□ Returns the tracking count for this BundleTracker . The tracking count is initialized to 0 when this
BundleTracker is opened. Every time a bundle is added, modified or removed from this BundleTrack-
er the tracking count is incremented.

The tracking count can be used to determine if this BundleTracker has added, modified or removed
a bundle by comparing a tracking count value previously collected with the current tracking count
value. If the value has not changed, then no bundle has been added, modified or removed from this
BundleTracker since the previous tracking count was collected.

Returns The tracking count for this BundleTracker or -1 if this BundleTracker is not open.

701.6.2.9 public boolean isEmpty()

□ Return if this BundleTracker is empty.

Returns true if this BundleTracker is not tracking any bundles.

Tracker Specification Version 1.5 org.osgi.util.tracker

OSGi Core Release 7 Page 481

Since 1.5

701.6.2.10 public void modifiedBundle(Bundle bundle, BundleEvent event, T object)

bundle The Bundle whose state has been modified.

event The bundle event which caused this customizer method to be called or nul l if there is no bundle
event associated with the call to this method.

object The customized object for the specified Bundle.

□ Default implementation of the BundleTrackerCustomizer.modifiedBundle method.

This method is only called when this BundleTracker has been constructed with a nul l BundleTrack-
erCustomizer argument.

This implementation does nothing.

See Also BundleTrackerCustomizer.modifiedBundle(Bundle, BundleEvent, Object)

701.6.2.11 public void open()

□ Open this BundleTracker and begin tracking bundles.

Bundle which match the state criteria specified when this BundleTracker was created are now
tracked by this BundleTracker .

Throws I l legalStateException– If the BundleContext with which this BundleTracker was created is no
longer valid.

SecurityException– If the caller and this class do not have the appropriate
AdminPermission[context bundle,L ISTENER] , and the Java Runtime Environment supports permis-
sions.

701.6.2.12 public void remove(Bundle bundle)

bundle The Bundle to be removed.

□ Remove a bundle from this BundleTracker . The specified bundle will be removed
from this BundleTracker . If the specified bundle was being tracked then the
BundleTrackerCustomizer.removedBundle method will be called for that bundle.

701.6.2.13 public void removedBundle(Bundle bundle, BundleEvent event, T object)

bundle The Bundle being removed.

event The bundle event which caused this customizer method to be called or nul l if there is no bundle
event associated with the call to this method.

object The customized object for the specified bundle.

□ Default implementation of the BundleTrackerCustomizer.removedBundle method.

This method is only called when this BundleTracker has been constructed with a nul l BundleTrack-
erCustomizer argument.

This implementation does nothing.

See Also BundleTrackerCustomizer.removedBundle(Bundle, BundleEvent, Object)

701.6.2.14 public int size()

□ Return the number of bundles being tracked by this BundleTracker .

Returns The number of bundles being tracked.

org.osgi.util.tracker Tracker Specification Version 1.5

Page 482 OSGi Core Release 7

701.6.3 public interface BundleTrackerCustomizer<T>
<T> The type of the tracked object.

The BundleTrackerCustomizer interface allows a BundleTracker to customize the Bundles that are
tracked. A BundleTrackerCustomizer is called when a bundle is being added to a BundleTracker . The
BundleTrackerCustomizer can then return an object for the tracked bundle. A BundleTrackerCus-
tomizer is also called when a tracked bundle is modified or has been removed from a BundleTracker .

The methods in this interface may be called as the result of a BundleEvent being received by a
BundleTracker . Since BundleEvents are received synchronously by the BundleTracker , it is highly
recommended that implementations of these methods do not alter bundle states while being syn-
chronized on any object.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer while holding
any locks. BundleTrackerCustomizer implementations must also be thread-safe.

Since 1.4

Concurrency Thread-safe

701.6.3.1 public T addingBundle(Bundle bundle, BundleEvent event)

bundle The Bundle being added to the BundleTracker .

event The bundle event which caused this customizer method to be called or nul l if there is no bundle
event associated with the call to this method.

□ A bundle is being added to the BundleTracker .

This method is called before a bundle which matched the search parameters of the BundleTrack-
er is added to the BundleTracker . This method should return the object to be tracked for the speci-
fied Bundle . The returned object is stored in the BundleTracker and is available from the getObject
method.

Returns The object to be tracked for the specified Bundle object or nul l if the specified Bundle object should
not be tracked.

701.6.3.2 public void modifiedBundle(Bundle bundle, BundleEvent event, T object)

bundle The Bundle whose state has been modified.

event The bundle event which caused this customizer method to be called or nul l if there is no bundle
event associated with the call to this method.

object The tracked object for the specified bundle.

□ A bundle tracked by the BundleTracker has been modified.

This method is called when a bundle being tracked by the BundleTracker has had its state modified.

701.6.3.3 public void removedBundle(Bundle bundle, BundleEvent event, T object)

bundle The Bundle that has been removed.

event The bundle event which caused this customizer method to be called or nul l if there is no bundle
event associated with the call to this method.

object The tracked object for the specified bundle.

□ A bundle tracked by the BundleTracker has been removed.

This method is called after a bundle is no longer being tracked by the BundleTracker .

Tracker Specification Version 1.5 org.osgi.util.tracker

OSGi Core Release 7 Page 483

701.6.4 public class ServiceTracker<S, T>
implements ServiceTrackerCustomizer<S, T>

<S> The type of the service being tracked.

<T> The type of the tracked object.

The ServiceTracker class simplifies using services from the Framework's service registry.

A ServiceTracker object is constructed with search criteria and a ServiceTrackerCustomizer object.
A ServiceTracker can use a ServiceTrackerCustomizer to customize the service objects to be tracked.
The ServiceTracker can then be opened to begin tracking all services in the Framework's service reg-
istry that match the specified search criteria. The ServiceTracker correctly handles all of the details
of listening to ServiceEvents and getting and ungetting services.

The getServiceReferences method can be called to get references to the services being tracked. The
getService and getServices methods can be called to get the service objects for the tracked service.

The ServiceTracker class is thread-safe. It does not call a ServiceTrackerCustomizer while holding
any locks. ServiceTrackerCustomizer implementations must also be thread-safe.

Concurrency Thread-safe

701.6.4.1 protected final BundleContext context

The Bundle Context used by this ServiceTracker .

701.6.4.2 protected final Filter filter

The Filter used by this ServiceTracker which specifies the search criteria for the services to track.

Since 1.1

701.6.4.3 public ServiceTracker(BundleContext context, ServiceReference<S> reference, ServiceTrackerCustomizer<S,
T> customizer)

context The BundleContext against which the tracking is done.

reference The ServiceReference for the service to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker .
If customizer is nul l , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

□ Create a ServiceTracker on the specified ServiceReference .

The service referenced by the specified ServiceReference will be tracked by this ServiceTracker .

701.6.4.4 public ServiceTracker(BundleContext context, String clazz, ServiceTrackerCustomizer<S, T> customizer)

context The BundleContext against which the tracking is done.

clazz The class name of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker .
If customizer is nul l , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

□ Create a ServiceTracker on the specified class name.

Services registered under the specified class name will be tracked by this ServiceTracker .

701.6.4.5 public ServiceTracker(BundleContext context, Filter filter, ServiceTrackerCustomizer<S, T> customizer)

context The BundleContext against which the tracking is done.

filter The Fi l ter to select the services to be tracked.

org.osgi.util.tracker Tracker Specification Version 1.5

Page 484 OSGi Core Release 7

customizer The customizer object to call when services are added, modified, or removed in this ServiceTrack-
er . If customizer is null, then this ServiceTracker will be used as the ServiceTrackerCustomizer and
this ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

□ Create a ServiceTracker on the specified Fi l ter object.

Services which match the specified Fi l ter object will be tracked by this ServiceTracker .

Since 1.1

701.6.4.6 public ServiceTracker(BundleContext context, Class<S> clazz, ServiceTrackerCustomizer<S, T> customizer)

context The BundleContext against which the tracking is done.

clazz The class of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker .
If customizer is nul l , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

□ Create a ServiceTracker on the specified class.

Services registered under the name of the specified class will be tracked by this ServiceTracker .

Since 1.5

701.6.4.7 public T addingService(ServiceReference<S> reference)

reference The reference to the service being added to this ServiceTracker .

□ Default implementation of the ServiceTrackerCustomizer.addingService method.

This method is only called when this ServiceTracker has been constructed with a nul l ServiceTrack-
erCustomizer argument.

This implementation returns the result of calling getService , on the BundleContext with which this
ServiceTracker was created, passing the specified ServiceReference .

This method can be overridden in a subclass to customize the service object to be tracked for the ser-
vice being added. In that case, take care not to rely on the default implementation of removedSer-
vice to unget the service.

Returns The service object to be tracked for the service added to this ServiceTracker .

See Also ServiceTrackerCustomizer.addingService(ServiceReference)

701.6.4.8 public void close()

□ Close this ServiceTracker .

This method should be called when this ServiceTracker should end the tracking of services.

This implementation calls getServiceReferences() to get the list of tracked services to remove.

701.6.4.9 public T getService(ServiceReference<S> reference)

reference The reference to the desired service.

□ Returns the service object for the specified ServiceReference if the specified referenced service is be-
ing tracked by this ServiceTracker .

Returns A service object or nul l if the service referenced by the specified ServiceReference is not being
tracked.

701.6.4.10 public T getService()

□ Returns a service object for one of the services being tracked by this ServiceTracker .

Tracker Specification Version 1.5 org.osgi.util.tracker

OSGi Core Release 7 Page 485

If any services are being tracked, this implementation returns the result of calling
getService(getServiceReference()) .

Returns A service object or nul l if no services are being tracked.

701.6.4.11 public ServiceReference<S> getServiceReference()

□ Returns a ServiceReference for one of the services being tracked by this ServiceTracker .

If multiple services are being tracked, the service with the highest ranking (as specified in its
service.ranking property) is returned. If there is a tie in ranking, the service with the lowest service
id (as specified in its service. id property); that is, the service that was registered first is returned. This
is the same algorithm used by BundleContext.getServiceReference .

This implementation calls getServiceReferences() to get the list of references for the tracked ser-
vices.

Returns A ServiceReference or nul l if no services are being tracked.

Since 1.1

701.6.4.12 public ServiceReference<S>[] getServiceReferences()

□ Return an array of ServiceReference s for all services being tracked by this ServiceTracker .

Returns Array of ServiceReference s or nul l if no services are being tracked.

701.6.4.13 public Object[] getServices()

□ Return an array of service objects for all services being tracked by this ServiceTracker .

This implementation calls getServiceReferences() to get the list of references for the tracked services
and then calls getService(ServiceReference) for each reference to get the tracked service object.

Returns An array of service objects or nul l if no services are being tracked.

701.6.4.14 public T[] getServices(T[] array)

array An array into which the tracked service objects will be stored, if the array is large enough.

□ Return an array of service objects for all services being tracked by this ServiceTracker . The runtime
type of the returned array is that of the specified array.

This implementation calls getServiceReferences() to get the list of references for the tracked services
and then calls getService(ServiceReference) for each reference to get the tracked service object.

Returns An array of service objects being tracked. If the specified array is large enough to hold the result,
then the specified array is returned. If the specified array is longer then necessary to hold the result,
the array element after the last service object is set to nul l . If the specified array is not large enough
to hold the result, a new array is created and returned.

Since 1.5

701.6.4.15 public SortedMap<ServiceReference<S>, T> getTracked()

□ Return a SortedMap of the ServiceReference s and service objects for all services being tracked by
this ServiceTracker . The map is sorted in reverse natural order of ServiceReference . That is, the first
entry is the service with the highest ranking and the lowest service id.

Returns A SortedMap with the ServiceReference s and service objects for all services being tracked by this
ServiceTracker . If no services are being tracked, then the returned map is empty.

Since 1.5

org.osgi.util.tracker Tracker Specification Version 1.5

Page 486 OSGi Core Release 7

701.6.4.16 public int getTrackingCount()

□ Returns the tracking count for this ServiceTracker . The tracking count is initialized to 0 when this
ServiceTracker is opened. Every time a service is added, modified or removed from this Service-
Tracker , the tracking count is incremented.

The tracking count can be used to determine if this ServiceTracker has added, modified or removed
a service by comparing a tracking count value previously collected with the current tracking count
value. If the value has not changed, then no service has been added, modified or removed from this
ServiceTracker since the previous tracking count was collected.

Returns The tracking count for this ServiceTracker or -1 if this ServiceTracker is not open.

Since 1.2

701.6.4.17 public boolean isEmpty()

□ Return if this ServiceTracker is empty.

Returns true if this ServiceTracker is not tracking any services.

Since 1.5

701.6.4.18 public void modifiedService(ServiceReference<S> reference, T service)

reference The reference to modified service.

service The service object for the modified service.

□ Default implementation of the ServiceTrackerCustomizer.modifiedService method.

This method is only called when this ServiceTracker has been constructed with a nul l ServiceTrack-
erCustomizer argument.

This implementation does nothing.

See Also ServiceTrackerCustomizer.modifiedService(ServiceReference, Object)

701.6.4.19 public void open()

□ Open this ServiceTracker and begin tracking services.

This implementation calls open(false) .

Throws I l legalStateException– If the BundleContext with which this ServiceTracker was created is no
longer valid.

See Also open(boolean)

701.6.4.20 public void open(boolean trackAllServices)

trackAllServices If true , then this ServiceTracker will track all matching services regardless of class loader accessibili-
ty. If fa lse , then this ServiceTracker will only track matching services which are class loader accessi-
ble to the bundle whose BundleContext is used by this ServiceTracker .

□ Open this ServiceTracker and begin tracking services.

Services which match the search criteria specified when this ServiceTracker was created are now
tracked by this ServiceTracker .

Throws I l legalStateException– If the BundleContext with which this ServiceTracker was created is no
longer valid.

Since 1.3

701.6.4.21 public void remove(ServiceReference<S> reference)

reference The reference to the service to be removed.

Tracker Specification Version 1.5 org.osgi.util.tracker

OSGi Core Release 7 Page 487

□ Remove a service from this ServiceTracker . The specified service will be removed
from this ServiceTracker . If the specified service was being tracked then the
ServiceTrackerCustomizer.removedService method will be called for that service.

701.6.4.22 public void removedService(ServiceReference<S> reference, T service)

reference The reference to removed service.

service The service object for the removed service.

□ Default implementation of the ServiceTrackerCustomizer.removedService method.

This method is only called when this ServiceTracker has been constructed with a nul l ServiceTrack-
erCustomizer argument.

This implementation calls ungetService , on the BundleContext with which this ServiceTracker was
created, passing the specified ServiceReference .

This method can be overridden in a subclass. If the default implementation of addingService
method was used, this method must unget the service.

See Also ServiceTrackerCustomizer.removedService(ServiceReference, Object)

701.6.4.23 public int size()

□ Return the number of services being tracked by this ServiceTracker .

Returns The number of services being tracked.

701.6.4.24 public T waitForService(long timeout) throws InterruptedException

timeout The time interval in milliseconds to wait. If zero, the method will wait indefinitely.

□ Wait for at least one service to be tracked by this ServiceTracker . This method will also return when
this ServiceTracker is closed.

It is strongly recommended that waitForService is not used during the calling of the BundleActiva-
tor methods. BundleActivator methods are expected to complete in a short period of time.

This implementation calls getService() to determine if a service is being tracked.

Returns Returns the result of getService().

Throws InterruptedException– If another thread has interrupted the current thread.

I l legalArgumentException– If the value of timeout is negative.

701.6.5 public interface ServiceTrackerCustomizer<S, T>
<S> The type of the service being tracked.

<T> The type of the tracked object.

The ServiceTrackerCustomizer interface allows a ServiceTracker to customize the service objects
that are tracked. A ServiceTrackerCustomizer is called when a service is being added to a Service-
Tracker . The ServiceTrackerCustomizer can then return an object for the tracked service. A Service-
TrackerCustomizer is also called when a tracked service is modified or has been removed from a
ServiceTracker .

The methods in this interface may be called as the result of a ServiceEvent being received by a Ser-
viceTracker . Since ServiceEvents are synchronously delivered by the Framework, it is highly recom-
mended that implementations of these methods do not register (BundleContext.registerService),
modify (ServiceRegistrat ion.setPropert ies) or unregister (ServiceRegistrat ion.unregister) a ser-
vice while being synchronized on any object.

The ServiceTracker class is thread-safe. It does not call a ServiceTrackerCustomizer while holding
any locks. ServiceTrackerCustomizer implementations must also be thread-safe.

org.osgi.util.tracker Tracker Specification Version 1.5

Page 488 OSGi Core Release 7

Concurrency Thread-safe

701.6.5.1 public T addingService(ServiceReference<S> reference)

reference The reference to the service being added to the ServiceTracker .

□ A service is being added to the ServiceTracker .

This method is called before a service which matched the search parameters of the ServiceTracker is
added to the ServiceTracker . This method should return the service object to be tracked for the spec-
ified ServiceReference . The returned service object is stored in the ServiceTracker and is available
from the getService and getServices methods.

Returns The service object to be tracked for the specified referenced service or nul l if the specified referenced
service should not be tracked.

701.6.5.2 public void modifiedService(ServiceReference<S> reference, T service)

reference The reference to the service that has been modified.

service The service object for the specified referenced service.

□ A service tracked by the ServiceTracker has been modified.

This method is called when a service being tracked by the ServiceTracker has had it properties mod-
ified.

701.6.5.3 public void removedService(ServiceReference<S> reference, T service)

reference The reference to the service that has been removed.

service The service object for the specified referenced service.

□ A service tracked by the ServiceTracker has been removed.

This method is called after a service is no longer being tracked by the ServiceTracker .

OSGi Core Release 7

OSGi Core Release 7 Page 489

OSGi Core Release 7

Page 490 OSGi Core Release 7

End Of Document

	OSGi Core
	Table of Contents
	Chapter 1. Introduction
	1.1. OSGi Framework Overview
	1.2. Reader Level
	1.3. Conventions and Terms
	1.3.1. Typography
	1.3.2. General Syntax Definitions
	1.3.3. Object Oriented Terminology
	1.3.4. Diagrams
	1.3.5. Key Words
	1.3.6. Numbered Lists

	1.4. Version Information
	1.5. References
	1.6. Changes

	Chapter 2. Security Layer
	2.1. Introduction
	2.1.1. Essentials

	2.2. Security Overview
	2.2.1. Code Authentication
	2.2.2. Optional Security

	2.3. Digitally Signed JAR Files
	2.3.1. JAR Structure and Manifest
	2.3.2. Java JAR File Restrictions
	2.3.3. Valid Signature
	2.3.4. Signing Algorithms
	2.3.5. Certificates
	2.3.6. Distinguished Names
	2.3.7. Certificate Matching

	2.4. Permissions
	2.4.1. Implied Permissions
	2.4.2. Filter Based Permissions
	2.4.2.1. Multiple Signers

	2.5. References
	2.6. Changes

	Chapter 3. Module Layer
	3.1. Introduction
	3.2. Bundles
	3.2.1. Bundle Manifest Headers
	3.2.1.1. Bundle-ActivationPolicy: lazy
	3.2.1.2. Bundle-Activator: com.acme.fw.Activator
	3.2.1.3. Bundle-Category: osgi, test, nursery
	3.2.1.4. Bundle-ClassPath: /jar/http.jar,.
	3.2.1.5. Bundle-ContactAddress: 2400 Oswego Road, Austin, TX 74563
	3.2.1.6. Bundle-Copyright: OSGi (c) 2002
	3.2.1.7. Bundle-Description: Network Firewall
	3.2.1.8. Bundle-Developers: pkriens; email=pkriens@osgi.org; name="Peter Kriens"; organization="OSGi Alliance"
	3.2.1.9. Bundle-DocURL: http://www.example.com/Firewall/doc
	3.2.1.10. Bundle-Icon: /icons/acme-logo.png;size=64
	3.2.1.11. Bundle-License: Apache-2.0; link="http://opensource.org/licenses/apache2.0.php"
	3.2.1.12. Bundle-Localization: OSGI-INF/l10n/bundle
	3.2.1.13. Bundle-ManifestVersion: 2
	3.2.1.14. Bundle-Name: Firewall
	3.2.1.15. Bundle-NativeCode: /lib/http.DLL; osname = QNX; osversion = 3.1
	3.2.1.16. Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0
	3.2.1.17. Bundle-SCM: url=https://github.com/bndtools/bnd, connection=scm:git:https://github.com/bndtools/bnd.git, developerConnection=scm:git:git@github.com:bndtools/bnd.git
	3.2.1.18. Bundle-SymbolicName: com.acme.daffy
	3.2.1.19. Bundle-UpdateLocation: http://www.acme.com/Firewall/bundle.jar
	3.2.1.20. Bundle-Vendor: OSGi Alliance
	3.2.1.21. Bundle-Version: 1.1
	3.2.1.22. DynamicImport-Package: com.acme.plugin.*
	3.2.1.23. Export-Package: org.osgi.util.tracker;version=1.3
	3.2.1.24. Export-Service: org.osgi.service.log.LogService
	3.2.1.25. Fragment-Host: org.eclipse.swt; bundle-version="[3.0.0,4.0.0)"
	3.2.1.26. Import-Package: org.osgi.util.tracker,org.osgi.service.io;version=1.4
	3.2.1.27. Import-Service: org.osgi.service.log.LogService
	3.2.1.28. Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2
	3.2.1.29. Require-Bundle: com.acme.chess
	3.2.1.30. Require-Capability: osgi.ee; filter:="(&(osgi.ee=AcmeMin)(version=1.1))"

	3.2.2. Custom Headers
	3.2.3. Header Value Syntax
	3.2.4. Common Header Syntax
	3.2.5. Version
	3.2.6. Version Ranges
	3.2.7. Filter Syntax
	3.2.8. Multi-release JAR

	3.3. Dependencies
	3.3.1. Bundles
	3.3.2. Example Use Case
	3.3.3. Bundle Capabilities
	3.3.4. Bundle Capability Attributes
	3.3.5. System Bundle Capabilities
	3.3.6. Bundle Requirements

	3.4. Execution Environment
	3.4.1. Bundle-RequiredExecutionEnvironment

	3.5. Class Loading Architecture
	3.5.1. Resolving

	3.6. Resolving Metadata
	3.6.1. Bundle-ManifestVersion
	3.6.2. Bundle-SymbolicName
	3.6.3. Bundle-Version
	3.6.4. Import-Package
	3.6.5. Export-Package
	3.6.6. Importing Exported Packages
	3.6.7. Interpretation of Legacy Bundles

	3.7. Constraint Solving
	3.7.1. Diagrams and Syntax
	3.7.2. Version Constraints
	3.7.3. Semantic Versioning
	3.7.4. Type Roles for Semantic Versioning
	3.7.5. Optional Packages
	3.7.6. Package Constraints
	3.7.7. Attribute Matching
	3.7.8. Mandatory Attributes
	3.7.9. Class Filtering
	3.7.10. Provider Selection

	3.8. Resolving Process
	3.8.1. Importing and Exporting the Same Package

	3.9. Runtime Class Loading
	3.9.1. Bundle Class Path
	3.9.1.1. Multi-release Container

	3.9.2. Dynamic Import Package
	3.9.3. Parent Delegation
	3.9.4. Overall Search Order
	3.9.5. Parent Class Loader
	3.9.6. Resource Loading
	3.9.7. Bundle Cycles
	3.9.8. Code Executed Before Started
	3.9.9. Finding an Object's Bundle

	3.10. Loading Native Code Libraries
	3.10.1. Native Code Algorithm
	3.10.2. Considerations Using Native Libraries

	3.11. Localization
	3.11.1. Finding Localization Entries
	3.11.2. Manifest Localization

	3.12. Bundle Validity
	3.13. Requiring Bundles
	3.13.1. Require-Bundle
	3.13.2. Split Package Compatibility
	3.13.3. Issues With Requiring Bundles

	3.14. Fragment Bundles
	3.14.1. Fragment-Host
	3.14.2. Fragments During Runtime
	3.14.3. Illegal Manifest Header for Fragment Bundles

	3.15. Extension Bundles
	3.15.1. Illegal Manifest Headers for Extension Bundles
	3.15.2. Resolving Extensions
	3.15.3. Class Path Treatment
	3.15.4. Extension Bundle Activator
	3.15.4.1. Framework Initialization and Shutdown
	3.15.4.2. Installing
	3.15.4.3. Update and Uninstall

	3.15.5. Support Properties

	3.16. Security
	3.16.1. Extension Bundles
	3.16.2. Bundle Permission
	3.16.3. Package Permission
	3.16.4. Resource Permissions
	3.16.5. Capability Permission
	3.16.6. Permission Checks

	3.17. References
	3.18. Changes

	Chapter 4. Life Cycle Layer
	4.1. Introduction
	4.1.1. Essentials
	4.1.2. Entities

	4.2. Frameworks
	4.2.1. Launching and Controlling a Framework
	4.2.2. Launching Properties
	4.2.3. Life Cycle of a Framework
	4.2.4. Initializing the Framework
	4.2.4.1. Start Extension Activators
	4.2.4.2. Init Framework Listeners

	4.2.5. Starting the Framework
	4.2.6. Stopping a Framework
	4.2.6.1. Stop Extension Activators

	4.2.7. Embedding a Framework
	4.2.8. Framework UUID
	4.2.9. Daemon Threads
	4.2.10. Java Service Provider Configuration Support

	4.3. Bundles
	4.4. The Bundle Object
	4.4.1. Bundle Identifiers
	4.4.2. Bundle State
	4.4.3. Installing Bundles
	4.4.4. Resolving Bundles
	4.4.5. Starting Bundles
	4.4.6. Activation
	4.4.6.1. Activation Policies
	4.4.6.2. Lazy Activation Policy
	4.4.6.3. Restoring State After Refresh or Update

	4.4.7. Stopping Bundles
	4.4.8. Deactivation
	4.4.9. Updating Bundles
	4.4.10. Uninstalling Bundles
	4.4.11. Detecting Bundle Modifications
	4.4.12. Retrieving Manifest Headers
	4.4.13. Loading Classes
	4.4.14. Access to Resources
	4.4.15. Permissions of a Bundle
	4.4.16. Access to a Bundle's Bundle Context
	4.4.17. Adaptations

	4.5. The Bundle Context
	4.5.1. Getting Bundle Information
	4.5.2. Persistent Storage
	4.5.3. Environment Properties

	4.6. The System Bundle
	4.6.1. System Bundle Information

	4.7. Events
	4.7.1. Listeners
	4.7.2. Delivering Events
	4.7.3. Synchronization Pitfalls

	4.8. Security
	4.8.1. Admin Permission
	4.8.1.1. Actions

	4.8.2. Privileged Callbacks
	4.8.3. Lazy Activation

	4.9. References
	4.10. Changes

	Chapter 5. Service Layer
	5.1. Introduction
	5.1.1. Essentials
	5.1.2. Entities

	5.2. Services
	5.2.1. Service References
	5.2.2. Service Interfaces
	5.2.3. Registering Services
	5.2.4. Early Need for ServiceRegistration Object
	5.2.5. Service Properties
	5.2.6. Service Ranking Order
	5.2.7. Persistent Identifier (PID)
	5.2.8. Locating Services
	5.2.9. Getting Service Properties
	5.2.10. Information About Services
	5.2.11. Service Exceptions
	5.2.12. Services and Concurrency

	5.3. Service Scope
	5.4. Getting Service Objects
	5.4.1. Getting a Single Service Object
	5.4.2. Getting Multiple Service Objects

	5.5. Releasing Service Objects
	5.5.1. Releasing a Single Service Object
	5.5.2. Releasing Multiple Service Objects

	5.6. Service Events
	5.6.1. Service Event Types

	5.7. Stale References
	5.8. Filters
	5.9. Service Factory
	5.10. Prototype Service Factory
	5.11. Unregistering Services
	5.12. Multiple Version Export Considerations
	5.12.1. Service Registry
	5.12.2. Service Events

	5.13. Security
	5.13.1. Service Permission

	5.14. Changes

	Chapter 6. Resource API Specification
	6.1. Introduction
	6.1.1. Entities

	6.2. Resources
	6.3. Namespaces
	6.3.1. Matching

	6.4. Resolution
	6.4.1. Hosted Requirements and Capabilities
	6.4.2. Resolution
	6.4.3. Effectiveness
	6.4.4. Mandatory Attributes
	6.4.5. Cardinality
	6.4.6. Class Space Consistency

	6.5. Wiring

	Chapter 7. Bundle Wiring API Specification
	7.1. Introduction
	7.1.1. Entities

	7.2. Using the Wiring API
	7.2.1. Synopsis
	7.2.2. Finding the Imported Packages
	7.2.3. Attached Fragments

	7.3. Bundle Wiring
	7.4. Fragments
	7.5. Framework Actions
	7.5.1. Refreshing

	7.6. Container Scanning
	7.6.1. Bundle Class Path Order
	7.6.2. Entry Order
	7.6.3. Class Loader Access

	7.7. Security
	7.8. Changes

	Chapter 8. Framework Namespaces Specification
	8.1. Introduction
	8.2. osgi.ee Namespace
	8.3. osgi.wiring.package Namespace
	8.4. osgi.wiring.bundle Namespace
	8.5. osgi.wiring.host Namespace
	8.6. osgi.identity Namespace
	8.6.1. Related Resources

	8.7. osgi.native Namespace
	8.8. References
	8.9. Changes

	Chapter 9. Start Level API Specification
	9.1. Introduction
	9.1.1. Essentials
	9.1.2. Entities

	9.2. Start Level API
	9.2.1. Adaptations
	9.2.2. Bundle Start Level Bundle Adaptation
	9.2.3. Framework Start Level Bundle Adaptation

	9.3. The Concept of a Start Level
	9.3.1. Changing the Active Start Level
	9.3.2. Startup Sequence
	9.3.3. Shutdown Sequence
	9.3.4. Changing a Bundle's Start Level
	9.3.5. Starting a Bundle
	9.3.6. Exceptions in the Bundle Activator
	9.3.7. System Bundle

	9.4. Example Applications
	9.4.1. Safe Mode Startup Scheme
	9.4.2. Splash Screen Startup Scheme

	9.5. Security

	Chapter 10. Framework API
	10.1. org.osgi.framework
	10.1.1. Summary
	10.1.2. public final class AdaptPermission extends BasicPermission
	10.1.2.1. public static final String ADAPT = "adapt"
	10.1.2.2. public AdaptPermission(String filter, String actions)
	10.1.2.3. public AdaptPermission(String adaptClass, Bundle adaptableBundle, String actions)
	10.1.2.4. public boolean equals(Object obj)
	10.1.2.5. public String getActions()
	10.1.2.6. public int hashCode()
	10.1.2.7. public boolean implies(Permission p)
	10.1.2.8. public PermissionCollection newPermissionCollection()

	10.1.3. public final class AdminPermission extends BasicPermission
	10.1.3.1. public static final String CLASS = "class"
	10.1.3.2. public static final String CONTEXT = "context"
	10.1.3.3. public static final String EXECUTE = "execute"
	10.1.3.4. public static final String EXTENSIONLIFECYCLE = "extensionLifecycle"
	10.1.3.5. public static final String LIFECYCLE = "lifecycle"
	10.1.3.6. public static final String LISTENER = "listener"
	10.1.3.7. public static final String METADATA = "metadata"
	10.1.3.8. public static final String RESOLVE = "resolve"
	10.1.3.9. public static final String RESOURCE = "resource"
	10.1.3.10. public static final String STARTLEVEL = "startlevel"
	10.1.3.11. public static final String WEAVE = "weave"
	10.1.3.12. public AdminPermission()
	10.1.3.13. public AdminPermission(String filter, String actions)
	10.1.3.14. public AdminPermission(Bundle bundle, String actions)
	10.1.3.15. public boolean equals(Object obj)
	10.1.3.16. public String getActions()
	10.1.3.17. public int hashCode()
	10.1.3.18. public boolean implies(Permission p)
	10.1.3.19. public PermissionCollection newPermissionCollection()

	10.1.4. public interface AllServiceListener extends ServiceListener
	10.1.5. public interface Bundle extends Comparable<Bundle>
	10.1.5.1. public static final int ACTIVE = 32
	10.1.5.2. public static final int INSTALLED = 2
	10.1.5.3. public static final int RESOLVED = 4
	10.1.5.4. public static final int SIGNERS_ALL = 1
	10.1.5.5. public static final int SIGNERS_TRUSTED = 2
	10.1.5.6. public static final int START_ACTIVATION_POLICY = 2
	10.1.5.7. public static final int START_TRANSIENT = 1
	10.1.5.8. public static final int STARTING = 8
	10.1.5.9. public static final int STOP_TRANSIENT = 1
	10.1.5.10. public static final int STOPPING = 16
	10.1.5.11. public static final int UNINSTALLED = 1
	10.1.5.12. public A adapt(Class<A> type)
	10.1.5.13. public Enumeration<URL> findEntries(String path, String filePattern, boolean recurse)
	10.1.5.14. public BundleContext getBundleContext()
	10.1.5.15. public long getBundleId()
	10.1.5.16. public File getDataFile(String filename)
	10.1.5.17. public URL getEntry(String path)
	10.1.5.18. public Enumeration<String> getEntryPaths(String path)
	10.1.5.19. public Dictionary<String, String> getHeaders()
	10.1.5.20. public Dictionary<String, String> getHeaders(String locale)
	10.1.5.21. public long getLastModified()
	10.1.5.22. public String getLocation()
	10.1.5.23. public ServiceReference<?>[] getRegisteredServices()
	10.1.5.24. public URL getResource(String name)
	10.1.5.25. public Enumeration<URL> getResources(String name) throws IOException
	10.1.5.26. public ServiceReference<?>[] getServicesInUse()
	10.1.5.27. public Map<X509Certificate, List<X509Certificate>> getSignerCertificates(int signersType)
	10.1.5.28. public int getState()
	10.1.5.29. public String getSymbolicName()
	10.1.5.30. public Version getVersion()
	10.1.5.31. public boolean hasPermission(Object permission)
	10.1.5.32. public Class<?> loadClass(String name) throws ClassNotFoundException
	10.1.5.33. public void start(int options) throws BundleException
	10.1.5.34. public void start() throws BundleException
	10.1.5.35. public void stop(int options) throws BundleException
	10.1.5.36. public void stop() throws BundleException
	10.1.5.37. public void uninstall() throws BundleException
	10.1.5.38. public void update(InputStream input) throws BundleException
	10.1.5.39. public void update() throws BundleException

	10.1.6. public interface BundleActivator
	10.1.6.1. public void start(BundleContext context) throws Exception
	10.1.6.2. public void stop(BundleContext context) throws Exception

	10.1.7. public interface BundleContext extends BundleReference
	10.1.7.1. public void addBundleListener(BundleListener listener)
	10.1.7.2. public void addFrameworkListener(FrameworkListener listener)
	10.1.7.3. public void addServiceListener(ServiceListener listener, String filter) throws InvalidSyntaxException
	10.1.7.4. public void addServiceListener(ServiceListener listener)
	10.1.7.5. public Filter createFilter(String filter) throws InvalidSyntaxException
	10.1.7.6. public ServiceReference<?>[] getAllServiceReferences(String clazz, String filter) throws InvalidSyntaxException
	10.1.7.7. public Bundle getBundle()
	10.1.7.8. public Bundle getBundle(long id)
	10.1.7.9. public Bundle getBundle(String location)
	10.1.7.10. public Bundle[] getBundles()
	10.1.7.11. public File getDataFile(String filename)
	10.1.7.12. public String getProperty(String key)
	10.1.7.13. public S getService(ServiceReference<S> reference)
	10.1.7.14. public ServiceObjects<S> getServiceObjects(ServiceReference<S> reference)
	10.1.7.15. public ServiceReference<?> getServiceReference(String clazz)
	10.1.7.16. public ServiceReference<S> getServiceReference(Class<S> clazz)
	10.1.7.17. public ServiceReference<?>[] getServiceReferences(String clazz, String filter) throws InvalidSyntaxException
	10.1.7.18. public Collection<ServiceReference<S>> getServiceReferences(Class<S> clazz, String filter) throws InvalidSyntaxException
	10.1.7.19. public Bundle installBundle(String location, InputStream input) throws BundleException
	10.1.7.20. public Bundle installBundle(String location) throws BundleException
	10.1.7.21. public ServiceRegistration<?> registerService(String[] clazzes, Object service, Dictionary<String, ?> properties)
	10.1.7.22. public ServiceRegistration<?> registerService(String clazz, Object service, Dictionary<String, ?> properties)
	10.1.7.23. public ServiceRegistration<S> registerService(Class<S> clazz, S service, Dictionary<String, ?> properties)
	10.1.7.24. public ServiceRegistration<S> registerService(Class<S> clazz, ServiceFactory<S> factory, Dictionary<String, ?> properties)
	10.1.7.25. public void removeBundleListener(BundleListener listener)
	10.1.7.26. public void removeFrameworkListener(FrameworkListener listener)
	10.1.7.27. public void removeServiceListener(ServiceListener listener)
	10.1.7.28. public boolean ungetService(ServiceReference<?> reference)

	10.1.8. public class BundleEvent extends EventObject
	10.1.8.1. public static final int INSTALLED = 1
	10.1.8.2. public static final int LAZY_ACTIVATION = 512
	10.1.8.3. public static final int RESOLVED = 32
	10.1.8.4. public static final int STARTED = 2
	10.1.8.5. public static final int STARTING = 128
	10.1.8.6. public static final int STOPPED = 4
	10.1.8.7. public static final int STOPPING = 256
	10.1.8.8. public static final int UNINSTALLED = 16
	10.1.8.9. public static final int UNRESOLVED = 64
	10.1.8.10. public static final int UPDATED = 8
	10.1.8.11. public BundleEvent(int type, Bundle bundle, Bundle origin)
	10.1.8.12. public BundleEvent(int type, Bundle bundle)
	10.1.8.13. public Bundle getBundle()
	10.1.8.14. public Bundle getOrigin()
	10.1.8.15. public int getType()

	10.1.9. public class BundleException extends Exception
	10.1.9.1. public static final int ACTIVATOR_ERROR = 5
	10.1.9.2. public static final int DUPLICATE_BUNDLE_ERROR = 9
	10.1.9.3. public static final int INVALID_OPERATION = 2
	10.1.9.4. public static final int MANIFEST_ERROR = 3
	10.1.9.5. public static final int NATIVECODE_ERROR = 8
	10.1.9.6. public static final int READ_ERROR = 11
	10.1.9.7. public static final int REJECTED_BY_HOOK = 12
	10.1.9.8. public static final int RESOLVE_ERROR = 4
	10.1.9.9. public static final int SECURITY_ERROR = 6
	10.1.9.10. public static final int START_TRANSIENT_ERROR = 10
	10.1.9.11. public static final int STATECHANGE_ERROR = 7
	10.1.9.12. public static final int UNSPECIFIED = 0
	10.1.9.13. public static final int UNSUPPORTED_OPERATION = 1
	10.1.9.14. public BundleException(String msg, Throwable cause)
	10.1.9.15. public BundleException(String msg)
	10.1.9.16. public BundleException(String msg, int type, Throwable cause)
	10.1.9.17. public BundleException(String msg, int type)
	10.1.9.18. public Throwable getCause()
	10.1.9.19. public Throwable getNestedException()
	10.1.9.20. public int getType()
	10.1.9.21. public Throwable initCause(Throwable cause)

	10.1.10. public interface BundleListener extends EventListener
	10.1.10.1. public void bundleChanged(BundleEvent event)

	10.1.11. public final class BundlePermission extends BasicPermission
	10.1.11.1. public static final String FRAGMENT = "fragment"
	10.1.11.2. public static final String HOST = "host"
	10.1.11.3. public static final String PROVIDE = "provide"
	10.1.11.4. public static final String REQUIRE = "require"
	10.1.11.5. public BundlePermission(String symbolicName, String actions)
	10.1.11.6. public boolean equals(Object obj)
	10.1.11.7. public String getActions()
	10.1.11.8. public int hashCode()
	10.1.11.9. public boolean implies(Permission p)
	10.1.11.10. public PermissionCollection newPermissionCollection()

	10.1.12. public interface BundleReference
	10.1.12.1. public Bundle getBundle()

	10.1.13. public final class CapabilityPermission extends BasicPermission
	10.1.13.1. public static final String PROVIDE = "provide"
	10.1.13.2. public static final String REQUIRE = "require"
	10.1.13.3. public CapabilityPermission(String name, String actions)
	10.1.13.4. public CapabilityPermission(String namespace, Map<String, ?> attributes, Bundle providingBundle, String actions)
	10.1.13.5. public boolean equals(Object obj)
	10.1.13.6. public String getActions()
	10.1.13.7. public int hashCode()
	10.1.13.8. public boolean implies(Permission p)
	10.1.13.9. public PermissionCollection newPermissionCollection()

	10.1.14. public interface Configurable
	10.1.14.1. public Object getConfigurationObject()

	10.1.15. public interface Constants
	10.1.15.1. public static final String ACTIVATION_LAZY = "lazy"
	10.1.15.2. public static final String BUNDLE_ACTIVATIONPOLICY = "Bundle-ActivationPolicy"
	10.1.15.3. public static final String BUNDLE_ACTIVATOR = "Bundle-Activator"
	10.1.15.4. public static final String BUNDLE_CATEGORY = "Bundle-Category"
	10.1.15.5. public static final String BUNDLE_CLASSPATH = "Bundle-ClassPath"
	10.1.15.6. public static final String BUNDLE_CONTACTADDRESS = "Bundle-ContactAddress"
	10.1.15.7. public static final String BUNDLE_COPYRIGHT = "Bundle-Copyright"
	10.1.15.8. public static final String BUNDLE_DESCRIPTION = "Bundle-Description"
	10.1.15.9. public static final String BUNDLE_DEVELOPERS = "Bundle-Developers"
	10.1.15.10. public static final String BUNDLE_DOCURL = "Bundle-DocURL"
	10.1.15.11. public static final String BUNDLE_ICON = "Bundle-Icon"
	10.1.15.12. public static final String BUNDLE_LICENSE = "Bundle-License"
	10.1.15.13. public static final String BUNDLE_LOCALIZATION = "Bundle-Localization"
	10.1.15.14. public static final String BUNDLE_LOCALIZATION_DEFAULT_BASENAME = "OSGI-INF/l10n/bundle"
	10.1.15.15. public static final String BUNDLE_MANIFESTVERSION = "Bundle-ManifestVersion"
	10.1.15.16. public static final String BUNDLE_NAME = "Bundle-Name"
	10.1.15.17. public static final String BUNDLE_NATIVECODE = "Bundle-NativeCode"
	10.1.15.18. public static final String BUNDLE_NATIVECODE_LANGUAGE = "language"
	10.1.15.19. public static final String BUNDLE_NATIVECODE_OSNAME = "osname"
	10.1.15.20. public static final String BUNDLE_NATIVECODE_OSVERSION = "osversion"
	10.1.15.21. public static final String BUNDLE_NATIVECODE_PROCESSOR = "processor"
	10.1.15.22. public static final String BUNDLE_REQUIREDEXECUTIONENVIRONMENT = "Bundle-RequiredExecutionEnvironment"
	10.1.15.23. public static final String BUNDLE_SCM = "Bundle-SCM"
	10.1.15.24. public static final String BUNDLE_SYMBOLICNAME = "Bundle-SymbolicName"
	10.1.15.25. public static final String BUNDLE_SYMBOLICNAME_ATTRIBUTE = "bundle-symbolic-name"
	10.1.15.26. public static final String BUNDLE_UPDATELOCATION = "Bundle-UpdateLocation"
	10.1.15.27. public static final String BUNDLE_VENDOR = "Bundle-Vendor"
	10.1.15.28. public static final String BUNDLE_VERSION = "Bundle-Version"
	10.1.15.29. public static final String BUNDLE_VERSION_ATTRIBUTE = "bundle-version"
	10.1.15.30. public static final String DYNAMICIMPORT_PACKAGE = "DynamicImport-Package"
	10.1.15.31. public static final String EFFECTIVE_ACTIVE = "active"
	10.1.15.32. public static final String EFFECTIVE_DIRECTIVE = "effective"
	10.1.15.33. public static final String EFFECTIVE_RESOLVE = "resolve"
	10.1.15.34. public static final String EXCLUDE_DIRECTIVE = "exclude"
	10.1.15.35. public static final String EXPORT_PACKAGE = "Export-Package"
	10.1.15.36. public static final String EXPORT_SERVICE = "Export-Service"
	10.1.15.37. public static final String EXTENSION_BOOTCLASSPATH = "bootclasspath"
	10.1.15.38. public static final String EXTENSION_BUNDLE_ACTIVATOR = "ExtensionBundle-Activator"
	10.1.15.39. public static final String EXTENSION_DIRECTIVE = "extension"
	10.1.15.40. public static final String EXTENSION_FRAMEWORK = "framework"
	10.1.15.41. public static final String FILTER_DIRECTIVE = "filter"
	10.1.15.42. public static final String FRAGMENT_ATTACHMENT_ALWAYS = "always"
	10.1.15.43. public static final String FRAGMENT_ATTACHMENT_DIRECTIVE = "fragment-attachment"
	10.1.15.44. public static final String FRAGMENT_ATTACHMENT_NEVER = "never"
	10.1.15.45. public static final String FRAGMENT_ATTACHMENT_RESOLVETIME = "resolve-time"
	10.1.15.46. public static final String FRAGMENT_HOST = "Fragment-Host"
	10.1.15.47. public static final String FRAMEWORK_BEGINNING_STARTLEVEL = "org.osgi.framework.startlevel.beginning"
	10.1.15.48. public static final String FRAMEWORK_BOOTDELEGATION = "org.osgi.framework.bootdelegation"
	10.1.15.49. public static final String FRAMEWORK_BSNVERSION = "org.osgi.framework.bsnversion"
	10.1.15.50. public static final String FRAMEWORK_BSNVERSION_MANAGED = "managed"
	10.1.15.51. public static final String FRAMEWORK_BSNVERSION_MULTIPLE = "multiple"
	10.1.15.52. public static final String FRAMEWORK_BSNVERSION_SINGLE = "single"
	10.1.15.53. public static final String FRAMEWORK_BUNDLE_PARENT = "org.osgi.framework.bundle.parent"
	10.1.15.54. public static final String FRAMEWORK_BUNDLE_PARENT_APP = "app"
	10.1.15.55. public static final String FRAMEWORK_BUNDLE_PARENT_BOOT = "boot"
	10.1.15.56. public static final String FRAMEWORK_BUNDLE_PARENT_EXT = "ext"
	10.1.15.57. public static final String FRAMEWORK_BUNDLE_PARENT_FRAMEWORK = "framework"
	10.1.15.58. public static final String FRAMEWORK_COMMAND_ABSPATH = "abspath"
	10.1.15.59. public static final String FRAMEWORK_EXECPERMISSION = "org.osgi.framework.command.execpermission"
	10.1.15.60. public static final String FRAMEWORK_EXECUTIONENVIRONMENT = "org.osgi.framework.executionenvironment"
	10.1.15.61. public static final String FRAMEWORK_LANGUAGE = "org.osgi.framework.language"
	10.1.15.62. public static final String FRAMEWORK_LIBRARY_EXTENSIONS = "org.osgi.framework.library.extensions"
	10.1.15.63. public static final String FRAMEWORK_OS_NAME = "org.osgi.framework.os.name"
	10.1.15.64. public static final String FRAMEWORK_OS_VERSION = "org.osgi.framework.os.version"
	10.1.15.65. public static final String FRAMEWORK_PROCESSOR = "org.osgi.framework.processor"
	10.1.15.66. public static final String FRAMEWORK_SECURITY = "org.osgi.framework.security"
	10.1.15.67. public static final String FRAMEWORK_SECURITY_OSGI = "osgi"
	10.1.15.68. public static final String FRAMEWORK_STORAGE = "org.osgi.framework.storage"
	10.1.15.69. public static final String FRAMEWORK_STORAGE_CLEAN = "org.osgi.framework.storage.clean"
	10.1.15.70. public static final String FRAMEWORK_STORAGE_CLEAN_ONFIRSTINIT = "onFirstInit"
	10.1.15.71. public static final String FRAMEWORK_SYSTEMCAPABILITIES = "org.osgi.framework.system.capabilities"
	10.1.15.72. public static final String FRAMEWORK_SYSTEMCAPABILITIES_EXTRA = "org.osgi.framework.system.capabilities.extra"
	10.1.15.73. public static final String FRAMEWORK_SYSTEMPACKAGES = "org.osgi.framework.system.packages"
	10.1.15.74. public static final String FRAMEWORK_SYSTEMPACKAGES_EXTRA = "org.osgi.framework.system.packages.extra"
	10.1.15.75. public static final String FRAMEWORK_TRUST_REPOSITORIES = "org.osgi.framework.trust.repositories"
	10.1.15.76. public static final String FRAMEWORK_UUID = "org.osgi.framework.uuid"
	10.1.15.77. public static final String FRAMEWORK_VENDOR = "org.osgi.framework.vendor"
	10.1.15.78. public static final String FRAMEWORK_VERSION = "org.osgi.framework.version"
	10.1.15.79. public static final String FRAMEWORK_WINDOWSYSTEM = "org.osgi.framework.windowsystem"
	10.1.15.80. public static final String IMPORT_PACKAGE = "Import-Package"
	10.1.15.81. public static final String IMPORT_SERVICE = "Import-Service"
	10.1.15.82. public static final String INCLUDE_DIRECTIVE = "include"
	10.1.15.83. public static final String INTENT_ASYNC = "osgi.async"
	10.1.15.84. public static final String INTENT_BASIC = "osgi.basic"
	10.1.15.85. public static final String INTENT_CONFIDENTIAL = "osgi.confidential"
	10.1.15.86. public static final String INTENT_PRIVATE = "osgi.private"
	10.1.15.87. public static final String MANDATORY_DIRECTIVE = "mandatory"
	10.1.15.88. public static final String OBJECTCLASS = "objectClass"
	10.1.15.89. public static final String PACKAGE_SPECIFICATION_VERSION = "specification-version"
	10.1.15.90. public static final String PROVIDE_CAPABILITY = "Provide-Capability"
	10.1.15.91. public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"
	10.1.15.92. public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"
	10.1.15.93. public static final String REQUIRE_BUNDLE = "Require-Bundle"
	10.1.15.94. public static final String REQUIRE_CAPABILITY = "Require-Capability"
	10.1.15.95. public static final String RESOLUTION_DIRECTIVE = "resolution"
	10.1.15.96. public static final String RESOLUTION_MANDATORY = "mandatory"
	10.1.15.97. public static final String RESOLUTION_OPTIONAL = "optional"
	10.1.15.98. public static final String SCOPE_BUNDLE = "bundle"
	10.1.15.99. public static final String SCOPE_PROTOTYPE = "prototype"
	10.1.15.100. public static final String SCOPE_SINGLETON = "singleton"
	10.1.15.101. public static final String SELECTION_FILTER_ATTRIBUTE = "selection-filter"
	10.1.15.102. public static final String SERVICE_BUNDLEID = "service.bundleid"
	10.1.15.103. public static final String SERVICE_CHANGECOUNT = "service.changecount"
	10.1.15.104. public static final String SERVICE_DESCRIPTION = "service.description"
	10.1.15.105. public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"
	10.1.15.106. public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"
	10.1.15.107. public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"
	10.1.15.108. public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"
	10.1.15.109. public static final String SERVICE_ID = "service.id"
	10.1.15.110. public static final String SERVICE_IMPORTED = "service.imported"
	10.1.15.111. public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"
	10.1.15.112. public static final String SERVICE_INTENTS = "service.intents"
	10.1.15.113. public static final String SERVICE_PID = "service.pid"
	10.1.15.114. public static final String SERVICE_RANKING = "service.ranking"
	10.1.15.115. public static final String SERVICE_SCOPE = "service.scope"
	10.1.15.116. public static final String SERVICE_VENDOR = "service.vendor"
	10.1.15.117. public static final String SINGLETON_DIRECTIVE = "singleton"
	10.1.15.118. public static final String SUPPORTS_BOOTCLASSPATH_EXTENSION = "org.osgi.supports.bootclasspath.extension"
	10.1.15.119. public static final String SUPPORTS_FRAMEWORK_EXTENSION = "org.osgi.supports.framework.extension"
	10.1.15.120. public static final String SUPPORTS_FRAMEWORK_FRAGMENT = "org.osgi.supports.framework.fragment"
	10.1.15.121. public static final String SUPPORTS_FRAMEWORK_REQUIREBUNDLE = "org.osgi.supports.framework.requirebundle"
	10.1.15.122. public static final long SYSTEM_BUNDLE_ID = 0L
	10.1.15.123. public static final String SYSTEM_BUNDLE_LOCATION = "System Bundle"
	10.1.15.124. public static final String SYSTEM_BUNDLE_SYMBOLICNAME = "system.bundle"
	10.1.15.125. public static final String USES_DIRECTIVE = "uses"
	10.1.15.126. public static final String VERSION_ATTRIBUTE = "version"
	10.1.15.127. public static final String VISIBILITY_DIRECTIVE = "visibility"
	10.1.15.128. public static final String VISIBILITY_PRIVATE = "private"
	10.1.15.129. public static final String VISIBILITY_REEXPORT = "reexport"

	10.1.16. public interface Filter
	10.1.16.1. public boolean equals(Object obj)
	10.1.16.2. public int hashCode()
	10.1.16.3. public boolean match(ServiceReference<?> reference)
	10.1.16.4. public boolean match(Dictionary<String, ?> dictionary)
	10.1.16.5. public boolean matchCase(Dictionary<String, ?> dictionary)
	10.1.16.6. public boolean matches(Map<String, ?> map)
	10.1.16.7. public String toString()

	10.1.17. public class FrameworkEvent extends EventObject
	10.1.17.1. public static final int ERROR = 2
	10.1.17.2. public static final int INFO = 32
	10.1.17.3. public static final int PACKAGES_REFRESHED = 4
	10.1.17.4. public static final int STARTED = 1
	10.1.17.5. public static final int STARTLEVEL_CHANGED = 8
	10.1.17.6. public static final int STOPPED = 64
	10.1.17.7. public static final int STOPPED_BOOTCLASSPATH_MODIFIED = 256
	10.1.17.8. public static final int STOPPED_SYSTEM_REFRESHED = 1024
	10.1.17.9. public static final int STOPPED_UPDATE = 128
	10.1.17.10. public static final int WAIT_TIMEDOUT = 512
	10.1.17.11. public static final int WARNING = 16
	10.1.17.12. public FrameworkEvent(int type, Object source)
	10.1.17.13. public FrameworkEvent(int type, Bundle bundle, Throwable throwable)
	10.1.17.14. public Bundle getBundle()
	10.1.17.15. public Throwable getThrowable()
	10.1.17.16. public int getType()

	10.1.18. public interface FrameworkListener extends EventListener
	10.1.18.1. public void frameworkEvent(FrameworkEvent event)

	10.1.19. public class FrameworkUtil
	10.1.19.1. public static Filter createFilter(String filter) throws InvalidSyntaxException
	10.1.19.2. public static Bundle getBundle(Class<?> classFromBundle)
	10.1.19.3. public static boolean matchDistinguishedNameChain(String matchPattern, List<String> dnChain)

	10.1.20. public class InvalidSyntaxException extends Exception
	10.1.20.1. public InvalidSyntaxException(String msg, String filter)
	10.1.20.2. public InvalidSyntaxException(String msg, String filter, Throwable cause)
	10.1.20.3. public Throwable getCause()
	10.1.20.4. public String getFilter()
	10.1.20.5. public Throwable initCause(Throwable cause)

	10.1.21. public final class PackagePermission extends BasicPermission
	10.1.21.1. public static final String EXPORT = "export"
	10.1.21.2. public static final String EXPORTONLY = "exportonly"
	10.1.21.3. public static final String IMPORT = "import"
	10.1.21.4. public PackagePermission(String name, String actions)
	10.1.21.5. public PackagePermission(String name, Bundle exportingBundle, String actions)
	10.1.21.6. public boolean equals(Object obj)
	10.1.21.7. public String getActions()
	10.1.21.8. public int hashCode()
	10.1.21.9. public boolean implies(Permission p)
	10.1.21.10. public PermissionCollection newPermissionCollection()

	10.1.22. public interface PrototypeServiceFactory<S> extends ServiceFactory<S>
	10.1.22.1. public S getService(Bundle bundle, ServiceRegistration<S> registration)
	10.1.22.2. public void ungetService(Bundle bundle, ServiceRegistration<S> registration, S service)

	10.1.23. public class ServiceEvent extends EventObject
	10.1.23.1. public static final int MODIFIED = 2
	10.1.23.2. public static final int MODIFIED_ENDMATCH = 8
	10.1.23.3. public static final int REGISTERED = 1
	10.1.23.4. public static final int UNREGISTERING = 4
	10.1.23.5. public ServiceEvent(int type, ServiceReference<?> reference)
	10.1.23.6. public ServiceReference<?> getServiceReference()
	10.1.23.7. public int getType()

	10.1.24. public class ServiceException extends RuntimeException
	10.1.24.1. public static final int ASYNC_ERROR = 7
	10.1.24.2. public static final int FACTORY_ERROR = 2
	10.1.24.3. public static final int FACTORY_EXCEPTION = 3
	10.1.24.4. public static final int FACTORY_RECURSION = 6
	10.1.24.5. public static final int REMOTE = 5
	10.1.24.6. public static final int SUBCLASSED = 4
	10.1.24.7. public static final int UNREGISTERED = 1
	10.1.24.8. public static final int UNSPECIFIED = 0
	10.1.24.9. public ServiceException(String msg, Throwable cause)
	10.1.24.10. public ServiceException(String msg)
	10.1.24.11. public ServiceException(String msg, int type, Throwable cause)
	10.1.24.12. public ServiceException(String msg, int type)
	10.1.24.13. public int getType()

	10.1.25. public interface ServiceFactory<S>
	10.1.25.1. public S getService(Bundle bundle, ServiceRegistration<S> registration)
	10.1.25.2. public void ungetService(Bundle bundle, ServiceRegistration<S> registration, S service)

	10.1.26. public interface ServiceListener extends EventListener
	10.1.26.1. public void serviceChanged(ServiceEvent event)

	10.1.27. public interface ServiceObjects<S>
	10.1.27.1. public S getService()
	10.1.27.2. public ServiceReference<S> getServiceReference()
	10.1.27.3. public void ungetService(S service)

	10.1.28. public final class ServicePermission extends BasicPermission
	10.1.28.1. public static final String GET = "get"
	10.1.28.2. public static final String REGISTER = "register"
	10.1.28.3. public ServicePermission(String name, String actions)
	10.1.28.4. public ServicePermission(ServiceReference<?> reference, String actions)
	10.1.28.5. public boolean equals(Object obj)
	10.1.28.6. public String getActions()
	10.1.28.7. public int hashCode()
	10.1.28.8. public boolean implies(Permission p)
	10.1.28.9. public PermissionCollection newPermissionCollection()

	10.1.29. public interface ServiceReference<S> extends Comparable<Object>
	10.1.29.1. public int compareTo(Object reference)
	10.1.29.2. public Bundle getBundle()
	10.1.29.3. public Dictionary<String, Object> getProperties()
	10.1.29.4. public Object getProperty(String key)
	10.1.29.5. public String[] getPropertyKeys()
	10.1.29.6. public Bundle[] getUsingBundles()
	10.1.29.7. public boolean isAssignableTo(Bundle bundle, String className)

	10.1.30. public interface ServiceRegistration<S>
	10.1.30.1. public ServiceReference<S> getReference()
	10.1.30.2. public void setProperties(Dictionary<String, ?> properties)
	10.1.30.3. public void unregister()

	10.1.31. public interface SynchronousBundleListener extends BundleListener
	10.1.32. public interface UnfilteredServiceListener extends ServiceListener
	10.1.33. public class Version implements Comparable<Version>
	10.1.33.1. public static final Version emptyVersion
	10.1.33.2. public Version(int major, int minor, int micro)
	10.1.33.3. public Version(int major, int minor, int micro, String qualifier)
	10.1.33.4. public Version(String version)
	10.1.33.5. public int compareTo(Version other)
	10.1.33.6. public boolean equals(Object object)
	10.1.33.7. public int getMajor()
	10.1.33.8. public int getMicro()
	10.1.33.9. public int getMinor()
	10.1.33.10. public String getQualifier()
	10.1.33.11. public int hashCode()
	10.1.33.12. public static Version parseVersion(String version)
	10.1.33.13. public String toString()
	10.1.33.14. public static Version valueOf(String version)

	10.1.34. public class VersionRange
	10.1.34.1. public static final char LEFT_CLOSED = 91
	10.1.34.2. public static final char LEFT_OPEN = 40
	10.1.34.3. public static final char RIGHT_CLOSED = 93
	10.1.34.4. public static final char RIGHT_OPEN = 41
	10.1.34.5. public VersionRange(char leftType, Version leftEndpoint, Version rightEndpoint, char rightType)
	10.1.34.6. public VersionRange(String range)
	10.1.34.7. public boolean equals(Object object)
	10.1.34.8. public Version getLeft()
	10.1.34.9. public char getLeftType()
	10.1.34.10. public Version getRight()
	10.1.34.11. public char getRightType()
	10.1.34.12. public int hashCode()
	10.1.34.13. public boolean includes(Version version)
	10.1.34.14. public VersionRange intersection(VersionRange... ranges)
	10.1.34.15. public boolean isEmpty()
	10.1.34.16. public boolean isExact()
	10.1.34.17. public String toFilterString(String attributeName)
	10.1.34.18. public String toString()
	10.1.34.19. public static VersionRange valueOf(String range)

	10.2. org.osgi.framework.launch
	10.2.1. Summary
	10.2.2. public interface Framework extends Bundle
	10.2.2.1. public A adapt(Class<A> type)
	10.2.2.2. public Enumeration<URL> findEntries(String path, String filePattern, boolean recurse)
	10.2.2.3. public long getBundleId()
	10.2.2.4. public URL getEntry(String path)
	10.2.2.5. public Enumeration<String> getEntryPaths(String path)
	10.2.2.6. public long getLastModified()
	10.2.2.7. public String getLocation()
	10.2.2.8. public String getSymbolicName()
	10.2.2.9. public void init() throws BundleException
	10.2.2.10. public void init(FrameworkListener... listeners) throws BundleException
	10.2.2.11. public void start() throws BundleException
	10.2.2.12. public void start(int options) throws BundleException
	10.2.2.13. public void stop() throws BundleException
	10.2.2.14. public void stop(int options) throws BundleException
	10.2.2.15. public void uninstall() throws BundleException
	10.2.2.16. public void update() throws BundleException
	10.2.2.17. public void update(InputStream in) throws BundleException
	10.2.2.18. public FrameworkEvent waitForStop(long timeout) throws InterruptedException

	10.2.3. public interface FrameworkFactory
	10.2.3.1. public Framework newFramework(Map<String, String> configuration)

	10.3. org.osgi.resource
	10.3.1. Summary
	10.3.2. public interface Capability
	10.3.2.1. public boolean equals(Object obj)
	10.3.2.2. public Map<String, Object> getAttributes()
	10.3.2.3. public Map<String, String> getDirectives()
	10.3.2.4. public String getNamespace()
	10.3.2.5. public Resource getResource()
	10.3.2.6. public int hashCode()

	10.3.3. public abstract class Namespace
	10.3.3.1. public static final String CAPABILITY_EFFECTIVE_DIRECTIVE = "effective"
	10.3.3.2. public static final String CAPABILITY_USES_DIRECTIVE = "uses"
	10.3.3.3. public static final String CARDINALITY_MULTIPLE = "multiple"
	10.3.3.4. public static final String CARDINALITY_SINGLE = "single"
	10.3.3.5. public static final String EFFECTIVE_ACTIVE = "active"
	10.3.3.6. public static final String EFFECTIVE_RESOLVE = "resolve"
	10.3.3.7. public static final String REQUIREMENT_CARDINALITY_DIRECTIVE = "cardinality"
	10.3.3.8. public static final String REQUIREMENT_EFFECTIVE_DIRECTIVE = "effective"
	10.3.3.9. public static final String REQUIREMENT_FILTER_DIRECTIVE = "filter"
	10.3.3.10. public static final String REQUIREMENT_RESOLUTION_DIRECTIVE = "resolution"
	10.3.3.11. public static final String RESOLUTION_MANDATORY = "mandatory"
	10.3.3.12. public static final String RESOLUTION_OPTIONAL = "optional"
	10.3.3.13. protected Namespace()

	10.3.4. public interface Requirement
	10.3.4.1. public boolean equals(Object obj)
	10.3.4.2. public Map<String, Object> getAttributes()
	10.3.4.3. public Map<String, String> getDirectives()
	10.3.4.4. public String getNamespace()
	10.3.4.5. public Resource getResource()
	10.3.4.6. public int hashCode()

	10.3.5. public interface Resource
	10.3.5.1. public boolean equals(Object obj)
	10.3.5.2. public List<Capability> getCapabilities(String namespace)
	10.3.5.3. public List<Requirement> getRequirements(String namespace)
	10.3.5.4. public int hashCode()

	10.3.6. public interface Wire
	10.3.6.1. public boolean equals(Object obj)
	10.3.6.2. public Capability getCapability()
	10.3.6.3. public Resource getProvider()
	10.3.6.4. public Requirement getRequirement()
	10.3.6.5. public Resource getRequirer()
	10.3.6.6. public int hashCode()

	10.3.7. public interface Wiring
	10.3.7.1. public List<Wire> getProvidedResourceWires(String namespace)
	10.3.7.2. public List<Wire> getRequiredResourceWires(String namespace)
	10.3.7.3. public Resource getResource()
	10.3.7.4. public List<Capability> getResourceCapabilities(String namespace)
	10.3.7.5. public List<Requirement> getResourceRequirements(String namespace)

	10.4. org.osgi.framework.wiring
	10.4.1. Summary
	10.4.2. public interface BundleCapability extends Capability
	10.4.2.1. public Map<String, Object> getAttributes()
	10.4.2.2. public Map<String, String> getDirectives()
	10.4.2.3. public String getNamespace()
	10.4.2.4. public BundleRevision getResource()
	10.4.2.5. public BundleRevision getRevision()

	10.4.3. public interface BundleRequirement extends Requirement
	10.4.3.1. public Map<String, Object> getAttributes()
	10.4.3.2. public Map<String, String> getDirectives()
	10.4.3.3. public String getNamespace()
	10.4.3.4. public BundleRevision getResource()
	10.4.3.5. public BundleRevision getRevision()
	10.4.3.6. public boolean matches(BundleCapability capability)

	10.4.4. public interface BundleRevision extends BundleReference, Resource
	10.4.4.1. public static final String BUNDLE_NAMESPACE = "osgi.wiring.bundle"
	10.4.4.2. public static final String HOST_NAMESPACE = "osgi.wiring.host"
	10.4.4.3. public static final String PACKAGE_NAMESPACE = "osgi.wiring.package"
	10.4.4.4. public static final int TYPE_FRAGMENT = 1
	10.4.4.5. public List<Capability> getCapabilities(String namespace)
	10.4.4.6. public List<BundleCapability> getDeclaredCapabilities(String namespace)
	10.4.4.7. public List<BundleRequirement> getDeclaredRequirements(String namespace)
	10.4.4.8. public List<Requirement> getRequirements(String namespace)
	10.4.4.9. public String getSymbolicName()
	10.4.4.10. public int getTypes()
	10.4.4.11. public Version getVersion()
	10.4.4.12. public BundleWiring getWiring()

	10.4.5. public interface BundleRevisions extends BundleReference
	10.4.5.1. public List<BundleRevision> getRevisions()

	10.4.6. public interface BundleWire extends Wire
	10.4.6.1. public BundleCapability getCapability()
	10.4.6.2. public BundleRevision getProvider()
	10.4.6.3. public BundleWiring getProviderWiring()
	10.4.6.4. public BundleRequirement getRequirement()
	10.4.6.5. public BundleRevision getRequirer()
	10.4.6.6. public BundleWiring getRequirerWiring()

	10.4.7. public interface BundleWiring extends BundleReference, Wiring
	10.4.7.1. public static final int FINDENTRIES_RECURSE = 1
	10.4.7.2. public static final int LISTRESOURCES_LOCAL = 2
	10.4.7.3. public static final int LISTRESOURCES_RECURSE = 1
	10.4.7.4. public List<URL> findEntries(String path, String filePattern, int options)
	10.4.7.5. public List<BundleCapability> getCapabilities(String namespace)
	10.4.7.6. public ClassLoader getClassLoader()
	10.4.7.7. public List<Wire> getProvidedResourceWires(String namespace)
	10.4.7.8. public List<BundleWire> getProvidedWires(String namespace)
	10.4.7.9. public List<Wire> getRequiredResourceWires(String namespace)
	10.4.7.10. public List<BundleWire> getRequiredWires(String namespace)
	10.4.7.11. public List<BundleRequirement> getRequirements(String namespace)
	10.4.7.12. public BundleRevision getResource()
	10.4.7.13. public List<Capability> getResourceCapabilities(String namespace)
	10.4.7.14. public List<Requirement> getResourceRequirements(String namespace)
	10.4.7.15. public BundleRevision getRevision()
	10.4.7.16. public boolean isCurrent()
	10.4.7.17. public boolean isInUse()
	10.4.7.18. public Collection<String> listResources(String path, String filePattern, int options)

	10.4.8. public interface FrameworkWiring extends BundleReference
	10.4.8.1. public Collection<BundleCapability> findProviders(Requirement requirement)
	10.4.8.2. public Collection<Bundle> getDependencyClosure(Collection<Bundle> bundles)
	10.4.8.3. public Collection<Bundle> getRemovalPendingBundles()
	10.4.8.4. public void refreshBundles(Collection<Bundle> bundles, FrameworkListener... listeners)
	10.4.8.5. public boolean resolveBundles(Collection<Bundle> bundles)

	10.5. org.osgi.framework.startlevel
	10.5.1. Summary
	10.5.2. public interface BundleStartLevel extends BundleReference
	10.5.2.1. public int getStartLevel()
	10.5.2.2. public boolean isActivationPolicyUsed()
	10.5.2.3. public boolean isPersistentlyStarted()
	10.5.2.4. public void setStartLevel(int startlevel)

	10.5.3. public interface FrameworkStartLevel extends BundleReference
	10.5.3.1. public int getInitialBundleStartLevel()
	10.5.3.2. public int getStartLevel()
	10.5.3.3. public void setInitialBundleStartLevel(int startlevel)
	10.5.3.4. public void setStartLevel(int startlevel, FrameworkListener... listeners)

	10.6. org.osgi.framework.namespace
	10.6.1. Summary
	10.6.2. public abstract class AbstractWiringNamespace extends Namespace
	10.6.2.1. public static final String CAPABILITY_BUNDLE_VERSION_ATTRIBUTE = "bundle-version"
	10.6.2.2. public static final String CAPABILITY_MANDATORY_DIRECTIVE = "mandatory"

	10.6.3. public final class BundleNamespace extends AbstractWiringNamespace
	10.6.3.1. public static final String BUNDLE_NAMESPACE = "osgi.wiring.bundle"
	10.6.3.2. public static final String CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE = "fragment-attachment"
	10.6.3.3. public static final String CAPABILITY_SINGLETON_DIRECTIVE = "singleton"
	10.6.3.4. public static final String REQUIREMENT_EXTENSION_DIRECTIVE = "extension"
	10.6.3.5. public static final String REQUIREMENT_VISIBILITY_DIRECTIVE = "visibility"
	10.6.3.6. public static final String VISIBILITY_PRIVATE = "private"
	10.6.3.7. public static final String VISIBILITY_REEXPORT = "reexport"

	10.6.4. public final class ExecutionEnvironmentNamespace extends Namespace
	10.6.4.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	10.6.4.2. public static final String EXECUTION_ENVIRONMENT_NAMESPACE = "osgi.ee"

	10.6.5. public final class HostNamespace extends AbstractWiringNamespace
	10.6.5.1. public static final String CAPABILITY_FRAGMENT_ATTACHMENT_DIRECTIVE = "fragment-attachment"
	10.6.5.2. public static final String CAPABILITY_SINGLETON_DIRECTIVE = "singleton"
	10.6.5.3. public static final String EXTENSION_BOOTCLASSPATH = "bootclasspath"
	10.6.5.4. public static final String EXTENSION_FRAMEWORK = "framework"
	10.6.5.5. public static final String FRAGMENT_ATTACHMENT_ALWAYS = "always"
	10.6.5.6. public static final String FRAGMENT_ATTACHMENT_NEVER = "never"
	10.6.5.7. public static final String FRAGMENT_ATTACHMENT_RESOLVETIME = "resolve-time"
	10.6.5.8. public static final String HOST_NAMESPACE = "osgi.wiring.host"
	10.6.5.9. public static final String REQUIREMENT_EXTENSION_DIRECTIVE = "extension"
	10.6.5.10. public static final String REQUIREMENT_VISIBILITY_DIRECTIVE = "visibility"

	10.6.6. public final class IdentityNamespace extends Namespace
	10.6.6.1. public static final String CAPABILITY_COPYRIGHT_ATTRIBUTE = "copyright"
	10.6.6.2. public static final String CAPABILITY_DESCRIPTION_ATTRIBUTE = "description"
	10.6.6.3. public static final String CAPABILITY_DOCUMENTATION_ATTRIBUTE = "documentation"
	10.6.6.4. public static final String CAPABILITY_LICENSE_ATTRIBUTE = "license"
	10.6.6.5. public static final String CAPABILITY_SINGLETON_DIRECTIVE = "singleton"
	10.6.6.6. public static final String CAPABILITY_TYPE_ATTRIBUTE = "type"
	10.6.6.7. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	10.6.6.8. public static final String CLASSIFIER_JAVADOC = "javadoc"
	10.6.6.9. public static final String CLASSIFIER_SOURCES = "sources"
	10.6.6.10. public static final String IDENTITY_NAMESPACE = "osgi.identity"
	10.6.6.11. public static final String REQUIREMENT_CLASSIFIER_DIRECTIVE = "classifier"
	10.6.6.12. public static final String TYPE_BUNDLE = "osgi.bundle"
	10.6.6.13. public static final String TYPE_FRAGMENT = "osgi.fragment"
	10.6.6.14. public static final String TYPE_UNKNOWN = "unknown"

	10.6.7. public final class NativeNamespace extends Namespace
	10.6.7.1. public static final String CAPABILITY_LANGUAGE_ATTRIBUTE = "osgi.native.language"
	10.6.7.2. public static final String CAPABILITY_OSNAME_ATTRIBUTE = "osgi.native.osname"
	10.6.7.3. public static final String CAPABILITY_OSVERSION_ATTRIBUTE = "osgi.native.osversion"
	10.6.7.4. public static final String CAPABILITY_PROCESSOR_ATTRIBUTE = "osgi.native.processor"
	10.6.7.5. public static final String NATIVE_NAMESPACE = "osgi.native"

	10.6.8. public final class PackageNamespace extends AbstractWiringNamespace
	10.6.8.1. public static final String CAPABILITY_BUNDLE_SYMBOLICNAME_ATTRIBUTE = "bundle-symbolic-name"
	10.6.8.2. public static final String CAPABILITY_EXCLUDE_DIRECTIVE = "exclude"
	10.6.8.3. public static final String CAPABILITY_INCLUDE_DIRECTIVE = "include"
	10.6.8.4. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	10.6.8.5. public static final String PACKAGE_NAMESPACE = "osgi.wiring.package"
	10.6.8.6. public static final String RESOLUTION_DYNAMIC = "dynamic"

	10.7. org.osgi.annotation.versioning
	10.7.1. Summary
	10.7.2. @ConsumerType
	10.7.3. @ProviderType
	10.7.4. @Version
	10.7.4.1. String value

	10.8. org.osgi.annotation.bundle
	10.8.1. Summary
	10.8.2. @Attribute
	10.8.2.1. String value default ""

	10.8.3. @Capabilities
	10.8.3.1. Capability[] value

	10.8.4. @Capability
	10.8.4.1. String namespace
	10.8.4.2. String name default ""
	10.8.4.3. String version default ""
	10.8.4.4. Class<?>[] uses default {}
	10.8.4.5. String effective default "resolve"
	10.8.4.6. String[] attribute default {}

	10.8.5. @Directive
	10.8.5.1. String value default ""

	10.8.6. @Export
	10.8.6.1. String[] uses default {}
	10.8.6.2. String[] attribute default {}
	10.8.6.3. Export.Substitution substitution default CALCULATED

	10.8.7. enum Export.Substitution
	10.8.7.1. CONSUMER
	10.8.7.2. PROVIDER
	10.8.7.3. NOIMPORT
	10.8.7.4. CALCULATED

	10.8.8. @Header
	10.8.8.1. String name
	10.8.8.2. String value

	10.8.9. @Headers
	10.8.9.1. Header[] value

	10.8.10. @Requirement
	10.8.10.1. String namespace
	10.8.10.2. String name default ""
	10.8.10.3. String version default ""
	10.8.10.4. String filter default ""
	10.8.10.5. String effective default "resolve"
	10.8.10.6. String[] attribute default {}
	10.8.10.7. Requirement.Cardinality cardinality default SINGLE
	10.8.10.8. Requirement.Resolution resolution default MANDATORY

	10.8.11. enum Requirement.Cardinality
	10.8.11.1. SINGLE
	10.8.11.2. MULTIPLE

	10.8.12. enum Requirement.Resolution
	10.8.12.1. MANDATORY
	10.8.12.2. OPTIONAL

	10.8.13. @Requirements
	10.8.13.1. Requirement[] value

	Chapter 50. Conditional Permission Admin Service Specification
	50.1. Introduction
	50.1.1. Essentials
	50.1.2. Entities
	50.1.3. Synopsis

	50.2. Permission Management Model
	50.2.1. Local Permissions
	50.2.2. Open Deployment Channels
	50.2.3. Delegation
	50.2.4. Grouping
	50.2.5. Typical Example

	50.3. Effective Permissions
	50.4. Conditional Permissions
	50.4.1. Encoding versus Instantiation

	50.5. Conditions
	50.6. The Permission Check
	50.6.1. Security Manager checkPermission Method
	50.6.2. Bundle Protection Domain implies Method
	50.6.2.1. Example Bundle Protection Domain Check

	50.6.3. Postponed Evaluation
	50.6.4. Example
	50.6.5. Using the Access Control Context Directly

	50.7. Permission Management
	50.7.1. Default Permissions

	50.8. Implementing Conditions
	50.9. Standard Conditions
	50.9.1. Bundle Signer Condition
	50.9.2. Bundle Location Condition

	50.10. Bundle Permission Resource
	50.10.1. Removing the Bundle Permission Resource

	50.11. Relation to Permission Admin
	50.12. Implementation Issues
	50.12.1. Optimizing Immutable Conditions
	50.12.2. Optimizing the Permission Check
	50.12.3. Using Permission Checks in Conditions
	50.12.4. Concurrency
	50.12.5. Class Loading
	50.12.6. Condition Life Cycle

	50.13. Security
	50.13.1. Service Registry Security
	50.13.1.1. Conditional Permission Admin Service
	50.13.1.2. Client

	50.14. org.osgi.service.condpermadmin
	50.14.1. Summary
	50.14.2. public class BundleLocationCondition
	50.14.2.1. public static Condition getCondition(Bundle bundle, ConditionInfo info)

	50.14.3. public class BundleSignerCondition
	50.14.3.1. public static Condition getCondition(Bundle bundle, ConditionInfo info)

	50.14.4. public interface Condition
	50.14.4.1. public static final Condition FALSE
	50.14.4.2. public static final Condition TRUE
	50.14.4.3. public boolean isMutable()
	50.14.4.4. public boolean isPostponed()
	50.14.4.5. public boolean isSatisfied()
	50.14.4.6. public boolean isSatisfied(Condition[] conditions, Dictionary<Object, Object> context)

	50.14.5. public interface ConditionalPermissionAdmin
	50.14.5.1. public ConditionalPermissionInfo addConditionalPermissionInfo(ConditionInfo[] conditions, PermissionInfo[] permissions)
	50.14.5.2. public AccessControlContext getAccessControlContext(String[] signers)
	50.14.5.3. public ConditionalPermissionInfo getConditionalPermissionInfo(String name)
	50.14.5.4. public Enumeration<ConditionalPermissionInfo> getConditionalPermissionInfos()
	50.14.5.5. public ConditionalPermissionInfo newConditionalPermissionInfo(String name, ConditionInfo[] conditions, PermissionInfo[] permissions, String access)
	50.14.5.6. public ConditionalPermissionInfo newConditionalPermissionInfo(String encodedConditionalPermissionInfo)
	50.14.5.7. public ConditionalPermissionUpdate newConditionalPermissionUpdate()
	50.14.5.8. public ConditionalPermissionInfo setConditionalPermissionInfo(String name, ConditionInfo[] conditions, PermissionInfo[] permissions)

	50.14.6. public interface ConditionalPermissionInfo
	50.14.6.1. public static final String ALLOW = "allow"
	50.14.6.2. public static final String DENY = "deny"
	50.14.6.3. public void delete()
	50.14.6.4. public boolean equals(Object obj)
	50.14.6.5. public String getAccessDecision()
	50.14.6.6. public ConditionInfo[] getConditionInfos()
	50.14.6.7. public String getEncoded()
	50.14.6.8. public String getName()
	50.14.6.9. public PermissionInfo[] getPermissionInfos()
	50.14.6.10. public int hashCode()
	50.14.6.11. public String toString()

	50.14.7. public interface ConditionalPermissionUpdate
	50.14.7.1. public boolean commit()
	50.14.7.2. public List<ConditionalPermissionInfo> getConditionalPermissionInfos()

	50.14.8. public class ConditionInfo
	50.14.8.1. public ConditionInfo(String type, String[] args)
	50.14.8.2. public ConditionInfo(String encodedCondition)
	50.14.8.3. public boolean equals(Object obj)
	50.14.8.4. public final String[] getArgs()
	50.14.8.5. public final String getEncoded()
	50.14.8.6. public final String getType()
	50.14.8.7. public int hashCode()
	50.14.8.8. public String toString()

	Chapter 51. Permission Admin Service Specification
	51.1. Introduction
	51.1.1. Essentials
	51.1.2. Entities
	51.1.3. Operation

	51.2. Permission Admin service
	51.2.1. File Permission for Relative Path Names

	51.3. Security
	51.4. org.osgi.service.permissionadmin
	51.4.1. Summary
	51.4.2. public interface PermissionAdmin
	51.4.2.1. public PermissionInfo[] getDefaultPermissions()
	51.4.2.2. public String[] getLocations()
	51.4.2.3. public PermissionInfo[] getPermissions(String location)
	51.4.2.4. public void setDefaultPermissions(PermissionInfo[] permissions)
	51.4.2.5. public void setPermissions(String location, PermissionInfo[] permissions)

	51.4.3. public class PermissionInfo
	51.4.3.1. public PermissionInfo(String type, String name, String actions)
	51.4.3.2. public PermissionInfo(String encodedPermission)
	51.4.3.3. public boolean equals(Object obj)
	51.4.3.4. public final String getActions()
	51.4.3.5. public final String getEncoded()
	51.4.3.6. public final String getName()
	51.4.3.7. public final String getType()
	51.4.3.8. public int hashCode()
	51.4.3.9. public String toString()

	Chapter 52. URL Handlers Service Specification
	52.1. Introduction
	52.1.1. Essentials
	52.1.2. Entities
	52.1.3. Operation

	52.2. Factories in java.net
	52.3. Framework Procedures
	52.3.1. Constructing a Proxy and Handler
	52.3.2. Built-in Handlers
	52.3.3. Finding Built-in Handlers
	52.3.4. Protected Methods and Proxy
	52.3.5. Stream Handlers that use java.net.Proxy

	52.4. Providing a New Scheme
	52.5. Providing a Content Handler
	52.6. Security Considerations
	52.7. org.osgi.service.url
	52.7.1. Summary
	52.7.2. public abstract class AbstractURLStreamHandlerService extends URLStreamHandler implements URLStreamHandlerService
	52.7.2.1. protected volatile URLStreamHandlerSetter realHandler
	52.7.2.2. public AbstractURLStreamHandlerService()
	52.7.2.3. public boolean equals(URL u1, URL u2)
	52.7.2.4. public int getDefaultPort()
	52.7.2.5. public InetAddress getHostAddress(URL u)
	52.7.2.6. public int hashCode(URL u)
	52.7.2.7. public boolean hostsEqual(URL u1, URL u2)
	52.7.2.8. public abstract URLConnection openConnection(URL u) throws IOException
	52.7.2.9. public void parseURL(URLStreamHandlerSetter realHandler, URL u, String spec, int start, int limit)
	52.7.2.10. public boolean sameFile(URL u1, URL u2)
	52.7.2.11. protected void setURL(URL u, String proto, String host, int port, String file, String ref)
	52.7.2.12. protected void setURL(URL u, String proto, String host, int port, String auth, String user, String path, String query, String ref)
	52.7.2.13. public String toExternalForm(URL u)

	52.7.3. public interface URLConstants
	52.7.3.1. public static final String URL_CONTENT_MIMETYPE = "url.content.mimetype"
	52.7.3.2. public static final String URL_HANDLER_PROTOCOL = "url.handler.protocol"

	52.7.4. public interface URLStreamHandlerService
	52.7.4.1. public boolean equals(URL u1, URL u2)
	52.7.4.2. public int getDefaultPort()
	52.7.4.3. public InetAddress getHostAddress(URL u)
	52.7.4.4. public int hashCode(URL u)
	52.7.4.5. public boolean hostsEqual(URL u1, URL u2)
	52.7.4.6. public URLConnection openConnection(URL u) throws IOException
	52.7.4.7. public void parseURL(URLStreamHandlerSetter realHandler, URL u, String spec, int start, int limit)
	52.7.4.8. public boolean sameFile(URL u1, URL u2)
	52.7.4.9. public String toExternalForm(URL u)

	52.7.5. public interface URLStreamHandlerSetter
	52.7.5.1. public void setURL(URL u, String protocol, String host, int port, String file, String ref)
	52.7.5.2. public void setURL(URL u, String protocol, String host, int port, String authority, String userInfo, String path, String query, String ref)

	52.8. References

	Chapter 53. Resolver Hook Service Specification
	53.1. Introduction
	53.1.1. Essentials
	53.1.2. Entities
	53.1.3. Synopsis

	53.2. Resolve Operation
	53.2.1. Trigger Bundles
	53.2.2. Resolving Types
	53.2.3. Preparing Handlers
	53.2.4. Limiting the Set of Resolvable Bundles
	53.2.5. Hiding Capabilities
	53.2.6. Effect of Singleton Capabilities

	53.3. The Resolve Operation
	53.3.1. Resolver Hook Limitations
	53.3.2. Failures

	53.4. Security
	53.5. org.osgi.framework.hooks.resolver
	53.5.1. Summary
	53.5.2. public interface ResolverHook
	53.5.2.1. public void end()
	53.5.2.2. public void filterMatches(BundleRequirement requirement, Collection<BundleCapability> candidates)
	53.5.2.3. public void filterResolvable(Collection<BundleRevision> candidates)
	53.5.2.4. public void filterSingletonCollisions(BundleCapability singleton, Collection<BundleCapability> collisionCandidates)

	53.5.3. public interface ResolverHookFactory
	53.5.3.1. public ResolverHook begin(Collection<BundleRevision> triggers)

	Chapter 54. Bundle Hook Service Specification
	54.1. Introduction
	54.1.1. Essentials
	54.1.2. Entities
	54.1.3. Synopsis

	54.2. About the Hooks
	54.3. Bundle Event Hook
	54.3.1. System Bundle Listeners

	54.4. Bundle Find Hook
	54.4.1. System Bundle Context

	54.5. Bundle Collision Hook
	54.5.1. System Bundle Context

	54.6. Security
	54.7. org.osgi.framework.hooks.bundle
	54.7.1. Summary
	54.7.2. public interface CollisionHook
	54.7.2.1. public static final int INSTALLING = 1
	54.7.2.2. public static final int UPDATING = 2
	54.7.2.3. public void filterCollisions(int operationType, Bundle target, Collection<Bundle> collisionCandidates)

	54.7.3. public interface EventHook
	54.7.3.1. public void event(BundleEvent event, Collection<BundleContext> contexts)

	54.7.4. public interface FindHook
	54.7.4.1. public void find(BundleContext context, Collection<Bundle> bundles)

	Chapter 55. Service Hook Service Specification
	55.1. Introduction
	55.1.1. Essentials
	55.1.2. Entities
	55.1.3. Synopsis

	55.2. Service Hooks
	55.3. Usage Scenarios
	55.3.1. Proxying
	55.3.2. Providing a Service on Demand

	55.4. Event Listener Hook
	55.4.1. System Service Listeners

	55.5. Find Hook
	55.5.1. System Bundle Context

	55.6. Listener Hook
	55.6.1. Filter

	55.7. Architectural Notes
	55.7.1. Remove Only
	55.7.2. Ordinary Services
	55.7.3. Ordering
	55.7.4. Providing the Service Object
	55.7.5. Multi Threading

	55.8. Security
	55.9. org.osgi.framework.hooks.service
	55.9.1. Summary
	55.9.2. public interface EventHook
	55.9.2.1. public void event(ServiceEvent event, Collection<BundleContext> contexts)

	55.9.3. public interface EventListenerHook
	55.9.3.1. public void event(ServiceEvent event, Map<BundleContext, Collection<ListenerHook.ListenerInfo>> listeners)

	55.9.4. public interface FindHook
	55.9.4.1. public void find(BundleContext context, String name, String filter, boolean allServices, Collection<ServiceReference<?>> references)

	55.9.5. public interface ListenerHook
	55.9.5.1. public void added(Collection<ListenerHook.ListenerInfo> listeners)
	55.9.5.2. public void removed(Collection<ListenerHook.ListenerInfo> listeners)

	55.9.6. public static interface ListenerHook.ListenerInfo
	55.9.6.1. public boolean equals(Object obj)
	55.9.6.2. public BundleContext getBundleContext()
	55.9.6.3. public String getFilter()
	55.9.6.4. public int hashCode()
	55.9.6.5. public boolean isRemoved()

	55.10. References

	Chapter 56. Weaving Hook Service Specification
	56.1. Introduction
	56.1.1. Essentials
	56.1.2. Entities

	56.2. Usage
	56.2.1. Tracing
	56.2.2. Isolation

	56.3. Weaving Hook
	56.3.1. Concurrency
	56.3.2. Error Handling

	56.4. Woven Class Listener
	56.4.1. Concurrency
	56.4.2. Error Handling

	56.5. Security
	56.5.1. Weaving Hooks
	56.5.2. Woven Bundles
	56.5.3. Woven Class Listeners

	56.6. org.osgi.framework.hooks.weaving
	56.6.1. Summary
	56.6.2. public class WeavingException extends RuntimeException
	56.6.2.1. public WeavingException(String msg, Throwable cause)
	56.6.2.2. public WeavingException(String msg)

	56.6.3. public interface WeavingHook
	56.6.3.1. public void weave(WovenClass wovenClass)

	56.6.4. public interface WovenClass
	56.6.4.1. public static final int DEFINE_FAILED = 16
	56.6.4.2. public static final int DEFINED = 4
	56.6.4.3. public static final int TRANSFORMED = 2
	56.6.4.4. public static final int TRANSFORMING = 1
	56.6.4.5. public static final int TRANSFORMING_FAILED = 8
	56.6.4.6. public BundleWiring getBundleWiring()
	56.6.4.7. public byte[] getBytes()
	56.6.4.8. public String getClassName()
	56.6.4.9. public Class<?> getDefinedClass()
	56.6.4.10. public List<String> getDynamicImports()
	56.6.4.11. public ProtectionDomain getProtectionDomain()
	56.6.4.12. public int getState()
	56.6.4.13. public boolean isWeavingComplete()
	56.6.4.14. public void setBytes(byte[] newBytes)

	56.6.5. public interface WovenClassListener
	56.6.5.1. public void modified(WovenClass wovenClass)

	56.7. References

	Chapter 57. Data Transfer Objects Specification
	57.1. Introduction
	57.1.1. Essentials
	57.1.2. Entities

	57.2. Data Transfer Object
	57.2.1. Naming Conventions

	57.3. Core Data Transfer Objects
	57.3.1. Framework Data Transfer Objects
	57.3.2. Resource API Data Transfer Objects
	57.3.3. Bundle Wiring API Data Transfer Objects
	57.3.4. Start Level API Data Transfer Objects

	57.4. Obtaining Core Data Transfer Objects
	57.5. Security
	57.6. org.osgi.dto
	57.6.1. Summary
	57.6.2. public abstract class DTO
	57.6.2.1. public DTO()
	57.6.2.2. public String toString()

	57.7. org.osgi.framework.dto
	57.7.1. Summary
	57.7.2. public class BundleDTO extends DTO
	57.7.2.1. public long id
	57.7.2.2. public long lastModified
	57.7.2.3. public int state
	57.7.2.4. public String symbolicName
	57.7.2.5. public String version
	57.7.2.6. public BundleDTO()

	57.7.3. public class FrameworkDTO extends DTO
	57.7.3.1. public List<BundleDTO> bundles
	57.7.3.2. public Map<String, Object> properties
	57.7.3.3. public List<ServiceReferenceDTO> services
	57.7.3.4. public FrameworkDTO()

	57.7.4. public class ServiceReferenceDTO extends DTO
	57.7.4.1. public long bundle
	57.7.4.2. public long id
	57.7.4.3. public Map<String, Object> properties
	57.7.4.4. public long[] usingBundles
	57.7.4.5. public ServiceReferenceDTO()

	57.8. org.osgi.framework.startlevel.dto
	57.8.1. Summary
	57.8.2. public class BundleStartLevelDTO extends DTO
	57.8.2.1. public boolean activationPolicyUsed
	57.8.2.2. public long bundle
	57.8.2.3. public boolean persistentlyStarted
	57.8.2.4. public int startLevel
	57.8.2.5. public BundleStartLevelDTO()

	57.8.3. public class FrameworkStartLevelDTO extends DTO
	57.8.3.1. public int initialBundleStartLevel
	57.8.3.2. public int startLevel
	57.8.3.3. public FrameworkStartLevelDTO()

	57.9. org.osgi.framework.wiring.dto
	57.9.1. Summary
	57.9.2. public class BundleRevisionDTO extends ResourceDTO
	57.9.2.1. public long bundle
	57.9.2.2. public String symbolicName
	57.9.2.3. public int type
	57.9.2.4. public String version
	57.9.2.5. public BundleRevisionDTO()

	57.9.3. public class BundleWireDTO extends WireDTO
	57.9.3.1. public int providerWiring
	57.9.3.2. public int requirerWiring
	57.9.3.3. public BundleWireDTO()

	57.9.4. public class BundleWiringDTO extends DTO
	57.9.4.1. public long bundle
	57.9.4.2. public Set<BundleWiringDTO.NodeDTO> nodes
	57.9.4.3. public Set<BundleRevisionDTO> resources
	57.9.4.4. public int root
	57.9.4.5. public BundleWiringDTO()

	57.9.5. public static class BundleWiringDTO.NodeDTO extends WiringDTO
	57.9.5.1. public boolean current
	57.9.5.2. public boolean inUse
	57.9.5.3. public NodeDTO()

	57.9.6. public class FrameworkWiringDTO extends DTO
	57.9.6.1. public Set<BundleRevisionDTO> resources
	57.9.6.2. public Set<BundleWiringDTO.NodeDTO> wirings
	57.9.6.3. public FrameworkWiringDTO()

	57.10. org.osgi.resource.dto
	57.10.1. Summary
	57.10.2. public class CapabilityDTO extends DTO
	57.10.2.1. public Map<String, Object> attributes
	57.10.2.2. public Map<String, String> directives
	57.10.2.3. public int id
	57.10.2.4. public String namespace
	57.10.2.5. public int resource
	57.10.2.6. public CapabilityDTO()

	57.10.3. public class CapabilityRefDTO extends DTO
	57.10.3.1. public int capability
	57.10.3.2. public int resource
	57.10.3.3. public CapabilityRefDTO()

	57.10.4. public class RequirementDTO extends DTO
	57.10.4.1. public Map<String, Object> attributes
	57.10.4.2. public Map<String, String> directives
	57.10.4.3. public int id
	57.10.4.4. public String namespace
	57.10.4.5. public int resource
	57.10.4.6. public RequirementDTO()

	57.10.5. public class RequirementRefDTO extends DTO
	57.10.5.1. public int requirement
	57.10.5.2. public int resource
	57.10.5.3. public RequirementRefDTO()

	57.10.6. public class ResourceDTO extends DTO
	57.10.6.1. public List<CapabilityDTO> capabilities
	57.10.6.2. public int id
	57.10.6.3. public List<RequirementDTO> requirements
	57.10.6.4. public ResourceDTO()

	57.10.7. public class WireDTO extends DTO
	57.10.7.1. public CapabilityRefDTO capability
	57.10.7.2. public int provider
	57.10.7.3. public RequirementRefDTO requirement
	57.10.7.4. public int requirer
	57.10.7.5. public WireDTO()

	57.10.8. public class WiringDTO extends DTO
	57.10.8.1. public List<CapabilityRefDTO> capabilities
	57.10.8.2. public int id
	57.10.8.3. public List<WireDTO> providedWires
	57.10.8.4. public List<WireDTO> requiredWires
	57.10.8.5. public List<RequirementRefDTO> requirements
	57.10.8.6. public int resource
	57.10.8.7. public WiringDTO()

	57.11. References
	57.12. Changes

	Chapter 58. Resolver Service Specification
	58.1. Introduction
	58.1.1. Essentials
	58.1.2. Entities
	58.1.3. Synopsis

	58.2. The Resolve Context
	58.2.1. Mandatory and Optional Resources
	58.2.2. Finding Capabilities
	58.2.3. Matching
	58.2.4. Repositories
	58.2.5. Existing Wiring State
	58.2.6. Effective
	58.2.7. Insert Hosted Capabilities
	58.2.8. Fragments
	58.2.9. Singleton Capabilities
	58.2.10. Diagnostics
	58.2.11. Cancel
	58.2.12. Complexity

	58.3. Resolver Service
	58.3.1. Variables
	58.3.2. Resolving
	58.3.3. Dynamic Resolving
	58.3.4. Resolution Exception

	58.4. Security
	58.4.1. Resolving
	58.4.2. Minimum Implementation Permissions
	58.4.3. Minimum Using Permissions

	58.5. org.osgi.service.resolver
	58.5.1. Summary
	58.5.2. public interface HostedCapability extends Capability
	58.5.2.1. public Capability getDeclaredCapability()
	58.5.2.2. public Resource getResource()

	58.5.3. public class ResolutionException extends Exception
	58.5.3.1. public ResolutionException(String message, Throwable cause, Collection<Requirement> unresolvedRequirements)
	58.5.3.2. public ResolutionException(String message)
	58.5.3.3. public ResolutionException(Throwable cause)
	58.5.3.4. public Collection<Requirement> getUnresolvedRequirements()

	58.5.4. public abstract class ResolveContext
	58.5.4.1. public ResolveContext()
	58.5.4.2. public abstract List<Capability> findProviders(Requirement requirement)
	58.5.4.3. public Collection<Resource> findRelatedResources(Resource resource)
	58.5.4.4. public Collection<Resource> getMandatoryResources()
	58.5.4.5. public Collection<Resource> getOptionalResources()
	58.5.4.6. public List<Wire> getSubstitutionWires(Wiring wiring)
	58.5.4.7. public abstract Map<Resource, Wiring> getWirings()
	58.5.4.8. public abstract int insertHostedCapability(List<Capability> capabilities, HostedCapability hostedCapability)
	58.5.4.9. public abstract boolean isEffective(Requirement requirement)
	58.5.4.10. public void onCancel(Runnable callback)

	58.5.5. public interface Resolver
	58.5.5.1. public Map<Resource, List<Wire>> resolve(ResolveContext context) throws ResolutionException
	58.5.5.2. public Map<Resource, List<Wire>> resolveDynamic(ResolveContext context, Wiring hostWiring, Requirement dynamicRequirement) throws ResolutionException

	58.6. References
	58.7. Changes

	Chapter 701. Tracker Specification
	701.1. Introduction
	701.1.1. Essentials
	701.1.2. Operation
	701.1.3. Entities

	701.2. Tracking
	701.2.1. Usage
	701.2.2. General API
	701.2.3. Tracking Count
	701.2.4. Multi Threading
	701.2.5. Synchronous

	701.3. Service Tracker
	701.3.1. Using a Service Tracker
	701.3.2. Customizing the Service Tracker class
	701.3.3. Customizing Example

	701.4. Bundle Tracker
	701.4.1. Bundle States
	701.4.2. Constructor
	701.4.3. Using a Bundle Tracker
	701.4.4. Customizing the Bundle Tracker class
	701.4.5. Extender Model

	701.5. Security
	701.5.1. Synchronous Bundle Listener

	701.6. org.osgi.util.tracker
	701.6.1. Summary
	701.6.2. public class BundleTracker<T> implements BundleTrackerCustomizer<T>
	701.6.2.1. protected final BundleContext context
	701.6.2.2. public BundleTracker(BundleContext context, int stateMask, BundleTrackerCustomizer<T> customizer)
	701.6.2.3. public T addingBundle(Bundle bundle, BundleEvent event)
	701.6.2.4. public void close()
	701.6.2.5. public Bundle[] getBundles()
	701.6.2.6. public T getObject(Bundle bundle)
	701.6.2.7. public Map<Bundle, T> getTracked()
	701.6.2.8. public int getTrackingCount()
	701.6.2.9. public boolean isEmpty()
	701.6.2.10. public void modifiedBundle(Bundle bundle, BundleEvent event, T object)
	701.6.2.11. public void open()
	701.6.2.12. public void remove(Bundle bundle)
	701.6.2.13. public void removedBundle(Bundle bundle, BundleEvent event, T object)
	701.6.2.14. public int size()

	701.6.3. public interface BundleTrackerCustomizer<T>
	701.6.3.1. public T addingBundle(Bundle bundle, BundleEvent event)
	701.6.3.2. public void modifiedBundle(Bundle bundle, BundleEvent event, T object)
	701.6.3.3. public void removedBundle(Bundle bundle, BundleEvent event, T object)

	701.6.4. public class ServiceTracker<S, T> implements ServiceTrackerCustomizer<S, T>
	701.6.4.1. protected final BundleContext context
	701.6.4.2. protected final Filter filter
	701.6.4.3. public ServiceTracker(BundleContext context, ServiceReference<S> reference, ServiceTrackerCustomizer<S, T> customizer)
	701.6.4.4. public ServiceTracker(BundleContext context, String clazz, ServiceTrackerCustomizer<S, T> customizer)
	701.6.4.5. public ServiceTracker(BundleContext context, Filter filter, ServiceTrackerCustomizer<S, T> customizer)
	701.6.4.6. public ServiceTracker(BundleContext context, Class<S> clazz, ServiceTrackerCustomizer<S, T> customizer)
	701.6.4.7. public T addingService(ServiceReference<S> reference)
	701.6.4.8. public void close()
	701.6.4.9. public T getService(ServiceReference<S> reference)
	701.6.4.10. public T getService()
	701.6.4.11. public ServiceReference<S> getServiceReference()
	701.6.4.12. public ServiceReference<S>[] getServiceReferences()
	701.6.4.13. public Object[] getServices()
	701.6.4.14. public T[] getServices(T[] array)
	701.6.4.15. public SortedMap<ServiceReference<S>, T> getTracked()
	701.6.4.16. public int getTrackingCount()
	701.6.4.17. public boolean isEmpty()
	701.6.4.18. public void modifiedService(ServiceReference<S> reference, T service)
	701.6.4.19. public void open()
	701.6.4.20. public void open(boolean trackAllServices)
	701.6.4.21. public void remove(ServiceReference<S> reference)
	701.6.4.22. public void removedService(ServiceReference<S> reference, T service)
	701.6.4.23. public int size()
	701.6.4.24. public T waitForService(long timeout) throws InterruptedException

	701.6.5. public interface ServiceTrackerCustomizer<S, T>
	701.6.5.1. public T addingService(ServiceReference<S> reference)
	701.6.5.2. public void modifiedService(ServiceReference<S> reference, T service)
	701.6.5.3. public void removedService(ServiceReference<S> reference, T service)

